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Abstract

Robust Optimization is a common framework in optimization under uncertainty when the

problem parameters are not known, but it is rather known that the parameters belong to some

given uncertainty set. In this framework the problem solved is a min-max problem, where

the solution is obtained considering the worst possible realization of parameters. However,

the problem eventually solved becomes more complicated and sometimes gets computationally

intractable as the dimension of the problem increases. For example, solving a robust conic

quadratic program with ellipsoidal uncertainty leads to a semidefinite program. Here we will see

a general framework for approximately solving a robust optimization problem using tools from

online convex optimization and game theory. We formulate the robust optimization problem as

a two player zero-sum game and consider the game is being played repeatedly. Our algorithm

finds an approximate robust solution after playing the game for a number of rounds that is

inversely proportional to the square of target accuracy.
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Chapter 1

Introduction

In most practical optimization problems the data are uncertain or imprecise due, for instance,

to estimation errors or to tolerances in design implementation. The most appreciated frame-

work to deal with such uncertainties is Robust Optimization (RO). It is a paradigm that uses

ideas from convexity and duality, to construct a solution that is optimal for any realization

of the uncertainty in a given set. It immunizes solutions of convex problems to bounded un-

certainty in the parameters of the problem by choosing a solution that performs best against

the worst possible parameter. When the objective function is convex in the parameters, and

concave in the uncertainty, and when the uncertainty set is convex the overall problem is convex.

RO has several successful applications in analyzing machine learning algorithms under

uncertainty. An example is solving the SVM problem when data is noisy. It has been shown

[8, 29] that if the uncertainty is only in the patterns, e.g. some of its components are missing

or not known precisely but the labels are known precisely, then the classification problem can

be formulated as a second-order conic Program (SOCP). In [8] the underlying uncertainty set

was described by multivariate normal distributions where in [29] they considered the ellipsoidal

uncertainty set. However in both the cases, the problem eventually solved is more complicated

than the original problem. Though we have commercially available softwares to solve SOCP,

they does not scale well with the dimensionality of the problem.

In general, robust counterpart of an optimization problem is often more difficult mathe-

matical problem. For example, with ellipsoidal uncertainties the robust counterpart of a linear

program (LP) is an SOCP, where conic quadratic program becomes a semi-definite program

(SDP). Both are difficult to solve than their non-robust versions. Currently we have polynomial

time interior-point methods for solving SOCP/SDP. Unfortunately, these algorithms, aimed at
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generating high accuracy solutions, can become prohibitively time-consuming in the large-scale

case. Again, with the same uncertainty assumption the robust version of SDP is NP-hard. Re-

cently, in [4] they proposed two meta-algorithms to tackle this issue by approximately solving

a robust counterpart of a given optimization problem using only a solver/oracle for the origi-

nal non-robust version. They formulated the robust problem as a zero-sum game, which was

solved by a primal-dual technique using tools from online convex optimization [26] , namely

follow-the-regularized-leader (FTRL) and follow-the-perturbed leader (FTPL).

Motivated from their approach, we will formulate the robust problem as a saddle-point

problem and consider it as a repeated game between a forecaster (optimizer) and the environ-

ment (adversary). Our use of a game-theoretic formulation is not accidental: there exists an

intimate connection between sequential prediction and some fundamental problems belonging

to the theory of learning in games. We only focus on regret-based learning procedures (i.e.,

situations in which the players of the game base their strategies only on regrets they have suf-

fered in the past) and our fundamental concern is whether such procedures lead to equilibria.

In this work we answer this question on the affirmative, by discussing perhaps the most natural

strategy for playing repeated games: fictitious play. It is a belief-based learning rule, i.e.,

players form beliefs about opponent player and behave rationally with respect to these beliefs.

We show how both the players engaged in a repeated zero sum game following fictitious

play gets close to their Nash equilibrium strategy after a certain number of rounds, which in

turn depends upon the closeness parameter (target accuracy) but independent of the dimension

of the problem. Also to the best of our knowledge we are the first to establish a direct con-

nection between Nash equilibria and robust optimal solution of the min-max problem. Along

the way, we contribute some extensions to the existing fictitious play literature itself, notably

extending it to the the case where both the players have infinitely many actions to choose from.

Then we demonstrate applicability of our method to various practical problems ranging from

machine learning to finance. We particularly discuss how our algorithm can be used to solve

robust portfolio selection problem and robust classification problem.

Finally taking a slight detour we focus on the FTRL, more precisely Online Gradient

Descent (OGD) based meta algorithm given in [4] and apply it to solve (approximately) the

robust version of the SVM problem, invoking the original SVM oracle sufficient number of times

that depends on the approximation guarantee and the size of the uncertainty set but does not

directly depends on the dimension of the problem.
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Organization. The rest of the work is organized as follows. In Chapter 2 we discuss some

related approaches to solve the convex-concave saddle point problem in hand. In Chapter 3

we formulate the robust optimization problem more formally and describe interpretations of

both saddle-point and game theoretic formulation. In Chapter 4 we mention the model and

properties of fictitious play and see how this leads to approximate Nash equilibria of two player

zero-sum games. In Chapter 5 we present our fictitious play based algorithm to solve the

saddle-point problem and also discuss the convergence guarantees of the same. We demon-

strate examples and applications of our method in Chapter 6. Then in Chapter 7 we describe

the robust feasibility program and see an oracle-based approach to solve this. We conclude in

Chapter 8.
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Chapter 2

Related Work

Robust optimization is by now a a field of study by itself, and the reader is referred to Ben-Tal

et al. [2]; Bertsimas et al. [6] for further information, whereas Caramanis et al. [13] surveyed

about applications of robust optimization in machine learning. Shalev-Shwartz’s survey [26]

and Cesa-Bianchi’s book [14] are two useful references for online convex optimization and se-

quential prediction.

As we mentioned earlier, a significant hindrance of adopting RO to large scale problems is

its increased computational complexity. This problem was addressed in several papers. In [12]

they proposed to sample constraints from the uncertainty set, therefore obtain an almost robust

solution with high probability drawing enough samples. The idea is similar to [4], but the main

problem with their approach is that number of samples can become large as the dimension of

the problem increases.

The robust classification problem itself has a vast literature. The problem of design-

ing classifiers for uncertain observations remain an interesting open problem and has gained

considerable interest in the recent past see [30]. In Shivaswamy et al. [28] they used a chance

constraint based approach to solve the robust SVM problem, where Lanckriet et al. [18] for-

mulated the classification problem as Minimax Probabilty Machine. Both these attempts at

designing robust classifiers have been limited to the case of linear classification where the un-

certainty is specified over an explicitly stated feature map. Motivated by this problem Bhadra

et al. [7] initiated a study of designing robust classifiers when the entries of the kernel matrix

are independently distributed random variables. The approach, based on Chance-Constraints

formalism, leads to a non-convex problem which may result in an indefinite kernel matrix.
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In [3] they proposed a Robust Optimization (RO) approach which overcomes the above

drawbacks. The approach employs a geometric description of uncertainty instead of the proba-

bilistic description used earlier [7] They reformulated the robust counterpart as a saddle-point

problem and referred to a gradient-based general scheme introduced by Nemirovski [22] for solv-

ing such saddle-point problems. Their work was inspired by the work of Nesterov [23] where

a new method for minimizing a non-smooth Lipschitz continuous function f over a convex

compact finite-dimensional set is proposed. The characteristic feature of Nemirovski’s method

is that under favorable circumstances it exhibits (nearly) dimension-independent O(1/t) rate

of convergence, where it is assumed that the objective function f is given as a cost function of

the first player in a convex-concave game. We describe a OGD based method which operates

with the values and sub-gradients of f only, without access to the structure of the objective.

