E2 201: Information Theory (2020) Homework 1

Instructor: Himanshu Tyagi

Reading Assignment

• Read chapter 3 of Cover and Thomas book.

Homework Questions Questions marked * are more difficult.

Q1 (Chebyshev inequality)

Use Chebyshev's inequality to give bounds for the number of heads that will be seen when an unbiased coin is tossed 10^8 times.

Q2 (Markov inequality)

Let $X_1, ..., X_n$ be independent and identically distributed random variables with Exponential(1) distribution. Let $Y = \sum_{i=1}^{n} X_i$. Use Markov's inequality to find a lower bound for the least n required for Y to cross 10^6 with probability 2/3.

Q3 * (Birthday paradox)

Consider *n* independent draws $X_1, ..., X_n$ from a uniform distribution on [10000]. Using Chebyshev's inequality, find estimates for the number of distinct pairs (X_i, X_j) that are identical. Use this estimate to find an estimate for the least *n* such that the one such pair exists with probability at least 2/3.

Q4 The total variation distance is defined as

$$d(\mathbf{P}_0, \mathbf{P}_1) = \sup_{A \subset \mathcal{X}} \mathbf{P}_0(A) - \mathbf{P}_1(A).$$

Prove the following equivalent forms of the total variation distance for discrete distributions P_0 and P_1 :

$$d(\mathbf{P}_0, \mathbf{P}_1) = \sup_{A \subset \mathcal{X}} \mathbf{P}_1(A) - \mathbf{P}_0(A)$$

$$= \sup_{A \subset \mathcal{X}} |\mathbf{P}_0(A) - \mathbf{P}_1(A)|$$

$$= \sum_{x \in \mathcal{X}: \mathbf{P}_1(x) \ge \mathbf{P}_0(x)} \mathbf{P}_1(x) - \mathbf{P}_0(x)$$

$$= \sum_{x \in \mathcal{X}: \mathbf{P}_0(x) \ge \mathbf{P}_1(x)} \mathbf{P}_0(x) - \mathbf{P}_1(x)$$

$$= \frac{1}{2} \sum_{x \in \mathcal{X}} |\mathbf{P}_0(x) - \mathbf{P}_1(x)|.$$

Q5 Prove the following properties of the total variation distance:

(i) $0 \le d(\mathbf{P}_0, \mathbf{P}_1) \le 1$.

- (ii) $d(\mathbf{P}_0, \mathbf{P}_1) = 0$ if and only if $\mathbf{P}_0 = \mathbf{P}_1$.
- (iii) $d(\mathbf{P}_0, \mathbf{P}_1) = 1$ if and only if \mathbf{P}_0 and \mathbf{P}_1 have disjoint supports.
- Q6 For the set $\mathcal{T}_{\lambda}^{(1)} = \{x : -\log P(x) \leq \lambda\}$, show that $|\mathcal{T}| \leq 2^{\lambda}$. Provide example of a distribution and a λ for which is bound is tight.
- Q7 Consider the set $\mathcal{T}_{\lambda}^{(2)} = \{x : -\log P(x) > \lambda\}$. For a distribution P on \mathcal{X} , suppose that $P(\mathcal{T}_{\lambda}^{(2)}) \ge 1 \varepsilon$. Show that

$$|\mathcal{T}_{\lambda}^{(2)}| > 2^{\lambda}(1-\varepsilon).$$

Q8 * For a distribution P on \mathcal{X} , define

$$L_{\varepsilon}(P) := \min\{ \lceil \log |A| \rceil : \exists A \subset \mathcal{X} \text{such that} P(A) \ge 1 - \varepsilon \},\$$

$$\overline{L}(P) := \min\{ \mathbb{E}_P \left[|e(X)| \right] : e : \mathcal{X} \to \{0,1\}^* \text{ is one-to-one} \},\$$

where |b| denotes the length of a binary vector $b \in \{0,1\}^*.$ Show that

$$\frac{\overline{L}(P)}{1-\varepsilon} - \frac{\varepsilon \lceil \log \mathcal{X} \rceil}{1-\varepsilon} \le L_{\varepsilon}(P) \le \frac{\overline{L}(P)}{\varepsilon} + 1.$$