E2 201: Information Theory (2020) Homework 2

Instructor: Himanshu Tyagi

Reading Assignment

• Read chapter 2 of Cover and Thomas book. From Te Sun Han's book, try to read Lemma 1.3.1 (similar to the theorem on page 9 of Unit 2) and Lemma 2.1.1 (related to theorems in Section C, D of Unit 3)

Homework Questions Questions marked * are more difficult.

Q1 Calculate the entropy of the following rvs:

- (i) X is the output of n independent tosses of a coin which shows heads with probability p;
- (ii) $X \sim \text{Geometric}(p);$
- (iii) Consider a channel $(\mathcal{X}, W, \mathcal{Y})$ with input $\mathcal{X} = \mathbb{R}$ and output $\mathcal{Y} = \mathbb{N}$ such that for every input $x \in \mathcal{X}$, the output Y is distributed as Poisson(x). Calculate the entropy of rv Y which is the output corresponding to a random input X distributed as $\text{exponential}(\lambda)$.
- Q2 For distributions in part (i) and (ii) of Q1, write a computer program to find the following quantity (as a function of ε):

 $\lambda_{\varepsilon} := \min\{\lambda : P(\{x : \left[-\log P(x)\right] \le \lambda\}) \ge 1 - \varepsilon\}.$

Plot $\lambda_{\varepsilon}/H(P)$ as a function of ε for different values of the parameter p of the distributions (you can fix n = 1000 in part (i)).

Q3 Let $L_{\varepsilon}(P)$ be given by

$$L_{\varepsilon}(P) = \min\{\ell \in \mathbb{N} : \log |S| \le \ell, P(S) \ge 1 - \varepsilon, S \subset \mathcal{X}\}.$$

In the class, we showed that

$$L_{\varepsilon}(P) \le H(P)/\varepsilon. \tag{1}$$

Suppose now we are given weights $w_x > 0, x \in \mathcal{X}$. Consider the quantity obtained by replacing |S| by $\sum_{x \in S} w_x$ in the definition of $L_{\varepsilon}(P)$. For this quantity, establish a counterpart of (1).

Q4 Consider the following two procedures for generating random hash $F : \mathcal{X} \to \{0, 1\}^{\ell}$. First, F is chosen uniformly over all functions $f : \mathcal{X} \to \{0, 1\}^{\ell}$. Second, F(x) is generated uniformly over $\{0, 1\}^{\ell}$, independently for all x.

Show that these two processes yield the same distribution of F.

Q5 Consider a distribution P and a set $A \subset \mathcal{X}$ such that

$$\min_{x \in A} -\log P(x) > \lambda.$$

Show that for every N > 1 we can find a partition $A_1, ..., A_M, A_{M+1}$ of A such that

$$N2^{-\lambda} \leq P(A_i) \leq (N+1)2^{-\lambda}, \qquad 1 \leq i \leq M,$$

$$P(A_{M+1}) \leq N2^{-\lambda},$$

and
$$P(A) \cdot \frac{2^{\lambda}}{N+1} - \frac{N}{N+1} \leq M \leq \frac{2^{\lambda}}{N}.$$

Q6 Consider the following distribution P on $\{0, 1\}^{10}$:

- with probability $1/2^{\ell}$, the first ℓ bits of the sequence are 0, and all sequences starting with ℓ 0s appear with equal probability, for $1 \leq \ell \leq 10$;
- all the remaining sequences appear with equal probability.

What is the minimum number of random bits needed to generate a sample from \hat{P} such that $d(\hat{P}, P) \leq 2^{-5}$? Provide a concrete algorithm. You need not formally prove that this algorithm uses the minimum number of bits; a heuristic argument will suffice.

- Q7 Calculate the KL divergence between the following distributions.
 - (i) $P \equiv \mathcal{N}(\mu_1, \sigma^2)$ and $Q \equiv \mathcal{N}(\mu_2, \sigma^2)$;
 - (ii) $P \equiv \text{Poisson}(\lambda_1)$ and $Q \equiv \text{Poisson}(\lambda_2)$;
 - (iii) $P \equiv \texttt{Geometric}(p)$ and $Q \equiv \texttt{Geometric}(q)$.
- $\mathbf{Q8}\,$ * This question concerns total variation distance and KL divergence between two Bernoulli distributions.
 - (i) Calculate the total variation distance between $P \equiv \text{Bernoulli}(p)$ and $Q \equiv \text{Bernoulli}(q)$.
 - (ii)* For P and Q above, show that $D(P||Q) \ge \frac{2}{\ln 2}(p-q)^2$.
- Q9 * Consider the binary hypothesis testing problem where one out of two coins with biases 1/2and $1/2 + \varepsilon$ is chosen randomly and tossed multiple times. Let $n^*(\varepsilon)$ denote the minimum number of tosses needed to find out which coin was chosen with average probability of error less than 1/3. Show that $c/\varepsilon^2 \leq n^*(\varepsilon) \leq C/\varepsilon^2$ for some constants c and C.

Answer the same question when biases are 0 and ε .