Though our algorithm has O(1/
√
t) rate of convergence, to the best of our knowledge we are

the first to tackle the robust optimization problem in the game theoretic setting.

Von Neumann’s minimax theorem [24] lies at the origins of the fields of both algorithms

and game theory. Indeed, it was the first example of a static game-theoretic solution concept:

If the players of a zero-sum game arrive at a min-max pair of strategies, then no player can

improve his payoff by unilaterally deviating, resulting in an equilibrium state of the game. The

min-max equilibrium played a central role in von Neumann and Morgenstern’s foundations of

Game Theory [1], and inspired the discovery of the Nash equilibrium [21] and the foundations

of modern economic thought. The min-max equilibrium is a static notion of stability, leaving

open the possibility that there are no simple distributed dynamics via which stability comes

about. This turns out not to be the case, as many distributed protocols for this purpose have

been discovered. In this work, we consider the scenario where Nash equilibria arise as a result

of the distributed interaction between the players of a zero-sum game, and where the values

of the players in the game are descriptive of their long-term payoff the course of their interaction.

Our algorithm takes ideas from learning in games and considers two players engage them-

selves in a zero-sum repeated game, each time choosing actions following a belief based learning

rule, namely fictitious play. The idea of fictitious play is over half a century old. It was orig-

inally introduced by Brown [11] as an algorithm to calculate the value of a zero-sum game.

Apart from this, the fictitious play (FP) process is the prime example of a so called myopic

learning process. In a fictitious play process two players are engaged in the repeated play of a

finite game. Each player believes that her opponent plays a stationary mixed strategy. In each

round, she estimates this strategy by the historical distribution of pure strategies and reacts
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with a strategy that maximizes her expected payoff in the next round, i.e., with a myopic best

response. We say that an FP approaches equilibrium if the sequence of beliefs converges to the

set of Nash equilibria of the game. A game is said to have the fictitious play property (FPP),

if every FP approaches equilibrium in this game.

Most of the research concerned with fictitious play tried to identify classes of games with

the fictitious play property (FPP). Robinson [25] proved that every two-person zero-sum game

has the FPP. Miyazawa [20] established the same result for every 2× 2 game. It is well known,

however, that for games with more than two strategies per player convergence need not occur.

Shapley [27] demonstrated this with a 3× 3 bi-matrix game for which fictitious play ends up in

an asymptotically stable limit cycle. This is not relevant to us as we consider two player zero-

sum games only. We will mainly focus on Robinson’s convergence result for finite action games

and extend it to the class of games where each player has infinitely many actions to choose from.

Robinson’s proof is an elegant induction argument, which eliminates one row or one

column of A at a time. Unraveling the induction, one can also deduce the following bound on

the convergence rate of the procedure: O(t−1/m+n−2), where m and n are the number of strate-

gies available to the row player and the column player respectively. which appears rather slow,

compared to the convergence rate of O(1/
√
t) that is typically achieved by no-regret learning

algorithms. Indeed, about ten years after Robinsons proof and six decades ago, Samuel Karlin

[17] conjectured that the convergence rate of fictitious play should be O(1/
√
t). There is some

evidence supporting this convergence rate. It is quite common with dynamics that are known

to converge. Indeed, a close relative of fictitious play, follow the regularized leader (FTRL),

is known to achieve convergence rate of O(1/
√
t). In this work, we present a formal proof of

Karlin’s conjecture for two player zero-sum infinite games. The uniqueness of our work is that

we used notions of Nash equilibria to obtain a robust solution of an optimization problem.
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Chapter 3

Robust Optimization

Robust optimization (RO) problem can be formulated as a min-max problem, where

minimization is taken with respect to the optimization variable and maximization is done

against the noise variable. Under certain assumption about the objective function and

feasibility sets it can be formulated as a saddle point problem. We can also interpret

robust optimization problem as a two player zero-sum game, where one player tries to

minimize the objective function while other player tries to maximize it. In Section 3.1

we will formally formulate the robust optimization (RO) problem. In Section 3.2 we will

see the saddle-point interpretation of RO and in Section 3.3 we will formulate RO as a

two-player zero-sum game.

3.1 Problem Formulation

Consider a general convex optimization problem

min
w∈W

f(w, u) (3.1)

Here f is convex in w, W ⊆ Rn is a convex set in Euclidean space and u is a fixed parameter

vector. The robust counterpart of (3.1) is given by

min
w∈W

f(w, u),∀u ∈ U (3.2)

Or equivalently

min
w∈W

max
u∈U

f(w, u) (3.3)

where U is the uncertainty set.
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3.2 Saddle-point Interpretation

The robust problem (3.3) can be interpreted as a saddle-point problem (see [10]) when f(w, u)

is concave in u for all w ∈W and U is a convex set. We refer to a pair (w? ∈W, u? ∈ U) as a

saddle-point for f if

f(w?, u) ≤ f(w?, u?) ≤ f(w, u?)

for all w ∈ W and u ∈ U. In other words, w? minimizes f(w, u?) (over w ∈ W) and u?

maximizes f(w?, u) (over u ∈ U):

f(w?, u?) = min
w∈W

f(w, u?), f(w?, u?) = max
u∈U

f(w?, u).

This implies

max
u∈U

min
w∈W

f(w, u) = min
w∈W

max
u∈U

f(w, u) (3.4)

we say that f (and W and U) satisfy the strong max-min property or the saddle-point property,

and that the common value is f(w?, u?).

In general for any f : Rn × Rm → R (and any W ⊆ Rn and U ⊆ Rm)

max
u∈U

min
w∈W

f(w, u) ≤ min
w∈W

max
u∈U

f(w, u) (3.5)

This general inequality is called the max-min inequality and for convex-concave saddle-point

problems equality always holds.

3.3 Game Interpretation

We can interpret the saddle-point property in terms of a continuous zero-sum game. If the

first player chooses w ∈W and the second player selects u ∈ U, then player 1 pays an amount

f(w, u) to player 2. Player 1 therefore wants to minimize f , while player 2 wants to maximize

f . (The game is called continuous since the choices are vectors, and not discrete).

