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Abstract—It was shown recently that estimating the Shan-
non entropy H(p) of a discrete k-symbol distribution p
requires Q(k/ log k) samples, a number that grows near-
linearly in the support size. In many applications H(p) can
be replaced by the more general Rényi entropy of order
a, Ha(p). We determine the number of samples needed to
estimate Ha(p) for all a, showing that a < 1 requires a super-
linear, roughly k1/a samples, noninteger a > 1 requires a
near-linear k samples, but, perhaps surprisingly, integer a > 1
requires only Q(k1�1/a) samples. Furthermore, developing
on a recently established connection between polynomial
approximation and estimation of additive functions of the
form Âx f (px), we reduce the sample complexity for nonin-
teger values of a by a factor of log k compared to the empirical
estimator. The estimators achieving these bounds are simple
and run in time linear in the number of samples. Our lower
bounds provide explicit constructions of distributions with
different Rényi entropies that are hard to distinguish.

I. INTRODUCTION

A. Shannon and Rényi entropies
One of the most commonly used measure of random-

ness of a distribution p over a discrete set X is its
Shannon entropy

H(p) def
= Â

x2X
px log

1
px

.

The estimation of Shannon entropy has several ap-
plications, including measuring genetic diversity [37],
quantifying neural activity [32], [29], network anomaly
detection [20], and others. It was recently shown that
estimating the Shannon entropy of a discrete distribution
p over k elements to a given additive accuracy re-
quires Q(k/ log k) independent samples from p [33], [41];
see [16], [43] for subsequent extensions. This number of
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samples grows near-linearly with the alphabet size and is
only a logarithmic factor smaller than the Q(k) samples
needed to learn p itself to within a small total variation
distance.

A popular generalization of Shannon entropy is the
Rényi entropy of order a � 0, defined for a 6= 1 by

Ha(p)
def
=

1
1 � a

log Â
x2X

pa
x

and for a = 1 by

H1(p)
def
= lim

a!1
Ha(p).

It was shown in the seminal paper [36] that Rényi
entropy of order 1 is Shannon entropy, namely H1(p) =
H(p), and for all other orders it is the unique extension
of Shannon entropy when of the four requirements
in Shannon entropy’s axiomatic definition, continuity,
symmetry, and normalization are kept but grouping is
restricted to only additivity over independent random
variables (c f . [13]).

Rényi entropy too has many applications. It is often
used as a bound on Shannon entropy [26], [29], [12], and
in many applications it replaces Shannon entropy as a
measure of randomness [7], [24], [3]. It is also of interest
in its own right, with diverse applications to unsuper-
vised learning [44], [15], source adaptation [22], image
registration [21], [28], and password guess-ability [3],
[35], [10] among others. In particular, the Rényi entropy
of order 2, H2(p), measures the quality of random
number generators [19], [30], determines the number
of unbiased bits that can be extracted from a physical
source of randomness [14], [6], helps test graph ex-
pansion [8] and closeness of distributions [5], [34], and
characterizes the number of reads needed to reconstruct
a DNA sequence [27].

Motivated by these and other applications, unbiased
and heuristic estimators of Rényi entropy have been
studied in the physics literature following [9], and
asymptotically consistent and normal estimates were
proposed in [45], [18]. However, no systematic study of
the complexity of estimating Rényi entropy is available.
For example, it was hitherto unknown if the number of
samples needed to estimate the Rényi entropy of a given
order a differs from that required for Shannon entropy,
or whether it varies with the order a, or how it depends
on the alphabet size k.
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B. Definitions and results
We answer these questions by showing that the num-

ber of samples needed to estimate Ha(p) falls into three
different ranges. For a < 1 it grows super-linearly with
k, for 1 < a 62 N it grows almost linearly with k, and
most interestingly, for the popular orders 1 < a 2 N it
grows as Q(k1�1/a), which is much less than the sample
complexity of estimating Shannon entropy.

To state the results more precisely we need a few
definitions. A Rényi-entropy estimator for distributions
over support set X is a function f : X ⇤ ! R mapping a
sequence of samples drawn from a distribution to an
estimate of its entropy. The sample complexity of an
estimator f for distributions over k elements is defined
as

S f
a(k, d, e)

def
= min

n
{n : p {|Ha(p)� f (Xn) | > d} < e,

8p with kpk0  k} ,

i.e., the minimum number of samples required by f to
estimate Ha(p) of any k-symbol distribution p to a given
additive accuracy d with probability greater than 1 � e.
The sample complexity of estimating Ha(p) is then

Sa(k, d, e)
def
= min

f
S f

a(k, d, e),

the least number of samples any estimator needs to
estimate Ha(p) for all k-symbol distributions p, to an
additive accuracy d and with probability greater than
1 � e. This is a min-max definition where the goal is to
obtain the best estimator for the worst distribution.

The desired accuracy d and confidence 1 � e are typ-
ically fixed. We are therefore most interested1 in the
dependence of Sa(k, d, e) on the alphabet size k and omit
the dependence of Sa(k, d, e) on d and e to write Sa(k). In
particular, we are interested in the large alphabet regime
and focus on the essential growth rate of Sa(k) as a func-
tion of k for large k with fixed d and e. Using the standard
asymptotic notations, let Sa(k) = O(kb) indicate that
for some constant c which may depend on a, d, and e,
for all sufficiently large k, Sa(k, d, e)  c · kb. Similarly,
Sa(k) = Q(kb) adds the corresponding W(kb) lower
bound for Sa(k, d, e), for all sufficiently small d and e.
Finally, extending the W̃ notation2, we let Sa(k) =

⇠⇠
W (kb)

indicate that for every sufficiently small e and arbitrary
h > 0, there exist c and d depending on h such that for
all k sufficiently large Sa(k, d, e) > ckb�h , namely Sa(k)
grows polynomially in k with exponent not less than
b � h for d  dh .

We show that Sa(k) behaves differently in three ranges
of a. For 0  a < 1,

⇠⇠
W
⇣

k1/a
⌘

 Sa(k)  O

 

k1/a

log k

!

,

1Whenever a more refined result indicating the dependence of
sample complexity on both k and d is available, we shall use the more
elaborate Sa(k, d, e) notation.

2The notations Õ, W̃, and Q̃ hide poly-logarithmic factors.

namely the sample complexity grows super-linearly in k
and estimating the Rényi entropy of these orders is even
more difficult than estimating the Shannon entropy. In
fact, the upper bound follows from a corresponding re-
sult on estimation of power sums considered in [16], [43]
which uses the best polynomial approximation based
estimator (see Section III-C for further discussion) and
is proved in Theorem 13; the lower bound is proved in
Theorem 22.

For 1 < a /2 N,
⇠⇠
W (k)  Sa(k)  O

✓

k
log k

◆

,

namely as with Shannon entropy, the sample complexity
grows roughly linearly in the alphabet size. Once again,
the upper bound uses the aforementioned polynomial
approximation estimator of [16], [43] and is proved in
Theorem 12; the lower bound is proved in Theorem 21.

For 1 < a 2 N,

Sa(k, d, e) = Q
⇣

k1�1/a
⌘

,

and in particular, the sample complexity is strictly sub-
linear in the alphabet size. The upper and lower bounds
are shown in Theorems 11 and 15, respectively. Unlike
the previous two cases, the upper bound for integer
a > 1 is attained by a simple bias-corrected version of
the empirical estimator. Figure 1 illustrates our results
for different ranges of a.
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Fig. 1: Exponent of k in Sa(k) as a function of a.

Of the three ranges, the most frequently used, and
coincidentally the one for which the results are most
surprising, is the last with a = 2, 3, . . .. Some elaboration
is in order.

First, for all integral a > 1, Ha(p) can be estimated
with a sublinear number of samples. The most com-
monly used Rényi entropy, H2(p), can be estimated
within d using just Q

⇣p
k
⌘

samples, and hence Rényi
entropy can be estimated much more efficiently than
Shannon Entropy, a useful property for large-alphabet
applications such as language processing genetic analy-
sis.

Also, note that Rényi entropy is continuous in the
order a. Yet the sample complexity is discontinuous
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at integer orders. While this makes the estimation of
the popular integer-order entropies easier, it may seem
contradictory. For instance, to approximate H2.001(p)
one could approximate H2(p) using significantly fewer
samples. The reason for this is that the Rényi entropy,
while continuous in a, is not uniformly continuous. In
fact, as shown in Example 2, the difference between say
H2(p) and H2.001(p) may increase to infinity when the
alphabet-size increases.

While the bounds for sample complexity described
above capture the essence of our results, our complete
results are more elaborate. For the case of integer a > 1,
we provide a complete characterization of Sa(k, d, e)
including the precise dependence on k as well as d for
every k greater than a constant and d smaller than a
constant. For noninteger a, our upper bound reflects the
dependence of Sa(k, d, e) on both k and d, but holds only
in the large alphabet regime when k is sufficiently large
for a fixed d and e. The exact characterization of sample
complexity for every k and d for noninteger a remains
open.

In the conference version [1] of this paper, weaker
upper bounds for the case of noninteger a were obtained
using the empirical estimator which simply plugs-in
the normalized empirical-frequency in the formula for
entropy. In this version, we provide a complete char-
acterization of the sample complexity of the empirical
estimator for every k greater than a constant and d
smaller than a constant. In particular, we show that the
empirical estimator requires strictly more samples than
the polynomial approximation estimator, in general.

It should also be noted that the estimators achieving
the upper bounds in this paper are simple and run in
time linear in the number of samples. Furthermore, the
estimators are universal in that they do not require the
knowledge of k. On the other hand, the lower bounds
on Sa(k) hold even if the estimator knows k.

C. The estimators

The power sum of order a of a distribution p over X is

Pa(p)
def
= Â

x2X
pa

x,

and is related to the Rényi entropy for a 6= 1 via

Ha(p) =
1

1 � a
log Pa(p).

