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Abstract

Robust Optimization is a common framework in optimization under uncertainty when the problem parameters are not
known, but it is rather known that the parameters belong to some given uncertainty set. In this framework the problem
solved is a min-max problem, where the solution is obtained considering the worst possible realization of parameters.
However, the problem eventually solved becomes more complicated and sometimes gets computationally intractable as the
dimension of the problem increases. For example, solving a robust conic quadratic program with ellipsoidal uncertainty
leads to a semidefinite program. Here we will see a general framework for approximately solving a robust optimization
problem using tools from online convex optimization and game theory. We formulate the robust optimization problem as
a two player zero-sum game and consider the game is being played repeatedly. Our algorithm finds an approximate robust
solution after playing the game for a number of rounds that is inversely proportional to the square of target accuracy.

1 Introduction

In most practical optimization problems the data are uncer-
tain or imprecise due, for instance, to estimation errors or
to tolerances in design implementation. The most appreci-
ated framework to deal with such uncertainties is Robust
Optimization (RO). It is a paradigm that uses ideas from
convexity and duality, to construct a solution that is opti-
mal for any realization of the uncertainty in a given set.
It immunizes solutions of convex problems to bounded
uncertainty in the parameters of the problem by choosing
a solution that performs best against the worst possible
parameter. When the objective function is convex in the
parameters, and concave in the uncertainty, and when the
uncertainty set is convex the overall problem is convex.

RO has several successful applications in analyzing ma-
chine learning algorithms under uncertainty. An example
is solving the SVM problem when data is noisy. It has been
shown [7, 23] that if the uncertainty is only in the patterns,
e.g. some of its components are missing or not known pre-
cisely but the labels are known precisely, then the classifi-
cation problem can be formulated as a second-order conic
Program (SOCP). In [7] the underlying uncertainty set was
described by multivariate normal distributions where in

[23] they considered the ellipsoidal uncertainty set. How-
ever in both the cases, the problem eventually solved is
more complicated than the original problem. Though we
have commercially available softwares to solve SOCP, they
does not scale well with the dimensionality of the problem.

In general, robust counterpart of an optimization prob-
lem is often more difficult mathematical problem. For ex-
ample, with ellipsoidal uncertainties the robust counterpart
of a linear program (LP) is an SOCP, where conic quadratic
program becomes a semi-definite program (SDP). Both are
difficult to solve than their non-robust versions. Currently
we have polynomial time interior-point methods for solv-
ing SOCP/SDP. Unfortunately, these algorithms, aimed
at generating high accuracy solutions, can become pro-
hibitively time-consuming in the large-scale case. Again,
with the same uncertainty assumption the robust version of
SDP is NP-hard. Recently, in [2] they proposed two meta-
algorithms to tackle this issue by approximately solving a
robust counterpart of a given optimization problem using
only a solver/oracle for the original non-robust version.
They formulated the robust problem as a zero-sum game,
which was solved by a primal-dual technique using tools
from online convex optimization [21] , namely follow-the-
regularized-leader (FTRL) and follow-the-perturbed leader



(FTPL).
Motivated from their approach, we will formulate the

robust problem as a saddle-point problem and consider it
as a repeated game between a forecaster (optimizer) and
the environment (adversary). Our use of a game-theoretic
formalism is not accidental: there exists an intimate con-
nection between sequential prediction and some funda-
mental problems belonging to the theory of learning in
games. We only focus on regret-based learning procedures
(i.e., situations in which the players of the game base their
strategies only on regrets they have suffered in the past)
and our fundamental concern is whether such procedures
lead to equilibria. In this work we answer this question
on the affirmative, by discussing perhaps the most natural
strategy for playing repeated games: fictitious play. It is
a ”belief-based” learning rule, i.e., players form beliefs
about opponent player and behave rationally with respect
to these beliefs.

We show how both the players engaged in a repeated
zero sum game following fictitious play gets close to their
Nash equilibrium strategy after a certain number of rounds,
which in turn depends upon the ”closeness” parameter
(target accuracy) but independent of the dimension of the
problem. Also to the best of our knowledge we are the
first to establish a direct connection between Nash equilib-
ria and robust optimal solution of the min-max problem.
Along the way, we contribute some extensions to the ex-
isting fictitious play literature itself, notably extending it
to the the case where both the players have infinitely many
actions to choose from. Then we demonstrate applicability
of our method to various practical problems ranging from
machine learning to finance. We particularly discuss how
our algorithm can be used to solve robust portfolio selec-
tion problem and robust classification problem.

Finally taking a slight detour we focus on the FTRL,
more precisely Online Gradient Descent (OGD) based
meta algorithm given in [2] and apply it to solve (approx-
imately) the robust version of the SVM problem, invoking
the original SVM oracle sufficient number of times that
depends on the approximation guarantee and the size of
the uncertainty set but does not directly depends on the
dimension of the problem.

Organization. The rest of the work is organized as fol-
lows. In Section 2 we discuss some related approaches to
solve the convex-concave saddle point problem in hand.
In Section 3 we formulate the robust optimization prob-
lem more formally and describe interpretations of both
saddle-point and game theoretic formulation. In Section
4 we mention the model and properties of fictitious play
and see how this leads to approximate Nash equilibria of
two player zero-sum games. In Section 5 we present our

fictitious play based algorithm to solve the saddle-point
problem and also discuss the convergence guarantees of
the same. We demonstrate examples and applications of
our method in Section 6. Then in Section 7 we describe
the robust feasibility program and see an oracle-based ap-
proach to solve this. We also present an application of this
approach in Section 7.3. We conclude in Section 8.

2 Related work
Robust optimization is by now a a field of study by itself,
and the reader is referred to Ben-Tal et al. [3]; Bertsimas
et al. [5] for further information, whereas Caramanis et al.
[12] surveyed about applications of robust optimization in
machine learning. Shalev-Shwartz’s survey [21] and Cesa-
Bianchi’s book [13] are two useful references for online
convex optimization and sequential prediction.

As we mentioned earlier, a significant hindrance of
adopting RO to large scale problems is its increased com-
putational complexity. This problem was addressed in sev-
eral papers. In [11] they proposed to sample constraints
from the uncertainty set, therefore obtain an almost robust
solution with high probability drawing enough samples.
The idea is similar to [2], but the main problem with their
approach is that number of samples can become large as
the dimension of the problem increases.