If (w?, u?) is a saddle-point for f , then it is called a solution of the game. w? is called

the optimal choice or strategy for player 1, and u? is called the optimal choice or strategy for

player 2. More formally, the pair (w?, u?) is the Pure Strategy Nash Equilibria (PSNE) of the

min-max game and f(w?, u?) is the value of the game.
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The max-min inequality (3.5) states the (intuitively obvious) fact that it is better for

a player to go second, or more precisely, for a player to know his or her opponent’s choice

before choosing. In other words, the payoff to player 2 will be larger if player 1 must choose

first. When the saddle-point property (3.4) holds, there is no advantage to playing second. So

we will consider the players choosing actions simultaneously.

Often it is hard to compute PSNE of a game exactly. As in this case, we need to use

convex-concave interior point methods, which does not scale well with the dimensionality of

the problem. So, we try to solve the problem approximately. Now when it comes to approxima-

tion, the typical algorithmic approach is to aim for relative, i.e. multiplicative, approximations

to the optimum of the objective function of interest. In a strategic game, however, it is not

clear what function to approximate as each player seeks to optimize her own payoff function,

which assigns to every possible selection of strategies by the players a real number representing

the player’s own payoff.

To define approximate notions of Nash equilibrium it is more natural to instead relax the

optimality conditions that the Nash equilibrium itself imposes. Recall that a Nash equilibrium

is a collection of randomized, or mixed, strategies (these are distributions over deterministic,

or pure, strategies) such that each player’s randomization optimizes her payoff in expectation,

given the mixed strategies of the other players, and assuming that all players randomize inde-

pendently from each other. Since a player’s expected payoff is a convex combination of her pure

strategy payoffs, in order to optimize the player must only use in her mixed strategy pure strate-

gies with optimal expected payoff against the other players’ mixed strategies. Relaxing these

conditions we will discuss the notion of ε-approximate Nash equilibria in the next Chapter.
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Chapter 4

Approximation of Two Player

Zero-sum Games

In the previous Chapter we have discussed about the hardness of computing exact Nash

equilibria. In this Chapter we will introduce the notion of approximate Nash equilibria.

In Section 4.1 we will investigate the distributed interaction between two players in a

repeated game and see how this leads to a belief based learning rule, namely fictitious

play in Section 4.2. Then in the next Section we will see how fictitious play converges to

the approximate Nash equilibria of a two player zero sum game.

4.1 Distributed Interaction

We have discussed the notion of Nash equilibria in 2-player zero-sum games. Now, We inves-

tigate whether Nash equilibria can arise as a result of the distributed interaction between the

players of a zero-sum game, and whether the values of the players in the game are descriptive

of their long-term payoffs in the course of their interaction.

Clearly, if the players are aware of the details of the game (i.e. the game’s payoff ma-

trix), they can compute their min-max strategies on the side and just use these strategies

forever. We envision a much weaker distributed scenario, of completely-uncoupled dynamics as

follows:

• each player knows her own pure strategies, but does not know the game matrix, or even

the number of strategies available to her opponent;

• players interact in rounds, and each player can choose a mixed strategy in each round;
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• in the end of each round, each player is informed about the expected payoff she would have

gotten had she played each of her pure strategies against the opponent’s mixed strategy

(but the mixed strategy of the opponent is not revealed to her).

4.2 Fictitious Play

We consider a type of completely-uncoupled dynamics called fictitious play. Fictitious play was

defined by George W. Brown [11] who conjectured its convergence to the value of a zero-sum

game, and its convergence properties were established by Julia Robinson [25]. Lets see how it

works. Let (R,C = −R) be a two player zero-sum game, but assume we are in a completely-

uncoupled scenario where the players are ignorant of the game matrix. Informal descriptions

usually depict two players playing a finite game repeatedly. After arbitrary initial moves in

the first round, in every round each player plays a myopic pure best response (BR) against

the empirical strategy distribution of his opponent. The following definition corresponds to the

widely used version of fictitious play, where players update their beliefs simultaneously.

Definition 4.1. [5] For the two player zero-sum game (R,C = −R)m×n, the sequence (it, jt)t∈T

is a simultaneous fictitious play (SFP) process, if (i1, j1) ∈ m×n and for all t ∈ T , it+1 ∈ BR1(yt)

and jt+1 ∈ BR2(xt); where the beliefs xt and yt are given by

xt =
1

t

t∑
s=1

eis and yt =
1

t

t∑
s=1

ejs

ei is a vector whose components are all zero, except for the ith component, which is 1.

4.3 Convergence of Fictitious Play

Now we will discuss the convergence properties of fictitious play.

Theorem 4.1 [25] If the players of a zero-sum game (R,C = −R) interact via fictitious play,

then:

lim
t→∞

max
i
eTi Ryt = lim

t→∞
min
j
xTt Rej = v

where v is the value of the row player in the game.

The statement of the Theorem 4.1 implies that the maximum payoff that the row player can

achieve against the empirical strategy of the column player and the minimum loss that the col-
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umn player could suffer against the empirical strategy of the row player converge to the value

of the game. Now, Samuel Karlin [17] conjectured about the convergence speed of fictitious play.

Conjecture 4.1. Fictitious play converges with rate O(
1√
t
), for some function f(|R|) of

the description complexity of the game matrix R, i.e. for all ε ≥ 0, for all t ≥ 1

ε2
f 2(|R|) we

have

|max
i
eTi Ryt −min

j
xTt Rej| ≤ ε

If the conjecture were true, we can establish [15] the following convergence result of the empir-

ical mixed strategies.

Conjecture 4.2. For all ε ≥ 0, for all t ≥ 1

ε2
f 2(|R|), (xt, yt) is an ε-approximate Nash

equilibrium of the game, i.e.

1. xTt Ryt ≥ x′TRyt − ε for all x′ ∈ ∆m,

2. xTt Cyt ≥ xTt Cy
′ − ε for all y′ ∈ ∆n.

That is, no player of the game can improve by more than an additive ε by switching to a

different mixed strategy.

Now in the next Chapter we proceed to describe our fictitious play based algorithm to solve

robust optimization problem approximately.

Definition 4.2. We say the pair (w, u) is an ε-approximate solution of (3.3) if it satisfies

the following

f(w, u) ≤ f(w?, u?) + ε (4.1)

We will see that our algorithm satisfies this bound to the class of games where each player has

infinitely many actions.
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Chapter 5

Fictitious Play Based Algorithm

We have studied an empirical game-theoretical analysis for robust optimization problem,

in which we have partial knowledge of a game, consisting of observations of a subset of

the pure-strategy profiles and their associated payoffs to players. The aim is to find an

exact or approximate Nash equilibrium of the game, based on these observations and in

this Chapter we will do the same for zero-sum games with infinite actions. It is usually

assumed that the strategy profiles may be chosen in an on-line manner by the algorithm.

In Section 5.1 we will discuss how learning happens in a zero-sum game in an online

manner and present our online gradient descent based learning rule. Then in Section 5.2

we will provide a thorough convergence analysis of our algorithm. Specifically, we will

show the convergence of our algorithm to Nash equilibria. We will show both convergence

in value and convergence in action for zero-sum infinite games. Then we move on to make

a connection between Nash equilibria and robust solution of a min-max problem.

