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Reviewer Comments: Modifications in the manuscript appear in blue.

The authors would like to thank the associate editor for handling the paper and collecting

the reviews. We have tried our best to revise the manuscript to accommodate all the reviewer

comments. Following the suggestions of the reviewers and the comments of the AE we have

made the following major changes:

• Based on the comment from Reviewer 2; we have modified the title.

• The extension to the general case (different means and different covariance matrices) has

been added.

• Theorem 2 has been revised and modified according to the comments of the reviewers.

• Remarks for clarification of the matrix decomposition and the trade-offs of the proposed

methods have been added.
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Reviewer: 1

Recommendation: AQ - Publish With Minor, Required Changes

Comments: In this work the authors study sparse sampler design for Gaussian signal detection

with correlated data using submodularity to facilitate efficient computations with guaranteed

performance in some cases. I find their writing style and arguments clear and insightful, well

motivated, and I believe this paper can be of interest to the wider signal processing community.

We thank the reviewer for the positive comments on our paper.

Please find my comments to this manuscript below:

Q.1. Theorem 2. It seems that for a nearly diagonal covariance matrix Σ with the S matrix

correspondingly becoming vanishingly small the constant C1 becomes very large and the bound

on ǫ diverges. Can you comment on this, as it seems that in this case the SNR function should

approach a modular set function with ǫ=0

R.1 Thanks for pointing this out. To make this more clear, following your recommendation

and the ones from the other reviewers, Theorem 2 has been modified. We emphasize more the

role of the Theorem in our work, since it explains why and when using the greedy heuristic

directly on the SNR provides good results. However, as discussed in the manuscript, there might

be instances where this bound does not provide much information on using the greedy heuristic.

Therefore we introduce the submodular surrogate. In addition, as the SNR can be computed as

a “by product” of our proposed surrogate, we can always select the one that performs the best.

Q.2. Eq. (29) suggests that maximizing the surrogate f (A) is equivalent to maximizing

s(A)γ(A) where s(A) is the SNR. I find the study of the term γ(A) somewhat lacking depth,

how do we know that γ(A) does not behave in a completely erratic way or opposite to s(A)

(as the authors suggest). A discussion would be well warranted.

R.2 Indeed, that’s true. In fact, f (A) is defined as log{s(A}γ(A)} [cf. (28) and (30)],

which due to the monotone non-decreasing property of the log function makes it equivalent

to maximizing s(A)γ(A). Despite this, in general, the only thing that can be said with certainty

about γ(A) is that this set function is monotone nondecreasing in the set size (therefore, does not

behave opposite to s(A)), and that f (A) , s(A). Depending on which sensor is being selected,

the projection of the standard basis, i.e., ei = [0 0 ... 1 ... 0 0]T, onto the matrix S will define how

it behaves. However, the optimization will try to align the selection to S in order to make the

matrix [S−1
+ a−1diag(IA )] more positive definite and to reduce the SNR loss. That’s why we

treat f (A) as a surrogate function. In addition, we have made the following modification in the
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manuscript:

The set function γ(A) is a monotone nondecreasing set function of the selected set

size. In addition, rewriting the SNR expression as

s(A) = θ
T

S
−1
θ −

1

γ(A)
θ

T
S
−1adj

(

S
−1
+ a−1diag(1A )

)

S
−1
θ, (31)

where adj(A) is the adjugate of A defined as the transpose of the cofactor matrix

of A, we observe that in order to keep the nondecreasing property of the SNR with

respect to the set A, the growth rate of γ(A) should be larger than growth rate of

the quadratic form in (31). Hence, it is reasonable to consider (30) as a surrogate

function for s(A). Finally, we remark that maximizing (30) effectively maximizes a

modified version of (25) where the inverse of S
−1
+ a−1diag(1A ) has been substituted

by its adjugate [cf.(31)].

