
Unit 7: Properties of measures of information - 2

A Fano’s inequality

We now prove Fano’s inequality – a major and flexible tool that comes out of information

theory. In fact, the proof we present uses nothing more than the data processing inequality.

Theorem 1 (Fano’s inequality- version 1). Consider random variables X and Y where X

is distributed uniformly over {1, ...,M}. Then, for every function g : X → Y, we have

P (X 6= g(Y )) ≥ 1− I(X ∧ Y ) + 1

logM
.

Proof. If X and Y were independent, any function g cannot have a probability of error less

than 1− 1/M . Indeed, for independent X and Y , we have

P (X = g(Y )) =
∑
y

PY (y) PX (g(y)) =
1

M

∑
y

PY (y) =
1

M
,

where we used the fact that X is uniform.

The main idea behind our proof is the following: For any distribution PXY , the differ-

ence between the performance of g under PXY and PX×PY , the independent distribution,

is bounded by the “distance” between these distributions. We formalize this using the data

processing inequality.

Formally, consider the channel W : X × Y → {0, 1} given by W (1|x, y) = 1{x=g(y)}.
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Then, by the data processing inequality we get

D(W ◦ PXY ‖W ◦ PXPY ) ≤ D(PXY ‖PXPY ) = I(X ∧ Y ).

Further, denoting p = PXY (X = g(Y )) and q = PXPY (X = g(Y )), we get

D(W ◦ PXY ‖W ◦ PXPY ) = p log
1

q
+ (1− p) log

1

1− q
− h(p)

= p log
M

+
(1− p) log

M

M − 1
− h(p)

≥ p logM − h(p)

≥ p logM − 1.

Upon combining the two bounds above, we obtain

PXY (X = g(Y )) = p ≤ I(X ∧ Y ) + 1

logM
,

which completes the proof.

Next, we present an alternative proof which is more standard. This proof works for

any distribution on X, but yields a slightly different form. While we stated the previous

version for functions g of Y , it can be extended to randomized functions. Note that if X̂

is output of a randomized function of Y , we must have X −◦− Y −◦− X̂.

Theorem 2 (Fano’s inequality- version 2). Consider random variables X and Y . Then,

for every X̂ −◦−X −◦− Y where X̂ takes values in X , we have

H(X|Y ) ≤ P
(
X 6= X̂

)
log(|X | − 1) + h(P

(
X 6= X̂

)
),

where h(p) = p log 1/p+ (1− p) log 1/(1− p) is the binary entropy function.

Proof. Denote by E the random variable 1{X = X̂}. (This is the same as the random
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output of the channel W in the previous proof of Fano’s inequality). Then,

H(X|X̂) ≤ H(X,E|X̂) = H(E|X̂) +H(X|X̂, E).

Further, since H(X|X̂, E = 1) = 0 and X can take at most |X | − 1 values conditioned on

the event E = 0 and X̂, we have

H(X|X̂, E) = P (E = 0)H(X|X̂, E = 0) + P (E = 1)H(X|X̂, E = 1)

= P (E = 0)H(X|X̂, E = 0)

≤ P (E = 0) log(|X | − 1).

Upon combining the bounds above, we obtain

H(X|X̂) ≤ H(E|X̂) + P (E = 0) log(|X | − 1) ≤ h(P (E = 0)) + P (E = 0) log(|X | − 1).

This is almost the bound we wanted, except that the left-side still depends on X̂. Finally,

we take recourse to the data processing inequality for conditional entropy to get H(X|Y ) ≤

H(X|X̂), which completes the proof.

B Variational formulae

Loosely speaking, a variational formula expresses a quantity as a minimum/maximum.

Such a formula has many applications. For us, it is simply a collection of tight upper/lower

bounds.
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B.1 Variational formula for KL divergence

Lemma 3. For distributions P and Q on a finite set X such that supp(P ) ⊂ supp(Q), we

have

D(P‖Q) = max
R

∑
x

P (x) log
R(x)

Q(x)
,

where the max is over all R such that supp(P ) ⊂ supp(R). The max is attained by R = P .

Proof. We have

D(P‖Q) =
∑
x

P (x) log
P (x)

Q(x)

=
∑
x

P (x) log
R(x)

Q(x)
+D(P‖R)

≥
∑
x

P (x) log
R(x)

Q(x)
,

with equality iff P = R.

The following alternative form is perhaps more familiar.

Lemma 4. For distributions P and Q on a finite set X such that supp(P ) ⊂ supp(Q), we

have

D(P‖Q) = max
f

EP [f(X)]− logEQ
[
2f(X)

]
,

where the maximum is over all functions f : X → R and is attained by f(x) = logP (x)/Q(x).

