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Inference under Information Constraints I:

Lower Bounds from Chi-Square Contraction
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Abstract

Multiple players are each given one independent sample, about which they can only provide limited

information to a central referee. Each player is allowed to describe its observed sample to the referee using

a channel from a family of channels W, which can be instantiated to capture both the communication-

and privacy-constrained settings and beyond. The referee uses the messages from players to solve an

inference problem for the unknown distribution that generated the samples. We derive lower bounds for

sample complexity of learning and testing discrete distributions in this information-constrained setting.

Underlying our bounds is a characterization of the contraction in chi-square distances between the

observed distributions of the samples when information constraints are placed. This contraction is captured

in a local neighborhood in terms of chi-square and decoupled chi-square fluctuations of a given channel,

two quantities we introduce. The former captures the average distance between distributions of channel

output for two product distributions on the input, and the latter for a product distribution and a mixture

of product distribution on the input. Our bounds are tight for both public- and private-coin protocols.

Interestingly, the sample complexity of testing is order-wise higher when restricted to private-coin

protocols.
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I. INTRODUCTION

Large-scale distributed inference has taken a center stage in many machine learning tasks. In these

settings, it is becoming increasingly critical to operate under limited resources at each player, where the

players may be limited in their computational capabilities, communication capabilities, or may restrict the

information about their data to maintain privacy. Our focus in this work will be on the last two constraints

of communication and privacy, and, in general, on local information constraints on each player’s data.

We propose a general framework for distributed statistical inference under local information constraints.

Consider a distributed model where n players observe independent samples X1, . . . , Xn from an unknown

distribution p on X , with player i getting the sample Xi ∈ X . The players are constrained in the amount

of information they can reveal about their observations in the following way: Player i must choose a

channel Wi from a prespecified class of channels W to report its observed sample to a central referee

R1. In particular, player i passes its observation Xi as input to its chosen channel Wi and R receives

the corresponding channel output Yi. The central referee uses messages Y1, . . . , Yn from the players to

complete an inference task such as estimation or testing for the underlying distribution p; Fig. 1 illustrates

the setup.

The family of allowed channelsW serves as an abstraction of the information constraints placed on each

player’s messages to the center. Before moving ahead, we instantiate this abstraction with two important

examples, local communication constraints and local privacy constraints, and specify the corresponding

W’s.

(a) Communication-Limited Inference. Each player can only send ` bits about their sample. This limitation

can be captured by restricting W to W`, the family of channels with output alphabet {0, 1}`, i.e.,

for ` ∈ N, W` := {W : X → {0, 1}`}.
(b) Locally Differentially Private Inference. Each player seeks to maintain privacy of their own data.

We adopt the notion of local differential privacy which, loosely speaking, requires that no output

message from a player reveals too much about its input data. This is captured by restricting W to

Wρ, the family of ρ-locally differentially private (ρ-LDP) channels W : X → {0, 1}∗ that satisfy the

following (cf. [21], [36], [9], [19]): For ρ > 0,

W (y | x1)

W (y | x2)
≤ eρ, ∀x1, x2 ∈ [k], ∀y ∈ {0, 1}∗.

These specific cases of communication and privacy constraints have received a lot of attention in the

literature, and we emphasize these cases separately in our results. Nonetheless, our results are valid

1A channel X to Y is a randomized mapping from X to Y .
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X1 X2 . . . Xn−1 Xn

W1 W2 . . . Wn−1 Wn

Y1 Y2 . . . Yn−1 Yn

p

R

output

Fig. 1. The information-constrained distributed model. In the private-coin setting the channels W1, . . . ,Wn are independent,

while in the public-coin setting they are jointly randomized.

for arbitrary families W and can handle other examples from the literature such as the t-step Markov

transition matrices considered in [10].

Our proposed framework can be applied to inference for p belonging to any family of distributions

P . For simplicity, however, in this work we restrict ourselves to a finite alphabet X and consider the

canonical inference problems of estimating p and testing goodness-of-fit. Motivated by applications in

distributed inference in a resource-constrained setting, we seek algorithms that enable the desired inference

using the least number of samples, or equivalently, the least number of players. Our main results present a

general approach for establishing lower bounds on the sample complexity of performing a given inference

task under the aforementioned information-constrained setting. Underlying our lower bounds is a new

quantitative characterization of contraction in chi-square distance between distributions of observations

due to imposed information constraints.

We allow randomized selection of W ’s from W at each player and distinguish between private-coin

protocols, where this randomized selection is done independently for each player, and public-coin protocols,

where the players can use shared randomness. Interestingly, our chi-square contraction bounds provide a
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quantitative separation of sample complexity for private-coin and public-coin protocols, an aspect hitherto

ignored in the distributed inference literature and which is perhaps the main contribution of our work.

We summarize our results below, after a formal description of our problem setting.

A. Information-constrained inference framework

We begin by recalling standard formulations for learning and testing discrete distributions. Denote by

∆k the set of all distributions over [k] := {1, . . . , k}. In this work, we consider observation alphabet

X = [k] and the set of unknown distributions P to be ∆k, the (k − 1)-dimensional probability simplex.

Let Xn := (X1, . . . , Xn) be independent samples from an unknown distribution p ∈ P . We focus on the

following two inference tasks for p.

Distribution Learning. In the (k, ε)-distribution learning problem, we seek to estimate a distribution p

in ∆k to within ε in total variation distance. Formally, a (randomized) mapping p̂ : X n → P constitutes

an (n, ε)-estimator if

sup
p∈P

Pr
Xn∼p

[ dTV (p̂(Xn),p) > ε ] <
1

12
,

where dTV(p,q) denotes the total variation distance between p and q (see Section II for definition of

total variation distance). Namely, p̂ estimates the input distribution p to within distance ε with probability

at least 11/12. This choice of probability is arbitrary and has been chosen for convenience; see Footnote 8

to see where it is exactly used.

The sample complexity of (k, ε)-distribution learning is the minimum n such that there exists an

(n, ε)-estimator for p. It is well-known that the sample complexity of distribution learning is Θ(k/ε2)

and the empirical distribution attains it.

Identity Testing. In the (k, ε)-identity testing problem, given a known reference distribution q ∈ P ,

we seek to use samples from p to test if p equals q or if it is ε-far from q in total variation distance.

Specifically, an (n, ε)-test is given by a (randomized) mapping T : X n → {0, 1} such that

Pr
Xn∼pn

[ T (Xn) = 1 ] > 11/12 if p = q,

Pr
Xn∼pn

[ T (Xn) = 0 ] > 11/12 if dTV(p,q) > ε.

Namely, upon observing independent samples Xn, the algorithm should “accept” with high constant

probability if the samples come from the reference distribution q and “reject” with high constant probability

if they come from a distribution significantly far from q. Note again that the choice of 1/12 for probability

of error is for convenience.