Here, we reemphasize that the last sentence of the above extract, makes reference to the fact

that in the expression:

s(A) = θ
T S−1

θ − θT S−1 [S−1
+ a−1diag(1A)

]−1
S−1

θ,

the second term, which we refer to as loss in-signal-to-noise ratio, is monotone decreasing in

the cardinality of the set A, and relates to the γ(A) function through the expression

s(A) = θ
T S−1

θ −
1

γ(A)
θ

T S−1adj
(

S−1
+ a−1diag(1A )

)

S−1
θ,

where for some matrix A, adj(A) = C
T denotes the adjugate matrix, and C is the cofactor

matrix of A. As the quadratic form in the above expression is nondecreasing on A, the rate of

increase of γ(A), with respect to A, should be larger in order to keep the monotonicity of the

signal-to-noise ratio.

Q.3. Computational complexity analysis following Equation (35) , the authors find the com-

putational complexity of their approach as O(MK3) compared to cubic complexity in M for the

convex approach. However, as we have K >> M it seems like the computational complexity of

this approach is in fact larger as there is no fixed number of possible choices K in the convex

formulation. Can the authors resolve this?

R.3 Thanks for this comment. We reemphasize that, in this work on sensor selection, the

focus is on designing compression matrices. Therefore, we always have K << M .

Q.4. Section 4D, can the authors report algorithm running time when comparing their approach

to the convex optimization to support their claim of improved running time?
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R.4 If we consider instances where M is large the SDP formulation chokes (loading the

whole SDP is already intensive), while the recursive formulation when selecting a small subset

of sensors is still reasonable. In the following figure we show a small example to illustrate this.

In the left figure, the size of the ground set changes, i.e., the number of available sensors M , and

in the right figure the number of available sensors is kept fix but the number of selected sensors

(K) increases. In the first example (left), the greedy method computes the solution for all possible

selected sensors, i.e., K = 1, . . . ,M , while the convex method only solves it for K = M/2. In

the second example (right), the time reported for the greedy method is for obtaining the total

set of solutions for K = 1, . . . ,M .
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In case the reviewer deems it necessary to include these pictures, we can either add these

plots or report numbers from these plots in the final version of the manuscript.

Q.5. It would be helpful if the authors can calculate and discuss the sumodularity bound ǫ

as determined according to their theorem 2 for all the specific settings for which they report

numerical results.

R.5 Although computing this bound, despite being computationally intensive, might be useful

for the example provided, we feel that plotting it doesn’t add much value to the paper. The

bound is used only to substantiate why greedy SNR works so well in some cases.

Q.6. Can the authors note on the possible extension of their method for applications where

both means and covariance matrices are different for the two hypotheses?

R.6 Thanks for the recommendation. Indeed, an extension is possible and as shown in the

added material in the manuscript, it reuses the solvers and methods proposed for the two particular

cases as explained in Section V.B. Here the extract of the manuscript:
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A. Uncommon Means and Uncommon Covariances

So far, only particular cases of the general hypothesis testing problem between two

Gaussian distributions have been discussed. However, in the following, we show that

the general case, i.e., distinct means and covariance matrices, can be solved using the

same heuristics as discussed for the particular cases presented earlier in the previous

sections.

To show that we can reuse the same machinery as in the uncommon covariances case,

first let us consider the KL divergence:

K (H1‖H0) = 1
2

(

tr
(

Σ
−1
0,AΣ̃1,A

)

− M + log det(Σ0,A)

− log det(Σ1,A)

)

.
(43)

In the above expression we have rewritten the quadratic form in terms of a trace

[cf. Table 1], and defined the matrix Σ̃1,A ≔ Σ1,A + (θ1,A − θ0,A)(θ1,A − θ0,A)T

which remains symmetric. From (43) it can be seen that the decomposition proposed

before can directly be used by just replacing Σ1,A by Σ̃1,A in the qsub(·, ·) set function.

Therefore, for this measure there is no distinction between these two cases. In addition,

as the J-divergence is a sum of KL divergences, the decomposition of the J-divergence

follows immediately.