The robust classification problem itself has a vast liter-
ature. The problem of designing classifiers for uncertain
observations remain an interesting open problem and has
gained considerable interest in the recent past (see [24]).
In Shivaswamy et al. ([22]) they used a chance constraint
based approach to solve the robust SVM problem, where
Lanckriet et al. ([16]) formulated the classification prob-
lem as Minimax Probabilty Machine. Both these attempts
at designing robust classifiers have been limited to the case
of linear classification where the uncertainty is specified
over an explicitly stated feature map. Motivated by this
problem Bhadra et al. ([6]) initiated a study of design-
ing robust classifiers when the entries of the kernel matrix
are independently distributed random variables. The ap-
proach, based on Chance-Constraints formalism, leads to a
non-convex problem which may result in an indefinite ker-
nel matrix.

In [1] they proposed a Robust Optimization (RO) ap-
proach which overcomes the above drawbacks. The ap-
proach employs a geometric description of uncertainty in-
stead of the probabilistic description used earlier ([6]).
They reformulated the robust counterpart as a saddle-point
problem and referred to a gradient-based general scheme
introduced by Nemirovski ([18]) for solving such saddle-
point problems. Their work was inspired by the work
of Nesterov ([19]) where a new method for minimizing a



non-smooth Lipschitz continuous function f over a convex
compact finite-dimensional set is proposed. The character-
istic feature of Nesterov’s method is that under favorable
circumstances it exhibits (nearly) dimension-independent
O(1/t) rate of convergence, where it is assumed that the
objective function f is given as a cost function of the first
player in a convex-concave game. We describe a OGD
based method which operates with the values and sub-
gradients of f only, without access to the ”structure” of the
objective. Though our algorithm has O(1/

√
t) rate of con-

vergence, to the best of our knowledge we are the first to
tackle the robust optimization problem in the online learn-
ing setting.

3 Robust Optimization
Consider a general convex optimization problem

min
w∈W

f (w,u) (1)

Here f is convex in w, W ⊆Rn is a convex set in Euclidean
space and u is a fixed parameter vector. The robust coun-
terpart of (1) is given by

min
w∈W

f (w,u),∀u ∈U (2)

Or equivalently
min
w∈W

max
u∈U

f (w,u) (3)

where U is the uncertainty set.

3.1 Saddle-point Interpretation
The robust problem (3) can be interpreted as a saddle-
point problem (see [9]) when f (w,u) is concave in u for
all w ∈ W and U is a convex set. We refer to a pair
(w? ∈W ,u? ∈U ) as a saddle-point for f if

f (w?,u)≤ f (w?,u?)≤ f (w,u?)

for all w ∈ W and u ∈ U . In other words, w? minimizes
f (w,u?) (over w ∈ W ) and u? maximizes f (w?,u) (over
u ∈U ):

f (w?,u?) = min
w∈W

f (w,u?), f (w?,u?) = max
u∈U

f (w?,u).

This implies

max
u∈U

min
w∈W

f (w,u) = min
w∈W

max
u∈U

f (w,u) (4)

we say that f (and W and U ) satisfy the strong max-min
property or the saddle-point property, and that the common

value is f (w?,u?).
In general for any f : Rn×Rm → R (and any W ⊆ Rn

and U ⊆ Rm)

max
u∈U

min
w∈W

f (w,u)≤ min
w∈W

max
u∈U

f (w,u) (5)

This general inequality is called the max-min inequality
and for convex-concave saddle-point problems equality al-
ways holds.

3.2 Game Interpretation

We can interpret the saddle-point property in terms of a
continuous zero-sum game. If the first player chooses
w ∈ W and the second player selects u ∈ U , then player
1 pays an amount f (w,u) to player 2. Player 1 therefore
wants to minimize f , while player 2 wants to maximize f .
(The game is called continuous since the choices are vec-
tors, and not discrete).

If (w?,u?) is a saddle-point for f , then it is called a
solution of the game. w? is called the optimal choice or
strategy for player 1, and u? is called the optimal choice
or strategy for player 2. More formally, the pair (w?,u?) is
the Pure Strategy Nash Equilibria (PSNE) of the min-max
game and f (w?,u?) is the value of the game.

The max-min inequality (5) states the (intuitively obvi-
ous) fact that it is better for a player to go second, or more
precisely, for a player to know his or her opponent’s choice
before choosing. In other words, the payoff to player 2 will
be larger if player 1 must choose first. When the saddle-
point property (4) holds, there is no advantage to playing
second. So we will consider the players choosing actions
simultaneously.

Often it is hard to compute PSNE of a game exactly. As
in this case, we need to use convex-concave interior point
methods, which does not scale well with the dimensional-
ity of the problem. So, we try to solve the problem approx-
imately.

4 ε-approximation of Two Player
Zero-Sum Games

We have discussed the notion of Nash equilibria in 2-player
zero-sum games. Now, We investigate whether Nash equi-
libria can arise as a result of the distributed interaction be-
tween the players of a zero-sum game, and whether the
values of the players in the game are descriptive of their
long-term payoffs in the course of their interaction.

Clearly, if the players are aware of the details of the
game (i.e. the game’s payoff matrix), they can compute
their min-max strategies on the side and just use these



strategies forever. We envision a much weaker distributed
scenario, of completely-uncoupled dynamics as follows:

• each player knows her own pure strategies, but does
not know the game matrix, or even the number of
strategies available to her opponent;

• players interact in rounds, and each player can
choose a mixed strategy in each round;

• in the end of each round, each player is informed
about the expected payoff she would have gotten had
she played each of her pure strategies against the op-
ponent’s mixed strategy (but the mixed strategy of
the opponent is not revealed to her).

4.1 Fictitious Play
We consider a type of completely-uncoupled dynamics
called fictitious play. Fictitious play was defined by George
W. Brown ([10]) who conjectured its convergence to the
value of a zero-sum game, and its convergence properties
were established by Julia Robinson ([20]). Lets see how it
works. Let (R,C = −R) be a two player zero-sum game,
but assume we are in a completely-uncoupled scenario
where the players are ignorant of the game matrix. Infor-
mal descriptions usually depict two players playing a finite
game repeatedly. After arbitrary initial moves in the first
round, in every round each player plays a myopic pure best
response (BR) against the empirical strategy distribution
of his opponent. The following definition corresponds to
the widely used version of fictitious play, where players
update their beliefs simultaneously.