The sample complexity of (k, ε)-identity testing is the minimum n such that we can find an (n, ε)-test

for p. Clearly, this quantity will depend on the reference distribution q. However, it is customary to
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consider sample complexity over the worst-case q.2 In this worst-case setting, while it has been known

for some time that the most stringent sample requirement arises for q set to the uniform distribution,

a recent result of [27] provides a formal reduction of arbitrary q to the uniform distribution case. It is

therefore enough to restrict q to being the uniform distribution; identity testing for the uniform reference

distribution is termed the (k, ε)-uniformity testing problem. The sample complexity of (k, ε)-uniformity

testing was shown to be Θ
(√
k/ε2

)
in [39].

Moving to our distributed setting, the estimator and the test must now be implemented by the central

referee R using Y1, . . . , Yn, where Yi denotes the output of the channel Wi (chosen by player i from

W) when the input is Xi ∈ X . The message Yi constitutes communication from player i to R. Formally,

we restrict to simultaneous message passing (SMP) protocols for communication, wherein the messages

Y1, . . . , Yn from all players are transmitted simultaneously to the central server, and no other communication

is allowed. We emphasize that “simultaneous” here does not signify that the messages are sent necessarily

at the same time and does not restrict the applicability of our setting to asynchronous communication

networks; but it disallows the message of a given player to be influenced by others’ observations. This

restriction is motivated by applications in distributed inference where the players are users or nodes

connected to a central server R and there is no direct link for communication between these users.

Although one could consider natural extensions to a more general, adaptive communication setting, we

restrict ourselves to the practically relevant SMP setting in this work.

Note that the SMP setting forbids communication between the players, but does allow them to a priori

agree on a strategy to select different mappings Wi from W . In this context, the role of shared randomness

available to the players is important and motivates us to distinguish the settings of private-coin and

public-coin protocols. In fact, as pointed-out earlier, a central theme of this work is to demonstrate the

role of shared randomness available as public-coins in enabling distributed inference. We show that it is

indeed a resource that can greatly reduce the sample complexity of distributed inference.3

Formally, the private- and public-coin SMP protocols are described as follows.

Definition I.1 (Private-coin SMP Protocols). Let U1, . . . , Un denote independent random variables, which

2The sample complexity for a fixed q has been studied under the “instance-optimal” setting (see [48], [11]): while the question

is not fully resolved, nearly tight upper and lower bounds are known.
3The distinction between public-coin and private-coin protocols is not so pronounced when multiple rounds of interaction

between players are allowed. For instance, the first player may share the value of its private coins in the first round of

communication, providing shared randomness. Thus, our results also imply a strict improvement in sample complexity of

distributed inference by allowing multiple rounds of interaction.
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are independent jointly of (X1, . . . , Xn).4 In a private-coin SMP protocol, player i is given access to Ui

and the channel Wi ∈ W is chosen as a function of Ui. The central referee R does not have access to

the realization of (U1, . . . , Un) used to generate the Wi’s.

Definition I.2 (Public-coin SMP Protocols). Let U be a random variable independent of (X1, . . . , Xn).

In a public-coin SMP protocol, all players are given access to U , and they select their respective channels

Wi ∈ W as a function of U . The central referee R is given access to the random variables U as well

and its estimator and test can depend on U .

Hence, in a private-coin SMP protocol, the communication Yi from player i is a (randomized) function of

(Xi, Ui). Note that since both (X1, . . . , Xn) and (W1, . . . ,Wn) are generated from a product distribution,

so is (Y1, . . . , Yn). In contrast, in a public-coin SMP protocol, the communication Yi from player i is

a (randomized) function of (Xi, U) and the Yi’s are not independent. They are, however, independent

conditioned on the shared randomness U .

Remark I.3. Throughout we assume that some randomness is available to generate the output of the

channel Wi given its input Xi. This randomness is assumed to be private as well. This assumption stands

even for public-coin SMP protocols, implying the conditional independence of Yi’s given U mentioned

above, and is important in the context of privacy where the information available to R is seen as “leaked”

and private randomness available only to the players is critical for enabling LDP channels.

The sample complexities of (k, ε)-distribution learning and (k, ε)-uniformity testing using W in the

distributed setting can now be defined analogously to the centralized setting by replacing Xn with

(Y n, Un) and (Y n, U), respectively, for public-coin and private-coin protocols. Since we are restricting

to one sample per player, the sample complexity of these problems corresponds to the minimum number

of players required to solve them. Our main objective in this line of work is the following:

Characterize the sample complexity for inference tasks using W for private- and public-coin protocols.

B. Summary of our results and contributions

We are initiating a systematic study of the distributed inference problem described in the previous

section. In this paper, the first in our series, we shall focus on lower bounds. As is well-known from

data-processing inequalities of information theory, the output distributions Wp and Wq for channel W

4In this work, we are not concerned with the amount of private or public randomness used. Thus, we can assume Ui’s to be

discrete random variables, distributed uniformly over a domain of sufficiently large cardinality.
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are “closer” than the corresponding input distributions p and q. At a high level, we derive lower bounds

for distributed inference by providing a quantitative characterization of this reduction in distance for the

chi-square distance, which we term chi-square contraction.

More technically, we consider probability distributions obtained by perturbing a nominal distribution.

These perturbations are chosen so that in order to accomplish the given inference task, an algorithm must

roughly distinguish the perturbed elements. In particular, we relate the difficulty of inference problems to

the average chi-square distance between the perturbed distributions to the nominal distribution and the

chi-square distance of the average perturbed distribution to the nominal distribution. For our distributed

inference setting, we need to bound these two quantities for distributions induced at the outputs of the

chosen channels from W .

We provide bounds for these two quantities for channel output distributions in terms of two new

measures of average distance in a neighborhood: the chi-square fluctuation for the average distance and

the decoupled chi-square fluctuation for the distance to the average. The former notion has appeared

earlier in the literature, albeit in different forms, and recovers known bounds for distributed distribution

learning problems. The second quantity, the decoupled chi-square fluctuation, is the main technical tool

introduced in this work, and leads to new lower bounds for distributed identity testing.

Observe that the general approach sketched above can be applied to any perturbation. We obtain lower

bounds for public-coin protocols by a minmax evaluation of these bounds where the minimum is over

perturbations and the maximum is over the choice of channels from W . In contrast, we show that the

performance of private-coin protocols is determined by a maxmin evaluation of these bounds. Remarkably,

we establish that the maxmin evaluation is significantly smaller than the minmax evaluation, leading to a

quantitative separation in performance of private-coin and public-coin protocols for testing problems.

This separation has a heuristic appeal: On the one hand, in public-coin protocols players can use shared

randomness to sample channels that best separate the current point in the alternative hypothesis class

from the null. On the other hand, for a fixed private-coin protocol, one can identify a perturbation in

a “direction” where the current choice of channels will face difficulty in distinguishing the perturbed

distributions. Further, we remark that this separation only holds for testing problems. This, too, makes

sense in light of the previous heuristic since learning problems require us to distinguish a neighborhood

around the current hypothesis, without any preference for a particular “direction” of perturbation.