5.1 Learning in Zero-sum Game

We will now see how fictitious play can be used to solve formulation (3.3). The players interact

in rounds as follows:

• In round t = 1:

– player 1 plays an arbitrary strategy w1 ∈ W and player 2 plays an arbitrary

strategyu1 ∈ U

– player 1 observes loss f(w, u1) (convex in w) and player 2 observes gain f(w1, u)

(concave in u).

• In round t = 2:
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– player 1 plays any strategy w2 ∈ argminw∈Wf(w, u1) and player 2 plays any strat-

egy u2 ∈ argmaxu∈Uf(w1, u)

– player 1 observes loss f(w, u2) (convex in w) and player 2 observes gain f(w2, u)

(concave in u).

• In a general round t:

– player 1 plays any strategy

wt ∈ argminw∈W[
1

t− 1

t−1∑
k=1

f(w, uk)]

and player 2 plays any strategy

ut ∈ argmaxu∈U[
1

t− 1

t−1∑
k=1

f(wk, u)]

– player 1 observes f(w, ut) (convex in w) and player 2 observes f(wt, u) (concave

in u)

Observe that fictitious play can be viewed equivalently as the result of the two-players

of a zero-sum game using the Follow-the-Leader (FTL) protocol to update their strategies.

Here player 1 tries to minimize his cumulative loss over time and player 2 tries to maximize

his cumulative gain over time. In online learning community (see [26]) it is well known that

the performance of FTL can be very poor and a widely used solution is is to incorporate a

regularizer term, which is known as Follow-the-Regularized-Leader (FTRL):

wt ∈ argminw∈W[
1

t− 1

t−1∑
k=1

f(w, uk) +R(w)] (5.1)

ut ∈ argmaxu∈U[
1

t− 1

t−1∑
k=1

f(wk, u) +R(u)] (5.2)
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It is also quite well known that using squared norm regularizer in (5.1) and (5.2), that is using

R(x) =
‖x‖22
2η

, we will get Online-Gradient-Descent (OGD) updates for w and u.

5.1.1 Notations

Before stating our OGD based algorithm formally, we first make the following assumptions:

1. The feasible sets W and U are bounded, closed and non-empty.

2. For all t, f(w, ut) and f(wt, u) is differentiable w.r.t w and u respectively.

3. For all t, there exists an algorithm, given w and u, which produces ∇wf(w, ut) and

∇uf(wt, u).

4. For all v ∈ Rn, there exists an algorithm which can produce argminw∈W‖w − v‖2 and

argminu∈U‖u−v‖2. We define the projections
∏

W(v) = argminw∈W‖w−v‖2 and
∏

U(v) =

argminu∈U‖u− v‖2.

Also in the setting of this Section, we shall make use of the following definitions:

• Dw and Du denote l2 diameters of W and U respectively, that is Dw = max
x,y∈W

‖x− y‖2 and

Du = max
x,y∈U

‖x− y‖2.

• Gw ≥ ‖∇wf(w, u)‖2 and Gu ≥ ‖∇uf(w, u)‖2, for all w, u, are upper bounds of the

gradients of f .

• ηw =
Dw

Gw

√
T

and ηu =
Du

Gu

√
T

be the learning rate for w and u respectively.

5.1.2 Proposed Algorithm

With the above assumptions and definitions, we can now present an algorithm for robust opti-

mization, given in Algorithm 1, which is comprised of primal-dual iterations.

—————————————————————————————————

Algorithm 1 OGD-based RO

—————————————————————————————————

Input: parameters Dw, Du, Gw, Gu, target accuracy ε > 0

Output: ε-approximate solution to (3.3)

set T = d(GuDu +GwDw

ε
)2e, ηw =

Dw

Gw

√
T

, ηu =
Du

Gu

√
T

15



initialize w1 ∈W and u1 ∈ U arbitrarily

for t = 2 to T do

update wt ←
∏

W[wt−1 − ηw∇wf(wt−1, ut−1)]

update ut ←
∏

U[ut−1 + ηu∇uf(wt−1, ut−1)]

end for

return wT =
1

T

T∑
t=1

wt, uT =
1

T

T∑
t=1

ut

—————————————————————————————————

5.2 Convergence Analysis

In this Section we will restate the convergence results from Section 4.3 to the class of two player

zero-sum games where each player has infinitely many actions, as we have seen in Algorithm 1.

For this algorithm, we prove:

Theorem 5.1 For all ε ≥ 0, for all T ≥ (
GuDu +GwDw

ε
)2 we have

max
u∈U

f(wT , u)−min
w∈W

f(w, uT ) ≤ ε

Proof : Considering Regret Guarantee of Online Gradient Descent [31], we have

1

T

T∑
t=1

f(wt, ut)−min
w

1

T

T∑
t=1

f(w, ut) ≤
GwDw√

T
(5.3)

max
u

1

T

T∑
t=1

f(wt, u)− 1

T

T∑
t=1

f(wt, ut) ≤
GuDu√

T
(5.4)

From (5.3) and (5.4) we get

max
u

1

T

T∑
t=1

f(wt, u)−min
w

1

T

T∑
t=1

f(w, ut) ≤
GwDw√

T
+
GuDu√

T

As T ≥ (
GuDu +GwDw

ε
)2 we have

max
u

1

T

T∑
t=1

f(wt, u) ≤ min
w

1

T

T∑
t=1

f(w, ut) + ε

Now, as f is convex w.r.t w and concave w.r.t u,

f(wT , u) ≤ 1

T

T∑
t=1

f(wt, u),
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f(w, uT ) ≥ 1

T

T∑
t=1

f(w, ut)

Using these facts in the above the result follows. �

Remark 5.1. Notice that by proving Theorem 5.1 we also provide a formal proof of Con-

jecture 4.1 for zero-sum game with infinite actions.

Now we will show that output of our algorithm is indeed the ε-approximate Nash equilibria

of the game.

Theorem 5.2 For all ε ≥ 0, for all T ≥ (
GuDu +GwDw

ε
)2, (wT , uT ) is ε-approximate PSNE

of the game.

Proof : From Theorem 5.1 we have

max
u∈U

f(wT , u) ≤ min
w∈W

f(w, uT ) + ε

⇒ f(wT , u) ≤ min
w∈W

f(w, uT ) + ε, for all u ∈ U

⇒ f(wT , u) ≤ f(wT , uT ) + ε, for all u ∈ U

⇒ f(wT , uT ) ≥ f(wT , u)− ε, for all u ∈ U (i)

Again,

min
w∈W

f(w, uT ) ≥ max
u∈U

f(wT , u)− ε

⇒ f(w, uT ) ≥ max
u∈U

f(wT , u)− ε, for all w ∈W

⇒ f(w, uT ) ≥ f(wT , uT )− ε, for all w ∈W

⇒ f(wT , uT ) ≤ f(w, uT ) + ε, for all w ∈W (ii)

From (i) and (ii), we conclude that (wT , uT ) is indeed an ε-approximate PSNE of the game. �

Remark 5.2. See we have also established the result of Conjecture 4.2.