Proof. We start by substituting R(x) = Q(x)2f(x)/EQ
[
2f(X)

]
in the variational formula

above to get

D(P‖Q) ≥
∑
x

P (x) log
Q(x)2f(x)

Q(x)EQ
[
2f(X)

]
= EP [f(X)]− logEQ

[
2f(X)

]
.
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The bound above holds for every f . Furthermore, for f(x) = logP (x)/Q(x), identity holds

in the bound above.

Note that if logP (x)/Q(x) belongs to a family F , the maximum in the formula can be

restricted to f ∈ F . This idea has been used to model divergence for machine learning

applications where F is chosen as a family where the maximization of the right-side can

be computed efficiently by algorithms.

B.2 Variational formula for mutual information

Lemma 5. For a discrete distribution P on X and a channel W : X → Y,

I(P ;W ) = min
Q

∑
x

P (x)D(Wx‖Q),

where the min is over all distributions Q on Y and the minimum is attained for Q(y) =

(W ◦ P )(y).

Proof. We have

I(P ;W ) =
∑
x

P (x)
∑
y

W (y|x) log
W (y|x)

(W ◦ P )(y)

=
∑
x

P (x)
∑
y

W (y|x) log
W (y|x)

Q(y)
+
∑
x

P (x)
∑
y

W (y|x) log
Q(y)

(W ◦ P )(y)

=
∑
x

P (x)D(Wx‖Q) +
∑
y

(W ◦ P )(y) log
Q(y)

(W ◦ P )(y)

≤
∑
x

P (x)D(Wx‖Q),

where the inequality holds by nonnegativity of KL divergence and equality is attained for

Q = (W ◦ P ).

This formula gives a pleasing, geometric interpretation of mutual information. We will

use this in the next section to provide an alternative, information radius interpretation of
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the channel capacity (we will define both quantities in the next section).

C Applications of variational formulae

C.1 Pinsker’s inequality

We obtain Pinsker’s inequality as a consequence of the variational formula for KL diver-

gence. In the HW, an alternative proof will be outlined that uses the data processing

inequality. Recall the variational formula

D(P‖Q) = max
f

EP [f(X)]− logEQ
[
2f(X)

]
.

Consider the set A such that d(P,Q) = P (A)−Q(A), and let fλ(x) = λ(1{x∈A} −Q(A)).

Then, it is easy to see that EP [fλ(X)] = λd(P,Q) and EQ [fλ(X)] = 0. Using this specific

choice of f = fλ, we get

D(P‖Q) ≥ λd(P,Q)− logEQ
[
2λfλ(X)

]
.

To proceed, we make use of a very useful bound called Hoeffding’s lemma. It says that the

log-moment generating function for bounded functions is quadratic, namely it behaves like

that of Gaussian random variables1. We state this result below and will use it without a

proof.

Lemma 6 (Hoeffding’s lemma). For a random variable X such that E [X] = 0 and taking

values in the interval [a, b], we have

lnE
[
eλX

]
≤ (b− a)2λ2

8
.

Note that our random variable 1{x∈A} −Q(A) is zero-mean under Q and takes values

1Recall that the log-moment generating function of a random variable X is given by φ(λ) = lnE
[
eλX

]
,

and for X ∼ N (0, σ2), φ(λ) = σ2λ2/2.
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values between −Q(A) and 1−Q(A). Thus, by Hoeffding’s lemma,

logE
[
2fλ(X)

]
=

1

ln 2
lnE

[
eln 2fλ(X)

]
≤ ln 2 (1− 2Q(A))2λ2

8
≤ ln 2λ2

8
,

Upon combining the two bounds above, we obtain

D(P‖Q) ≥ λd(P,Q)− ln 2λ2

8
,

which on maximizing the right-side over λ gives

D(P‖Q) ≥ 2

ln 2
d(P,Q)2,

which is Pinsker’s inequality.

C.2 Channel capacity and information radius

The capacity of a channel W will be defined operationally later in the course as the maxi-

mum number of bits that can be transmitted error-free per channel use. In this section, we

will be interested in the formula that characterizes channel capacity, which, with an abuse

of terminology, also will be termed channel capacity. Specifically, the capacity C(W ) of a

channel W is given by

C(W ) = max
P

I(P ;W ),

that is, the maximum mutual information between the input and the output of the channel.