We develop these techniques systematically in Section III and Section IV. We begin by recasting the

lower bounds for standard, centralized setting in our chi-square fluctuation language in Section III before

extending these notions to the distributed setting in Section IV. Finally, we evaluate our general lower

bounds for distribution learning and identity testing problems.
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Our lower bounds are obtained as a function of a channel dependent matrix H(W ). Specifically, for

each channel W ∈ W , define the k/2× k/2 positive semidefinite matrix H(W ) as:

H(W )i1,i2 :=
∑

y∈Y

(W (y | 2i1 − 1)−W (y | 2i1))(W (y | 2i2 − 1)−W (y | 2i2))∑
x∈[k]W (y | x)

, i1, i2 ∈ [k/2] . (1)

This matrix roughly captures the ability of the channel output to distinguish between even and odd inputs.

Our bounds rely on the Frobenius norm ‖H(W )‖F and the nuclear norm ‖H(W )‖∗ of the matrix H(W );

see Section II for definitions. In effect, our results characterize the informativeness of a channel W for

distributed inference in terms of these norms of H(W ), and our final bounds for sample complexity

involve the maximum of these norms over W in W .

TABLE I

CHI-SQUARE CONTRACTION LOWER BOUNDS FOR LOCAL INFORMATION-CONSTRAINED LEARNING AND TESTING.

Learning Testing

Public-Coin Private-Coin Public-Coin Private-Coin

General k
ε2 · k

maxW∈W‖H(W ))‖∗

√
k
ε2 ·

√
k

maxW∈W‖H(W )‖F

√
k
ε2 · k

maxW∈W‖H(W )‖∗

Communication k2

2`ε2

√
k
ε2 ·

√
k
2`

√
k
ε2 · k2`

Privacy k2

ρ2ε2

√
k
ε2 ·

√
k
ρ2

√
k
ε2 · kρ2

We summarize in Table I our sample complexity lower bounds for the (k, ε)-distribution learning

and (k, ε)-identity testing problems using W for public- and private-coin protocols. The form here is

only indicative; formal statements for results for general channels are available in Corollaries IV.13,

IV.16 and IV.20 in Section IV and implications for specific W are given in Section V, with results on

communication-limited setting in Theorems V.2 to V.4 and LDP setting in Theorems V.6 to V.8. The

terms in each cell denotes the Ω(·) lower bound obtained by our approach. The first row contains our

lower bounds for a general family W . For comparison, we recall in the second row the results for the

standard, centralized setting, and highlight the change in sample complexity lower bound as a multiplicative

factor. Note that we have the same factor k/(maxW∈W‖H(W )‖∗) increase in the sample complexity for

(k, ε)-distribution learning for both private- and public-coin protocols. We obtain the same factor increase

for identity testing using private-coin protocols. On the other hand, we show that the factor increase for

identity testing using public-coin protocols is
√
k/(maxW∈W‖H(W )‖F ), which in general can be much

smaller. Clearly, in the absence of information constraints, i.e., when Xj = Yj , all these factors are one.
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As a corollary of these general bounds, we obtain Ω(k2/(ε22`)) and Ω(k2/(ε2ρ2)) lower bounds for

distribution learning using W` (the communication-limited setting) and Wρ (the LDP setting), respectively.

These bounds have been previously obtained in other works as well and are known to be tight.

For identity testing, we obtain Ω(k/(ε2
√

2`)) and Ω(k/(ε2ρ2)) lower bounds using W` and Wρ,

respectively, for public-coin protocols.

Finally, for identity testing using private-coin protocols, we obtain Ω(k3/2/(ε22`)) and Ω(k3/2/(ε2ρ2))

lower bounds using W` and Wρ, respectively.

In the subsequent papers in this series ([3], [1]), we will present public-coin and private-coin protocols

to match the bounds in the communication-limited, and LDP settings respectively, thereby establishing

the optimality of these lower bounds.

C. Prior work

The statistical tasks of distribution learning and identity testing considered in this work have a rich

history. The former requires no special techniques other than those used in parametric estimation problems

with finite-dimensional parameter spaces, which are standard textbook material. The identity testing

problem is the same as the classic goodness-of-fit problem. The latter goes beyond the discrete setting

considered here, but often starts with a quantization to a uniform reference distribution (see [33], [37]).

The focus in this line of research has always been on the relation of the performance to the support size

(cf. [37]), with particular interest on the large-support and small-sample case where the usual normal

approximations of statistics do not apply (cf. [38], [8]). Closer to our setting, Paninski [39] (see, also, [48])

established the sample complexity of uniformity testing, showing that it is sublinear in k and equal to

Θ(
√
k/ε2). As mentioned earlier, in this work we are following this sample complexity framework that has

received attention in recent years. We refer the reader to surveys [17], [41], [14], [7] for a comprehensive

review of recent results on discrete distribution learning and testing.

Distributed inference problems, too, have been studied extensively, although for the asymptotic, large-

sample case and for simpler hypothesis classes. There are several threads here. Starting from Tsitsiklis [47],

decentralized detection has received attention in the control and signal processing literature, with main

focus on information structure, likelihood ratio tests and combining local decisions for global inference.

In a parallel thread, distributed statistical inference under communication constraints was initially studied

in the information theory community [5], [28], [29], with the objective to characterize the asymptotic

error exponents as a function of the communication rate. Recent results in this area have focused on

more complicated communication models [52], [51] and, more recently, on the minimum communication

requirements for large sample sizes [42], [6].
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Our focus is different from that of the works above. In our setting, independent samples are not available

at one place, but instead information constraints are placed on individual samples. This is along the line

of recent work on distributed mean estimation under communication constraints [56], [26], [43], [13],

[53], although some of these works consider more general communication models than what we allow.

The distribution learning problem under communication constraints has been studied in [18]. However, in

that paper the authors consider a blackboard model of communication and strive to minimize the total

number of bits communicated, without placing any restriction on the number of bits per sample. A variant

of the distribution testing problem is considered in [24] where players observe multiple samples and

communicate their local test results to the central referee who is required to use simple aggregation rules

such as AND. Interestingly, such setups have received a lot of attention in the sensor network literature

where a fusion center combines local decisions using simple rules such as majority; see [49] for an early

review.

Closest to our work and independent of it is [30], which studies the (k, ε)-distribution learning problem

using ` bits of communication per sample. It was shown that the sample complexity for this problem is

Θ(k2/(ε22`)). This paper in turn uses a general lower bound from [31], [32], which yields lower bounds

for distributed parametric estimation under suitable smoothness conditions. For this special case, our

general approach reduces to a similar procedure as [32], which was obtained independently of our work.

Distribution learning under LDP constraints has been studied in [19], [35], [54], [4], [50], all providing

sample-optimal schemes with different merits. Our lower bound when specialized for this setting coincides

with the one derived in [19].

In spite of this large body of literature closely related to our work, there are two distinguishing

features of our approach. First, the methods for deriving lower bounds under local information constraints

in all these works, while leading to tight bounds for distribution learning, do not extend to identity

testing. In fact, our decoupled chi-square fluctuation bound fills this gap in the literature. We remark that

distributed uniformity testing under LDP constraints has been studied recently in [44], however the lower

bounds derived there are significantly weaker than what we obtain. Second, our approach allows us to

prove a separation between the performances of public-coin and private-coin protocols. This qualitative

lesson – namely that shared public randomness reduces the sample complexity – is in contrast to the

prescription of [47] which showed that shared randomness does not help in distributed testing when the

underlying problem is that of simple hypothesis testing.5

5Identity testing is a composite hypothesis testing problem with null hypothesis q and alternative comprising all distributions

p that are ε-far from q in total variation distance.
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We observe that the unifying treatment based on chi-square distance is reminiscent of the lower bounds

for learning under statistical queries (SQ) derived in [23], [22], [45]. On the one hand, the connection

between these two problems can be expected based on the relation between LDP and SQ learning

established in [36]. On the other hand, this line of work only characterizes sample complexity up to

polynomial factors. In particular, it does not lead to lower bounds we obtain using our decoupled chi-square

fluctuation bounds.