The following theorem shows that the output of Algorithm 1 indeed converges to the
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saddle-point or equivalently PSNE of the game.

Theorem 5.3 For all ε ≥ 0, ε-approximate PSNE profile (wT , uT ) converges to exact PSNE

profile (w?, u?) as T →∞

Proof : Before proving Theorem 5.3 formally, we first claim the following:

Claim 5.1. lim
T→∞

1

T

T∑
t=1

f(wt, ut) = f(w?, u?)

Proof : From (5.3) and (5.4) we have

lim
T→∞

max
u

1

T

T∑
t=1

f(wt, u) ≤ lim
T→∞

1

T

T∑
t=1

f(wt, ut) ≤ lim
T→∞

min
w

1

T

T∑
t=1

f(w, ut) (5.5)

Again, min
w

T∑
t=1

f(w, ut) ≤
T∑
t=1

f(wt, ut) ≤ max
u

T∑
t=1

f(wt, u)

Dividing by T and taking limit we get

lim
T→∞

min
w

1

T

T∑
t=1

f(w, ut) ≤ lim
T→∞

1

T

T∑
t=1

f(wt, ut) ≤ lim
T→∞

max
u

1

T

T∑
t=1

f(wt, u) (5.6)

(5.5) and (5.6) implies,

lim
T→∞

1

T

T∑
t=1

f(wt, ut) = lim
T→∞

max
u

1

T

T∑
t=1

f(wt, u) = lim
T→∞

min
w

1

T

T∑
t=1

f(w, ut) (5.7)

Now using the similar arguments as [25] and Theorem 4.1, we can state that

lim
T→∞

max
u

1

T

T∑
t=1

f(wt, u) = lim
T→∞

min
w

1

T

T∑
t=1

f(w, ut) = f(w?, u?) (5.8)

From (5.7) and (5.8), the result follows. �

Remark 5.3. Observe that (5.8) basically is a restatement of Robinson’s result (Theorem

4.1), specially modified for our setting. Also notice that Claim 5.1 implies long-term average

payoff for both the players converges to the value of the game.

Proof of Theorem 5.3 : Using convexity and concavity property of f , we have
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f(wT , uT ) ≤ max
u

f(wT , u) ≤ max
u

1

T

T∑
t=1

f(wt, u) and

f(wT , uT ) ≥ min
w
f(w, uT ) ≥ min

w

1

T

T∑
t=1

f(w, ut)

This implies,

min
w

1

T

T∑
t=1

f(w, ut) ≤ f(wT , uT ) ≤ max
u

1

T

T∑
t=1

f(wt, u) (5.9)

Now consider the following theorem.

Theorem 5.4 (Sandwich Theorem) Let D ⊂ R and f, g, h be functions on D to R. Let

c ∈ D′.
If f(x) ≤ g(x) ≤ h(x) for all x ∈ D − {c} and if lim

x→c
f(x) = lim

x→c
h(x) = l, then lim

x→c
g(x) = l

Using Theorem 5.4 on (5.9) with T as the variable and from (5.8) we have

lim
T→∞

f(wT , uT ) = f(w?, u?)

As f is continuous in both of its arguments,

f( lim
T→∞

wT , lim
T→∞

uT ) = lim
T→∞

f(wT , uT )

⇒ f( lim
T→∞

wT , lim
T→∞

uT ) = f(w?, u?)

Now, if (w?, u?) is unique, then

w? = lim
T→∞

wT , u? = lim
T→∞

uT

thereby ensuring unique convergence. But if (w?, u?) is not unique, that is if multiple Nash

equilibria exists, then (wT , uT ) converge to any one of the PSNE’s, (w?, u?) being one of them.�

Now we will establish a connection between Nash equilibria and robust solution of two

player zero-sum games. We will state it as a corollary of Theorem 5.1.

Corollary 5.1. For all ε ≥ 0, for all T ≥ (
GuDu +GwDw

ε
)2, ε-approximate Nash Equilib-

rium profile is the ε-approximate robust solution to the min-max problem.
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Proof: From Theorem 5.1,

max
u∈U

f(wT , u) ≤ min
w∈W

f(w, uT ) + ε

⇒ max
u∈U

f(wT , u) ≤ f(w?, uT ) + ε

⇒ max
u∈U

f(wT , u) ≤ f(w?, u?) + ε

⇒ f(wT , u) ≤ f(w?, u?) + ε, for all u ∈ U (iii)

⇒ f(wT , uT ) ≤ f(w?, u?) + ε

So function value at ε-approximate Nash equilibrium profile is ε-close to the value of the game,

satisfying Definition 4.2. �

Remark 5.4. Also from (iii) we Observe that for all ε ≥ 0, for all T ≥ (
GuDu +GwDw

ε
)2

f(wT , u
?) ≤ f(w?, u?) + ε,

that is under worst possible noise, value of f at wT is at most ε-worse than value of f at

w?, which is the exact robust solution of the problem. This implies wT is an ε-approximate

robust solution.
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Chapter 6

Applications

Our work opens up the solution of a plethora of problems in robust optimization. In this

Chapter we will show one example from finance and another one from machine learning to

indicate vast usefulness of our results. In Section 6.1 we discuss the robust classification

problem when the uncertainty is in the kernel matrices and see how we can solve it using

our technique. In Section 6.2 we consider the robust portfolio selection problem under

market noise and discuss the applicability of our results.

6.1 Robust Classification Problem Under Uncertainty in

Kernel Matrices

Given a set of training data {(xi, yi)|yi ∈ ±1}, the robust SVM problem with uncertainty in

kernel matrix can be cast as follows (see [3])

max
α∈Sn

min
K∈E(k)

−1

2
αTY KY α + αT e (6.1)

where Sn = {α|0 ≤ αi ≤ C,
n∑
i=1

αiyi = 0}, Y = diag(y1, ..., yn), e is a vector of all 1’s. Each

entry of the matrix K, is defined by Kij = K(xi, xj) where K is a kernel function and defines

a dot product in an associated Reproducing Kernel Hilbert Space, thus needs to be positive

semi-definite. The uncertainty in the kernel matrix K is modeled by a bounded convex set

E(k), which encompasses several possible realizations of K

E(k) = {K = K +
L∑
l=1

ηlKl, ‖η‖2 ≤ k, ηl ≥ 0, l = 1, 2, ..., L} (6.2)
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The constraint ηl ≥ 0 is needed to ensure that each element in the set represents a valid kernel

evaluation. The quantity k measures the quality of approximation and hence the uncertainty. If

k = 0 then we have no uncertainty. As k increases the uncertainty set increases. The matrices

K,Kl ∈ Sn+ are obtained by evaluating the known kernel functions K,Kl on the training set. As

any K ∈ E(k) is always positive semi-definite, the set E(k) defines a valid model for describing

uncertainty in psd matrices.

