(1) Coins with multiplicatively separated biases

Establish the sample complexity of distinguishing a coin with bias p from a coin with bias $(1-\varepsilon) p$.
(2) Three birthdays

How many samples from a uniform distribution over $[k]$ are needed to get three identical samples with a constant probability?
(3) χ^{2}-distance of product distributions

The χ^{2}-distance between two distributions P and Q on \mathcal{X} is given by

$$
\chi^{2}(P, Q)=\sum_{x} \frac{(P(x)-Q(x))^{2}}{P(x)}
$$

Show that for $P^{n}=P_{1} \times \ldots \times P_{n}$ and $Q^{n}=Q_{1} \times \ldots \times Q_{n}$,

$$
\chi^{2}\left(P^{n}, Q^{n}\right)=\prod_{i=1}^{n}\left(1+\chi^{2}\left(P_{i}, Q_{i}\right)\right)-1 .
$$

(4) Probability assignment for k-ary alphabet Show that

$$
\bar{r}(k, n)=r(k, n)=\frac{k-1}{2} \log n+O_{k}(1) .
$$

We showed this result for $k=2$ in class. Almost the same proof goes through.
(5) Multiplicative Weight Update

Consider the prediction problem discussed in the class with k experts and time horizon n. Let L_{1}, \ldots, L_{n} denote the sequence of losses incurred by the multiplicative weight update algorithm. Show that $n=O\left(\frac{k}{\varepsilon^{2}} \sqrt{\log \frac{1}{\delta}}\right)$ attempts suffice to get

$$
\mathbb{P}\left(\frac{1}{n} \sum_{t=1}^{n} L_{t}-\min _{i \in[k]} \frac{1}{n} \sum_{t=1}^{n} l_{i}(t)>\varepsilon\right) \leq \delta .
$$

for some constant $c>0$.
(6) Multiarmed Bandit with Noisy Observations

Consider the modified version of the coin-toss multiarmed bandit problem discussed in the class where you observe the output of your chosen coin flipped with probability δ. Analyse the EXP3 algorithm for this case and provide a minimax regret bound as a function of the number of coins k, the time-horizon n, and flip-over probability δ.