Hence estimating Ha(p) to an additive accuracy of ±d
is equivalent to estimating Pa(p) to a multiplicative
accuracy of 2±d·(1�a). Furthermore, if d(a � 1)  1/2
then estimating Pa(p) to multiplicative accuracy of 1 ±
d(1 � a)/2 ensures a ±d additive accurate estimate of
Ha(p).

We construct estimators for the power-sums of dis-
tributions with a multiplicative-accuracy of (1 ± d) and
hence obtain an additive-accuracy of Q(d) for Rényi
entropy estimation. We consider the following three

different estimators for different ranges of a and with
different performance guarantees.

a) Empirical estimator: The empirical, or plug-in, esti-
mator of Pa(p) is given by

bPe
a

def
= Â

x

✓

Nx
n

◆a

. (1)

For a 6= 1, bPe
a is a not an unbiased estimator of

Pa(p). We show in Corollary 27 that for a < 1
the sample complexity of the empirical estimator is

Q
✓

max
⇢

⇣

k
d

⌘

1
a , k

1�a
a

d2

�◆

and in Corollary 25 that for

a > 1 it is Q
✓

max
⇢

k
d , k

a�1
a

d2

�◆

.

b) Bias-corrected estimator: For integral a > 1, the
bias-corrected estimator for Pa(p) is

bPu
a

def
= Â

x

Na
x

na , (2)

where for integers N and r > 0, Nr def
= N(N � 1) . . . (N �

r + 1). A variation of this estimator was proposed first in
[4] for estimating moments of frequencies in a sequence
using random samples drawn from it. Corollary 16
shows that for 1 < a 2 N, bPu

a estimates Pa(p) within

a factor of 1 ± d using Q
✓

k
a�1

a

d2

◆

samples.

c) Polynomial approximation estimator: To obtain a
logarithmic improvement in Sa(k), we consider the poly-
nomial approximation estimator proposed in [43], [16]
for different problems, concurrently to a conference ver-
sion [1] of this paper. The polynomial approximation
estimator first considers the best polynomial approximation
of degree d to ya for the interval y 2 [0, 1] [39]. Suppose
this polynomial is given by a0 + a1y + a2y2 + . . . + adyd.
We roughly divide the samples into two parts. Let N0

x
and Nx be the multiplicities of x in the first and second
parts respectively. The polynomial approximation esti-
mator uses the empirical estimate of pa

x for large N0
x,

but estimates a polynomial approximation of pa
x for a

small N0
x; the integer powers of px in the latter in turn

is estimated using the bias-corrected estimator.
The estimator is roughly of the form

bPd,t
a

def
= Â

x:N0
xt

 

d

Â
m=0

am(2t)a�mNm
x

na

!

+ Â
x:N0

x>t

Na
x

na , (3)

where d and t are both O(log n) and chosen appro-
priately. Theorem 12 and Theorem 13 show that for
a > 1 and a < 1, respectively, the sample complexity
of bPd,t

a is O(k/d1/a log k) and O(k
1
a /d1/a log k), when

k is sufficiently large (depending on d), resulting in a
reduction in sample complexity of O(log k) over the
empirical estimator.

Note that while the results described above charac-
terize Sa(k, d, e) for every k and d only for the case of
integer a > 1, and the general problem of characterizing
Sa(k, d, e) remains open, we identify the exponent of k
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in Sa(k) for every a, i.e., we can characterize the limit

Ea = lim
k!•

log Sa(k, d, e)
log k

for every fixed d and e and show that

Ea =

8

>

<

>

:

1
a , 0 < a < 1,
1, 1 < a /2 ,
1 � 1

a , 1 < a 2 .

Furthermore, the empirical estimator attains the optimal
exponent for a /2 , but has a suboptimal exponent
for 1 < a 2 . In this latter regime, the bias-corrected
estimator attains the optimal exponent. While the expo-
nent captures a very coarse-level behavior of the sample
complexity Sa(k, d, e), it is an important indicator of the
behavior in the large alphabet regime. In fact, we provide
a complete characterization of the dependence of sample
complexity of the empirical estimator on k and d for
every a 6= 1 and that of the bias-corrected estimator
for integer a > 1. results. Our results are summarized
in Table I. Note that the

⇠⇠
W form of our general lower

bounds is interesting for the large alphabet case, when
k is sufficiently large for a fixed d. In Theorem 15, a
simple alternative lower bound is established for a > 1

showing that Sa(k, d, e) � W
✓

k
a�1

a

d2

◆

. A similar lower

bound for a < 1 showing Sa(k, d, e) � W
✓

k
1�a

a

d2

◆

is

established in Theorem 26. When a > 1 and k  d�a

or when 1/2  a < 1 and k  d
1�2a

a these bounds are
tight, and show that the empirical estimator attains the
optimal sample complexity up to constant factors. How-
ever, the polynomial approximation estimator strictly
outperforms the empirical estimator in the large alphabet
regime; the latter does not even attain the optimal expo-
nent in the dependence of sample complexity on k for
integer a > 1. We have only obtained the results for the
polynomial approximation in this large alphabet regime,
and the problem of characterizing the exact sample com-
plexity of polynomial approximation estimator remains
open, along with that of characterizing the exact sample
complexity of estimating Ha(p) for noninteger a > 0.

D. Organization
The rest of the paper is organized as follows. Section II

presents basic properties of power sums of distributions
and moments of Poisson random variables, which may
be of independent interest. Upper bounds for sample
complexity of our proposed estimators are given in
Section III, and examples and simulation of the proposed
estimators are given in Section IV. Section V contains
general lower bounds for the sample complexity of
estimating Rényi entropy and lower bounds for the sam-
ple complexity of the empirical estimator. Furthermore,
in the Appendix we analyze the performance of the
empirical estimator for power-sum estimation with an
additive-accuracy.

II. TECHNICAL PRELIMINARIES

A. Bounds on power sums
Consider a distribution p over [k] = {1, . . . , k}. Since

Rényi entropy is a measure of randomness (see [36] for
a detailed discussion), it is maximized by the uniform
distribution and the following inequalities hold:

0  Ha(p)  log k, a 6= 1,

or equivalently

1  Pa(p)  k1�a, a < 1 , and (4)
k1�a  Pa(p)  1, a > 1. (5)

Furthermore, for a > 1, Pa+b(p) and Pa�b(p) can be
bounded in terms of Pa(p), using the monotonicity of
norms and of Hölder means (see, for instance, [11]).

Lemma 1. (i) For every a � 0 and b � 0,

Pa+b(p)  Pa(p)
a+b

a .

(ii) For every a � 0,

P2a(p)  Pa(p)2.

(iii) For a > 0 and 0  b  a,

Pa�b(p)  k
b
a Pa(p)

a�b
a .

(iv) For a � 1 and 0  b  a,

Pa+b(p)  k(a�1)(a�b)/a Pa(p)2,

and
Pa�b(p)  kb Pa(p).

Proof. (i) holds by the monotonicity of norms; (ii) fol-
lows upon choosing a = b. For (iii) note that by the
monotonicity of Hölder means

 

1
k Â

x
pa�b

x

!

1
a�b


 

1
k Â

x
pa

x

!

1
a

,

which yields (iii) by rearranging the terms. Property (iv)
is obtained by (i) and (iii) together with (5). ⌅

B. Bounds on moments of a Poisson random variable
Let Poi(l) be the Poisson distribution with parameter

l. We consider Poisson sampling where N ⇠ Poi(n)
samples are drawn from the distribution p and the multi-
plicities used in the estimation are based on the sequence
XN = X1, ..., XN instead of Xn. Under Poisson sampling,
the multiplicities Nx are distributed as Poi(npx) and are
all independent, leading to simpler analysis. To facilitate
our analysis under Poisson sampling, we note a few
properties of the moments of a Poisson random variable.

We start with the expected value and the variance of
falling powers of a Poisson random variable.

Lemma 2. Let X ⇠ Poi(l). Then, for all r 2 N

E[Xr ] = lr
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Range of a Empirical Bias-corrected Polynomial Lower bounds

0 < a < 1 Q
✓

max
⇢

⇣

k
d

⌘

1
a , k

1�a
a

d2

�◆

O
⇣

k1/a

d1/a log k

⌘ ⇠⇠
W (k

1
a )

a > 1, a /2 N Q
✓

max
⇢

k
d , k

a�1
a

d2

�◆

O
⇣

k
d1/a log k

⌘ ⇠⇠
W (k)

a > 1, a 2 N Q
✓

max
⇢

k
d , k

a�1
a

d2

�◆

O
⇣

k1�1/a

d2

⌘

W
⇣

k1�1/a

d2

⌘

TABLE I: Performance of estimators and general lower bounds for estimating Rényi entropy .

and
Var[Xr ]  lr ((l + r)r � lr) .

Proof. The expectation is

E[Xr ] =
•

Â
i=0

Poi(l, i) · ir

=
•

Â
i=r

e�l · li

i!
· i!
(i � r)!

= lr
•

Â
i=0

e�l · li

i!

= lr.

The variance satisfies

E
h

(Xr)2
i

=
•

Â
i=0

Poi(l, i) · (ir)2

=
•

Â
i=r

e�l · li

i!
i!2

(i � r)!2

= lr
•

Â
i=0

e�l · li

i!
· (i + r)r

= lr · E[(X + r)r ]

 lr · E

"

r

Â
j=0

✓

r
j

◆

Xj · rr�j

#

= lr ·
r

Â
j=0

✓

r
j

◆

· lj · rr�j

= lr(l + r)r,

where the inequality follows from

(X + r)r =
r

’
j=1

[(X + 1 � j) + r] 
r

Â
j=0

✓

r
j

◆

· Xj · rr�j.

Therefore,

Var[Xr ] =E
h

(Xr)2
i

� [E Xr ]2

lr · ((l + r)r � lr) . ⌅

The next result establishes a bound on the moments
of a Poisson random variable.