Definition 4.1. ([4]) For the two player zero-sum game
(R,C =−R)m×n, the sequence (it , jt)t∈T is a simultaneous
fictitious play (SFP) process, if (i1, j1) ∈ m×n and for all
t ∈ T , it+1 ∈ BR1(yt) and jt+1 ∈ BR2(xt); where the beliefs
x(t) and y(t) are given by

xt =
1
t

T
∑

s=1
eis and yt =

1
t

T
∑

s=1
e js

ei is a vector whose components are all zero, except for
the ith component, which is 1.

4.2 Convergence of Fictitious Play
Now we will discuss the convergence properties of ficti-
tious play.

Theorem 4.1. ([20]) If the players of a zero-sum game
(R,C =−R) interact via fictitious play, then:

lim
t→∞

max
i

eT
i Ryt = lim

t→∞
min

j
xT

t Re j = v

where v is the value of the row player in the game.

The statement of the Theorem 4.1 implies that the max-
imum payoff that the row player can achieve against the
empirical strategy of the column player and the minimum
loss that the column player could suffer against the empir-
ical strategy of the row player converge to the value of the
game. Now, Samuel Karlin ([15]) conjectured about the
convergence speed of fictitious play.

Conjecture 4.1. Fictitious play converges with rate
1√
t
,

for some function f (|R|) of the description complexity of

the game matrix R, i.e. for all ε ≥ 0, for all t ≥ 1
ε2 f 2|R|

we have

|max
i

eT
i Ryt −min

j
xT

t Re j| ≤ ε

If the conjecture were true, we can establish the follow-
ing convergence result of the empirical mixed strategies.

Conjecture 4.2. For all ε ≥ 0, for all t ≥ 1
ε2 f 2|R|, (xt ,yt)

is an ε-approximate Nash equilibrium of the game, i.e.

1. xT
t Ryt ≥ x′T Ryt − ε for all x′ ∈ ∆m,

2. xT
t Cyt ≥ xT

t Cy′− ε for all y′ ∈ ∆n.

That is, no player of the game can improve by more than
an additive ε by switching to a different mixed strategy.
Now in the next section we proceed to describe our ficti-
tious play based meta-algorithm to solve robust optimiza-
tion problem approximately.

Definition 4.2. We say the pair (w,u) is an ε-approximate
solution of (3) if it satisfies the following

f (w,u)≤ f (w?,u?)+ ε (6)

We will see that our algorithm satisfies this bound to the
class of games where each player has infinite actions.

5 Fictitious Play based Algorithm
We will now see how fictitious play can be used to solve
formulation (3). The players interact in rounds as follows:

• In round t = 1:

– player 1 plays an arbitrary strategy w1 ∈ W
and player 2 plays an arbitrary strategyu1 ∈U

– player 1 observes loss f (w,u1) (convex in w)
and player 2 observes gain f (w1,u) (concave in u).



• In round t = 2:

– player 1 plays any strategy w2 ∈
argminw∈W f (w,u1) and player 2 plays any strat-
egy u2 ∈ argmaxu∈U f (w1,u)

– player 1 observes loss f (w,u2) (convex in w)
and player 2 observes gain f (w2,u) (concave in u).

• In a general round t:

– player 1 plays any strategy

wt ∈ argminw∈W [
1

t−1

t−1
∑

k=1
f (w,uk)]

and player 2 plays any strategy

ut ∈ argmaxu∈U [
1

t−1

t−1
∑

k=1
f (wk,u)]

– player 1 observes f (w,ut) (convex in w) and
player 2 observes f (wt ,u) (concave in u)

Observe that fictitious play can be viewed equivalently
as the result of the two-players of a zero-sum game us-
ing the ”Follow-the-Leader” (FTL) protocol to update their
strategies. Here player 1 tries to minimize his cumulative
loss over time and player 2 tries to maximize his cumu-
lative gain over time. In online learning community (see
[21])it is well known that the performance of FTL can
be very poor and a widely used solution is is to incorpo-
rate a regularizer term, which is known as ”Follow-the-
Regularized-Leader” (FTRL):

wt ∈ argminw∈W [
1

t−1

t−1

∑
k=1

f (w,uk)+R(w)] (7)

ut ∈ argmaxu∈U [
1

t−1

t−1

∑
k=1

f (wk,u)+R(u)] (8)

It is also quite well known that using squared norm regu-

larizer in (7) and (8), that is using R(x) =
‖x‖2

2
2η

, we will

get Online-Gradient-Descent updates for w and u. Before
stating our OGD based algorithm formally, we first make
the following assumptions:

1. The feasible sets W and U are bounded, closed and
non-empty.

2. For all t, f (w,ut) and f (wt ,u) is differentiable w.r.t
w and u respectively.

3. For all t, there exists an algorithm, given w and u,
which produces ∇w f (w,ut) and ∇u f (wt ,u).

4. For all v ∈ n, there exists an algorithm which can
produce argminw∈W ‖w− v‖2 and argminu∈U ‖u−
v‖2. We define the projections ∏W (v) =
argminw∈W ‖w− v‖2 and ∏U (v) = argminu∈U ‖u−
v‖2.

Also in the setting of this section, we shall make use of
the following definitions.

• Dw and Du denote l2 diameters of W and U re-
spectively, that is Dw = max

x,y∈W
‖x− y‖2 and Du =

max
x,y∈U

‖x− y‖2.

• Gw ≥ ‖∇w f (w,u)‖2 and Gu ≥ ‖∇u f (w,u)‖2 for all
w,u are upper bounds of the gradients of f .

• ηw =
Dw

Gw
√

T
and ηu =

Du

Gu
√

T
be the learning rate

for w and u respectively.

With the above assumptions and definitions, we can now
present a meta algorithm for robust optimization, given in
Algorithm 1, which is comprised of primal-dual iterations.