For the Bhattacharyya distance, the quadratic form that appears in the expression for the

general case, i.e., the term related to the distances between the means, needs to be added

to the decomposition given in (40). As this new term is not submodular, the surrogate

function proposed for the uncommon means case can be directly employed to provide

a submodular set function for the decomposition. As a result, the surrogate distance

measure for the Bhattacharyya distance can be given through the decomposition:

Bsub(H1‖H0) ≔ g(A) − h(A); (1)

g(A) =
1

2
log det(ΣA) +

1

8
log det(MA);

h(A) =
1

4
(log det(Σ0,A) + log det(Σ1,A)),

which can be optimized using the approach discussed for the uncommon covariance

case.
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In summary, the greedy heuristic for the most general case of uncommon means

and uncommon covariances can be develop using straightforward adaptations of the

methods presented in Sec.V.A.

Typos:

Introduction: levering → leveraging

Beginning of Section III: use → used

Section IIIA: 0.63%→ 63%

Immediately after (37): the last power in the topelitz matrix is M/2 − 1

R All the typos have been corrected. Thank you for proof reading this manuscript.
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Reviewer: 2

Recommendation: RQ - Review Again After Major Changes

Comments: The paper deals with the very relevant problem of selecting sensors for Gaussian

hypothesis testing with correlated data. Aiming to use greedy methods, the paper focuses on

divergence surrogates for the probability of error. It then provides an additive approximation

guarantee for SNR maximization in the case where the means are different and derives difference

of submodular functions approximations for the divergences when testing signals with different

covariances. Despite minor typos and clarity issues (especially in the technical derivations), the

writing is clear and easy to follow.

Thank you for finding the writing clear and easy to follow.

Major issues

Q: The approximation guarantee for the SNR based on ǫ-submodularity is additive. As noted

in the paper, the guarantee therefore depends on ǫ being small compared to the optimal value.

However, it is not completely clear when Theorem 2 yields good guarantees. The text notes that

it works better for well-conditioned Σ (small κ), i.e., when the data are not too correlated. This

case, however, could be addressed before by from assuming the data are white (the mismatch

in this situation is small). As the measurements become more correlated, the condition number

increases and the guarantee worsens. A quick computation for the covariance (35) used in the

simulations, for example, gives ǫ in the order of thousands, whereas f (Aopt) is most likely on

the order of tens. I would encourage a more extensive discussion of the results and plots with

the value of the bound or the resulting guarantee for different K. As it is, one cannot judge the

usefulness of the derived near-optimal result.

R: Thank you for raising this concern. We would like to emphasize that Theorem 2 has been

modified to further improve the clarity. The provided bound is an informative upper bound on

the ǫ constant. It characterizes the behaviour of the “loss” of submodularity of the set function

in terms of the condition number of the correlation matrix. The introduced bound in Theorem 2

demonstrates why and when performing greedy selection over the SNR function works well.

However, as remarked in the manuscript, ill-conditioned matrices that have an appropriate

structure, e.g., diagonal matrices, can even lead to modular functions. The added text to the

manuscript addressing this comment is the following:

Note that the characterization provided in Theorem 2, in terms of condition number of

the matrix, excludes diagonal matrices. This is due to the fact that even if a diagonal
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matrix is ill-conditioned, the resulting set function is still a modular set function.

Therefore, here we focus on matrices that model well correlated errors.

Therefore, as discussed in the manuscript, we emphasize that performing greedy over the SNR

function is not always a good option. However, the cases that lead to good results are mostly

likely due to the insights provided by our bound.

Q: Algorithm 2 used for the different covariances case has no performance guarantee. Results

in [42] only show that each step improves the performance and that it converges to a local

optimum. However, it gives no approximation certificate. This should be made clear in the text.

R: Thanks for the comment. We have added the following in the text:

In addition, despite the fact that the optimization of the difference of submodular set

functions is inapproximable [42], similar to CCP, the SupSub procedure is guaranteed

to reach a local optimum of the set function when the procedure converges [42]

We added this since convergence only to a local optimum is guaranteed. So indeed we cannot

guarantee near optimality in this case. Therefore, we have also modified the claim and the title

accordingly.

Q: The cost function obtained from (26) appears to display a trade-off between numerical

stability and accuracy. If a ≈ λmin, then S is almost rank deficient and M is very ill-conditioned.