Lemma 3. For b > 0 and X ⇠ Poi(l), there exists a
constant Cb depending only on b such that

E
h

Xb
i

 Cb max{l, lb}.

Proof. For l  1,

E
h

Xb
i

=
•

Â
i=1

e�l li

i!
· ib =l ·

•

Â
i=1

e�l li�1

i!
ib

l
•

Â
i=1

ib

i!
,

which proves the claim since the summation on the
right-side is bounded.

For l > 1, let Z = max{l1/b, l}. Then,

E



Xb

Zb

�

 E

"

✓

X
Z

◆dbe
+

✓

X
Z

◆bbc
#

=
1

Zdbe

dbe

Â
i=1

li
⇢

dbe
i

�

+
1

Zbbc

bbc

Â
i=1

li
⇢

bbc
i

�


dbe

Â
i=0

⇢

dbe
i

�

+
bbc

Â
i=0

⇢

bbc
i

�

,

where {m
i } denotes the Stirling number of the second

kind. The first inequality follows upon considering the
two cases X  Z and X > Z, the equality uses a
well-known formula for integer moments of a Poisson
random variable, and the second inequality holds since
l > 1 and l/Z  1. Multiplying both sides by Zb yields
the bound3. ⌅

We close this section with a bound for |E[Xa ]� la|,
which will be used in the next section and is also of
independent interest.

Lemma 4. For X ⇠ Poi(l), there exists a constant Ca

depending only on a such that

|E[Xa ]� la| 
(

Ca max{l, la}, l < 1,
Cala�1, l � 1.

In particular,

|E[Xa ]� la| 
(

Ca a < 1,
Ca
�

1 + la�1� , a > 1.

Proof. For l < 1, the claimed bound simply follows by
Lemma 3 upon noting that

|E[Xa ]� la|  E[Xa ] + la.

3All the constants in this proof can be shown to be less than e +
O(bb).
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Also, for a  1, (1+ y)a � 1+ ay� y2 for all y 2 [�1, •].
Hence,

Xa = la
✓

1 +
⇣X

l
� 1
⌘

◆a

� la
✓

1 + a
⇣X

l
� 1
⌘

�
⇣X

l
� 1
⌘2
◆

.

Taking expectations on both sides,

E[Xa ] � la
✓

1 + aE



X
l
� 1

�

� E



⇣X
l
� 1
⌘2
�◆

= la
✓

1 � 1
l

◆

.

Since xa is a concave function and X is nonnegative, the
previous bound yields

|E[Xa ]� la| = la � E[Xa ]  min
n

la, la�1
o

,

which implies our claimed bound for a  1.
It remains to establish the bound for the case a > 1

and l � 1. For this case, observe that
✓

X
l

◆a

=

✓

1 +
X � l

l

◆a

 e
a(X�l)

l .

Taking expectation on both sides,

E[Xa]  lae�aE[eaX/l] = lae�ael(ea/l�1).

Furthermore by convexity, E[Xa] � la. Hence,

|E[Xa]� la| = E[Xa]� la

 la
h

e�ael(ea/l�1) � 1
i

 eea
la�1,

where the last inequality holds since for l � 1

l(ea/l � 1)  a + (ea/l),

and hence

l
⇣

e�ael(ea/l�1) � 1
⌘

 l
⇣

e
ea
l � 1

⌘

 ea +
1
l

⇣

eea � 1 � ea
⌘

 eea
.

The weaker alternative form follows since for a < 1 and
l > 1, la�1  1. ⌅

C. Polynomial approximation of xa

In this section, we review a bound on the error
in approximating xa by a d-degree polynomial over a
bounded interval. Let Pd denote the set of all polyno-
mials of degree less than or equal to d over R. For a
continuous function f (x) and l > 0, let

Ed( f , [0, l])
def
= inf

q2Pd
max

x2[0,l]
|q(x)� f (x)|.

Lemma 5 ([39]). There is a constant c0a such that for any
d > 0,

Ed(xa, [0, 1])  c0a
d2a

.

To obtain an estimator which does not require a
knowledge of the support size k, we seek a polynomial
approximation qa(x) of xa with qa(0) = 0. Such a poly-
nomial qa(x) can be obtained by a minor modification
of the polynomial q0a(x) = Âd

j=0 qjxj satisfying the error
bound in Lemma 5. Specifically, we use the polynomial
qa(x) = q0a(x)� q0 for which the approximation error is
bounded as

max
x2[0,1]

|qa(x)� xa|  |q0|+ max
x2[0,1]

|q0a(x)� xa|

= |q0a(0)� 0a|+ max
x2[0,1]

|q0a(x)� xa|

 2 max
x2[0,1]

|q0a(x)� xa|

=
2c0a
d2a

def
=

ca

d2a
. (6)

To bound the variance of the proposed polynomial
approximation estimator, we require a bound on the
absolute values of the coefficients of qa(x). The following
inequality due to Markov serves this purpose.

Lemma 6 ([23]). Let p(x) = Âd
j=0 cjxj be a degree-d

polynomial so that |p(x)|  1 for all x 2 [�1, 1]. Then for
all j = 0, . . . , m

max
j

|cj|  (
p

2 + 1)d.

Since |xa|  1 for x 2 [0, 1], the approximation bound
(6) implies |qa(x)| < 1 + ca

d2a for all x 2 [0, 1]. It follows
from Lemma 6 that

max
m

|am| <
⇣

1 +
ca

d2a

⌘

(
p

2 + 1)d. (7)

III. UPPER BOUNDS ON SAMPLE COMPLEXITY

In this section, we analyze the performances of the
estimators we proposed in Section I-C. Our proofs are
based on bounding the bias and the variance of the
estimators under Poisson sampling. We first describe our
general recipe and then analyze the performance of each
estimator separately.

Let X1, ..., Xn be n independent samples drawn from
a distribution p over k symbols. Consider an estimate
fa (Xn) = 1

1�a log bPa(n, Xn) of Ha(p) which depends
on Xn only through the multiplicities and the sample
size. Here bPa(n, Xn) is the corresponding estimate of
Pa(p) – as discussed in Section I, small additive error
in the estimate fa (Xn) of Ha(p) is equivalent to small
multiplicative error in the estimate bPa(n, Xn) of Pa(p).
For simplicity, we analyze a randomized estimator f̃a
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described as follows: For N ⇠ Poi(n/2), let

f̃a (Xn) =

(

constant, N > n,
1

1�a log bPa(n/2, XN), N  n.

The following reduction to Poisson sampling is easy to
show.

Lemma 7. (Poisson approximation 1) For n � 6 log(2/e)
and N ⇠ Poi(n/2),

P
�

|Ha(p)� f̃a (Xn) | > d
�

 P

✓

|Ha(p)�
1

1 � a
log bPa(

n
2

, XN)| > d

◆

+
e

2
.

It remains to bound the probability on the right-side
above, which can be done provided the bias and the
variance of the estimator are bounded.

Lemma 8. For N ⇠ Poi(n), let the power sum estimator
bPa = bPa(n, XN) have bias and variance satisfying

�

�

�

E
h

bPa

i

� Pa(p)
�

�

�

 d

2
Pa(p),

Var
h

bPa

i

 d2

12
Pa(p)2.

Then, there exists an estimator bP0
a that uses

36Poi(n log(2/e)) samples and ensures

P
⇣

�

�

�

bP0
a � Pa(p)

�

�

�

> d Pa(p)
⌘

 e.

Proof. By Chebyshev’s Inequality

P
⇣

�

�

�

bPa � Pa(p)
�

�

�

> d Pa(p)
⌘

 P

✓

�

�

�

bPa � E
h

bPa

i

�

�

�

>
d

2
Pa(p)

◆

 1
3

.

To reduce the probability of error to e, we use the
estimate bPa repeatedly for O(log(1/e)) independent
samples XN and take the estimate bP0

a to be the sample me-
dian of the resulting estimates4. Specifically, let bP1, ..., bPt
denote t-estimates of Pa(p) obtained by applying bPa to
independent sequences XN , and let 1Ei be the indicator
function of the event Ei = {|bPi � Pa(p)| > d Pa(p)}. By
the analysis above we have E

⇥

1Ei

⇤

 1/3 and hence by
Hoeffding’s inequality

P

 

t

Â
i=1

1Ei >
t
2

!

 exp(�t/18).

On choosing t = 18 log(1/e) and noting that if more
than half of bP1, ..., bPt satisfy |bPi � Pa(p)|  d Pa(p), then
their median must also satisfy the same condition, we
get that the median estimate satisfies the required error
bound by using Poi(18n log 1/e) samples. The claimed
bound follows by Lemma 7. ⌅

In the remainder of the section, we bound the bias
and the variance for our estimators when the number
of samples n are of the appropriate order. Denote by

4This technique is often referred to as the median trick.

f e
a , f u

a , and f d,t
a , respectively, the empirical estimator

1
1�a log bPe

a , the bias-corrected estimator 1
1�a log bPu

a , and
the polynomial approximation estimator 1

1�a log bPd,t
a . We

begin by analyzing the performances of f e
a and f u

a and
build-up on these steps to analyze f d,t

a .

A. Performance of empirical estimator

The empirical estimator was presented in (1). Using
the Poisson sampling recipe given above, we derive
upper bound for the sample complexity of the empir-
ical estimator by bounding its bias and variance. The
resulting bound for a > 1 is given in Theorem 9 and for
a < 1 in Theorem 10.

Theorem 9. For a > 1, there exists a constant ca depending
only on a such that for every 0 < d < 1, k 2 , and 0 <
e < 1, the estimator f e

a satisfies

S f e
a

a (k, d, e)  ca max

(

k
d

,
k

a�1
a

d2

)

.