We close with a pointer to an interesting connection to the capacity of an arbitrary varying channel

(AVC). At a high level, our minmax lower bound considers the worst perturbation for the best channel.

This is semantically dual to the expression for capacity of an AVC with shared randomness, where the

capacity is determined by the maxmin mutual information, with maximum over input distributions and

minimum over channels (cf. [16]).

D. Organization

We specify our notation in Section II and recall some basic inequalities needed for our analysis. This is

followed by a review of the existing lower bounds for sample complexity of distribution learning and identity

testing in Section III. In doing so, we introduce the notions of chi-square fluctuations which will be central

to our work, and cast existing lower bounds under our general formulation. In Section IV, we generalize

these notions to capture the information-constrained setting. Further, we apply our general approach

to distribution learning and identity testing in the information-constrained setting. Then, in Section V,

we instantiate these results to the settings of communication-limited and LDP inference and obtain our

order-optimal bounds for testing and learning under these constraints. We conclude with pointers to

schemes matching our lower bounds which will be reported in the subsequent papers in this series.

II. NOTATION AND PRELIMINARIES

Throughout this paper, we denote by log2 the logarithm to the base 2 and by log the natural logarithm.

We use standard asymptotic notation O(·), Ω(·), and Θ(·) for complexity orders.

Let [k] be the set of integers {1, 2, . . . , k}. Given a fixed (and known) discrete domain X of cardinality

|X | = k, we write ∆k for the set of probability distributions over X , i.e.,

∆k = { p : [k]→ [0, 1] : ‖p‖1 = 1 } .

For a discrete set X , we denote by uX the uniform distribution on X and will omit the subscript when

the domain is clear from context.

DRAFT



12

The total variation distance between two probability distributions p,q ∈ ∆k is defined as

dTV(p,q) := sup
S⊆X

(p(S)− q(S)) =
1

2

∑

x∈X
|p(x)− q(x)| ,

namely, dTV(p,q) is equal to half of the `1 distance of p and q. In addition to total variation distance, we

will extensively rely on the chi-square distance dχ2(p,q) and Kullback–Leibler (KL) divergence D(p‖q)

between distributions p,q ∈ ∆k, defined as

dχ2(p,q) :=
∑

x∈X

(p(x)− q(x))2

q(x)
, and

D(p‖q) :=
∑

x∈X
p(x) log

p(x)

q(x)
.

Using concavity of logarithms and Pinsker’s inequality, we can relate these two quantities to total variation

distance as follows:

2 · dTV(p,q)2 ≤ D(p‖q) ≤ dχ2(p,q) . (2)

In our results, we will rely on the following norms for matrices. Given a real-valued matrix A =

(aij)(i,j)∈[m]×[n] with singular values (σk)1≤k≤min(m,n), the Frobenius norm (or Schatten 2-norm) of A is

given by

‖A‖F =




m∑

i=1

n∑

j=1

a2
ij




1/2

=




min(m,n)∑

k=1

σ2
k




1/2

=
√

TrATA .

Similarly, the nuclear norm (also known as trace or Schatten 1-norm) of A is defined as

‖A‖∗ =

min(m,n)∑

k=1

σk = Tr
√
ATA ,

where
√
ATA is the (principal) square root of the positive semi-definite matrix ATA. For any A, the

Frobenius and nuclear norms satisfy the following inequality

‖A‖F ≤ ‖A‖∗ ≤
√

rankA · ‖A‖F , (3)

which can be seen to follow, for instance, from an `1/`2 inequality and Cauchy–Schwarz inequality.

Finally, the spectral radius of complex square matrix A ∈ Cn×n with eigenvalues λ1, . . . , λn, is defined

as ρ(A) := max1≤i≤n |λi|.

DRAFT



13

III. PERTURBED FAMILIES AND CHI-SQUARE FLUCTUATIONS

To build basic heuristics, we first revisit the derivation of lower bounds for sample complexity of

(k, ε)-distribution learning and (k, ε)-identity testing. As mentioned previously, for the latter it suffices to

derive a lower bound for (k, ε)-uniformity testing. For brevity, we will sometimes refer to distribution

learning as learning and identity testing as testing. We review both proofs in a unifying framework which

we will extend to our information-constrained setting in the next section.6

Lower bounds for both learning and testing can be derived from a local view of the geometry of

product distributions around the uniform distribution. Denote by un the n-fold product distribution with

each marginal given by u, the uniform distribution on [k]. A typical lower bound proof entails finding an

appropriate family of distributions close to u for which it is information-theoretically difficult to solve

the underlying problem. We call such a family a perturbed family and define it next.

Definition III.1 (Perturbed Family). For 0 < ε < 1 and a given k-ary distribution p, an ε-perturbed

family around p is a finite collection P of distributions such that, for all q ∈ P , dTV(q,p) ≥ ε.

When ε is clear from context, we simply use the phrase perturbed family around p.

As we shall see below, the bottleneck for learning distributions, which is a parametric estimation

problem, arises from the difficulty in solving a multiple hypothesis testing problem with hypotheses given

by the elements of a perturbed family around u. Using Fano’s inequality, we can show that this difficulty

is captured by the average KL divergence between u and the elements of the perturbed family. In fact,

for a unified treatment, we shall simply bound KL divergences by chi-square distances. This motivates

the following definition.

Definition III.2 (Chi-square Fluctuation). Given a k-ary distribution p and a perturbed family P around

p, the chi-square fluctuation of P is given by

χ2(P) :=
1

|P|
∑

q∈P
dχ2(q,p).

From (2), it follows that the average KL divergence mentioned above is upper bounded by the chi-square

fluctuation of P , which will be used to obtain a lower bound for sample complexity of learning in the

next section.

On the other hand, the bottleneck for testing, which is a composite hypothesis testing problem, arises

from the difficulty in solving the binary hypothesis testing problem with un as one hypothesis and a

6Although we restrict ourselves to the discrete setting here, the framework extends in a straightforward manner to more general

parametric families.
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uniform mixture of the n-fold product of elements of the perturbed family as the other. This difficulty is

captured by the total variation distance between these two distributions on [k]n, for which a simple upper

bound is
√
n ·
√
χ2(P). However, this bound turns out to be far from optimal.

Instead, an alternative bound derived using a recipe of Ingster [34] (the form here is from Pollard [40])

was shown to be tight in Paninski [39]. To understand this bound, we let the perturbed family P be

parameterized by a discrete set Z , i.e., for each z ∈ Z , there is a pz ∈ P . We will specify the choice of

Z shortly. Denoting by δz ∈ Rk the normalized perturbation with entries given by

δz(x) =
pz(x)− p(x)

p(x)
, x ∈ [k] .