Moreover, S and Σ are no longer similar and the lower diagonal block of M is therefore not

good approximation of the SNR. On the other hand, if β ≈ 0, then S ≈ Σ and the cost function

approximates the SNR well, but 1/a → ∞. Again M is ill-conditioned. These numerical issues

should show up more in larger problems, so it would be important to show numerical results

with larger ground sets (e.g., 1000). Whether this is a serious limitation or not should be noted

in the text.

R: We would like to stress that, for a given Σ, a can be chosen appropriately (i.e, choice of

a is completely controllable, as long as 0 < a < λmin{Σ}). But as the reviewer observes, it is

better to select a not too close to 0 or λmin as this will lead to an ill-conditioned M. In addition,

the following remark has been added in the manuscript:

Remark 1. We stress that for some choices of the parameter a, the matrix MA might

be ill-conditioned. However, as the computation of the cost function is not performed

directly on the matrix MA but through (35), we only required that the recursive
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inversion of the matrix in expression (35) is numerically well-conditioned. This can be

achieved in practice by selecting the value for a far from both 0 and λmin{Σ}, e.g.,

a = 0.5λmin{Σ}. This approach avoids numerical problems that could arise due to the

selection of the value of a.

Q: In (30) and forward, s(A) is not the SNR unless a = 0. It is important to make this clear

in the text and maybe use a different symbol to avoid confusion. Although this is not seriously

detrimental to the contribution of the work, it appears in comments throughout the text.

R: There seems to be a misunderstanding. s(A) is always the SNR, even for a , 0. The

decomposition holds for any value of a which leads to an invertible matrix S. For any such

value for a, (24) and (20) are equivalent. Only the final submodular surrogate will depend on

the selected a.

Minor comments

Q: p.2, l. 50: ”non-monotone separable constraints”. Is this the case in this paper? It doesn’t

look like it, but I may be missing something. I cannot see why this is mentioned here at all.

R: Thanks for your comment. You are right, we don’t make use of this, Therefore, we have

removed this from the manuscript.

Q: The work repeatedly refers to the complexity of greedy as “linear in the size of the input

set”. The number of queries required by greedy is K M . It therefore depends polynomially on

both the ground set and the number of sensors selected. Also, this is the query complexity of

the algorithm. The complexity of each query is also a factor to be considered (which is the

justification given for Section IV-C).

R: Thanks, for this comment. The distinction between “the number of cost function evaluations

scales linearly” and “linear time complexity” has been clarified in the manuscript.

Q: p.3, l. 40, 2nd column: ”the methods presented in this work can be easily extended to

budget functions [...]” I understand this from an algorithmic point of view, but then what happens

to the guarantees? What about complexity? Matroids can be hard to express efficiently.

R: Thanks for this comment. We have added a clarification as

However, by allowing an increase in computational complexity and degradation of

the near-optimality guarantees, the methods presented in this work can be extended

to budget functions, expressed as constraints, representable by other kinds of matroids

[28]

Q: Definition 2: should it be ǫ > 0?
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R: We have changed this in the revised manuscript.

- Theorem 2: β appears to be an artifact of the proof. If so, why not minimize over β for

the final result? Moreover, as it is, the statement and (22) are confusing, since a and C1 depend

on both β and λmin. In fact, C1 is not a universal constant. I suggest writing out the result in a

more direct form.

R: That’s a good observation. The proof and result have been restructured to consider only

universal constants. β is introduced to state that a is a fractional part of λmin.

Q: p.7, l. 25: the (1-1/e) guarantee for stochastic greedy holds ”in expectation” for submodular

functions.

R: You are correct, a note about this has been added in the manuscript.

Q: What is the value of a used in the simulations of Section IV-D?

R: As we were free to select the parameter a, for our simulations we set a = 0.5λmin{Σ}. We

included this in the manuscript.

Q: The example in Section IV-E is very interesting and illustrative. It is also in line with the

result of Theorem 2. Indeed, as ρ → 1, ǫ → ∞ and the performance guarantee for the greedy

search is no longer meaningful. This is indeed a situation where you would expect things to not

work.

R: Thanks for the comment, indeed that’s the case.