Proof. Denote lx
def
= npx. For a > 1, using Lemma 4 we

get
�

�

�

�

E



Âx Na
x

na

�

� Pa(p)
�

�

�

�

 1
na Â

x
|E[Na

x ]� la
x|

 Ca

na Â
x

⇣

1 + la�1
x

⌘

= Ca

✓

k
na +

Pa�1(p)
n

◆

 Ca

✓

k
n

◆a

+
k
n

�

Pa(p), (8)

where the previous inequality noting that k1�a  Pa(p)
by (5) and Pa�1(p)  kPa(p) by Lemma 1(iv).

Similarly, using the independence of multiplicities un-
der Poisson sampling, we have

Var

"

Â
x

Na
x

na

#

=
1

n2a Â
x

Var[Na
x ]

=
1

n2a Â
x

E
h

N2a
x

i

� [ENa
x ]

2

 1
n2a Â

x
E
h

N2a
x

i

� l2a
x , (9)

where the previous inequality is from Jensen’s inequality
since za is convex and E[Nx ] = lx. Therefore, by
Lemma 4,

Var

"

Â
x

Na
x

na

#

 Ca

n2a Â
x

⇣

1 + l2a�1
x

⌘

= Ca



k
n2a

+
P2a�1(p)

n

�

(10)

 Ca

"

✓

k
n

◆2a

+
k

a�1
a

n

#

Pa(p)2,
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where the last inequality follows upon noting that
k1�2a  P2a(p)  Pa(p)2 by (5) and P2a�1(p) 
k

a�1
a Pa(p)2 Lemma 1(iv). The claim follows from

Lemma 8 upon choosing n to be sufficiently large. ⌅

Theorem 10. For 0 < a < 1, there exists a constant ca

depending only on a such that for every 0 < d < 1, k 2 ,
and 0 < e < 1, the estimator f e

a satisfies

S f e
a

a (k, d, e)  ca max

(

✓

k
d

◆

1
a

,
k

a�1
a

d2

)

.

Proof. Proceeding as in the proof of Theorem 9, by
Lemma 4 we have

�

�

�

�

E



Âx Na
x

na

�

� Pa(p)
�

�

�

�

 1
na Â

x
|E[Na

x ]� la
x|

 2Cak
na

 2CaPa(p)

 

k1/a

n

!a

(11)

where the previous inequality uses 1  Pa(p) from (4).
For bounding the variance, note that

Var

"

Â
x

Na
x

na

#

=
1

n2a Â
x

Var[Na
x ]

=
1

n2a Â
x

E
h

N2a
x

i

� [ENa
x ]

2

=
1

n2a Â
x

E
h

N2a
x

i

� l2a
x +

1
n2a Â

x
l2a

x � [ENa
x ]

2 . (12)

Consider the first term on the right-side. For a  1/2, it
is bounded above by 0 since z2a is concave in z, and for
a > 1/2 (10) yields

1
n2a Â

x
E
h

N2a
x

i

� l2a
x  Ca



k
n2a

+
P2a�1(p)

n

�

 Ca

"

k
n2a

+
k

1�a
a

n

#

Pa(p)2,

where we have used P2a�1(p)  k
1�a

a Pa(p)2, which
holds by Lemma 1(iii) and (5).

For the second term, we have

Â
x

l2a
x � [ENa

x ]
2

= Â
x
(la

x � E[Na
x ]) (la

x + E[Na
x ])

 2CanaPa(p)

 

k1/a

n

!a

Â
x
(la

x + E[Na
x ])

 4Can2aPa(p)2

 

k1/a

n

!a

,

where the first inequality is by (11) and the final inequal-
ity holds since E[Na

x ]  la
x by the concavity of za in z.

The claim follows from Lemma 8. ⌅

B. Performance of bias-corrected estimator for integral a

To reduce the sample complexity for integer orders
a > 1 to below k, we follow the development of Shannon
entropy estimators. Shannon entropy was first estimated
via an empirical estimator, analyzed in, for instance, [2].
However, with o(k) samples, the bias of the empirical
estimator remains high [33]. This bias is reduced by
the Miller-Madow correction [25], [33], but even then,
O(k) samples are needed for a reliable Shannon-entropy
estimation [33].

Similarly, we reduce the bias for Rényi entropy es-
timators using unbiased estimators for pa

x for integral a.
We first describe our estimator, and in Theorem 11 we
show that for 1 < a 2 N, bPu

a estimates Pa(p) using
O(k1�1/a/d2) samples. Theorem 15 in Section V shows
that this number is optimal up to constant factors.

Consider the estimator for Pa(p) given by

bPu
a

def
= Â

x

Na
x

na ,

which is unbiased since by Lemma 2,

E
h

bPu
a

i

= Â
x

E



Na
x

na

�

= Â
x

pa
x = Pa(p).

Our bias-corrected estimator for Ha(p) is

Ĥa =
1

1 � a
log bPu

a .

The next result provides a bound for the number of
samples needed for the bias-corrected estimator.

Theorem 11. For an integer a > 1, there exists a constant
ca depending only on a such that for every 0 < d < 1, k 2 ,
and 0 < e < 1, the estimator f u

a satisfies

S f u
a

a (k, d, e)  ca

 

k(a�1)/a

d2 log
1
e

!

.

Proof. Since the bias is 0, we only need to bound the
variance to use Lemma 8. To that end, we have

Var


Âx Na
x

na

�

=
1

n2a Â
x

Var
⇥

Na
x
⇤

 1
n2a Â

x

⇣

la
x(lx + a)a � l2a

x

⌘

=
1

n2a

a�1

Â
r=0

Â
x

✓

a

r

◆

aa�rlx
a+r

=
1

n2a

a�1

Â
r=0

na+r
✓

a

r

◆

aa�rPa+r(p), (13)

where the inequality uses Lemma 2. It follows from
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Lemma 1(iv) that

1
n2a

Var
⇥

Âx Na
x
⇤

Pa(p)2  1
n2a

a�1

Â
r=0

na+r
✓

a

r

◆

aa�r Pa+r(p)
Pa(p)2


a�1

Â
r=0

nr�a
✓

a

r

◆

aa�rk(a�1)(a�r)/a


a�1

Â
r=0

 

a2k(a�1)/a

n

!a�r

,

which is less than d2/12 if (a2k1�1/a/n)  11d2/144. The
claim follows by Lemma 8. ⌅

C. The polynomial approximation estimator
Concurrently with a conference version of this paper

[1], a polynomial approximation based approach was
proposed in [16] and [43] for estimating additive functions
of the form Âx f (px). As seen in Theorem 11, polyno-
mials of probabilities have succinct unbiased estimators.
Motivated by this observation, instead of estimating f ,
these papers consider estimating a polynomial that is a
good approximation to f . The underlying heuristic for this
approach is that the difficulty in estimation arises from
small probability symbols since empirical estimation
is nearly optimal for symbols with large probabilities.
On the other hand, there is no loss in estimating a
polynomial approximation of the function of interest for
symbols with small probabilities.

In particular, [16] considered the problem of estimat-
ing power sums Pa(p) up to additive accuracy and
showed that O

⇣

k1/a/ log k
⌘

samples suffice for a < 1.
Since Pa(p) � 1 for a < 1, this in turn implies a similar
sample complexity for estimating Ha(p) for a < 1. On
the other hand, a > 1, the power sum Pa(p)  1 and can
be small (e.g., it is k1�a for the uniform distribution). In
fact, we show in the Appendix that additive-accuracy
estimation of power sum is easy for a > 1 and has a
constant sample complexity. Therefore, additive guaran-
tees for estimating the power sums are insufficient to
estimate the Rényi entropy . Nevertheless, our analysis
of the polynomial estimator below shows that it attains
the O(log k) improvement in sample complexity over the
empirical estimator even for the case a > 1.

We first give a brief description of the polynomial
estimator of [43] and then in Theorem 12 prove that for
a > 1 the sample complexity of bPd,t

a is O(k/ log k). For
completeness, we also include a proof for the case a < 1,
which is slightly different from the one in [16].

Let N1, N2 be independent Poi(n) random variables.
We consider Poisson sampling with two set of samples
drawn from p, first of size N1 and the second N2. Note
that the total number of samples N = N1 + N2 ⇠
Poi(2n). The polynomial approximation estimator uses
different estimators for different estimated values of
symbol probability px. We use the first N1 samples for
comparing the symbol probabilities px with t/n and the
second is used for estimating pa

x. Specifically, denote by

Nx and N0
x the number of appearances of x in the N1 and

N2 samples, respectively. Note that both Nx and N0
x have

the same distribution Poi(npx). Let t be a threshold,
and d be the degree chosen later. Given a threshold t,
the polynomial approximation estimator is defined as
follows:

N0
x > t: For all such symbols, estimate pa

x using the
empirical estimate (Nx/n)a.
N0

x  t: Suppose q(x) = Âd
m=0 amxm is the polyno-

mial satisfying Lemma 5. Since we expect px to be
less than 2t/n in this case, we estimate pa

x using an
unbiased estimate of5 (2t/n)aq(npx/2t), namely

 

d

Â
m=0

am(2t)a�mNm
x

na

!

.

Therefore, for a given t and d the combined estimator
bPd,t

a is

bPd,t
a

def
= Â

x:N0
xt

 

d

Â
m=0

am(2t)a�mNm
x

na

!

+ Â
x:N0

x>t

✓

Nx
n

◆a

.

Denoting by p̂x the estimated probability of the symbol
x, note that the polynomial approximation estimator re-
lies on the empirical estimator when p̂x > t/n and uses
the the bias-corrected estimator for estimating each term
in the polynomial approximation of pa

x when p̂x  t/n.
We derive upper bounds for the sample complexity of

the polynomial approximation estimator. The bounds are
valid in the large alphabet regime where k is sufficiently
large for a fixed d.

Theorem 12. For a > 1, d > 0, 0 < e < 1, there exist
constants c1 and c2 such that the estimator bPd,t

a with t =
c1 log n and d = c2 log n satisfies

S
bPd,t

a
a (k, d, e)  O

✓

k
log k

log(1/e)

d1/a

◆

.