———————————————————————
Algorithm 1
———————————————————————
Input: parameters Dw, Du, Gw, Gu, target accuracy ε > 0
Output: ε-approximate solution to (3)

set T = d(GuDu +GwDw

ε
)2e, ηw =

Dw

Gw
√

T
, ηu =

Du

Gu
√

T
initialize w ∈W and u ∈U arbitrarily
for t = 2 to T do

update wt ←∏W [wt−1−ηw∇w f (wt−1,ut−1)]
update ut ←∏U [ut−1−ηu∇u f (wt−1,ut−1)]

end for
return wT =

1
T

T
∑

t=1
wt , uT =

1
T

T
∑

t=1
ut

———————————————————————

5.1 Convergence Analysis

In this section we will restate the convergence results from
section 4.2 to the class of of two player zero-sum games
where each player has infinitely many actions, as we have
seen in Algorithm 1. For this algorithm, we prove:

Theorem 5.1. For all ε ≥ 0, for all T ≥ (
GuDu +GwDw

ε
)2

we have
max
u∈U

f (wT ,u)− min
w∈W

f (w,uT )≤ ε



Proof : Considering Regret Guarantee of Online Gradi-
ent Descent [25], we have

1
T

T

∑
t=1

f (wt ,ut)−min
w

1
T

T

∑
t=1

f (w,ut)≤
GwDw√

T
(9)

max
u

1
T

T

∑
t=1

f (wt ,u)−
1
T

T

∑
t=1

f (wt ,ut)≤
GuDu√

T
(10)

From (9) and (10) we get

max
u

1
T

T
∑

t=1
f (wt ,u)−min

w

1
T

T
∑

t=1
f (w,ut)≤

GwDw√
T

+
GuDu√

T

As T ≥ (
GuDu +GwDw

ε
)2 we have

max
u

1
T

T
∑

t=1
f (wt ,u)≤min

w

1
T

T
∑

t=1
f (w,ut)+ ε

Now, as f is convex w.r.t w and concave w.r.t u,

f (wT ,u)≤
1
T

T
∑

t=1
f (wt ,u),

f (w,uT )≥
1
T

T
∑

t=1
f (w,ut)

Using these facts in the above the result follows. �

Remark 5.1. Notice that by proving Theorem 5.1 we
also provide a formal proof of Conjecture 4.1 for zero-sum
game with infinite actions.

Now we will show that output of our algorithm is in-
deed the ε-approximate Nash equilibria of the game.

Theorem 5.2. For all ε ≥ 0, for all T ≥ (
GuDu +GwDw

ε
)2,

(wT ,uT ) is ε-approximate PSNE of the game.

Proof : From Theorem 5.1 we have

max
u∈U

f (wT ,u)≤ min
w∈W

f (w,uT )+ ε

⇒ f (wT ,u)≤min
w

f (w,uT )+ ε , for all u ∈U

⇒ f (wT ,u)≤ f (wT ,uT )+ ε , for all u ∈U

⇒ f (wT ,uT )≥ f (wT ,u)− ε , for all u ∈U (i)

Again,
min
w∈W

f (w,uT )≥max
u∈U

f (wT ,u)− ε

⇒ f (w,uT )≥max
u∈U

f (wT ,u)− ε , for all w ∈W

⇒ f (w,uT )≥ f (wT ,uT )− ε , for all w ∈W

⇒ f (wT ,uT )≤ f (w,uT )+ ε , for all w ∈W (ii)

From (i) and (ii), we conclude that (wT ,uT ) is indeed
an ε-approximate PSNE of the game. �

Remark 5.2. See we have also established the result of
Conjecture 4.2.

The following theorem shows that the output of Algo-
rithm 1 indeed converges to the saddle-point or equiva-
lently PSNE of the game.

Theorem 5.3. For all ε ≥ 0, ε-approximate PSNE pro-
file (wT ,uT ) converges to exact PSNE profile (w?,u?) as
T → ∞

Proof : Before proving Theorem 5.3 formally, we first
claim the following:

Claim 5.1. lim
T→∞

1
T

T
∑

t=1
f (wt ,ut) = f (w?,u?)

Proof : From (9) and (10) we have

lim
T→∞

max
u

1
T

T

∑
t=1

f (wt ,u)≤ lim
T→∞

1
T

T

∑
t=1

f (wt ,ut)≤ lim
T→∞

min
w

1
T

T

∑
t=1

f (w,ut)

(11)

Again, min
w

T
∑

t=1
f (w,ut)≤

T
∑

t=1
f (wt ,ut)≤max

u

T
∑

t=1
f (wt ,u)

Dividing by T and taking limit we get

lim
T→∞

min
w

1
T

T

∑
t=1

f (w,ut)≤ lim
T→∞

1
T

T

∑
t=1

f (wt ,ut)≤ lim
T→∞

max
u

1
T

T

∑
t=1

f (wt ,u)

(12)
(11) and (12) implies,

lim
T→∞

1
T

T

∑
t=1

f (wt ,ut)= lim
T→∞

max
u

1
T

T

∑
t=1

f (wt ,u)= lim
T→∞

min
w

1
T

T

∑
t=1

f (w,ut)

(13)
Now using the similar arguments as [20] and Theorem 4.1,
we can state that

lim
T→∞

max
u

1
T

T

∑
t=1

f (wt ,u)= lim
T→∞

min
w

1
T

T

∑
t=1

f (w,ut)= f (w?,u?)

(14)
From (13) and (14), the result follows. �

Remark 5.3. Observe that (14) basically is a restatement
of Robinson’s result (Theorem 4.1), specially modified for
our setting. Also notice that Claim 5.1 implies long-term
average payoff for both the players converges to the value
of the game.

Proof of Theorem 5.3: Using convexity and concavity
property of f , we have



f (wT ,uT )≤max
u

f (wT ,u)≤max
u

1
T

T
∑

t=1
f (wt ,u) and

f (wT ,uT )≥min
w

f (w,uT )≥min
w

1
T

T
∑

t=1
f (w,ut)

This implies,

min
w

1
T

T

∑
t=1

f (w,ut)≤ f (wT ,uT )≤max
u

1
T

T

∑
t=1

f (wt ,u) (15)

Now consider the following theorem.