For Z uniform over P , we can re-express χ2(P) as

χ2(P) = E[dχ2(pZ ,p)] = EZ
[
‖δZ‖22

]
, (4)

where ‖δZ‖22 is the second moment of the random variable δz(X) (for X drawn from p). Following [34],

[40], we can essentially replace n · χ2(P) in the previously mentioned upper bound by a quantity we

term the decoupled chi-square fluctuation of P . This quantity appears by using the decoupling expression

δ2
Z = δZδZ′ , as will be seen below, and is defined next.

Definition III.3 (Decoupled Chi-square Fluctuation). Given a k-ary distribution p and a perturbed family

P = { pz : z ∈ Z } around p, the n-fold decoupled chi-square fluctuation of P is given by

χ(2)(Pn) := logEZZ′ [exp (n · 〈δZ , δZ′〉)],

where 〈δz, δz′〉 denotes the correlation inner product EX [δZ(X)δZ′(X)] for X drawn from p and the

outer expectation is over Z distributed uniformly over Z and Z ′ an independent copy of Z.

While the quantities n · χ2(P) and χ(2)(Pn) are implicit in previous work. The abstraction here allows

us to have a clear geometric view and lends itself to the more general local information-constrained

setting. For completeness, we review the proofs of existing lower bounds using our chi-square fluctuations

terminology.

In the sections below, we will present the proofs of lower bounds for sample complexity of learning and

testing using a specific perturbed family P and bring out the role of χ2(P) and χ(2)(Pn) in these bounds.

In particular, both bounds will be derived using the ε-perturbed family around u due to Paninski [39],

consisting of distributions parameterized by z ∈ Z = {−1,+1}k/2 and given by

pz =
1

k

(
1 + 2εz1, 1− 2εz1, . . . , 1 + 2εzt, 1− 2εzt, . . . , 1 + 2εz k

2
, 1− 2εz k

2

)
, z ∈ {−1,+1} k2 . (5)
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The normalized perturbations for this perturbed family are given by

δz(x) =





2εzi, x = 2i− 1,

−2εzi, x = 2i,

i ∈ [k/2].

Note that for any x ∈ [k], δz(x) = ±2ε, and the chi-square fluctuation is given by

χ2(P) = 4ε2. (6)

A. Chi-square fluctuation and the learning lower bound

For learning, we consider the multiple hypotheses testing problem where the hypotheses are pz,

z ∈ {−1,+1}k/2, given in Eq. (5). Specifically, denote by Z the random variable distributed uniformly

on Z = {−1,+1}k/2 and by Y n the random variable with distribution pnZ given Z. We can relate the

accuracy of a probability estimate to the probability of error for the multiple hypothesis testing problem

with hypotheses given by pz using the standard Fano’s method (cf. [55]). In particular, we can use a

probability estimate p̂ to solve the hypothesis testing problem by returning as Ẑ a z ∈ {−1, 1}k/2 that

minimizes dTV(pẑ, p̂). The difficulty here is that the total variation distance dTV(pz,pz′) may not be

Ω(ε), and therefore, an (n, ε)-estimator may not return the correct hypothesis.

One way of circumventing this difficulty is to restrict to a perturbed family where pairwise-distances

are Ω(ε). Note that for the perturbed family in Eq. (5)

dTV(pz,pz′) = dist
(
z, z′

)
· 2ε

k
, (7)

where dist(z, z′) is the Hamming distance. This simple observation allows us to convert the problem

of constructing a “packing” in total variation distance to that of constructing a packing in Hamming

space. Indeed, a standard Gilbert–Varshamov construction of packing in Hamming space yields a subset

Z0 ⊂ {−1,+1}k/2 with |Z0| ≥ 2ck such that dist(z, z′) = Ω(k) for every z, z′ in Z0. Using Fano’s

inequality to bound the probability of error for this new perturbed family, we can relate the sample

complexity of learning to I(Z ∧ Y n). However, when later extending our bounds to the information-

constrained setting, this construction would create difficulties in bounding I(Z ∧ Y n) for public-coin

protocols. We avoid this complication by relying instead on a slightly modified form of the classic Fano’s

argument from [20]; this form of Fano’s argument was used in [32] as well to obtain a lower bound for

the sample complexity of learning under communication constraints.

Specifically, in view of Eq. (7), it is easy to see that for an estimate p̂ such that pn(dTV(p, p̂) >

ε/3) ≤ 1/12 for all p, we must have

Pr

[
dist

(
Z, Ẑ

)
>
k

6

]
≤ 1

12
.
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On the other hand, the proof of Fano’s inequality in [15] can be extended easily to obtain (see, also, [20])

Pr

[
dist

(
Z, Ẑ

)
>
k

6

]
≥ 1− I(Z ∧ Y n) + 1

log2 |Z| − log2Bk/6
, (8)

where Bt denotes the cardinality of Hamming ball of radius t. Noting that

log2Bk/6 ≤
k

2
· h
(

1

3

)
, (9)

and combining the bounds above, we obtain

I(Z ∧ Y n) + 1 ≥ 11k

12 · 2 · (1− h(1/3))
≥ k

30
. (10)

Therefore, to obtain a lower bound for sample complexity it suffices to bound I(Z ∧ Y n) from above. It

is in this part that we bring in the role of chi-square fluctuations.

Indeed, we have

I(Z ∧ Y n) = min
Q∈∆kn

E[D(pnZ‖Q)]

≤ E[D(pnZ‖un)]

= nE[D(pZ‖u)]

≤ nE[dχ2(pZ ,u)]

= n · χ2(P) , (11)

where the last inequality uses D(p‖q) ≤ dχ2(p,q). Combining Eq. (10) and Eq. (11), we obtain that

n = Ω
(
k/χ2(P)

)
, yielding the desired lower bound for sample complexity.

In fact, the argument above is valid for any perturbation with desired pairwise minimum total variation

distance, namely any perturbed family satisfying an appropriate replacement for Eq. (9). In particular, it

suffices to impose the following condition:

max
z∈Z

∣∣∣∣
{
z′ ∈ Z : dTV(pz,pz′) ≤

ε

3

} ∣∣∣∣ ≤ Cε . (12)

The foregoing arguments lead to the next result.

Lemma III.4. For 0 < ε < 1 and a k-ary distribution p, let P be an ε-perturbed family around p

satisfying Eq. (12). Then, the sample complexity of (k, ε/3)-distribution testing must be at least

Ω

(
log |P| − logCε

χ2(P)

)
.

When P is set to be Paninski’s perturbed family given in Eq. (5), we have |P| = 2k/2, Cε = 2(1−h(1/3))k/2,

and χ2(P) = 4ε2 from Eq. (6). Thus, Lemma III.4 recovers the Ω(k/ε2) lower bound for sample complexity

of learning.
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B. Decoupled chi-square fluctuation and the testing lower bound

As is the case with distribution learning, the pairwise hypothesis testing problems emerging from the

perturbed family P do not yield the desired dependence of sample complexity on k. The bottleneck is

obtained by realizing that the actual problem we end up solving is a composite binary hypothesis testing

where the null hypothesis is given by un and the alternative can be any of the pnz , z ∈ {−1,+1}k/2. In

particular, any test for uniformity using n samples will also constitute a test for un versus E[pnZ ] for

every random variable Z. Thus, another aspect of the geometry around un that enters our consideration

is the distance between un and E[pnZ ].