The Robust SVM problem (6.1) with uncertain K, as characterized in (6.2), can now

be cast as follows (see [3])

max
α∈Sn

min
‖η‖2≤k

−1

2
αTY KY α− 1

2
αTY

L∑
l=1

ηlKlY α + αT e (6.3)

Now (6.3) can be cast as a Conic Quadratic problem. Such problems can be solved in

polynomial time by Interior Point (IP) algorithm. However for large-scale problems IP methods

become intractable. Now we will show that this is a saddle-point problem and algorithm 1 can

be used to learn the robust classifier. for the sake of convenience we rename the variables, in

particular we use η → x, α→ y, y → s, Y KlY → Ql, Y KY → Q, k → 1 to reformulate (6.3) as

the following

max
y∈Y

min
x∈X
−1

2
yTQy −

L∑
l=1

xl(
1

2
yTQly) + yT e (6.4)

Where Y = {y ∈ Rn : 0 ≤ yi ≤ C,
n∑
i=1

siyi = 0} and X = {x ∈ Rl : x ≥ 0, ‖x‖2 ≤ 1}

Here the objective function f(x, y) is linear in x and concave in y, as Hessian, defined by

∇2
yf(x, y) = −(Q+

∑
l

xlQl), is a negative linear combination of p.s.d matrices. Also it is easy

to verify that both X and Y are convex, closed and bounded. So, the robust formulation (6.4)

is amenable to Algorithm 1. In this case we have

∇xf = −d ; d = [d1, ..., dL]T , dl =
1

2
yTQly and

∇yf = −Qy −
L∑
l=1

xlQly + e,

so that in each iteration of the algorithm, the update of the variables takes the simple form

xt =
∏

X[xt−1 + ηxdt−1]; dl,t−1 =
1

2
yTQly
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yt =
∏

Y[yt−1 + ηy(−Qyt−1 −
L∑
l=1

xl,t−1Qlyt−1 + e)]

where ηx, ηy are the learning rates for x and y respectively. Now,

Dx = max
u,v∈X

‖u− v‖2 =
√

2,

Dy = max
u,v∈Y

‖u− v‖2 = C
√

n

are diameter of the sets X and Y respectively and

‖∇xf‖2 =
√
d21 + ...+ d2L ≤

√
Lmax

l
dl ≤

√
L

2
max
l
yTQly ≤

√
L

2
max
l

(λmax(Ql)y
Ty) ≤ C2n

√
L

2
max
l

(λmax(Ql)) =

Gx,

‖∇yf‖2 = ‖Qy‖2+‖
L∑
l=1

xlQly‖2+‖e‖2 ≤ ‖Q‖2‖y‖2+
L∑
l=1

xl‖Ql‖2‖y‖2+‖e‖2 ≤
√
n(1+C(‖Q‖2+

max
l
‖Ql‖2)) = Gy

are upper bound of the gradients of f .

6.2 Robust Portfolio Optimization

The classical work of Markowitz [19] served as the genesis for modern portfolio theory. The

canonical problem is to allocate wealth across n risky assets with mean returns µ ∈ Rn and

return covariance matrix Q ∈ Sn+ over a weight vector x ∈ Rn. This can be done in three essen-

tially equivalent ways: (i) maximize expected return subject to an upper limit on the variance,

(ii) minimize the variance subject to a lower limit on the expected return, (iii) maximize the

risk-adjusted expected return. These three problems are parametrized by the variance limit,

expected return limit, and the risk-aversion parameter, respectively. Here we will focus on the

risk-adjusted return formulation:

max
x∈X

µTx− λxTQx (6.5)

Above µi, the ith component of the vector µ, denotes the estimated expected return of security

i. Diagonal elements qii of the Q matrix denote the variance of the return on security i while

off-diagonal elements qij denote the covariance between the returns of securities i and j. The

components xi of the variable vector x denote the proportion of the portfolio to be invested in

security i. The scalar λ is the risk aversion parameter and X represents the set of acceptable
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weight vectors (X typically contains the normalization constraint eTx = 1 and often has no

short-sales constraints, i.e., xi ≥ 0, i = 1, ..., n, among others).

Despite the widespread popularity of this approach, a fundamental drawback from the

practitioner’s perspective is that µ and Q are rarely known with complete precision. Robust

models for the mean and covariance information are a natural way to alleviate this difficulty,

and they have been explored by numerous researchers. Here we will consider the uncertainty

model used by Goldfarb and Iyengar [16]. The mean return vector µ and return covariance

matrix Q is assumed to lie in respective uncertainty sets Sµ and SQ given by

Sµ = {µ : µ = µ0 + ξ, |ξi| ≤ γi}

SQ = {Q : Q = Q0 +W, ‖W‖F ≤ ρ}

Here, µ0 and Q0 are fixed and γ and ρ denote the level of uncertainty respectively for µ and Q.

Now As pointed out before, the primary criticism leveled against the Markowitz model is that

the optimal portfolio is extremely sensitive to the market parameters, since these parameters

are estimated from noisy data. By introducing measures of uncertainty in the market models,

we are attempting to correct this sensitivity to perturbations. The uncertainty sets Sµ and

§Q represent the uncertainty of our limited (inexact) information of the market parameters,

and we wish to select portfolios that perform well for all parameter values that are consistent

with this limited information. Such portfolios are solutions of appropriately defined min-max

optimization problems called robust portfolio selection problem

max
x∈X

min
µ∈Sµ,Q∈SQ

µTx− λxTQx (6.6)

Now, in [16] they showed (6.6) can be reformulated as an SOCP, which gets very difficult to

solve for large scale problems. Now we will show that this is a saddle-point problem and our

algorithm can be used to compute robust efficient frontiers. Here, the objective function is

f(x, µ,Q) = µTx− λxTQx

which is linear in µ and Q and concave in x (as Q is a positive semi-definite matrix). Also it

is easy to verify that X, Sµ, SQ all are convex, closed and bounded. So, the robust quadratic

program (6.6) is amenable to Algorithm 1. In this case we have
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∇xf = µ− 2λQx,

∇µf = x and

∇Qf = −λxxT ,

so that in each iteration of the algorithm, the update of the variables takes the simple form

xt =
∏

X[xt−1 + ηx(µt−1 − 2λQt−1xt−1)]

µt =
∏

Sµ
[µt−1 − ηµxt−1]

Qt =
∏

SQ
[Qt−1 + ηQλxt−1x

T
t−1]

where ηx, ηµ, ηQ are the learning rates for x, µ,Q respectively. Now,

Dx = max
u,v∈X

‖u− v‖2 =
√

2,

Dµ = max
µ1,µ2∈Sµ

‖µ1 − µ2‖2 = max ‖ξ1 − ξ2‖2 ≤ max(‖ξ1‖2 + ‖ξ2‖2) = 2‖γ‖2 and

DQ = max
Q1,Q2∈SQ

‖Q1 −Q2‖2 ≤ max(‖Q1‖2 + ‖Q2‖2) ≤ max(‖Q1‖F + ‖Q2‖F ) = 2ρ

are diameter of the sets X, Sµ, SQ respectively and

‖∇xf‖2 = ‖µ − 2λQx‖2 ≤ ‖µ‖2 + 2λ‖Qx‖2 ≤ ‖µ‖2 + 2λ‖Q‖2‖x‖2 ≤ ‖µ‖2 + 2λ‖Q‖2 ≤
(‖µ0‖2 + ‖ξ‖2) + 2λ(‖Q0‖2 + ‖W‖2) ≤ (‖µ0‖2 + ‖γ‖2) + 2λ(‖Q0‖2 + ρ) = Gx,