Proof. We follow the approach in [43] closely. Choose t =
c⇤log n such that with probability at least 1� e the events
N0

x > t and N0
x  t do not occur for all symbols x

satisfying px  t/(2n) and px > 2t/n, respectively. Or
equivalently, with probability at least 1 � e all symbols
x such that N0

x > t satisfy px > t/(2n) and all symbols
such that N0

x  t satisfy px  2t/n. We condition on this
event throughout the proof. For concreteness, we choose
c⇤ = 4, which is a valid choice for n > 20 log(1/e) by
the Poisson tail bound and the union bound.

Let q(x) = Âd
m=0 amxm satisfy the polynomial approx-

imation error bound guaranteed by Lemma 5, i.e.,

max
x2(0,1)

|q(x)� xa| < ca/d2a (14)

To bound the bias of bPd,t
a , note first that for

N0
x < t (assuming px  2t/nsmp and estimating

5Note that if |q(x)� xa| < e for all x 2 [0, 1], then |haq(x/h)� xa| <
hae for all x 2 [0, h].
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(2t/n)aq(npx/2t))
�

�

�

�

�

E

"

d

Â
m=0

am(2t)a�mNm
x

na

#

� pa
x

�

�

�

�

�

=

�

�

�

�

�

d

Â
m=0

am

✓

2t

n

◆a�m
pm

x � pa
x

�

�

�

�

�

=
(2t)a

na

�

�

�

�

�

d

Â
m=0

am

⇣npx
2t

⌘m
�
⇣npx

2t

⌘a
�

�

�

�

�

=
(2t)a

na

�

�

�

q
⇣npx

2t

⌘

�
⇣npx

2t

⌘a�
�

�

<
(2t)aca

(nd2)a
, (15)

where (15) uses (14) and npx/(2t)  1.

For N0
x > t, the bias of empirical part of the power

sum is bounded as Suppose px > t/(2n), and t > 2.
Applying Lemma 4 for l = npx,

�

�

�

�

E

✓

Nx
n

◆a �

� pa
x

�

�

�

�

(a)
 1

na Ca · (npx)
a�1

= pa
xCa

1
npx

 pa
x

2Ca

t
,

where the last inequality uses px > t/(2n), which holds
for N0

x > t. Using the triangle inequality and applying
the bounds above to each term, we obtain the following
bound on the bias of bPd,t

a :
�

�

�

E
h

bPa

i

�Pa(p)
�

�

�

 k(2t)aca

(nd2)a
+ Pa(p)

2Ca

t

Pa(p)


ca

✓

k · 2t

nd2

◆a

+
2Ca

t

�

, (16)

where the last inequality uses k < kaPa(p) from (5).

For variance, independence of multiplicities under
Poisson sampling gives

Var
h

bPa

i

= Â
x:N0

xt

Var

 

d

Â
m=0

am(2t)a�mNm
x

na

!

(17)

+ Â
x:Nx>t

Var
✓

Nx
n

◆a

.

Let a = maxm |am|. By Lemma 2, for any x with px 
2t/n,

Var

 

d

Â
m=0

am(2t)a�mNm
x

na

!

a2d2 max
1md

⇢

(2t)2a�2m

n2a
VarNm

x

�

(a)
a2d2 max

1md

⇢

(2t)2a�2m

n2a
(npx)

m((npx + m)m� npm
x )

�

(b)
 a2d2(2t + d)2a

n2a
, (18)

where (a) is from Lemma 2, and (b) from plugging
npx  2t. Furthermore, using similar steps as (9) to-

gether with Lemma 4, for x with px > t/(2n) we get

Var
✓

Nx
n

◆a �

 1
n2a

⇣

E
h

N2a
x

i

� l2a
x

⌘

,

 1
n2a

· C2a(npx)
2a�1 (19)

= C2a
p2a

x
npx

 2C2a
p2a

x
t

The two bounds above along with Lemma 1 and (5) yield

Var
h

bPa

i

Pa(p)2

"

a2d2(2t + d)2a

n

✓

k
n

◆2a�1
+

2C2a

t

#

.

(20)

For d = t/8 = 1
2 log n, the second terms in (16) are

o(1) in n which gives6

�

�

�

E
h

bPa

i

� Pa(p)
�

�

�

= Pa(p)
✓

ca

✓

32k
(n log n)

◆a

+ o(1)
◆

.

Recall from (7) that a < (1 + ca/d2a)(
p

2 + 1)d, and
therefore, a2 = O((

p
2 + 1)log n) = nc0 for some c0 < 1.

Using (20) we get

Var
h

bPa

i

= O

 

Pa(p)2 nc0 log2a+2 n
n

✓

k
n

◆2a�1
!

.

Therefore, the result follows from Lemma 8 for k suffi-
ciently large. ⌅

We now prove an analogous result for a < 1.

Theorem 13. For a < 1, d > 0, 0 < e < 1, there exist
constants c1 and c2 such that the estimator bPd,t

a with t =
c1 log n and d = c2 log n satisfies

S
bPd,t

a
a (k, d, e)  O

 

k1/a

log k
log(1/e)

a2d1/a

!

.

Proof. We proceed as in the previous proof and set t to
be 4 log n. The contribution to the bias of the estimator
for a symbol x with N0

x < t remains bounded as in (15).
For a symbol x with N0

x > t, the bias contribution of the
empirical estimator is bounded as

�

�

�

�

E

✓

Nx
n

◆a �

� pa
x

�

�

�

�

 Capa�1
x

n
 2Capa

x
t

,

where the first inequality is by Lemma 4 and the second
uses px > t/(2n), which holds if N0

x > t. Thus, we
obtain the following bound on the bias of bPd,t

a :
�

�

�

E
h

bPa

i

� Pa(p)
�

�

�

 k(2t)aca

(nd2)a
+

2
t

Pa(p)

Pa(p)

"

ca

 

k1/a · 2t

nd2

!a

+
2
t

#

,

6This approximation is valid in the large alphabet regime, where k
is sufficiently large for a fixed d.
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where the last inequality is by (4).
To bound the variance, first note that bound (18) still

holds of px  2t/n. To bound the contribution to the
variance from the terms with npx > t/2, we follow the
steps in the proof of Theorem 10. In particular, (12) gives

Var

"

Â
x:N0

x>t

Na
x

na

#

 1
n2a

 

Â
x:N0

x>t

E
h

N2a
x

i

� l2a
x

!

+
1

n2a Â
x:N0

x>t

⇣

l2a
x � [ENa

x ]
2
⌘

. (21)

We consider each term separately. The first term is at
most zero for a  1/2. For a > 1/2, using Lemma 4,

1
n2a

 

Â
x:N0

x>t

E
h

N2a
x

i

� l2a
x

!

 Â
x:N0

x>t

C2a
(px)2a

npx

2C2a
P2a(p)

t

2C2a
Pa(p)2

t
.

For the second term, we have
1

n2a Â
x:N0

x>t

l2a
x � [ENa

x ]
2 (22)

=
1

n2a Â
x:N0

x>t

(la
x � E[Na

x ]) (la
x + E[Na

x ])

 1
n2a Â

x:N0
x>t

⇣

la�1
x

⌘

(2la
x)

= 2 Â
x:N0

x>t

p2a
x

npx

 4
t

Pa(p)2,

where the first inequality follows from Lemma 4 and
concavity of za in z and the second from npx > t/2 and
Lemma 1.

Thus, the contribution of the terms corresponding to
N0

x > t in the bias and the variance are Pa(p) · o(1) and
Pa(p)2 · o(1), respectively, and can be ignored. Choosing
d = a

2 log n and combining the observations above, we
get the following bound for the bias:

�

�

�

E
h

bPa

i

�Pa(p)
�

�

�

=Pa(p)

 

ca

 

32k1/a

n log na2

!a

+ o(1)

!

,

and, using (18), the following bound for the variance:

Var
h

bPa

i

(23)

 k
a2d2(2t + d)2a

n2a
+ Pa(p)2 · o(1)

 Pa(p)2

"

✓

a2

na

◆

(9 log n)2a+2

 

k
1
a

n

!a

+ o(1)

#

.

Here a2 is the largest squared coefficient of the approxi-
mating polynomial and, by (7), is O(22c0d) = O(nc0a) for
some c0 < 1. Thus, a2 = o(na) and the proof follows by

Lemma 8. ⌅

IV. EXAMPLES AND EXPERIMENTS

We begin by computing Rényi entropy for uniform
and Zipf distributions; the latter example illustrates the
lack of uniform continuity of Ha(p) in a.
Example 1. The uniform distribution Uk over [k] =
{1, . . . , k} is given by

pi =
1
k

for i 2 [k].

Its Rényi entropy for every order 1 6= a � 0, and hence
for all a � 0, is

Ha(Uk) =
1

1 � a
log

k

Â
i=1

1
ka =

1
1 � a

log k1�a = log k.

Example 2. The Zipf distribution Zb,k for b > 0 and k 2 [k]
is given by

pi =
i�b

Âk
j=1 j�b

for i 2 [k].

Its Rényi entropy of order a 6= 1 is

Ha(Zb,k) =
1

1 � a
log

k

Â
i=1

i�ab � a

1 � a
log

k

Â
i=1

i�b.

Table II summarizes the leading term g(k) in the approx-
imation7 Ha(Zb,k) ⇠ g(k).

b < 1 b = 1 b > 1

ab < 1 log k 1�ab
1�a log k 1�ab

1�a log k

ab = 1 a�ab
a�1 log k 1

2 log k 1
1�a log log k

ab > 1 a�ab
a�1 log k a

a�1 log log k constant

TABLE II: The leading terms g(k) in the approximations
Ha(Zb,k) ⇠ g(k) for different values of ab and b. The
case ab = 1 and b = 1 corresponds to the Shannon
entropy of Z1,k.