Theorem 5.4. (Sandwich Theorem) Let D⊂R and f ,g,h
be functions on D to R. Let c ∈ D′.
If f (x)≤ g(x)≤ h(x) for all x ∈ D−{c} and if lim

x→c
f (x) =

lim
x→c

h(x) = l, then lim
x→c

g(x) = l

Using Theorem 5.4 on (15) with T as the variable and
from (14) we have

lim
T→∞

f (wT ,uT ) = f (w?,u?)

As f is continuous in both of its arguments,

f ( lim
T→∞

wT , lim
T→∞

uT ) = lim
T→∞

f (wT ,uT )

⇒ f ( lim
T→∞

wT , lim
T→∞

uT ) = f (w?,u?)

Now, if (w?,u?) is unique, then

w? = lim
T→∞

wT , u? = lim
T→∞

uT

thereby ensuring unique convergence. But if (w?,u?) is
not unique, that is if multiple Nash equilibria exists, then
(wT ,uT ) converge to any one of the PSNE’s, (w?,u?) being
one of them. �

Now we will establish a connection between Nash equi-
libria and robust solution of two player zero-sum games.
We will state it as a corollary of Theorem 5.1.

Corollary 5.1. For all ε ≥ 0, for all T ≥ (
GuDu +GwDw

ε
)2,

ε-approximate Nash Equilibrium profile is the ε-
approximate robust solution to the min-max problem.

Proof: From Theorem 5.1,

max
u∈U

f (wT ,u)≤min
w

f (w,uT )+ ε

⇒max
u∈U

f (wT ,u)≤ f (w?,uT )+ ε

⇒max
u∈U

f (wT ,u)≤ f (w?,u?)+ ε

⇒ f (wT ,u)≤ f (w?,u?)+ ε , for all u ∈U (iii)

⇒ f (wT ,uT )≤ f (w?,u?)+ ε

So function value at ε-approximate Nash Equilibrium pro-
file is ε-close to the value of the game, satisfying Definition
4.2. �

Remark 5.4. Also from (iii) we Observe that for all ε ≥ 0,

for all T ≥ (
GuDu +GwDw

ε
)2

f (wT ,u?)≤ f (w?,u?)+ ε ,

that is under worst possible noise, value of f at wT is
at most ε-worse than value of f at w?, which is the ex-
act robust solution of the problem. This implies wT is
ε-approximate robust solution.

6 Applications
In this section we will show one example from finance and
another one from machine learning to indicate vast useful-
ness of our results.

6.1 Robust Classification Problem Under
Uncertainty in Kernel Matrices

Given a set of training data {(xi,yi)|yi ∈ ±1}, the robust
SVM problem with uncertainty in kernel matrix can be cast
as follows (see [1])

max
α∈Sn

min
K∈E(k)

−1
2

α
TY KY α +α

T e (16)

where Sn = {α|0 ≤ αi ≤ C,
n
∑

i=1
αiyi = 0}, Y =

diag(y1, ...,yn), e is a vector of all 1’s. Each entry of
the matrix K, is defined by Ki j = K(xi,x j) where K is
a kernel function and defines a dot product in an associ-
ated Reproducing Kernel Hilbert Space, thus needs to be
positive semi-definite. The uncertainty in the kernel ma-
trix K is modeled by a bounded convex set E(k), which
encompasses several possible realizations of K

E(k) = {K = K+
L

∑
l=1

ηlKl ,‖η‖2 ≤ k,ηl ≥ 0, l = 1,2, ...,L}

(17)
The constraint ηl ≥ 0 is needed to ensure that each element
in the set represents a valid kernel evaluation. The quan-
tity k measures the quality of approximation and hence the
uncertainty. If k = 0 then we have no uncertainty. As



k increases the uncertainty set increases. The matrices
K,Kl ∈ Sn

+ are obtained by evaluating the known kernel
functions K,Kl on the training set. As any K ∈ E(k) is
always positive semi-definite, the set E(k) defines a valid
model for describing uncertainty in psd matrices.

The Robust SVM problem (16) with uncertain K, as
characterized in (17), can now be cast as follows (see [1])

max
α∈Sn

min
‖η‖2≤k

−1
2

α
TY KY α− 1

2
α

TY
L

∑
l=1

ηlKlY α +α
T e

(18)
Now (18) can be cast as a Conic Quadratic problem.

Such problems can be solved in polynomial time by In-
terior Point (IP) algorithm. However for large-scale prob-
lems IP methods become intractable. Now we will show
that this is a saddle-point problem and algorithm 1 can be
used to learn the robust classifier. for the sake of con-
venience we rename the variables, in particular we use
η → x,α → y,y→ s,Y KlY → Ql ,Y KY → Q,k→ 1 to re-
formulate (18) as the following

max
y∈Y

min
x∈X
−1

2
yT Qy−

L

∑
l=1

xl(
1
2

yT Qly)+ yT e (19)

Where Y = {y ∈ Rn : 0 ≤ yi ≤ C,
n
∑

i=1
siyi = 0} and

X = {x ∈ Rl : x≥ 0,‖x‖2 ≤ 1}

Here the objective function f (x,y) is linear in x and con-
cave in y, as Hessian, defined by ∇2

y f (x,y) = −(Q +

∑
l

xlQl), is a negative linear combination of p.s.d matri-

ces. Also it is easy to verify that both X and Y are
convex, closed and bounded. So, the robust formulation
(19) is amenable to Algorithm 1. In this case we have

∇x f =−d ; d = [d1, ...,dL]
T ,dl =

1
2

yT Qly and

∇y f =−Qy−
L
∑

l=1
xlQly+ e,

so that in each iteration of the algorithm, the update of
the variables takes the simple form

xt = ∏X [xt−1 +ηxdt−1]; dl ,t−1=
1
2

yT Qly

yt = ∏Y [yt−1 +ηy(−Qyt−1−
L
∑

l=1
xl ,t−1 Qlyt−1 + e)]

where ηx,ηy are the learning rates for x and y respec-
tively. Now,

Dx = max
u,v∈X

‖u− v‖2 =
√

2,

Dy = max
u,v∈Y

‖u− v‖2 = C
√

n

are diameter of the sets X and Y respectively and

‖∇xf‖2 =
√

d2
1 + ...+d2

L ≤
√

Lmax
l

dl ≤
√

L
2

max
l

yT Qly≤
√

L
2

max
l
(λmax(Ql)yT y)≤ C2n

√
L

2
max

l
(λmax(Ql)) = Gx,

‖∇yf‖2 = ‖Qy‖2 + ‖
L
∑

l=1
xlQly‖2 + ‖e‖2 ≤ ‖Q‖2‖y‖2 +

L
∑

l=1
xl‖Ql‖2‖y‖2+‖e‖2≤

√
n(1+C(‖Q‖2+max

l
‖Ql‖2))=

Gy

are upper bound of the gradients of f .