Using Pinsker’s inequality and convexity of KL divergence, we can bound this quantity as follows:

dTV(E[pnZ ] ,un) ≤
√

1

2
D
(
E
[
pnZ
]
‖un

)

≤
√

1

2
E
[
D
(
pnZ‖un

)]

=

√
n

2
E[D(pZ‖u)]

≤
√
n

2
· χ2(P)

=
√

2nε2, (13)

where the last identity is by Eq. (6). Thus, this upper bound on the distance between un and E[pnZ ] in

terms of the chi-square fluctuation only yields a sample complexity lower bound of Ω(1/ε2), much lower

than the Ω(
√
k/ε2) bound that we strive for.

Instead, we bound this distance in terms of the decoupled chi-square fluctuation χ(2)(Pn) using a result

from [40] to handle chi-square distances with respect to a reference product distribution. This crucial

result will allow us to handle local information constraints later; we include a proof in the appendix for

completeness.

Lemma III.5. Consider a random variable θ such that for each θ = ϑ the distribution Qnϑ is defined as

Q1,ϑ × · · · ×Qn,ϑ. Further, let Pn = P1 × · · · × Pn be a fixed product distribution. Then,

χ2(Eθ[Qnθ ], Pn) = Eθθ′




n∏

j=1

(1 +Hj(θ, θ
′))


− 1,

where θ′ is an independent copy of θ, and with δϑj (Xj) = (Qj,ϑ(Xj)− Pj(Xj))/Pj(Xj),

Hj(ϑ, ϑ
′) :=

〈
δϑj , δ

ϑ′

j

〉
= E

[
δϑj (Xj)δ

ϑ′

j (Xj)
]
,

where the expectation is over Xj distributed according to Pj .
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Proceeding as in [40], we obtain the following result which will be seen to yield the desired lower

bound for sample complexity.

Lemma III.6. For 0 < ε < 1 and a k-ary distribution p, let P be an ε-perturbed family around p. Then,

the sample complexity n = n(k, ε) for (k, ε)-identity testing with reference distribution p must satisfy

χ(2)(Pn) ≥ c ,

for some constant c > 0 depending only on the probability of error.

The proof is relegated to the appendix.

In particular, going back to Paninski’s perturbed family of Eq. (5), observe that

〈δZ , δZ′〉 =
8ε2

k

k

2∑

i=1

ZiZ
′
i =

8ε2

k

k

2∑

i=1

Vi,

where V1, . . . , Vk/2 are independent and distributed uniformly over {−1,+1}, so that we can bound the

decoupled chi-square fluctuation using Hoeffding’s Lemma (cf. [12]) as

χ(2)(Pn) = logE
[
e

8nε2

k

∑ k
2
i=1 Vi

]
≤ 16n2ε4

k
. (14)

Thus, Lemma III.6 implies that Ω(
√
k/ε2) samples are needed for testing (in particular, for uniformity

testing).

We summarize the geometry captured by the bounds derived in this section in Fig. 2. This geometry

is a local view in the neighborhood of the uniform distribution obtained using the perturbed family P
in Eq. (5). Each pz is at a total variation distance ε from u. The mixture distribution we use is obtained

by uniformly choosing the perturbation δz over z ∈ {−1,+1}k/2.

The chi-square fluctuation of P is O(nε2) whereby the average total variation distance to un is O(
√
nε).

On the other hand, the decoupled chi-square fluctuation of P is O(n2ε4/k) and thus the total variation

distance of the mixture of pnz to un is O(nε2/
√
k). Note that for n� k/ε2, the total variation distance

between the mixture E[pnZ ] and un is much smaller than the average total variation distance.

IV. RESULTS: THE CHI-SQUARE CONTRACTION BOUNDS

We now extend our notions of chi-square fluctuation and decoupled chi-square fluctuation to the

information-constrained setting. We follow the same notation as the previous section. Recall that in the

information-constrained setting each player sends information about its sample by choosing a channel

from a family W to communicate to the central referee R. The perturbed family will now induce a

distribution on the outputs of the chosen channels W1, . . . ,Wn. The difficulty of learning and testing

DRAFT



19

u un

ε O(
√
n · ε)

O

(
nε2√
k

)

Fig. 2. The figure depicts the distances in the probability simplex on the left and the n-fold distributions on the right. The

mixture distribution E[pn
Z ] is marked in red.

problems will thus be determined by chi-square fluctuations for this induced perturbed family, extending

the results of the previous section to the information-constrained setting. The difficulty of inference gets

amplified by information constraints since the induced distributions are closer than the original ones and

the chi-square fluctuation decreases.

As one of our main results in this section, we provide a bound for chi-square fluctuations of the induced

perturbed family corresponding to Paninski’s perturbed family of Eq. (5), for a given W . Underlying these

bounds is a precise characterization of the contraction in chi-square fluctuation owing to information

constraints. One can view this as a bound for the minmax chi-square fluctuation for an induced perturbed

family, where the minimum is taken over perturbed families and the maximum over all channels in W .

We will see that for public-coin protocols, the bottleneck is indeed captured by this minmax chi-square

fluctuation.

On the other hand, for private-coin protocols the bottleneck can be tightened further by designing a

perturbation specifically for each choice of channels from W . In other words, in this case we can use a

bound for maxmin chi-square fluctuation. Another main result of this section, perhaps our most striking

one, is a tight bound for this maxmin chi-square fluctuation for the aforementioned induced perturbed

family. This bound turns out to be more restrictive than the minmax chi-square fluctuation bound and leads

to the separation for private- and public-coin protocols for the cases W =W` and W =Wρ considered

in the next section.

We begin by noting that Lemma III.4 and Lemma III.6 extend to the information-constrained setting.

Throughout we assume that the family of channels W consists of channels W : X → Y where the input

alphabet is X = [k], the output alphabet Y is finite, and the perturbed family P over X is parameterized

as { pz : z ∈ Z }. Our extension involves the notions of an induced perturbed family and its chi-square

fluctuations, which is simply the family of distributions induced at the output for input distributions pz;
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formal definition follows.

For an input distribution p on X , denote by pW the output distribution for channel W given by

pW (y) :=
∑

x

p(x)Wj(y | x) = Ep[W (y | X)].

Definition IV.1. For a perturbed family P and channels Wn = (W1, . . . ,Wn) ∈ Wn, the induced

perturbed family PWn

comprises distributions pW
n

z on Yn given by

pW
n

z (yn) =

n∏

i=1

pWz (yi)

To extend the notion of chi-square fluctuations to induced perturbed families, we need to capture the

corresponding notion of normalized perturbation. Then, for δ(x) := (q(x)− p(x))/p(x), we have

qW (y)− pW (y)

pW (y)
=
∑

x∈X

(q(x)− p(x))W (y | x)

pW (y)
=

∑
x p(x)W (y | x)δ(x)∑
x′ p(x)W (y | x)

.