In particular, for a > 1

Ha(Z1,k) =
a

1 � a
log log k + Q

✓

1
ka�1

◆

+ c(a),

and the difference |H2(p) � H2+e(p)| is O (e log log k).
Therefore, even for very small e this difference is un-
bounded and approaches infinity in the limit as k goes
to infinity.

We now illustrate the performance of the proposed
estimators for various distributions for a = 2 in Figures 2
and a = 1.5 in Figures 3. For a = 2, we compare
the performance of bias-corrected and empirical estima-
tors. For a = 1.5, we compare the performance of the
polynomial-approximation and the empirical estimator.

7We say f (n) ⇠ g(n) to denote limn!• f (n)/g(n) = 1.
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For the polynomial-approximation estimator, the thresh-
old t is chosen as t = ln(n) and the approximating
polynomial degree is chosen as d = d1.5te.

We test the performance of these estimators over six
different distributions: the uniform distribution, a step
distribution with half of the symbols having probability
1/(2k) and the other half have probability 3/(2k), Zipf
distribution with parameter 3/4 (pi µ i�3/4), Zipf dis-
tribution with parameter 1/2 (pi µ i�1/2), a randomly
generated distribution using the uniform prior on the
probability simplex, and another one generated using the
Dirichlet-1/2 prior.

In both the figures the true value is shown in black and
the estimated values are color-coded, with the solid line
representing their mean estimate and the shaded area
corresponding to one standard deviation. As expected,
bias-corrected estimators outperform empirical estima-
tors for a = 2 and polynomial-approximation estimators
perform better than empirical estimators for a = 1.5.

V. LOWER BOUNDS ON SAMPLE COMPLEXITY

We now establish lower bounds on Sa(k, d, e). The
proof is based on exhibiting two distributions p and
q with Ha(p) 6= Ha(q) such that the set of Nx’s have
very similar distribution from p and q, if fewer samples
than the claimed lower bound are available. This method
is often referred to as Le Cam’s two-point method (see,
for instance, [46]). The key idea is summarized in the
following result which is easy to derive.

Lemma 14. If for two distributions p and q on X and n 2
the total variation distance kpn � qnk < e, then for every
function f̂ , either

p
✓

|Ha(p)� f̂ (Xn)| � |Ha(p)� Ha(q)|
2

◆

� 1 � e

2
,

or

q
✓

|Ha(q)� f̂ (Xn)| � |Ha(p)� Ha(q)|
2

◆

� 1 � e

2
.

A. Lower bound for integer a

We first prove a lower bound for integers a > 1 which
matches the upper bound in Theorem 11 up to a constant
factor. In fact, the bound is valid for any a > 1.

Theorem 15. Given an 1 < a and 0 < e < 1, there
exists a constant c depending on a and e such that for every
d > 0 sufficiently small (depending only on a) and every k
sufficiently large (depending only on a)

Sa(k, d, e) � c

 

k
a�1

a

d2

!

.

Proof. We rely on Lemma 14 and exhibit two distribu-
tions p and q with appropriate properties. Specifically,
consider the following distributions p and q over [k]:
p1 = 1/k1�1/a, and for x = 2, . . . , k, px = (1 �

p1)/(k � 1); q1 = (1 + d)/k1�1/a, and for x = 2, . . . , k,
qx = (1 � q1)/(k � 1). Then, we have

Pa(p) = pa
1 +

(1 � p1)a

(k � 1)a�1 ,

and

Pa(q) = qa
1 +

(1 � q1)a

(k � 1)a�1 .

By noting that (1 + d)a � (1 + ad) for a > 1 and using
Taylor’s approximation

Pa(q)� Pa(p)

= qa
1 � pa

1 +
[(1 � q1)a � (1 � p1)a]

(k � 1)a�1

� d

ka�1 � 1
(k � 1)a�1 · ad

k1�1/a
·
✓

1 � 1
k1�1/a

◆a�1

� d

2ka�1 ,

where the last inequality holds if k is larger than a
constant depending on a. Therefore, for k sufficiently
large

|Pa(q)� Pa(p)|
Pa(p)

� d

4
,

and so, |Ha(p)� Ha(q)| � d/(1 � a)8 for d sufficiently
small. To complete the proof, we show that there exists a
constant Ce such that kpn � qnk  e if n  Cek1�1/a/d2.
To that end, we bound the squared Hellinger distance
between pn and qn given by

h2(p, q) = 2 � 2 Â
x

p
pxqx = Â

x
(
p

px �
p

qx)
2.

Therefore, for d < 1 and k sufficiently large so that
p1, q1  1/2,

h2(p, q) = (
p

p1 �
p

q1)
2 +

⇣

p

1 � p1 �
p

1 � q1

⌘2

=
(p1 � q1)

2

�pp1 +
pq1

�2 +
(p1 � q1)

2

�p

1 � p1 +
p

1 � q1
�2

 2
(p1 � q1)

2

�pp1 +
pq1

�2

 2
(p1 � q1)

2

p1

=
2d2

k1�1/a
.

The required bound for kpn � qnk follows using the
standard steps (c f . [46]) below:

kpn � qnk 
q

h2(p, q)

=

s

1 �
✓

1 � 1
2

h2(p, q)
◆n


r

n
2

h2(p, q). ⌅
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(a) Uniform (b) Step (c) Zipf with parameter 3/4

(d) Zipf with parameter 1/2 (e) Uniform prior (Dirichlet 1) (f) Dirichlet 1/2 prior

True value Bias-corrected estimator Empirical estimator

Fig. 2: Rényi entropy estimates for order 2 for support 10000, number of samples ranging from 1000 to 10000,
averaged over 100 trials.

As a corollary, the result above and the upper bound
of Theorem 11 yields the following characterization of
Sa(k, d, e).

Corollary 16. Given an 1 < a 2 and 0 < e < 1, for every
d > 0 sufficiently small (depending only on a) and every k
sufficiently large (depending only on a)

Sa(k, d, e) = Q

 

k(a�1)/a

d2

!

,

where constants implied by Q depend only on e and a.

B. Lower bound for noninteger a

Next, we lower bound Sa(k) for noninteger a > 1 and
show that it must be almost linear in k. While we still
rely on Lemma 14 for our lower bound, we take recourse
to Poisson sampling to simplify our calculations.

Lemma 17. (Poisson approximation 2) Suppose there exist
d, e > 0 such that, with N ⇠ Poi(2n), for all estimators f̂
we have

max
p2P

P
⇣

|Ha(p)� f̂a(XN)| > d
⌘

> e,

where P is a fixed family of distributions. Then, for all fixed
length estimators f̃

max
p2P

P
�

|Ha(p)� f̃a(Xn)| > d
�

>
e

2
,

when n > 4 log(2/e).

Also, it will be convenient to replace the observations
XN with its profile F = F(XN) [31], i.e., F = (F1, F2, . . .)
where Fl is the number of elements x that appear l times
in the sequence XN . The following well-known result
says that for estimating Ha(p), it suffices to consider only
the functions of the profile.

Lemma 18. (Sufficiency of profiles). Consider an estima-
tor f̂ such that

P
⇣

|Ha(p)� f̂ (XN)| > d
⌘

 e, for all p.

Then, there exists an estimator f̃ (XN) = f̃ (F) such that

P
�

|Ha(p)� f̃ (F)| > d
�

 e, for all p.

Thus, lower bounds on the sample complexity will
follow upon showing a contradiction for the second
inequality above when the number of samples n is
sufficiently small. We obtain the required contradiction
by using Lemma 14 upon showing there are distributions
p and q of support-size k such that the following hold:
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(a) Uniform (b) Step (c) Zipf with parameter 3/4

(d) Zipf with parameter 1/2 (e) Uniform prior (Dirichlet 1) (f) Dirichlet 1/2 prior

True value Polynomial-approximation estimator Empirical estimator

Fig. 3: Rényi entropy estimates for order 1.5 for support 10000, number of samples ranging from 1000 to 10000,
averaged over 100 trials.

(i) There exists d > 0 such that

|Ha(p)� Ha(q)| > d; (24)

(ii) denoting by pF and qF, respectively, the distribu-
tions on the profiles under Poisson sampling corre-
sponding to underlying distributions p and q, there
exist e > 0 such that

kpF � qFk < e, (25)

if n < k c(a).
Therefore, it suffices to find two distributions p and q
with different Rényi entropies and with small total vari-
ation distance between the distributions of their profiles,
when n is sufficiently small. For the latter requirement,
we recall a result of [42] that allows us to bound the total
variation distance in (25) in terms of the differences of
power sums |Pa(p)� Pa(q)|.
Theorem 19. [42] Given distributions p and q such that

max
x

max{px; qx}  e

40n
,

for Poisson sampling with N ⇠ Poi(n), it holds that

kpF � qFk  e

2
+ 5 Â

a
na|Pa(p)� Pa(q)|.

It remains to construct the required distributions p and
q, satisfying (24) and (25) above. By Theorem 19, the

total variation distance kpF � qFk can be made small
by ensuring that the power sums of distributions p and
q are matched, that is, we need distributions p and q
with different Rényi entropies and identical power sums
for as large an order as possible. To that end, for every
positive integer d and every vector x = (x1, ..., xd) 2 d,
associate with x a distribution px of support-size dk such
that

px
ij =

|xi|
kkxk1

, 1  i  d, 1  j  k.

Note that

Ha(px) = log k +
a

a � 1
log

kxk1
kxka

,

and for all a

Pa (px) =
1

ka�1

✓

kxka
kxk1

◆a
.

We choose the required distributions p and q, respec-
tively, as px and py, where the vectors x and y are given
by the next result.

Lemma 20. For every d 2 and a not integer, there exist
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positive vectors x, y 2 d such that

kxkr = kykr, 1  r  d � 1,
kxkd 6= kykd,
kxka 6= kyka.