6.2 Robust Portfolio Optimization
The classical work of Markowitz ([17]) served as the gen-
esis for modern portfolio theory. The canonical problem is
to allocate wealth across n risky assets with mean returns
µ ∈Rn and return covariance matrix Q ∈ Sn

+ over a weight
vector x ∈ Rn. This can be done in three essentially equiv-
alent ways: (i) maximize expected return subject to an up-
per limit on the variance, (ii) minimize the variance subject
to a lower limit on the expected return, (iii) maximize the
risk-adjusted expected return. These three problems are
parametrized by the variance limit, expected return limit,
and the risk-aversion parameter, respectively. Here we will
focus on the risk-adjusted return formulation:

max
x∈X

µ
T x−λxT Qx (20)

Above µi, the ith component of the vector µ , denotes the
estimated expected return of security i. Diagonal elements
qii of the Q matrix denote the variance of the return on
security i while off-diagonal elements qi j denote the co-
variance between the returns of securities i and j. The
components xi of the variable vector x denote the propor-
tion of the portfolio to be invested in security i. The scalar
λ is the risk aversion parameter and X represents the set
of acceptable weight vectors (X typically contains the
normalization constraint eT x = 1 and often has no short-
sales constraints, i.e., xi ≥ 0, i = 1, ...,n, among others).

Despite the widespread popularity of this approach, a
fundamental drawback from the practitioner’s perspective
is that µ and Q are rarely known with complete precision.
Robust models for the mean and covariance information
are a natural way to alleviate this difficulty, and they have
been explored by numerous researchers. Here we will con-
sider the uncertainty model used by Goldfarb and Iyengar
([14]). The mean return vector µ and return covariance
matrix Q is assumed to lie in respective uncertainty sets Sµ

and SQ given by



Sµ = {µ : µ = µ0 +ξ , |ξi| ≤ γi}

SQ = {Q : Q = Q0 +W,‖W‖F ≤ ρ}

Here, µ0 and Q0 are fixed and γ and ρ denote the level of
uncertainty respectively for µ and Q. Now As pointed out
before, the primary criticism leveled against the Markowitz
model is that the optimal portfolio is extremely sensitive
to the market parameters, since these parameters are esti-
mated from noisy data. By introducing measures of uncer-
tainty in the market models, we are attempting to correct
this sensitivity to perturbations. The uncertainty sets Sµ

and §Q represent the uncertainty of our limited (inexact)
information of the market parameters, and we wish to se-
lect portfolios that perform well for all parameter values
that are consistent with this limited information. Such
portfolios are solutions of appropriately defined min-max
optimization problems called robust portfolio selection
problem

max
x∈X

min
µ∈Sµ ,Q∈SQ

µ
T x−λxT Qx (21)

Now, in [14] they showed (21) can be reformulated as an
SOCP, which gets very difficult to solve for large scale
problems. Now we will show that this is a saddle-point
problem and our algorithm can be used to compute robust
efficient frontiers. Here, the objective function is

f (x,µ,Q) = µT x−λxT Qx

which is linear in µ and Q and concave in x (as Q is a
positive semi-definite matrix). Also it is easy to verify that
X ,Sµ ,SQ all are convex, closed and bounded. So, the
robust quadratic program (21) is amenable to Algorithm 1.
In this case we have

∇x f = µ−2λQx,
∇µ f = x and
∇Q f =−λxxT ,

so that in each iteration of the algorithm, the update of
the variables takes the simple form

xt = ∏X [xt−1 +ηx(µt−1−2λQt−1xt−1)]
µt = ∏Sµ

[µt−1−ηµ xt−1]

Qt = ∏SQ
[Qt−1 +ηQλxt−1xT

t−1]

where ηx,ηµ ,ηQ are the learning rates for x,µ,Q respec-
tively. Now,

Dx = max
u,v∈X

‖u− v‖2 =
√

2,

Dµ = max
µ1,µ2∈Sµ

‖µ1 − µ2‖2 = max‖ξ1 − ξ2‖2 ≤

max(‖ξ1‖2 +‖ξ2‖2) = 2‖γ‖2 and

DQ = max
Q1,Q2∈SQ

‖Q1 − Q2‖2 ≤ max(‖Q1‖2 + ‖Q2‖2) ≤

max(‖Q1‖F +‖Q2‖F) = 2ρ

are diameter of the sets X ,Sµ ,SQ respectively and

‖∇xf‖2 = ‖µ − 2λQx‖2 ≤ ‖µ‖2 + 2λ‖Qx‖2 ≤ ‖µ‖2 +
2λ‖Q‖2‖x‖2 ≤ ‖µ‖2 + 2λ‖Q‖2 ≤ (‖µ0‖2 + ‖ξ‖2) +
2λ (‖Q0‖2 +‖W‖2)≤ (‖µ0‖2 +‖γ‖2)+2λ (‖Q0‖2 +ρ) =
Gx,

‖∇µ f‖2 = ‖x‖2 ≤ 1 = Gµ and

‖∇Qf‖2 = λ‖xxT‖2 = λ‖xxT‖F = λTrace(xxT ) =
λ‖x‖2

2 ≤ λ = GQ

are upper bound of the gradients of f .

