(1) Properties of total variation distance

Consider two distributions P and Q on \mathcal{X}. Show the following properties of $d(P, Q)=\sup _{A} P(A)-Q(A)$.
(a) $d(P, Q)=d(Q, P)$.
(b) $d(P, Q)=\sup \left\{\frac{1}{2} \sum_{i=1}^{k}\left|P\left(A_{i}\right)-Q\left(A_{i}\right)\right|:\left\{A_{1}, \ldots, A_{k}\right\}\right.$ is a partition of $\left.\mathcal{X}\right\}$.
(c) If P and Q have densities f and g w.r.t. μ,

$$
d(P, Q)=\frac{1}{2} \int|f(x)-g(x)| \mu(d x)
$$

and

$$
d(P, Q)=P(\{x: f(x) \geq g(x)\})-Q(\{x: f(x) \geq g(x)\})
$$

(2) Bounds among distances and divergences

Consider two distributions P and Q such that $P \ll Q$. Denote by f the RaydonNikodym derivative of P w.r.t. Q (you can think of the discrete case where $f(x)=P(x) / Q(x))$.

The chi-squared divergence $\chi^{2}(P, Q)$ between P and Q is given by

$$
\chi^{2}(P, Q)=\mathbb{E}_{Q}\left\{(f(X)-1)^{2}\right\} .
$$

The squared Hellinger distance $\mathcal{H}(P, Q)$ between P and Q is given by

$$
\mathcal{H}(P, Q)=\frac{1}{2} \mathbb{E}_{Q}\left\{(\sqrt{f(X)}-1)^{2}\right\} .
$$

Establish the following bounds relating these distances to the total variation distance and the KL divergence
(a) $D(P \| Q) \leq \chi^{2}(P, Q)$.
(b) $\mathcal{H}^{2}(P, Q) \leq d(P, Q)^{2} \leq \mathcal{H}(P, Q)(2-\mathcal{H}(P, Q))$.
(3) Pinsker's inequality

Show that for $p, q \in[0,1]$

$$
|p-q|^{2} \leq c \cdot\left(p \ln \frac{p}{q}+(1-p) \ln \frac{1-p}{1-q}\right)
$$

if and only if $c \geq 1 / 2$.
(4) Estimating k-ary distribution

Let \mathcal{P}_{k} denote the $(k-1)$-dimensional probability simplex. Consider the problem of estimating $P \in \mathcal{P}_{k}$ by observing n independent samples from P. Denote by \mathcal{F} the family of estimators $\hat{P}: \mathbf{x}^{n} \mapsto \hat{P}_{\mathbf{x}^{n}} \in \mathcal{P}_{k}$. Define the minimax risk $R(k, n)$ as

$$
R(k, n)=\min _{\hat{P} \in \mathcal{F}} \max _{P \in \mathcal{P}_{k}} \mathbb{E}_{P}\left\{d\left(P, \hat{P}_{X^{n}}\right)\right\}
$$

Find upper and lower bounds for $R(k, n)$.
(5) Bias of Estimators

For $P \in \mathcal{P}_{k}$, let X_{1}, \ldots, X_{n} denote n independent samples from P.
(a) (Estimating moments of a distribution) For $l \in \mathbb{N}, l \geq n$, find an unbiased estimator of $\sum_{i=1}^{k} P(i)^{l}$ from n independent samples from P, namely e : $[k]^{n} \rightarrow \mathbb{R}_{+}$such that $\mathbb{E}_{P}\left\{e\left(X^{n}\right)\right\}=\sum_{i=1}^{k} P(i)^{l}$.
(b) (Missing mass estimation) Denote by N_{x} the number of times a symbol x appears in X^{n}. Find an estimator e for the probability of missing mass $M_{n}=\sum_{x: N_{x}=0} P(x)$ such that

$$
\mathbb{E}_{P}\left\{M_{n-1}\right\} \leq \mathbb{E}_{P}\left\{e\left(X^{n}\right)\right\} .
$$

(c) (Linear estimators) Denote by n_{l} the number of symbols that appear l times, $0 \leq l \leq n$. A linear estimator of a parameter has the form $\sum_{l} a_{l} n_{l}$. For a given function $f:[0,1] \rightarrow[0,1]$, consider the estimation of $F(P)=\sum_{i=1}^{n} f(P(i))$. Find the bias of a linear estimator for $F(P)$.
(6) Sheffé estimators

Consider the following modification of the standard parametric estimation problem: Given a parametric family $\mathcal{P}=\left\{P_{\theta}, \theta \in \Theta\right\}$, we seek to estimate P_{θ} by observing n independent samples X_{1}, \ldots, X_{n} from it. For a minimax-risk formulation with $d\left(P_{\theta}, P_{\hat{\theta}}\right)$ as the loss function, use Scheffé selectors to give estimators for the following problems and analyse their performances:
(a) $\Theta=[0,1], P_{\theta}=\operatorname{Ber}(\theta), \theta \in \Theta$.
(b) $\Theta=\mathbb{R}_{+}, P_{\lambda}=\operatorname{Poi}(\lambda), \lambda \in \Theta$.

