
Unit 6: Properties of measures of information - 1

A Measures of information and their conditional variants

The cast of characters for our course is complete. This course will be about the following

quantities:1

1. Shannon Entropy. For a discrete distribution P on X , the entropy H(P ) is given by

H(P ) =
∑
x∈X

p(x) log
1

p(x)
.

We denote H(P ) by H(X) when convenient.

2. Joint and Conditional Entropy. For (X,Y ) with distribution PXY , the joint entropy

of (X,Y ) is given by H(X,Y ) = H(PXY ). The conditional entropy of X given Y ,

denoted H(X|Y ) or H(PXY |PY ), is given by H(X|Y ) = H(X,Y )−H(Y ).

3. Mutual Information. Given a joint distribution PXY , the mutual information between

X and Y is given by I(X ∧ Y ) = H(X) − H(X|Y ). We will use an alternative

definition notation where we represent the mutual information as a function of the

input distribution PX and the channel W = PY |X . Namely, we represent mutual

information I(X ∧ Y ) as I(P ;W ).

1We denote the pmf of distributions P and Q by p and q, respectively. All the logarithms in this course
are to the base 2, and we shall follow the convention 0 log 0 = 0.
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4. Kullback-Leibler divergence. Given discrete distributions P and Q on X , the diver-

gence D(P‖Q) between P and Q is given by

D(P‖Q) =


∑

x∈X p(x) log q(x)
q(x) , supp(P ) ⊂ supp(Q)

∞, supp(P ) ( supp(Q),

where supp(P ) = {x : p(x) > 0}. Note that

H(P ) = log |X | −D(P‖Punif),

where Punif is the uniform distribution on X . Also, I(X ∧ Y ) = D(PXY ‖PX × PY )

where PX × PY denotes the independent distribution with marginals same as PXY .

5. Total variation distance. Given discrete distributions P and Q on X , the total vari-

ation distance d(P,Q) between P and Q is given by

d(P,Q) =
1

2

∑
x∈X
|p(x)− q(x)|.

We have only defined KL divergence and total variation distance for discrete distributions,

but we can extend it to general distributions. For distributions with densities, we can

simply replace p and q with densities f and g of P and Q, respectively, and summation by

integration. In fact, these definitions can be made more general (if someone cares about

it) as follows:

D(P‖Q) = EQ
[
p(X)

q(X)
log

p(X)

q(X)

]
, d(P,Q) =

1

2
EQ
[∣∣∣∣p(X)

q(X)
− 1

∣∣∣∣] .
Thus, both definitions only depend on p(x)/q(x). The more general definitions can be

obtained by replacing the ratios by the “density of P with respect to Q” – this density is

called the Radon-Nikodym derivative and is denoted by dP/dQ. You can look it up in a
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book on probability theory.

In the notions above, we saw conditional entropy. It can alternatively be expressed as

H(X|Y ) = E
[
H(PX|Y )

]
, where the random variable inside expectation is the entropy of

the conditional distribution PX|Y . In fact, we can similarly define conditional versions of

all the quantities above. The conditional mutual information is given by

I(X ∧ Y |Z) = EPZ

[
I(PX|Z ; PX|Y,Z)

]
,

where the expectation is taken over Z. Similarly, we can define conditional divergence

between PY |X and QY |X given PX by

D(PY |X‖QY |X |PX) = EPX

[
D(PY |X‖QY |X)

]
.

Note that we could have used any distribution for taking expectation. We used PX because

it help us to show the so-called “chain rule for divergence.”

B Chain rules

Chain rule for entropy

We saw above that H(X,Y ) = H(X) +H(Y |X). For multiple rvs X1, ..., Xn, we get

H(X1, ..., Xn) = H(X1) +H(X2|X1) + ...+H(Xn|X1, ..., Xn−1) =
∑
i=1

H(Xi|X1, ..., Xi−1).

Note that the conditioning on multiple random variables can be defined by treating the

tupple (x1, ...Xi−1) as a single random variable.
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Chain rule for mutual information

For random variables X1, X2, Y , we have

I(X1, X2 ∧ Y ) = H(X1, X2)−H(X1, X2|Y )

= H(X1) +H(X2|X1)−H(X1|Y )−H(X1|Y,X2)

= H(X1)−H(X1|Y ) +H(X2|X1)−H(X1|Y,X2)

= I(X1 ∧ Y ) + I(X2 ∧ Y |X1).