7 Robust Feasibility Problem : A De-
tour

In this section we switch our attention to feasibility prob-
lems and its robust counterparts. We present an oracle
based algorithm to solve general robust feasibility prob-
lems approximately and see its application in classification
problems, namely support vector machines (SVM).
Consider a general convex feasibility problem:

∃?x ∈D : fi(x,ui)≤ 0, ∀i ∈ [m]. (22)

Here f1, ..., fm are convex functions in x, D ⊆ Rn is a
convex set in Euclidean space and u1, ...,um are fixed pa-
rameter vectors. The robust counterpart of (22) is given
by:

∃?x ∈D : fi(x,ui)≤ 0, ∀ui ∈U , ∀i ∈ [m]. (23)

As in [2], we say x ∈ D is an ε-approximate solution
to this problem if x meets each constraint up to ε , that is, it
satisfies

fi(x,ui)≤ ε , ∀ui ∈U , ∀i ∈ [m].

7.1 Oracle-Based Robust Optimization
In [2], they assumed that there exists an oracle or solver
for the original optimization problem (22). This oracle
approximately solves formulation (23) for any fixed noise
vectors u1, ...,um: ui ∈ U , ∀i ∈ [m]. It either returns an
ε-feasible solution, that is, it returns a vector x ∈ D that



satisfies

fi(x,ui)≤ ε , ∀i ∈ [m]

or declares that the problem is infeasible if @x ∈ D for
which

fi(x,ui)≤ 0, ∀i ∈ [m].

7.2 Online Gradient Descent based Algo-
rithm

The robust problem (23) can be formulated as a convex-
concave saddle-point problem by making the following as-
sumptions:

1. fi(x,u) concave in u for all x ∈D , for all i ∈ [m].

2. The uncertainty set U is convex.

Now define:

• D≥maxu,v∈U ‖u−v‖2, the l2 diameter of the uncer-
tainty set.

• ‖5u fi(x,u)‖2 ≤ G, the upper bound over the gradi-
ents, for all x ∈D and u ∈U .

With these assumptions and definitions, in [2] they have
given a meta-algorithm, which is comprised of primal-
dual iterations, where the dual part updates the noise terms
according to the current primal solution, via an online gra-
dient ascent based update [25].

The approximate robust solution is obtained by invok-
ing the oracle a finite number of times, where the number
of iterations is a function of G,D,ε . At each iteration, in
the dual step, the current noise vectors are updated using
gradient ascent (projected) rule:

ut
i ←∏U [ut−1

i +η5u fi(xt−1,ut−1
i )], ∀i ∈ [m]

Next in the primal step, the oracle is called using current
noise samples to obtain the current solution xt . Finally,
the algorithm returns either simple average of the primal
solutions obtained in each iteration or declare the problem
is infeasible if the original oracle does so at any iteration.

7.3 Application: Oracle Based Robust SVM
Consider the standard hard margin SVM problem:

minimize
1
2
‖w‖2

2

subject to yi(wT xi +b)≥ 1, ∀i ∈ [m] (24)

The robust counterpart of this optimization problem is a
second-order conic program (SOCP) that can be solved in
polynomial time using interior point methods. However,
recall that the goal is to solve the robust problem by in-
voking a solver of the original (non-robust) optimization
problem. In the discussion below, we will assume that the
uncertainty set U is the Euclidean unit ball, that is

U = {u ∈ Rd : ‖u‖2 ≤ 1}.

Now assume that x takes values in an ellipsoid with center
x, metric Σ and radius γ , that is

x ∈B := {x : (x− x)T Σ−1(x− x)≤ γ2.

It also implies that x = x + γΣ1/2u, where u ∈ U . The
robustness criteria can be enforced by requiring that we
classify x correctly for all x ∈B(x,Σ,γ), that is

y{wT (x+ γΣ1/2u)+b} ≥ 1, for all u ∈U .

So, the robust SVM problem can be written along the
line of (22) as,

minimize
1
2
‖w‖2

2

subject to 1− yi{wT (xi + γiΣ
1/2
i ui)+b} ≤ 0,

∀ui ∈U , ∀i ∈ [m] (25)

This is equivalent to the SOCP formulation [22] :

minimize
1
2
‖w‖2

2

subject to yi(wT xi +b)≥ 1+ γi‖Σ1/2
i w‖, ∀i ∈ [m] (26)

7.4 OGD-based Robust SVM algorithm

The robust SVM program (25) is amenable to the OGD-
based meta-algorithm (Algorithm A ), as in this case, the
constraints are of the form:

f (w,u) = 1− y{wT (x+ γΣ1/2u)+b}.

The constraints are linear with respect to the the noise
term u and the uncertainty set, Euclidean unit ball, is con-
vex. Therefore satisfies all the assumptions of Section 7.3.
In this case we have5u f (w,u) =−yγΣ1/2u.

Now we will see the oracle based robust SVM algorithm.

———————————————————————
Algorithm 2 OGD-based SVM



———————————————————————
Input: Tuples (xi,Σi,γi), ∀i ∈ [m], target accuracy ε > 0
Output: 2ε-approximate solution to (25), or infeasibe

set D = 2, G =
√

maxm
i=1(γ

2
i λmax(Σi))

set T = dG2D2

ε2 e and η =
D

G
√

T
initialize (u0

1, ...,u
0
m) and w0 arbitrarily

for t = 1,2, ...,T do
for i = 1,2, ...,m do

update ut
i ←

ut−1
i −ηyiγiΣ

1/2
i wt−1

max{‖ut−1
i −ηyiγiΣ

1/2
i wt−1‖2,1}

compute xt
i = xi + γiΣ

1/2
i ut

i
end for
set (wt ,bt)← Oε(xt

1, ...,x
t
m)

if oracle declared infeasibility then return infeasible
else set wt ←

wt

max{‖wt‖2,1}
end for
return w =

1
T

T
∑

t=1
wt , b =

1
T

T
∑

t=1
bt

——————————————————————–

Here the optimization oracle (Oε ) is the original non-
robust ε-approximate SVM solver, which is a quadratic
programming problem and thus it avoids solving the SOCP
formulation.