Thus, the normalized perturbation for the induced perturbed family is given by

δWZ (y) =
1

pW (y)
· Ep[δZ(X)W (y | X)] , y ∈ Y .

Remark IV.2. An important observation that will be used in our proofs later is that the random variable

δWZ can be obtained as a (W -dependent) linear transform of δZ .

The notion of chi-square fluctuations of PWn

extends the earlier definitions to product distributions

(not necessarily identically distributed as earlier).

Definition IV.3. Consider a perturbed family P = {pz : z ∈ Z} and a family of channels W . The

induced chi-square fluctuation of P for W ∈ W is given by

χ2 (W | P) := EZ
[
‖δWZ ‖

2

2

]
,

where Z is distributed uniformly over Z and ‖δWz ‖
2
2 = EY∼pW

[
δWz (Y )2

]
. The n-fold induced decoupled

chi-square fluctuation of P for Wn ∈ Wn is given by

χ(2) (Wn | P) := logEZZ′
[

exp

(
n∑

i=1

〈
δWi

Z , δWi

Z′

〉)]
,

where
〈
δWz , δ

W
z′
〉

= EY∼pW
[
δWz (Y )δWz′ (Y )

]
.

Our definitions until now have computed fluctuations by using a uniform distribution on the perturbed

family P = {pz : z ∈ Z}. As can be seen from the results of the previous section, this is not required and
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all the results above extend to any distribution over Z. We can consider a distribution ζ over Z, which

need not even be independent across coordinates Zis. For brevity, we will denote chi-square fluctuations

for P when the expectation is computed using ζ by χ2 (W | Pζ) and χ(2) (Wn | Pζ); when ζ is uniform,

we omit the subscript ζ in P .

Moreover, in our definition of ε-perturbed family, we required dTV(pz,p) to be bounded below by ε

for each z ∈ Z . This requirement is imposed in view of Eq. (32) where it leads to the upper bound on

probability of error. However, a nearly identical result can be obtained even if we relax this requirement

to hold only with large probability. This motivates the next definition.

Definition IV.4 (Almost ε-Perturbation). Consider 0 < ε < 1, a family of distributions P = {pz, z ∈ Z},
and a distribution ζ on Z . The pair Pζ = (P, ζ) is an almost ε-perturbation (around p) if

Pr[dTV(pZ ,p) ≥ ε] ≥ α,

for some α ≥ 1/10. We denote the set of all almost ε-perturbations by Υε.

The choice of 1/10 in the definition above is used to match the probability of error requirement of

1/12 in our PAC formulations given in Section I; see Eq. (35) and Footnote 8 for justification for these

choices.

The flexibility offered by approximate perturbations is required to obtain our results for private-coin

protocol; in particular, it will be used to show the separation between the performance of private- and

public-coin protocols. Our final definition captures the minmax and maxmin notions of induced decoupled

chi-square fluctuation, which will play a central role in our sample complexity bounds for testing.

Definition IV.5 (Minmax and Maxmin Chi-square Fluctuations). For a family of channels W , the

(n, ε)-minmax decoupled chi-square fluctuation for W is given by

χ(2)(Wn, ε) := inf
Pζ∈Υε

sup
Wn∈Wn

χ(2) (Wn | Pζ) ,

and the (n, ε)-maxmin decoupled chi-square fluctuation for W is given by

χ(2)(Wn, ε) := sup
Wn∈Wn

inf
Pζ∈Υε

χ(2) (Wn | Pζ) ,

where the infimum is over all almost ε-perturbations Pζ .

With these definitions at our disposal, the proofs of Lemma III.4 and Lemma III.6 extend readily to the

information-constrained setting. Note that the desired extension to product distributions for Lemma IV.8

requires Lemma III.5 in its full generality, in contrast to the earlier usage in the proof of Lemma III.6.
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Further, we observe that when obtaining bounds for public-coin protocols we can restrict ourselves to a

smaller family of channels than W . The following notions are needed to state our results in full strength.

Definition IV.6. For a family of channels W , denote by W its convex hull, namely the set of channels

W = { θW1 + (1− θ)W2 : θ ∈ [0, 1],W1,W2 ∈ W }. A generator family for W , denoted W0, is a

minimal subset of W whose convex hull is W .

Note that the channels in W can be generated from and can generate, respectively, channels in W0 and

W using randomness.

A. General chi-square fluctuation bounds

The bounds presented in this section are obtained by relating notions of chi-square fluctuation for

W developed above to average distances in a neighborhood of the probability simplex. We present our

bounds for learning and testing problems, but the recipe extends to many other inference problems. In the

next section, we provide specific evaluations of these bounds which use the perturbed family of Eq. (5),

and its variant, and are tailored for the discrete distribution inference problems of learning and testing.

We begin with our bound for learning, which is a generalization of Lemma III.4 to the information-

constrained setting; the proof is provided in the appendix.

Lemma IV.7 (Chi-square fluctuation bound for learning). For 0 < ε < 1 and a k-ary distribution p, let P
be an ε-perturbed family around p satisfying Eq. (12). Then, the sample complexity of (k, ε)-distribution

learning using W for public-coin protocols is at least

Ω

(
log |P| − logCε

maxW∈W0
χ2(W | P)

)
.

Similarly, the proof of Lemma III.6 extends to the information-constrained setting. Once again, we

provide the proof in the appendix.

Lemma IV.8 (Minmax decoupled chi-square fluctuation bound for testing). For 0 < ε < 1 and a

k-ary reference distribution p, the sample complexity n = n(k, ε) of (k, ε)-identity testing using W for

public-coin protocols must satisfy

χ(2)(Wn
0 , ε) ≥ c , (15)

for some constant c > 0 depending only on the probability of error.

Remark IV.9. Using calculations similar to Eq. (13), we can obtain the following counterpart of Eq. (15):

For every ε-perturbed family P , it must hold that χ2(Wn
0 | P) = Ω(1). Interestingly, even this bound,
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although seemingly as weak as Eq. (13), leads to useful bounds in the information-constrained setting. In

particular, it will be seen in Section V to yield tight lower bounds for communication-constrained testing

for ` = 1.

Finally, we provide a counterpart of Lemma IV.8 for private-coin protocols; see the appendix for a

proof.

Lemma IV.10 (Maxmin decoupled chi-square fluctuation bound for testing). For 0 < ε < 1 and a

k-ary reference distribution p, the sample complexity n = n(k, ε) of (k, ε)-identity testing using W for

private-coin protocols must satisfy

χ(2)(Wn
, ε) ≥ c , (16)

for some constant c > 0 depending only on the probability of error.

B. Chi-square contraction bounds for learning and testing

All our main tools are in place. We now derive bounds for chi-square fluctuations for Paninski’s

perturbed family of Eq. (5) and a related almost ε-perturbation, for arbitrary channel families W . These

bounds in turn will be used to obtain bounds for maxmin and minmax chi-square fluctuation. Combined

with the chi-square fluctuation lower bounds of the previous section, these bounds yield concrete lower

bounds on the sample complexity of learning and testing using W . In essence, our bounds precisely

characterize the contraction in chi-square fluctuation in the information-constrained setting over the

standard setting; we term these bounds the chi-square contraction bounds.