Q: Also in Section IV-E, Fig. 3 appears to show that for a small number of sensors, greedy

SNR outperforms (or performs as well as) the submodular surrogate. Placing more than 25%

of the ground set seems unlikely to happen, especially for large-scale problems. It would be

interesting to see a detail of this region in the figure.

R: Indeed, for sparse sensing we will usually be looking at selections with K << M . Here

the figure was meant to show that the submodular method reaches the maximal function value

with less sensors, but yes, for a small number of sensors the selection leads to similar values as

shown in the figure below.
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In the case that the reviewer thinks that this figure has to be added to the final version of the

manuscript, we will do so.

Q: I would suggest rewriting the proof of Theorem 2 to make the goals of each step clearer.

As it is, the presentation is confusing.

R: Thanks for the suggestion. Following this, and some other review comments, the theorem

as well as the proof have been rewritten.

In view of these issues, I recommend a major review of the paper. I believe the paper has

enough novelty and contributions, but they are not completely clear in the current version of the

manuscript. Currently, it is unclear that the paper uses and derives approximate and surrogate

metrics. Moreover, the only clear near-optimal guarantee given in the text is for the submodular

surrogate of the SNR (given the difficulty in judging the ǫ-submodularity guarantee mentioned

above). At this point, it is unclear when the ǫ bound is meaningful

Thanks for your feedback, in the current version of the manuscript we have restructured

Theorem 2 in order to convey in a better way its importance. However, as explained in the

following part, the aim of the work is the introduction of submodularity as an alternative to

convex optimization for sensor selection in detection. In doing so, we also justify the usage of

the greedy heuristic for the SNR, and when it works good. In addition, as we show that we can

jointly evaluate the true SNR and the surrogate function, the ǫ-submodularity guarantee for the

SNR is meant for explaning why in certain instances using the true SNR leads to good results.

and the paper does not derive guarantees for Algorithm 2, which makes it hard to gauge the

novelty of the manuscript. Reframing the paper and contributions (perhaps modifying the title)

could clarify the position of the work. The text would benefit from copy-editing and the clarity
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of some of the technical derivations could be improved.

Thank you. Considering your comment, we modified the title of our paper to:

Submodular Sparse Sensing for Gaussian Detection with Correlated Observations

The manuscript has been modified to lay out this point more clearly and editing the content has

been carried out in order to improve the clarity of the proposed ideas.
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Reviewer: 3

Recommendation: RQ - Review Again After Major Changes

Comments:

The paper proposes greedy methods for finding the most discriminative subset out of a given

set of sensors for the purpose of event detection, under Gaussian distributions. Two cases are

considered with respect to the measurements’ distributions: equal mean values and distinct

covariance matrices and equal covariance matrices and distinct means. In each of the cases,

the paper finds submodular surrogate functions that replace the original error exponent metrics,

Bhattacharya and Kullback Leibler distance, followed by the greedy algorithm that approximately

optimizes the surrogates . The surrogate functions method is rooted in the Schur complement

idea from authors’ previous works on convex relaxation based sparse sensing, and it’s nice to see

that it applies in the context of greedy algorithms as well. However, judging overall, the method

is of limited applicability as it does not lend itself to the realistic scenario when both the mean

values and the covariance matrices differ under the two hypotheses. I would therefore strongly

suggest an extension of the method to this general case. Alternatively, if the extension of the

surrogate machinery proves challenging, it would be nice if we could at least have bounds on the

induced suboptimality resulting from applying – e.g.– method 1 to the general case by ignoring

the differences between close but unequal covariance matrices (and similarly for applying method

2 for distributions with close but unequal means).