——————————————————————–
Oracle Oε

——————————————————————–
Input: noise vectors x1, ...,xm, xi ∈B(xi,Σi,γi), ∀i ∈ [m]
Output: vector w ∈ Rd and b ∈ R which solves:

minimize
1
2
‖w‖2

subject to yi(wT xi +b)≥ 1− ε , ∀i ∈ [m]

or infeasible if @w ∈ Rd and b ∈ R for which
yi(wT xi +b)≥ 1, ∀i ∈ [m]

——————————————————————–

For Algorithm 2, we prove:

Theorem 7.1. Algorithm 2 returns an 2ε-approximate ro-
bust solution, to (25), that is yi(wT xi + b) ≥ 1− 2ε , ∀i ∈
[m], after at most T = O(G2/ε2) calls to the SVM-oracle,

where G =
√

maxm
i=1(γ

2
i λmax(Σi))

Proof: Note that for all ui ∈U , the d-dimensional unit
ball, and ‖w‖2 ≤ 1 we have

maxu,v∈U ‖u− v‖2 = 2 and

‖5u fi(w,u)‖2
2 = γ2

i wT Σiw≤ γ2
i λmax(Σi)

where λmax denotes the maximum eigenvalue.
Now suppose a solution (w,b) is returned by Algorithm 2.
This implies

yi(wT
t xt

i +bt)≥ 1− ε for all t ∈ [T ] and i ∈ [m], i.e.

for all i ∈ [m],
1
T

T
∑

t=1
yi(wT

t xt
i +bt)≥ 1− ε (27)

Now from the regret guarantee of OGD [25],

maxxi

1
T

T
∑

t=1
[1 − yi(wT

t xi + bt)] −
1
T

T
∑

t=1
[1 − yi(wT

t xt
i +

bt)]≤
GD√

T
≤ ε (28)

Combining (27) and (28) we have,

ε ≥ 1
T

T
∑

t=1
[1 − yi(wT

t xt
i + bt)] ≥ maxxi

1
T

T
∑

t=1
[1 −

yi(wT
t xi +bt)]− ε = maxxi [1− yi(wT xi +b)]− ε

where the final equality follows from the linearity of the
constraints with respect to w and b. Hence, we have

yi(wT xi +b)≥ 1−2ε , ∀xi ∈B(xi,Σi,γi), ∀i ∈ [m].

implying that (w,b) is a 2ε-approximate robust solution.

Now Setting D = 2 and G =
√

maxm
i=1(γ

2
i λmax(Σi)), we

obtain the result. �

Similarly we can extend Algorithm 2 and Theorem 7.1
to the soft-margin SVM problem also.

7.5 Experiments
We denote formulation (26) as SVM-SOCP and Algorithm
2 as SVM-OGD. Now we introduce two error measures
[22].

Worst case error (ewc): Let x ∈ B(x,Σ,γ) has true la-
bel y. For this ellipsoid the worst case error is given by

ewc(B) = 1, if yz≤ γ , where z =
wT x+b√

wT Σw
0 otherwise

Expected error (eexp): It is the ratio of the volume of
the ellipsoid on the wrong side of the classifier to the entire
volume of the ellipsoid.

Experimental results are reported for a public do-
main dataset Pima downloaded from UCI repository
([8]). It has 768 observations, where each is observa-



tion is a 8-dimensional vector. The dataset had miss-
ing entries (marked as 0). To tackle this, we per-
formed the same imputation strategy as in [22]. Then
we randomly partitioned the data into test set and train-
ing set in the ratio 1 : 9 respectively. We assumed
Σi = Σ and γi = γ for all i and we have chosen C
via cross-validation. We implemented SVM-OGD and
SVM-SOCP both for soft-margin SVM formulation.

Figure 1 and 2 compares performance of SVM-OGD
to SVM-SOCP for different values of target accuracy ε .
Figure 1 summarizes how expected error varies with the
radius (γ) of the uncertainty ellipsoid and figure 2 does the
same for worst case error. We observe that both the er-
rors generally increases (or remains same) with increasing
γ , albeit a few fluctuations. Also as expected for higher
values of ε , error is high and for lower values error is
low. However, for lower values of ε error of SVM-OGD
becomes comparable to SVM-SOCP as we increase γ .

Figure 3 and 4 summarizes how expected error and
worst case error of SVM-OGD varies with varying target
accuracy ε taking SVM-SOCP as a benchmark. As ex-
pected we observe both the error increases as ε increases,
while worst case error increases much faster than ex-
pected error.

Our main observation is that both eexp and ewc is more
for SVM-OGD than SVM-SOCP as the former solves the
problem approximately.

8 Conclusion

In this work we considered using online learning ap-
proaches for effectively solving robust optimization prob-
lems without transforming the problem to a different, more
complex, class of problems. We showed that if the prob-
lem is a convex-concave saddle-point problem, then we
can solve it approximately by playing a repeated game be-
tween two players, each choosing his actions following a
belief based learning rule, namely fictitious play. Our re-
sults suggest O(1/

√
T ) rate of convergence, that is after T

iterations our approximate solution takes the value of the
objective function O(1/

√
T ) closer to the optimal value.



Though there exists a better algorithm ([18]) with O(1/T )
rate of convergence for solving saddle-point problems, our
result is significant in a great sense.

Our algorithm makes use of the fact that in a two player
zero-sum game (equivalently saddle-point problem) both
players are generally unaware of the structure of the payoff
matrix (equivalently the objective function f ), or else they
will play their Nash equilibrium strategy (optimal strategy)
at the first round itself. It operates with the values (and sub-
gradients) of f only, that is each player only gets to see his
current payoff based his opponent’s previous action, which
is closer to reality than knowing the entire game matrix it-
self even before the start of the game. However in [18],
they assumed that we are given the structure of the objec-
tive f and thus know the payoff structure beforehand.

More specifically, they assumed that both the players
know W and U completely and able to compute the value
and gradient of f at any point (w,u). But our method as-
sumes that there is a black-box, which given a point (w,u)
gives us the value and gradient of f at that point only,
which is significant as in zero-sum games the players need
not know the complete strategy set of his opponent before-
hand. Also, they require f to be C1,1, i.e. has Lipschitz
continuous gradients, where our method is suitable for any
convex-concave function f .

We have proved the convergence of fictitious play for
two player zero-sum infinite games, which we believe is a
significant extension to the literature itself and there is a
scope of further study for any general multiplayer game.
Also here we considered simultaneous fictitious play only.
It will be interesting to see whether similar results can be
obtained for the version of the game where players update
their beliefs alternatively. Finally, there is a lot scope of
study in identifying problems from diverse backgrounds
where our approach can be used efficiently.
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