We can easily extend this proof to more than two random variables to get

I(X1, ..., Xn ∧ Y ) =
n∑
i=1

I(Xi ∧ Y |X1, ..., Xi−1).

Chain rule for KL divergence

Consider two distributions PXY and QXY on X ×Y. Then, assuming suppPXY ⊂ suppQXY,

we have

D(PXY ‖QXY ) = EPXY

[
log

p(X,Y )

q(X,Y )

]
= EPXY

[
log

p(X)

q(X)
+ log

p(Y |X)

q(Y |X)

]
= EPXY

[
log

p(X)

q(X)

]
+ EPXY

[
log

p(Y |X)

q(Y |X)

]
= EPX

[
log

p(X)

q(X)

]
+ EPXY

[
log

p(Y |X)

q(Y |X)

]
= D(PX‖QX) + EPX

[
D(PY |X‖QY |X)

]
= D(PX‖QX) +D(PY |X‖QY |X |PX).
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Note that we have used a property of iterated expectation, which is a useful one to remem-

ber:

E [Z] = E [E [Z|X]] .

This chain rule can be extended to more than two random variables to get

D(PX1...Xn‖QX1...Xn) =
n∑
i=1

D(PXi|Xi−1‖QXi|Xi−1 |PXi−1),

where we have used the shorthand Xi−1 = (X1, ..., Xi−1)

C Shape of information measure functions

C.1 Nonnegativity

We shall show that all the information measures considered above are nonnegative. Of

course, all came out as an answer to a coding theorem, which can only be nonnegative.

However, we now seek direct proofs of these facts.

The following simple inequality will be used.

Lemma 1 (log-sum inequality). For nonnegative numbers {ai, bi}i=1n,

n∑
i=1

ai log
ai
bi
≥

n∑
i=1

ai log

∑n
i=1 ai∑n
i=1 bi

,

with equality iff ai/
∑

j aj = bi/
∑

j bj for all i.

Proof. The inequality is trivial if all ai are 0, or if there exists an i such that bi = 0 but

ai 6= 0. Otherwise, by rearranging the term, it suffices to show that

n∑
i=1

ai log
ai/
∑n

j=1 aj

bi/
∑n

j=1 bj
≥ 0,
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which holds if and only if
n∑
i=1

a′i log
a′i
b′i
≥ 0,

where a′i = ai/
∑n

j=1 ai and b′i = bi/
∑n

j=1 bi. Note that the previous inequality is simply

our original inequality for the case when
∑n

i=1 ai =
∑n

i=1 bi = 1. Thus, without loss

of generality we can assume that ai and bi constitute a pmf. Then, since lnx ≤ x − 1,

log x ≤ (x− 1) log e, applying this inequality for x = ai/bi we get

n∑
i=1

ai log
bi
ai
≤ log e

n∑
i=1

ai

(
bi
ai
− 1

)
= 0,

which establishes the inequality.

Equality can hold only if equality holds for every instance of lnx ≤ x − 1 used in

the proof, which happens only if x = 1. Thus, equality holds only if ai = bi for every

i ∈ [n].

In fact, this inequality is a speacial case of the so-called Jensen’s inequality, which is

a very powerful basic tool of applications beyond information theory. To state Jensen’s

inequality, we need to define a convex function. Roughly, speaking a convex function is a

function which looks like a cup. Mathematically, a cup is an object where each chord lies

above the curve. Formally,

Definition 2 (Convex and concave functions). A function f : Rn → R is convex if for

every x, y ∈ Rn and θ ∈ [0, 1],

θf(x) + (1− θ)f(y) ≥ f(θx+ (1− θ)y).

A function f : Rn → R is concave (shaped like a cap) if −f is convex, or equivalently,

θf(x) + (1− θ)f(y) ≤ f(θx+ (1− θ)y),
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for all x, y ∈ Rn and θ ∈ [0, 1].