‖∇µf‖2 = ‖x‖2 ≤ 1 = Gµ and

‖∇Qf‖2 = λ‖xxT‖2 = λ‖xxT‖F = λTrace(xxT ) = λ‖x‖22 ≤ λ = GQ

are upper bound of the gradients of f .
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Chapter 7

Robust Feasibility Problem : A Detour

In this Chapter we switch our attention to feasibility problems and its robust counter-

parts. We present an oracle based algorithm to solve general robust feasibility problems

approximately and see its application in classification problems, namely support vector

machines (SVM). In Section 7.1 we formulate a general robust feasibility problem and in

Section 7.2 we discuss an oracle based approach to solve it approximately. Then in the

next Section we consider the special case of hard margin SVM problem and see an oracle

based approach to solve it.

7.1 Problem Formulation

Consider a general convex feasibility problem:

∃?x ∈ D : fi(x, ui) ≤ 0, ∀i ∈ [m]. (7.1)

Here f1, ..., fm are convex functions in x, D ⊆ Rn is a convex set in Euclidean space and

u1, ..., um are fixed parameter vectors. The robust counterpart of (7.1) is given by:

∃?x ∈ D : fi(x, ui) ≤ 0, ∀ui ∈ U, ∀i ∈ [m]. (7.2)

As in [4], we say x ∈ D is an ε-approximate solution to this problem if x meets each con-

straint up to ε, that is, it satisfies

fi(x, ui) ≤ ε, ∀ui ∈ U, ∀i ∈ [m].
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7.2 Oracle-Based Robust Optimization

In [4], they assumed that there exists an oracle or solver for the original optimization problem

(7.1). This oracle approximately solves formulation (7.2) for any fixed noise vectors u1, ..., um:

ui ∈ U, ∀i ∈ [m]. It either returns an ε-feasible solution, that is, it returns a vector x ∈ D that

satisfies

fi(x, ui) ≤ ε, ∀i ∈ [m]

or declares that the problem is infeasible if @x ∈ D for which

fi(x, ui) ≤ 0, ∀i ∈ [m].

7.2.1 Online Gradient Descent Based Algorithm

The robust problem (7.2) can be formulated as a convex-concave saddle-point problem by

making the following assumptions:

1. fi(x, u) concave in u for all x ∈ D, for all i ∈ [m].

2. The uncertainty set U is convex.

Now define:

• D ≥ maxu,v∈U‖u− v‖2, the l2 diameter of the uncertainty set.

• ‖ 5u fi(x, u)‖2 ≤ G, the upper bound over the gradients, for all x ∈ D and u ∈ U.

With these assumptions and definitions, in [4] they have given a meta-algorithm, which is com-

prised of primal-dual iterations, where the dual part updates the noise terms according to the

current primal solution, via an online gradient ascent based update [31].

The approximate robust solution is obtained by invoking the oracle a finite number of

times, where the number of iterations is a function of G,D, ε. At each iteration, in the dual

step, the current noise vectors are updated using gradient ascent (projected) rule:

uti ←
∏

U[ut−1i + η5u fi(x
t−1, ut−1i )], ∀i ∈ [m]

27



Next in the primal step, the oracle is called using current noise samples to obtain the cur-

rent solution xt. Finally, the algorithm returns either simple average of the primal solutions

obtained in each iteration or declare the problem is infeasible if the original oracle does so at

any iteration.

7.3 Application: Oracle Based Robust SVM

Consider the standard hard margin SVM problem:

minimize
1

2
‖w‖22

subject to yi(w
Txi + b) ≥ 1, ∀i ∈ [m] (7.3)

The robust counterpart of this optimization problem is a second-order conic program (SOCP)

that can be solved in polynomial time using interior point methods. However, recall that the

goal is to solve the robust problem by invoking a solver of the original (non-robust) optimization

problem. In the discussion below, we will assume that the uncertainty set U is the Euclidean

unit ball, that is

U = {u ∈ Rd : ‖u‖2 ≤ 1}.

Now assume that x takes values in an ellipsoid with center x, metric Σ and radius γ, that

is

x ∈ B := {x : (x− x)TΣ−1(x− x) ≤ γ2}.

It also implies that x = x + γΣ1/2u, where u ∈ U. The robustness criteria can be enforced by

requiring that we classify x correctly for all x ∈ B(x,Σ, γ), that is

y{wT (x+ γΣ1/2u) + b} ≥ 1, for all u ∈ U.

So, the robust SVM problem can be written along the line of (7.2) as,

minimize
1

2
‖w‖22

subject to 1− yi{wT (xi + γiΣ
1/2
i ui) + b} ≤ 0,

∀ui ∈ U, ∀i ∈ [m] (7.4)
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This is equivalent to the SOCP formulation [28] :

minimize
1

2
‖w‖22

subject to yi(w
Txi + b) ≥ 1 + γi‖Σ1/2

i w‖, ∀i ∈ [m] (7.5)

7.3.1 OGD-based Robust SVM algorithm

The robust SVM program (7.4) is amenable to the OGD-based meta-algorithm (Algorithm 2),

as in this case, the constraints are of the form:

f(w, u) = 1− y{wT (x+ γΣ1/2u) + b}.

The constraints are linear with respect to the the noise term u and the uncertainty set, Eu-

clidean unit ball, is convex. Therefore satisfies all the assumptions of Section 7.2. In this case

we have

5uf(w, u) = −yγΣ1/2u.

Now we will see the oracle based robust SVM algorithm.

——————————————————————————————————

Algorithm 2 OGD-based SVM

——————————————————————————————————

Input: Tuples (xi,Σi, γi), ∀i ∈ [m], target accuracy ε > 0

Output: 2ε-approximate solution to (25), or infeasibe

set D = 2, G =
√
maxmi=1(γ

2
i λmax(Σi))

set T = dG
2D2

ε2
e and η =

D

G
√
T

initialize (u01, ..., u
0
m) and w0 arbitrarily

for t = 1, 2, ..., T do

for i = 1, 2, ...,m do

update uti ←
ut−1i − ηyiγiΣ1/2

i wt−1

max{‖ut−1i − ηyiγiΣ1/2
i wt−1‖2, 1}

compute xti = xi + γiΣ
1/2
i uti

end for

set (wt, bt)← Oε(x
t
1, ..., x

t
m)
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if oracle declared infeasibility then return infeasible

else set wt ←
wt

max{‖wt‖2, 1}
end for

return w =
1

T

T∑
t=1

wt, b =
1

T

T∑
t=1

bt

——————————————————————————————————

Here the optimization oracle (Oε) is the original non-robust ε-approximate SVM solver,

which is a quadratic programming problem and thus it avoids solving the SOCP formulation.