Proof. Let x = (1, ..., d)). Consider the polynomial

p(z) = (z � x1)...(z � xd),

and q(z) = p(z)� D, where D is chosen small enough so
that q(z) has d positive roots. Let y1, ..., yd be the roots of
the polynomial q(z). By Newton-Girard identities, while
the sum of dth power of roots of a polynomial does
depend on the constant term, the sum of first d � 1
powers of roots of a polynomial do not depend on it.
Since p(z) and q(z) differ only by a constant, it holds
that

d

Â
i=1

xr
i =

d

Â
i=1

yr
i , 1  r  d � 1,

and that
d

Â
i=1

xd
i 6=

d

Â
i=1

yd
i .

Furthermore, using a first order Taylor approximation,
we have

yi � xi =
D

p0(xi)
+ o(D),

and for any differentiable function g,

g(yi)� g(xi) = g0(xi)(yi � xi) + o(|yi � xi|).

It follows that
d

Â
i=1

g(yi)� g(xi) =
d

Â
i=1

g0(xi)
p0(xi)

D + o(D),

and so, the left side above is nonzero for all D sufficiently
small provided

d

Â
i=1

g0(xi)
p0(xi)

6= 0.

Upon choosing g(x) = xa, we get

d

Â
i=1

g0(xi)
p0(xi)

=
a

d!

d

Â
i=1

✓✓

d
i

◆◆

(�1)d�i ia.

Denoting the right side above by h(a), note that h(i) = 0
for i = 1, ..., d � 1. Since h(a) is a linear combination
of d exponentials, it cannot have more than d � 1 zeros
(see, for instance, [40]). Therefore, h(a) 6= 0 for all
a /2 {1, ..., d � 1}; in particular, kxka 6= kyka for all D
sufficiently small. ⌅

We are now in a position to prove our converse results.

Theorem 21. Given a noninteger a > 1, for any fixed 0 <
e < 1/2, we have

Sa(k, d, e) =
⇠⇠
W (k).

Proof. For a fixed d, let distributions p and q be as in
the previous proof. Then, as in the proof of Theorem 21,
inequality (24) holds by Lemma 20 and (25) holds by
Theorem 19 if n < C2k(d�1)/d. The theorem follows since
d can be arbitrary large. ⌅

Finally, we show that Sa(k) must be super-linear in k
for a < 1.

Theorem 22. Given 0 < a < 1, for every 0 < e < 1/2, we
have

Sa(k, d, e) =
⇠⇠
W
⇣

k1/a
⌘

.

Proof. Consider distributions p and q on an alphabet of
size kd + 1, where

pij =
px

ij

kb
and qij =

px
ij

kb
, 1  i  d, 1  j  k,

where the vectors x and y are given by Lemma 20 and
b satisfies a(1 + b) < 1, and

p0 = q0 = 1 � 1
kb

.

For this choice of p and q, we have

Pa (p) =
✓

1 � 1
kb

◆a
+

1
ka(1+b)�1

✓

kxka
kxk1

◆a
,

Ha(p) =
1 � a(1 + b)

1 � a
log k +

a

1 � a
log

kxka

kxk1

+ O(ka(1+b)�1),

and similarly for q, which further yields

|Ha(p)� Ha(q)| =
a

1 � a

�

�

�

�

log
kxka

kyka

�

�

�

�

+ O(ka(1+b)�1).

Therefore, for sufficiently large k, (24) holds by
Lemma 20 since a(1 + b) < 1, and for n < C2k(1+b�1/d)

we get (25) by Theorem 19 as

kpF � qFk  e

2
+ 5 Â

a�d

✓

n
k1+b�1/a

◆a
 e.

The theorem follows since d and b < 1/a � 1 are
arbitrary. ⌅

C. Sample complexity of empirical estimator
We now derive lower bounds for the sample complex-

ity of the empirical estimator of Ha(p) and characterize
it up to constant factors.

Theorem 23. Given a > 1, there exists a constant ca such
that for every d sufficiently small (depending only on a) and
every k sufficiently large

S f e
a

a (k, d, 0.9) � ca

✓

k
d

◆

.

Proof. We prove the lower bound for the uniform distri-
bution over k symbols in two steps. We first show that
for any constant c1 > 1 if n < k/c1 then the additive
approximation error is at least d with probability one,
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for every d < log c1. Then, assuming that n � k/c1, we
show that the additive approximation error is at least d
with probability greater than 0.9 if n < k/d.

For the first claim, we assume without loss of gener-
ality that n  k, since otherwise the proof is complete.
Note that for a > 1 the function (pi � y)a + (pj + y)a is
decreasing in y for all y such that (pi � y) > (pj + y).
Thus, the minimum value of Âx

⇣

Nx
n

⌘a
is attained when

each Nx is either 0 or 1. It follows that

bPe
a = Â

x

✓

Nx
n

◆a

� 1
na�1 ,

which is the same as

Ha(p)�
1

a � 1
log

1
bPe

a
� log

k
n

.

Hence, for any c1 > 1 and n < k/c1 and any 0  d 
log c1, the additive approximation error is more than d
with probability one.

Moving to the second claim, suppose now n > k/c1.
We first show that with high probability, the multiplic-
ities of a linear fraction of k symbols should be at least
a factor of standard deviation higher than the mean.
Specifically, let

A = Â
x
1

 

Nx � n
k
+ c2

s

n
k

✓

1 � 1
k

◆

!

.

Then,

E[A ] = Â
x

E

"

1

 

Nx � n
k
+ c2

s

n
k

✓

1 � 1
k

◆

!#

= k · p

 

Nx � n
k
+ c2

s

n
k

✓

1 � 1
k

◆

!

� k · Q(c2),

where Q denotes the Q-function, i.e., the tail of the stan-
dard normal random variable, and the final inequality
uses Slud’s inequality [38, Theorem 2.1].

Note that A is a function of n i.i.d. random variables
X1, X2, . . . , Xn, and changing any one Xi changes A by
at most 2. Hence, by McDiarmid’s inequality,

Pr(A � E[A ]�
p

8n) � 1 � e�4 � 0.9.

Therefore, for all k sufficiently large (depending on d)
and denoting c = Q(c2)/2, at least ck symbols occur
more than n

k + c2

q

n
k times with probability greater than

0.9. Using the fact that (pi � y)a + (pj + y)a is decreasing

if (pi � y) > (pj + y) once more, we get

Â
x2X

Na
x

na

= Â
x:Nx�t

Na
x

na + Â
x:Nx<t

Na
x

na

�ck

 

1
k
+ c2

r

1
nk

!a

+ (1 � c)k

 

1
k
� cc2

1 � c

r

1
nk

!a

=
1

ka�1

"

c

 

1+ c2

r

k
n

!a

+ (1 � c)

 

1 � cc2
1 � c

r

k
n

!a#

� 1
ka�1

"

c

 

1+ c2

r

k
n

!a

+ (1 � c)

 

1 � acc2
1 � c

r

k
n

!#

� 1
ka�1

"

c

 

1 + ac2

r

k
n
+ c4

k
n

!

+ (1 � c)

 

1 � acc2
1 � c

r

k
n

!#

=
1

ka�1

✓

1 + cc4
k
n

◆

where the second inequality is by Bernoulli’s inequality
and the third inequality holds for every c4  a(a �
1)(c2

p
c1)a�2/2. Therefore, with probability � 0.9,

Ha(p)�
1

a � 1
log

1
bPe

a
� 1

a � 1
log
✓

1 + cc4
k
n

◆

,

which yields the desired bound. ⌅

Theorem 24. Given 0 < a < 1, there exists a constant ca

such that for every d sufficiently small (depending only on a)
and every k

S f e
a

a (k, d, 0.9) � ca

 

k1/a

d1/a

!

.

Proof. We proceed as in the proof of the previous lemma.
However, instead of using the uniform distribution, we
use a distribution which has one “heavy element” and is
uniform conditioned on the occurrence of the remainder.
The key observation is that there will be roughly na

occurrences of the “light elements”. Thus, when we
account for the error in the estimation of the contribution
of light elements to the power sum, we can replace n
with n1/a in our analysis of the previous lemma, which
yields the required bound for sample complexity.

Specifically, consider a distribution with one heavy
element 0 such that

p0 = 1 � d

n1�a
, and pi =

d

kn1�a
, 1  i  k.

Thus,

Pa(p) =
✓

1 � d

n1�a

◆a

+ da
✓

k
na

◆1�a

. (26)

We begin by analyzing the estimate of the second term



17

in power sum, namely

Â
i2[k]

✓

Ni
n

◆a

.

Let R = Âi2[k] Ni be the total number of occurrences of
light elements. Since R is a binomial (n, dna�1) random
variable, for every constant c > 0

P

✓

1 � c <
R

dna < 1 + c
◆

� 1 � 1
c2n

.

In the remainder of the proof, we shall assume that this
large probability event holds.

As in the proof of the previous lemma, we first prove
a d independent lower bound for sample complexity. To
that end, we fix d = 1 in the definition of p. Assuming
(1 + c)na  k, which implies R  k, and using the fact
that (pi � y)a � (pj + y)a is increasing in y if (pi � y) >
(pj + y), we get

bPe
a  1 +

✓

R
n

◆a

Â
i2[k]

✓

Ni
R

◆a

 1 +
(1 + c)a

na(1�a) Â
i2[k]

✓

Ni
R

◆a

 1 +
(1 + c)a

na(1�a)
R1�a

 3,

where the last inequality uses R  (1+ c)na  2na. Thus,
the empirical estimate is at most 3 with probability close
to 1 when k (and therefore n) large. It follows from (26)
that

Ha(p)�
1

1 � a
log bPe

a � log
k

3na .

Therefore, for all c1 > 1, d < log 3c1 and k sufficiently
large, at least (k/c1)

1/a samples are needed to get a
d-additive approximation of Ha(p) with probability of
error less than 1 � 1/(c2n). Note that we only needed
to assume R  (10/9)na, an event with probability
greater than 0.9, to get the contradiction above. Thus, we
may assume that n � (k/c1)

1/a. Under this assumption,
for k sufficiently large, n is sufficiently large so that
(1 � c)na  R  (1 + c)na holds with probability
arbitrarily close to 1.