Note the following interesting interpretation of the inequality characterizing convex

functions: f is convex if and only if for every Rn-valued binary rv X,

f(E [X]) ≤ E [f(X)] .

In fact, the same inequality must hold for every distribution (not necessarily only binary).

Lemma 3 (Jensen’s inequality). Let f : Rn → R be a convex function and X be a rv

taking values in Rn. Then,

f(E [X]) ≤ E [f(X)] .

(The opposite inequality holds for concave functions.)

We omit the technical proof of this very believable fact.

Lemma 4. The following hold for discrete distributions and random variables:

1. D(P‖Q) ≥ 0 with equality iff P = Q.

2. I(X ∧ Y ) ≥ 0 with equality iff X and Y are independent.

3. H(X) ≥ 0 with equality iff X is a constant.

Proof. The first inequality is the same as the log-sum inequality; the second one follows

from the first by noting that I(X ∧ Y ) = D(PXY ‖PXPY ); and the third one follows from

the second since H(X) = I(X ∧ Y ). Note that X is independent of X iff X is a constant

random variable.

C.2 Boundedness

Uniform distribution maximizes entropy

Lemma 5. For a distribution P on X , H(P ) ≤ log |X | with equality if and only if P =

unif(X ).
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The proof follows from the nonnegativity of KL divergence since D(P‖unif(X )) =

log |X | −H(P ).

Geometric distribution maximizes entropy

Lemma 6. Consider a distribution P on N with EP [X] = α. Then,

H(P ) ≤ log(α− 1) + α log
α

α− 1

with equality if and only if P is the geometric distribution.

Proof. Let Q be the geometric distribution with expected value α. That is, Q(i) = (1 −

p)pi−1, i ∈ [n], with p = (α− 1)/α. Thus,

D(P‖Q) =

∞∑
i=1

P (i) log
1

Q(i)
−H(P )

=

∞∑
i=1

P (i) log
1

(1− p)pi−1
−H(P )

= log
p

1− p
+ log

1

p

∞∑
i=1

iP (i)−H(P )

= log(α− 1) + α log
α

α− 1
−H(P ).

The claimed bound follows from nonnegativity of KL divergence.

C.3 Convexity/concavity

KL Divergence is Convex and Entropy is Concave

Lemma 7. D(P‖Q) is convex in the pair (P,Q).

Proof. Consider pairs (P1, Q1) and (P2, Q2). Consider θ ∈ [0, 1] and the pair (Pθ, Qθ) with
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Pθ = θP1 + (1− θ)P2 and Qθ = θQ1 + (1− θ)Q2. Then,

D(Pθ‖Qθ) =
∑
x

Pθ(x) log
Pθ(x)

Qθ(x)

=
∑
x

θP1(x) + (1− θ)P2(x) log
θP1(x) + (1− θ)P2(x)

θQ1(x) + (1− θ)Q2(x)

≤
∑
x

θP1(x) log
θP1(x)

θQ1(x)
+ (1− θ)P2(x) log

(1− θ)P2(x)

(1− θ)Q2(x)

= θD(P1‖Q1) + (1− θ)D(P2‖Q2),

where the inequality is by the log-sum inequality.

As a corollary, we get that for any fixed Q the function D(P‖Q) is convex in P . Further,

upon noting that D(P‖unif(X )) = log |X | −H(P ), we get that H(P ) is concave in P .

Corollary 8. H(P ) is a concave function of P .

But we have seen this property already. We saw that I(X ∧ Y ) ≥ 0, which is the same

as

H(Y ) ≥ H(Y |X), (Conditioning reduces entropy)

namely, H(PY ) ≥ E
[
H(PY |X)

]
. Note that PY = E

[
PY |X

]
. So, the fact that “conditioning

reduces entropy” is the same as

H(E
[
PY |X

]
) ≥ E

[
H(PY |X)

]
. (concavity of entropy)

Mutual Information is Concave and Convex!

Lemma 9. The mutual information function I(P ;W ) is concave in P for every fixed W .

Proof. We will use the following simple properties of concave and linear functions (showing

them will be assigned as a HW problem):

• Linear functions are convex and concave.
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• Sum of concave functions is concave.