—————————————————————————————–

Oracle Oε

—————————————————————————————–

Input: noise vectors x1, ..., xm, xi ∈ B(xi,Σi, γi), ∀i ∈ [m]

Output: vector w ∈ Rd and b ∈ R which solves:

minimize
1

2
‖w‖2

subject to yi(w
Txi + b) ≥ 1− ε, ∀i ∈ [m]

or declare infeasible if @w ∈ Rd and b ∈ R for which

yi(w
Txi + b) ≥ 1, ∀i ∈ [m]

—————————————————————————————–

For Algorithm 2, we prove:

Theorem 7.1 Algorithm 2 returns an 2ε-approximate robust solution, to (25), that is yi(w
Txi+

b) ≥ 1 − 2ε, ∀i ∈ [m], after at most T = O(G2/ε2) calls to the SVM-oracle, where G =√
maxmi=1(γ

2
i λmax(Σi))

Proof: Note that for all ui ∈ U, the d-dimensional unit ball, and ‖w‖2 ≤ 1 we have

maxu,v∈U‖u− v‖2 = 2 and

‖ 5u fi(w, u)‖22 = γ2iw
TΣiw ≤ γ2i λmax(Σi)

where λmax denotes the maximum eigenvalue.

Now suppose a solution (w, b) is returned by Algorithm 2. This implies

30



yi(w
T
t x

t
i + bt) ≥ 1− ε for all t ∈ [T ] and i ∈ [m], i.e.

for all i ∈ [m],
1

T

T∑
t=1

yi(w
T
t x

t
i + bt) ≥ 1− ε (7.6)

Now from the regret guarantee of OGD [31],

maxxi
1

T

T∑
t=1

[1− yi(wTt xi + bt)]−
1

T

T∑
t=1

[1− yi(wTt xti + bt)] ≤
GD√
T
≤ ε (7.7)

Combining (7.6) and (7.7) we have,

ε ≥ 1

T

T∑
t=1

[1−yi(wTt xti+bt)] ≥ maxxi
1

T

T∑
t=1

[1−yi(wTt xi+bt)]−ε = maxxi [1−yi(wTxi+b)]−ε

where the final equality follows from the linearity of the constraints with respect to w and

b. Hence, we have

yi(w
Txi + b) ≥ 1− 2ε, ∀xi ∈ B(xi,Σi, γi), ∀i ∈ [m].

implying that (w, b) is a 2ε-approximate robust solution.

Now Setting D = 2 and G =
√
maxmi=1(γ

2
i λmax(Σi)), we obtain the result. �

Similarly we can extend Algorithm 2 and Theorem 7.1 to the soft-margin SVM problem

also.

7.3.2 Experiments

We denote formulation (7.5) as SVM-SOCP and Algorithm 2 as SVM-OGD. Now we introduce

two error measures [28].

Worst case error (ewc): Let x ∈ B(x,Σ, γ) has true label y. For this ellipsoid the worst

case error is given by

ewc(B) = 1, if yz ≤ γ, where z =
wTx+ b√
wTΣw

= 0, otherwise

Expected error (eexp): It is the ratio of the volume of the ellipsoid on the wrong side of

the classifier to the entire volume of the ellipsoid.
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Experimental results are reported for a public domain dataset Pima, downloaded from

UCI repository [9]. It has 768 observations, where each is observation is an 8-dimensional vec-

tor. The dataset had missing entries (marked as 0). To tackle this, we performed the same

imputation strategy as in [28]. Then we randomly partitioned the data into test set and training

set in the ratio 1 : 9 respectively. We assumed Σi = Σ and γi = γ for all i and we have chosen C

via cross-validation. We implemented SVM-OGD and SVM-SOCP both for soft-margin SVM

formulation.

Figure 7.1: Dependency of Expected Error with Radius of Uncertainty
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Figure 7.2: Dependency of Worst Case Error with Radius of Uncertainty

Figure 7.1 and 7.2 compares performance of SVM-OGD to SVM-SOCP for different

values of target accuracy ε. Figure 7.1 summarizes how expected error varies with the radius (γ)

of the uncertainty ellipsoid and figure 7.2 does the same for worst case error. We observe that

both the errors generally increases (or remains same) with increasing γ, albeit a few fluctuations.

Also as expected for higher values of ε, error is high and for lower values error is low. However,

for lower values of ε error of SVM-OGD becomes comparable to SVM-SOCP as we increase γ.

Figure 7.3: Dependency of Expected Error with Target Accuracy
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Figure 7.4: Dependency of Worst Case Error with Target Accuracy

Figure 7.3 and 7.4 summarizes how expected error and worst case error of SVM-OGD

varies with varying target accuracy ε taking SVM-SOCP as a benchmark. As expected we

observe both the error increases as ε increases, while worst case error increases much faster

than expected error.

Our main observation is that both eexp and ewc is more for SVM-OGD than SVM-SOCP

as the former solves the problem approximately.
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Chapter 8

Conclusion

In this work we considered using online learning approaches for effectively solving robust op-

timization problems without transforming the problem to a different, more complex, class of

problems. We showed that if the problem is a convex-concave saddle-point problem, then we

can solve it approximately by playing a repeated game between two players, each choosing

his actions following a belief based learning rule, namely fictitious play. Our results suggest

O(1/
√
T ) rate of convergence, that is after T iterations our approximate solution takes the

value of the objective function O(1/
√
T ) closer to the optimal value. Though there exists a

better algorithm [22] with O(1/T ) rate of convergence for solving saddle-point problems, our

result is significant in a great sense.

Our algorithm makes use of the fact that in a two player zero-sum repeated game (equiv-

alently saddle-point problem) both players are generally unaware of the structure of the payoff

matrix (equivalently the objective function f), or else they will play their Nash equilibrium

strategy (optimal strategy) at the first round itself. It operates with the values (and subgradi-

ents) of f only, that is each player only gets to see his current payoff based on his opponent’s

previous action, which is closer to reality than knowing the entire game matrix itself even before

the start of the game. However in [22], they assumed that we are given the structure of the

objective f and thus know the payoff structure beforehand.

More specifically, they assumed that both the players know W and U completely and

able to compute the value and gradient of f at any point (w, u). But our method assumes that

there is a black-box, which given a point (w, u) gives us the value and gradient of f at that

point only, which is significant as in zero-sum games the players need not know the complete

strategy set of his opponent beforehand. Also, they require f to be C1,1, i.e. has Lipschitz
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continuous gradients, where our method is suitable for any convex-concave function f .

We have proved the convergence of fictitious play for two player zero-sum infinite games,

which we believe is a significant extension to the literature itself and there is a scope of further

study for any general multiplayer game. Also here we considered simultaneous fictitious play

only. It will be interesting to see whether similar results can be obtained for the version of the

game where players update their beliefs alternatively. Finally, there is a lot of scope of study

in identifying problems from diverse backgrounds where our approach can be used efficiently.
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