Thanks for your comments. Your comment encouraged us to extend our results to the general

case. It turns out that the tools that are applicable for the particular cases discussed in Sections

IV and V can be directly reused for the general case. In the manuscript we have now added

a subsection in which we explain how the general case can be treated by using the same

decompositions proposed for the case of different covariance matrices. For instance, in the case

of the KL divergence we can show that the decomposition does not change as the quadratic term,

(θ1−θ0)Σ−1
1

(θ1−θ0)T , can be rewritten using the trace function, i.e., tr(Σ−1
1

(θ1−θ0)(θ1−θ0)T )

and can be absorbed by the other trace in the divergence expression. In a similar fashion, this can

be done for the other distance measures discussed in this manuscript. Details of this procedure

are included in the revised version
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B. Uncommon Means and Uncommon Covariances

So far, only particular cases of the general hypothesis testing problem between two

Gaussian distributions have been discussed. However, in the following, we show that

the general case, i.e., distinct means and covariance matrices, can be solved using the

same heuristics as discussed for the particular cases presented earlier in the previous

sections.

To show that we can reuse the same machinery as in the uncommon covariances case,

first let us consider the KL divergence:

K (H1‖H0) = 1
2

(

tr
(

Σ
−1
0,AΣ̃1,A

)

− M + log det(Σ0,A)

− log det(Σ1,A)

)

.
(2)

In the above expression we have rewritten the quadratic form in terms of a trace

[cf. Table 1], and defined the matrix Σ̃1,A ≔ Σ1,A + (θ1,A − θ0,A)(θ1,A − θ0,A)T

which remains symmetric. From (43) it can be seen that the decomposition proposed

before can directly be used by just replacing Σ1,A by Σ̃1,A in the qsub(·, ·) set function.

Therefore, for this measure there is no distinction between these two cases. In addition,

as the J-divergence is a sum of KL divergences, the decomposition of the J-divergence

follows immediately.

For the Bhattacharyya distance, the quadratic form that appears in the expression for the

general case, i.e., the term related to the distances between the means, needs to be added

to the decomposition given in (40). As this new term is not submodular, the surrogate

function proposed for the uncommon means case can be directly employed to provide

a submodular set function for the decomposition. As a result, the surrogate distance

measure for the Bhattacharyya distance can be given through the decomposition:

Bsub(H1‖H0) ≔ g(A) − h(A); (3)

g(A) =
1

2
log det(ΣA) +

1

8
log det(MA);

h(A) =
1

4
(log det(Σ0,A) + log det(Σ1,A)),

which can be optimized using the approach discussed for the uncommon covariance

case.
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In summary, the greedy heuristic for the most general case of uncommon means

and uncommon covariances can be develop using straightforward adaptations of the

methods presented in Sec. V.A.

Otherwise, I would recommend condensing the paper and submitting it as a letter (there are

repetitions in the methodology which make potential shortening feasible).

We would like to emphasize that the current manuscript provides the following contributions

• a general framework for selecting sensors for Gaussian detection using the submodular

machinery;

• efficient algorithms (using rank-one-like updates) leveraging submodularity that deliver

comparable results with their convex counterparts, but significantly (orders of magnitude)

faster.

• a technique based on the Schur complement to generate submodular functions from quadratic

expressions, establishing a link with common convex approaches.

• we also address the questions of why and when doing greedy directly on SNR works well,

while arguing that SNR is not always the best cost function to optimize greedily.

Considering all the above contributions combined with the fact that we extended our methods

to the general Gaussian case, we strongly believe that the paper contains novel contributions

and material for a TSP publication. Therefore, we feel that shortening this paper would not be

appropriate.

Another suggestion for revision is to compare the presented method to the one from [16]

based on Stieffel relaxation. In the case of equal means, the method from [16] has a closed

form solution and the complexity comparable with the complexity of the method presented in

the current paper. Therefore, it is instructive to make a numerical comparison between the two

methods.

Similar to the approach in [16], the convex optimization method provides a continuous re-

laxation which can be solved exactly in the reals. However, both [16] and the convex approach

require a projection onto a Boolean space. We opted to make a comparison of the submodular

method with the convex method as its solution can be enforced to be sparse, differently from

the solution obtained through a Stiefel manifold approach. In addition, the assumption made in

[16] where E has to be fixed to meet ET S0E = I is a little restrictive. Furthermore, the process

of passing from the matrix in the Stiefel manifold (relaxation phase) to a Boolean matrix is not
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clear. In contrast, with the convex approach, a sparse Boolean solution can easily be obtained,

thus we compare the proposed methods with the convex optimization based solutions.