• Concave function of linear function is concave, i.e., the composition of concave func-

tion and linear function is concave.

Recall that I(P ;W ) = H(W ◦P )−H(W |P ). The function H(W |P ) is a linear function of

P , and therefore also a concave function. Further, since W ◦P is a linear function of P and

H(·) is a concave function, H(W ◦ P ) is a concave function of P . Thus, by the properties

seen earlier, I(P ;W ) is a concave function of P .

Lemma 10. The mutual information function I(P ;W ) is convex in W for every fixed P .

Proof. Consider W1 and W2 and a θ ∈ [0, 1]. Then,

I(P ; θW1 + (1− θ)W2)

=
∑
x

P (x)
∑
y

θW1(y|x) + (1− θ)W2(y|x) log
θW1(y|x) + (1− θ)W2(y|x)

θ(W1 ◦ P )(y) + (1− θ)(W2 ◦ P )(y)

≤
∑
x

P (x)
∑
y

θW1(y|x) log
θW1(y|x)

θ(W1 ◦ P )(y)

+
∑
x

P (x)
∑
y

(1− θ)W2(y|x) log
(1− θ)W2(y|x)

(1− θ)(W2 ◦ P )(y)

= θI(P ;W1) + (1− θ)I(P ;W2),

where the inequality holds by the log-sum inequality.

D Data Processing Inequality

Earlier we mentioned that it natural to expect any reasonable measure of distance to satisfy

the data processing inequality. By triangular inequality, total variation distance satisfies

the data processing inequality. Also, we mentioned that KL Divergence satisfies the data

processing inequality. We now show this result.
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Lemma 11. For a fixed channel W and two distributions P and Q on the input of the

channel, we have

D(W ◦ P‖W ◦Q) ≤ D(P‖Q).

Proof. We have

D(W ◦ P‖W ◦Q) =
∑
y

(W ◦ P )(y) log
(W ◦ P )(y)

(W ◦Q)(y)

=
∑
y

∑
x

P (x)W (y|x) log

∑
x P (x)W (y|x)∑
xQ(x)W (y|x)

≤
∑
y

∑
x

P (x)W (y|x) log
P (x)W (y|x)

Q(x)W (y|x)

=
∑
x

P (x)
∑
y

W (y|x) log
P (x)

Q(x)

= D(P‖Q),

where the inequality above is by the log-sum inequality.

A careful reader may have noticed that the only inequality we have used so far is the

log-sum inequality, which itself is equivalent to the nonnegativity of the KL divergence.

Thus, all the inequalities in this section are by the nonnegativity of KL divergence.

Next, we present a data processing inequality for mutual information which is obtained

as a consequence of the more general form above. To present this inequality, we need to

introduce the notion of a Markov chain.

Definition 12. Random variables X,Y, Z form a Markov chain if X and Z are independent

when conditioned on Y , i.e., when I(X ∧Z|Y ) = 0 or, equivalently, PXY Z = PX|Y PZ|Y PY .

This definition extends naturally to multiple random variables: X1, ..., Xn form a Markov

chain if (X1, ..., Xi−1), Xi, (Xi+1, ..., Xn) form a Markov chain for every 1 ≤ i ≤ n. We use

the notation X1 −◦−X2 −◦− ...−◦−Xn to indicate that X1, ..., Xn form a Markov chain.

A specific example is when Z = f(Y ) for some function f . In this case, for every X
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we have X −◦− Y −◦− Z. Heuristically, if X −◦− Y −◦− Z holds, then X can contain no more

information about Z than Y . The following result establishes this bound.

Lemma 13. If X−◦−Y −◦−Z, then I(X∧Z) ≤ I(X∧Y ). Equivalently, H(X|Y ) ≤ H(X|Z).

Proof. Instead of taking recourse to the data processing inequality for KL divergence, we

present an alternative (perhaps more popular) proof. We have

I(X ∧ Z) ≤ I(X ∧ Y,Z) = I(X ∧ Y ) + I(X ∧ Z|Y ) = I(X ∧ Y ),

where the first inequality is easy to see and you will be asked to show it in a HW problem,

and the final indentity holds since X −◦− Y −◦− Z.
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