Next, assuming that n � (k/c1)
1/a, we obtain a d-

dependent lower bound for sample complexity of the
empirical estimator. We use the p mentioned above with
a general d and assume that the large probability event

(1 � c)  R
dna  (1 + c) (27)

holds. Note that conditioned on each value of R, the
random variables (Ni, i 2 [k]) have a multinomial dis-
tribution with uniform probabilities, i.e., these random
variables behave as if we drew R i.i.d. samples from
a uniform distribution on [k] elements. Thus, we can
follow the proof of the previous lemma mutatis mutandis.

We now define A as

A = Â
x
1

 

Nx  n
k
� c2

s

n
k

✓

1 � 1
k

◆

!

.

and satisfies Then,

E[A ] = Â
x

E

"

1

 

Nx  n
k
� c2

s

n
k

✓

1 � 1
k

◆

!#

= k · p

 

Nx  n
k
� c2

s

n
k

✓

1 � 1
k

◆

!

.

To lower bound p
✓

Nx  n
k � c2

r

n
k

⇣

1 � 1
k

⌘

◆

, Slud’s

inequality is no longer available (since it may not hold
for Bin(n, p) with p > 1/2 and that is the regime of
interest for the lower tail probability bounds needed
here). Instead we take recourse to a combination of
Bohman’s inequality and Anderson-Samuel inequality,
as suggested in [38, Eqns. (i) and (ii)]. It can be verified
that the condition for [38, Eqns. (ii)] holds, and therefore,

p

 

Nx  n
k
� c2

s

n
k

✓

1 � 1
k

◆

!

� Q(c2).

Continuing as in the proof of the previous lemma, we
get that the following holds with conditional probability
greater than 0.9 given each value of R satisfying (27):

Â
i2[k]

✓

Nx
R

◆a

 k1�a
✓

1 � c3
k
R

◆

 k1�a
✓

1 � c4
k

dna

◆

,

where c3 is a sufficiently small constant such that (1 +
x)a  1 + ax � c3x2 for all x � 0 and c4 = c3/(1 + c).
Thus,

bPe
a  1 +

✓

R
n

◆a

Â
i2[k]

✓

Ni
R

◆a

 1 +
✓

R
n

◆a

k1�a
✓

1 � c4
k

dna

◆

 1 + (1 + c)a da
✓

k
na

◆1�a ✓

1 � c4
k

dna

◆

.

Denoting y = (k/na) and choosing c1 and c small
enough such that bPe

a  2, for all sufficiently large n we
get from (26) that

Pa(p)
bPe

a
� 1 � d + y1�a

1 + da(1 + c)ay1�a � (1 + c)ac4da�1y2�a

� 1 � d + y1�a

1 + y1�a � da�1y2�a

� 1 � d

2
+

da�1y2�a

2
,

where the second inequality uses the fact that da(1 +
c)ay1�a � (1 + c)ac4da�1y2�a is negative, c4 > 1 and
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d < 1. Therefore, Pa(p)
bPe

a
� 1 + d if y2�a � 3d2�a, which

completes the proof. ⌅
Note that for a fixed d when k is sufficiently large

depending on d or equivalently d is greater than a
function of k, the lower bounds in Theorem 23 and 24
match (up to constants) the upper bounds of Theorem 9
and 10, respectively. In fact, for a > 1 the gap between
the bounds can be fixed by using the general lower
bound of Theorem 15, which constitutes the dominant
lower bound for small d. The resulting characterization
of the sample complexity of the sample complexity of
the empirical estimator for a > 1 is summarized in the
next corollary.

Corollary 25. Given a > 1, for every d > 0 sufficiently
small (depending only on a) and every k,

S f e
a

a (k, d, 0.9) = Q

 

max

(

k
d

,
k

a�1
a

d2

)!

.

In particular, the sample complexity of the empirical estimator
is optimal up to constant factors when k  d�a.

To obtain a similar characterization for a < 1, we
provide a companion result for Theorem 15.

Theorem 26. Given an 0 < a < 1 and 0 < e < 1, there
exists a constant c depending on a and e such that for every
d > 0 sufficiently small (depending only on a) and every k
sufficiently large (depending only on a)

Sa(k, d, e) � c

 

k
1�a

a

d2

!

.

The proof is very similar to that of Theorem 15 and
is based applying Le Cam’s two point method to the
following distributions p and q over [k]: p1 = 1/k

1�a
a ,

and for x = 2, . . . , k, px = (1 � p1)/(k � 1) and q1 =
(1+ d)p1, and for x = 2, . . . , k, qx = (1� q1)/(k � 1); we
omit the details. The following corollary is immediate by
combining the previous result with the lower bound of
Theorem 24 and the upper bound of Theorem 10.

Corollary 27. Given 0 < a < 1, for every d > 0 sufficiently
small (depending only on a) and every k,

S f e
a

a (k, d, 0.9) = Q

 

max

(

✓

k
d

◆

1
a

,
k

1�a
a

d2

)!

.

In particular, the sample complexity of the empirical estimator
is optimal up to constant factors when 1/2  a < 1 and
k  d

1�2a
a .
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APPENDIX: ESTIMATING POWER SUMS

The broader problem of estimating smooth functionals
of distributions was considered in [41]. Independently
and concurrently with this work, [16] considered es-
timating more general functionals and applied their
technique to estimating the power sums of a distribution
to a given additive accuracy. Letting SP+

a (k) denote the
number of samples needed to estimate Pa(p) to a given
additive accuracy, [16] showed that for a < 1,

SP+
a (k) = Q

 

k1/a

log k

!

, (28)

and [17] showed that for 1 < a < 2,

SP+
a (k)  O

⇣

k2/a�1
⌘

.

In fact, using techniques similar to multiplicative guar-
antees on Pa(p) we show that for SP+

a (k) is a constant
independent of k for all k > 1.

Since Pa(p) > 1 for a < 1, power sum estimation to a
fixed additive accuracy implies also a fixed multiplica-
tive accuracy, and therefore

Sa(k) = Q(SP⇥
a (k))  O(SP+

a (k)),

namely for estimation to an additive accuracy, Rényi
entropy requires fewer samples than power sums. Sim-
ilarly, Pa(p) < 1 for a > 1, and therefore

Sa(k) = Q(SP⇥
a (k)) � W(SP+

a (k)),

namely for an additive accuracy in this range, Rényi
entropy requires more samples than power sums.

It follows that the power sum estimation results
in [16], [17] and the Rényi-entropy estimation results in
this paper complement each other in several ways. For
example, for a < 1,

⇠⇠
W
⇣

k1/a
⌘

 Sa(k) = Q(SP⇥
a (k)) O(SP+

a (k))

O

 

k1/a

log k

!

,

where the first inequality follows from Theorem 22
and the last follows from the upper-bound (28) derived
in [16] using a polynomial approximation estimator. Hence,
for a < 1, estimating power sums to additive and
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multiplicative accuracy require a comparable number of
samples.

On the other hand, for a > 1, Theorems 9 and 21
imply that for non integer a,

⇠⇠
W (k)  SP⇥

a (k)  O (k) ,
while in the Appendix we show that for 1 < a, SP+

a (k)
is a constant. Hence in this range, power sum estimation
to a multiplicative accuracy requires considerably more
samples than estimation to an additive accuracy.

We now show that the empirical estimator requires a
constant number of samples to estimate Pa(p) indepen-
dent of k, i.e., SP+

a (k) = O(1). In view of Lemma 8, it
suffices to bound the bias and variance of the empirical
estimator. Concurrently with this work, similar results
were obtained in an updated version of [16].

As before, we consider Poisson sampling with N ⇠
Poi(n) samples. The empirical or plug-in estimator of
Pa(p) is

bPe
a

def
= Â

x

✓

Nx
n

◆a

.

The next result shows that the bias and the variance of
the empirical estimator are o(1).

Lemma 28. For an appropriately chosen constant c > 0, the
bias and the variance of the empirical estimator are bounded
above as

�

�

�

bPe
a � Pa(p)

�

�

�

 2c max{n�(a�1), n�1/2},

Var[bPa]  2c max{n�(2a�1), n�1/2},

for all n � 1.

Proof. Denoting lx = npx, we get the following bound
on the bias for an appropriately chosen constant c:

�

�

�

bPe
a � Pa(p)

�

�

�

 1
na Â

lx1
|E[Na

x ]� lx|+
1

na Â
lx>1

|E[Na
x ]� lx|

 c
na Â

lx1
lx +

c
na Â

lx>1

⇣

lx + la�1/2
x

⌘

,

where the last inequality holds by Lemma 4 and
Lemma 2since xa is convex in x. Noting Âi lx = n, we
get

�

�

�

bPe
a � Pa(p)

�

�

�

 c
na�1 +

c
na Â

lx>1
la�1/2

x .

Similarly, proceeding as in the proof of Theorem 9, the
variance of the empirical estimator is bounded as

Var[bPa] =
1

n2a Â
x2X

E
h

N2a
x

i

� E[Na
x ]

2

 1
n2a Â

x2X

�

�

�

E
h

N2a
x

i

� l2a
x

�

�

�

 c
n2a�1 +

c
n2a Â

lx>1
l2a�1/2

x .

The proof is completed upon showing that

Â
lx>1

la�1/2
x  max{n, na�1/2}, a > 1.

To that end, note that for a < 3/2

Â
lx>1

la�1/2
x  Â

lx>1
lx  n, a < 3/2.

Further, since xa�1/2 is convex for a � 3/2, the summa-
tion above is maximized when one of the lx’s is n and
the remaining equal 0 which yields

Â
lx>1

la�1/2
x  na�1/2, a � 3/2,

and completes the proof. ⌅
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