Using the variational formula for mutual information we saw earlier, we obtain:

C(W ) = max
P

I(P ;W )

= max
P

min
Q

∑
x

P (x)D(Wx‖Q).
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We now take recourse to a theorem from the theory of convex functions: Sion’s minmax

theorem. The expression on the right-side above is of the form maxu minv f(u, v). In

general, maxu minv f(u, v) ≤ minv maxu f(u, v) (show this). But in special cases, equality

holds. Sion’s minmax theorem states, roughly, that equality holds if f(u, v) is concave and

continuous in u and convex in v. Our function
∑

x P (x)D(Wx‖Q) is, in fact, continuous

and linear in P , whereby it is concave in P , and convex in Q. Thus, by Sion’s minmax

theorem2,

max
P

min
Q

∑
x

P (x)D(Wx‖Q) = min
Q

max
P

∑
x

P (x)D(Wx‖Q).

Note that maxP
∑

x P (x)D(Wx‖Q) = maxxD(Wx‖Q), whereby

C(W ) = min
Q

max
x

D(Wx‖Q).

The expression on the right-side is called the information radius of W , and rightly so, since

it is the minimum of the maximum “distance” of Wxs from a fixed point Q in the set of

distributions on Y. Note that in Fano’s inequality version 1, we can upper bound channel

capacity to get

P ∗e ≥ 1− maxxD(Wx‖Q) + 1

logM
,

for every distribution Q on Y. This is a very useful bound in practice where we can freely

choose a distribution Q of our choice (and not only the ones that can appear on the output

of the channel for some input distributions). In particular, it gives

P ∗e ≥ 1−
maxx,x′ D(Wx‖Wx′) + 1

logM
,

which, too, is used often.

2We gave a rather informal argument. The actual conditions and their verification will require some more
terminology from analysis. Please read the wikipedia entry for Sion’s minmax theorem and the original
paper cited there.
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D Continuity of entropy

In this final section of this technical unit, we present a bound that related H(P )−H(Q) to

d(P,Q). To show that entropy is a continuous function of P , we need to show that H(P )

approaches H(Q) when P approaches Q. But before we show this, we need to agree in

what sense is P approaching Q. We consider these limits in the total variation distance,

namely d(P,Q) goes to 0. In fact, we will now only show that |H(P )−H(Q)| approaches

0 as d(P,Q) approaches 0, but show that |H(P )−H(Q)| is almost bounded by a constant

(depending on X ) times d(P,Q).

To prove this result, we will make use of another beautiful result from probability

theory: the maximum coupling lemma. There are other elementary proofs available, but

we would like to use this excuse to introduce the maximum coupling lemma.

Consider a joint distribution PXY for X and Y taking values in the same set X . Suppose

that PX = P and PY = Q. Then, for any x,

P (x) = P (X = x, Y 6= X)+P (X = x, Y = X) ≤ P (X = x, Y 6= X)+P (Y = x) = P (X = x, Y 6= X)+Q(x).

Thus, for every x we have

P (x)−Q(x) ≤ P (X = x, Y 6= X) .

Summing over x such that P (x) > Q(x), we get

d(P,Q) ≤
∑

x:P (x)>Q(x)

P (X = x, Y 6= X) ≤ P (Y 6= X) .

This bound holds for any joint distribution PXY with marginals of X and Y fixed to P and

Q, respectively. In fact, this bound is tight: there exists a joint distribution with marginals

P and Q for which equality holds in this bound. A joint distribution with marginals P

and Q is called a coupling of P and Q. We denote by π(P,Q) the set of all couplings of P
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and Q

Lemma 7 (Maximum coupling lemma). For distributions P and Q on X , we have

d(P,Q) = max
PXY ∈π(P,Q)

P (X 6= Y ) .

We have shown one side of the proof; we skip the other side. Instead, we show how this

maximum coupling lemma can be used to establish a bound for |H(P )−H(Q)|.

Consider a coupling PXY of P and Q (PX = P and PY = Q). Then, H(X) = H(P )

and H(Y ) = H(Q), whereby

|H(P )−H(Q)| = |H(X)−H(Y )| = |H(X|Y )−H(Y |X)| ≤ max{H(X|Y ), H(Y |X)}.

By Fano’s inequality, we have

max{H(X|Y ), H(Y |X)} ≤ P (X 6= Y ) log(|X | − 1) + h(P (X 6= Y )).

The bound above holds for every coupling. Therefore, choosing the coupling that attains

the lower bound of d(P,Q) in maximal coupling lemma (a maximal coupling), we get

max{H(X|Y ), H(Y |X)} ≤ d(P,Q) log(|X | − 1) + h(d(P,Q)).

Upon combining all the bounds above, we obtain the following result.

Lemma 8. For P and Q on X , we have

|H(P )−H(Q)| ≤ d(P,Q) log(|X | − 1) + h(min{d(P,Q), 1/2}),

where h(·) denotes the binary entropy function.
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