E2 201: Information Theory (2020)
 Homework 1

Instructor: Himanshu Tyagi

Reading Assignment

- Read chapter 3 of Cover and Thomas book.

Homework Questions Questions marked * are more difficult.
Q1 (Chebyshev inequality)
Use Chebyshev's inequality to give bounds for the number of heads that will be seen when an unbiased coin is tossed 10^{8} times.

Q2 (Markov inequality)
Let X_{1}, \ldots, X_{n} be independent and identically distributed random variables with Exponential(1) distribution. Let $Y=\sum_{i=1}^{n} X_{i}$. Use Markov's inequality to find a lower bound for the least n required for Y to cross 10^{6} with probability $2 / 3$.

Q3 * (Birthday paradox)
Consider n independent draws X_{1}, \ldots, X_{n} from a uniform distribution on [10000]. Using Chebyshev's inequality, find estimates for the number of distinct pairs $\left(X_{i}, X_{j}\right)$ that are identical. Use this estimate to find an estimate for the least n such that the one such pair exists with probability at least $2 / 3$.

Q4 The total variation distance is defined as

$$
d\left(\mathrm{P}_{0}, \mathrm{P}_{1}\right)=\sup _{A \subset \mathcal{X}} \mathrm{P}_{0}(A)-\mathrm{P}_{1}(A) .
$$

Prove the following equivalent forms of the total variation distance for discrete distributions P_{0} and P_{1} :

$$
\begin{aligned}
d\left(\mathrm{P}_{0}, \mathrm{P}_{1}\right) & =\sup _{A \subset \mathcal{X}} \mathrm{P}_{1}(A)-\mathrm{P}_{0}(A) \\
& =\sup _{A \subset \mathcal{X}}\left|\mathrm{P}_{0}(A)-\mathrm{P}_{1}(A)\right| \\
& =\sum_{x \in \mathcal{X}: \mathrm{P}_{1}(x) \geq \mathrm{P}_{0}(x)} \mathrm{P}_{1}(x)-\mathrm{P}_{0}(x) \\
& =\sum_{x \in \mathcal{X}: \mathrm{P}_{0}(x) \geq \mathrm{P}_{1}(x)} \mathrm{P}_{0}(x)-\mathrm{P}_{1}(x) \\
& =\frac{1}{2} \sum_{x \in \mathcal{X}}\left|\mathrm{P}_{0}(x)-\mathrm{P}_{1}(x)\right| .
\end{aligned}
$$

Q5 Prove the following properties of the total variation distance:
(i) $0 \leq d\left(\mathrm{P}_{0}, \mathrm{P}_{1}\right) \leq 1$.
(ii) $d\left(\mathrm{P}_{0}, \mathrm{P}_{1}\right)=0$ if and only if $\mathrm{P}_{0}=\mathrm{P}_{1}$.
(iii) $d\left(\mathrm{P}_{0}, \mathrm{P}_{1}\right)=1$ if and only if P_{0} and P_{1} have disjoint supports.

Q6 For the set $\mathcal{T}_{\lambda}^{(1)}=\{x:-\log P(x) \leq \lambda\}$, show that $|\mathcal{T}| \leq 2^{\lambda}$. Provide example of a distribution and a λ for which is bound is tight.

Q7 Consider the set $\mathcal{T}_{\lambda}^{(2)}=\{x:-\log P(x)>\lambda\}$. For a distribution P on \mathcal{X}, suppose that $P\left(\mathcal{T}_{\lambda}^{(2)}\right) \geq 1-\varepsilon$. Show that

$$
\left|\mathcal{T}_{\lambda}^{(2)}\right|>2^{\lambda}(1-\varepsilon) .
$$

Q8 * For a distribution P on \mathcal{X}, define

$$
\begin{aligned}
L_{\varepsilon}(P) & :=\min \{\lceil\log |A|\rceil: \exists A \subset \mathcal{X} \text { such that } P(A) \geq 1-\varepsilon\}, \\
\bar{L}(P) & :=\min \left\{\mathbb{E}_{P}[|e(X)|]: e: \mathcal{X} \rightarrow\{0,1\}^{*} \text { is one-to-one }\right\},
\end{aligned}
$$

where $|b|$ denotes the length of a binary vector $b \in\{0,1\}^{*}$. Show that

$$
\frac{\bar{L}(P)}{1-\varepsilon}-\frac{\varepsilon\lceil\log \mathcal{X}\rceil}{1-\varepsilon} \leq L_{\varepsilon}(P) \leq \frac{\bar{L}(P)}{\varepsilon}+1 .
$$