As noted in Remark IV.2, the normalized perturbation δWZ is linear in δZ . Furthermore, for Paninski’s

perturbed family, δZ itself is linear in Z. This observation allows us to capture chi-square fluctuations in

terms of a channel-dependent (k/2)× (k/2) matrix H(W ) given below:

H(W )i1,i2 :=
∑

y∈Y

(W (y | 2i1 − 1)−W (y | 2i1))(W (y | 2i2 − 1)−W (y | 2i2))∑
x∈[k]W (y | x)

, i1, i2 ∈ [k/2] .

An important property of this matrix H(W ) that will be used throughout is that it is a positive semi-definite

matrix. Indeed, we can express H(W ) as
∑

y byb
T
y where the by’s are (k/2)-length vectors with entries

given by

by(i) =
W (y | 2i− 1)−W (y | 2i)√∑

x∈[k]W (y | x)
, i ∈ [k/2].

We are now in a position to state our main results. We start with a bound for chi-square fluctuation,

which leads to a lower bound for sample complexity of learning.
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Theorem IV.11. For the ε-perturbed family P in Eq. (5) and any channel W , we have

χ2
(
W | P

)
= O

(
ε2

k
‖H(W )‖∗

)
.

Remark IV.12. A comparison of the bound above with Eq. (6) shows that the chi-square fluctuation contracts

by a factor of roughly (1/k)maxW∈W ‖H(W )‖∗ due to local information constraints corresponding to

W .

Before we prove this theorem, we use it obtain a lower bound for the number of players needed for

learning. Recalling Eq. (9), note that the perturbed family P given in Eq. (5) satisfies

log
|P|
Cε
≥ (1− h(1/3))k

2
.

Thus, upon combining the chi-square fluctuation bound in Theorem IV.11 with Lemma IV.7, we obtain

the following bound for sample complexity of distribution learning.

Corollary IV.13 (Chi-square contraction bound for learning). For 0 < ε < 1, the sample complexity of

(k, ε)-distribution learning using W for public-coin protocols is at least

Ω

(
k

ε2
· k

supW∈W0
‖H(W ))‖∗

)
. (17)

Proof of Theorem IV.11. Using the expression of the normalized perturbation for P in Eq. (5), we get

δWz (y) = 2ε ·
∑

i∈[k/2] zi[W (y | 2i− 1)−W (y | 2i)]
∑

x∈[k]W (y | x)
,

whereby

χ2
(
W | P

)
= ‖δWZ ‖

2

2

=
4ε2

k

∑

y

1∑
x∈[k]W (y | x)

· EZ




 ∑

i∈[k/2]

Zi[W (y | 2i− 1)−W (y | 2i)]




2


=
4ε2

k

∑

i1,i2∈[k/2]

E[Zi1Zi2 ]H(W )i1,i2

=
4ε2

k
TrH(W ),

where we have used the definition of H(W ) and the fact that E[Zi1Zi2 ] = 1{i1=i2}. The claim follows

upon noting that TrH(W ) = ‖H(W )‖∗ since H(W ) is a positive semi-definite matrix.

Next, we derive an upper bound for minmax chi-square fluctuation. As in the previous part, we obtain

this bound by considering the perturbed family in Eq. (5).
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Theorem IV.14. Given n ∈ N and ε ∈ (0, 1), for a channel family W the minmax chi-square fluctuation

is bounded as

χ(2)(Wn, ε) = O

(
n2ε4

k
· maxW∈W ‖H(W )‖2F

k

)
, (18)

whenever

n ≤ k

16ε2 maxW∈W ‖H(W )‖F
. (19)

Remark IV.15. Comparing the bound above with Eq. (14) shows that the decoupled chi-square fluctuation

contracts by a factor of (1/k) maxW∈W ‖H(W )‖2F due to the local information constraints.

Before we prove the previous theorem, we note that combining the minmax decoupled chi-square

fluctuation bound for testing of Lemma IV.8 with Theorem IV.14 yields the following lower bound for

sample complexity of uniformity testing using public-coin protocols.

Corollary IV.16 (Chi-square contraction bound for testing using public-coin protocols). For 0 < ε < 1,

the sample complexity of (k, ε)-uniformity testing using W for public-coin protocols is at least

Ω

(√
k

ε2
·

√
k

maxW∈W0
‖H(W )‖F

)
.

Proof of Theorem IV.14. We consider the ε-perturbed family P defined in Eq. (5) and evaluate the

fluctuation χ(2)(Pn) = logEZZ′ [exp (n · 〈δZ , δZ′〉)] for this perturbed family.7

We apply Lemma III.5 with ϑ = z, Qj,ϑ = p
Wj
z , Pj = uWj , 1 ≤ j ≤ n and Z in the role of θ. For

brevity, denote by ρuj,y and ρzj,y, respectively, the probability that the output of player j using channel Wj

is y when the input distributions are u and pz . We have

ρuj,y =

n∑

i=1

u(i)Wj(y | i) =
2

k

k/2∑

i=1

(
Wj(y | 2i− 1) +Wj(y | 2i)

2

)
,

and that for every z ∈ {−1, 1}k/2,

ρzj,y = ρuj,y +
2ε

k

k/2∑

i=1

zi (Wj(y | 2i− 1)−Wj(y | 2i)) .

Therefore, the quantity δZj used in Lemma III.5 is given by

δzj (y) =
ρzj,y − ρuj,y

ρuj,y
=

2ε
∑k/2

i=1 zi(Wj(y | 2i)−Wj(y | 2i− 1))
∑k/2

i=1(Wj(y | 2i) +Wj(y | 2i− 1))
,

7We need not invoke the more general notion of almost ε-perturbation for this proof; it suffices to use uniform distribution

over an ε-perturbed family.
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whereby for 1 ≤ j ≤ n we get

Hj(z, z
′) = E

[
δzj δ

z′

j

]
=
∑

y∈Y
ρuj,yδ

z
j (y)δz

′

j (y),

which upon substituting the expressions for ρj,y and δzj (y) from above yields

Hj(z, z
′)

=
4ε2

k
·
∑

y∈Y

∑

i1,i2∈[k/2]

zi1z
′
i2

(Wj(y | 2i1 − 1)−Wj(y | 2i1)) (Wj(y | 2i2 − 1)−Wj(y | 2i2))
∑k/2

i=1 (Wj(y | 2i− 1) +Wj(y | 2i))

=
4ε2

k
· zTH(Wj)z

′,

where the matrix H(Wj) was introduced earlier in Eq. (1). Therefore,

χ(2) (Wn | P) = logEZZ′


exp




n∑

j=1

〈
δ
Wj

Z , δ
Wj

Z

〉





= logEZZ′


exp




n∑

j=1

4ε2

k
· ZTH(Wj)Z

′






= logEZZ′
[
exp

(
4nε2

k
· ZT H̄Z ′

)]
, (20)

where we denote

H̄ :=
1

n

n∑

j=1

H(Wj). (21)

To prove the theorem, we need to bound the expression above in terms of the Frobenius norms of the

matrices H(Wj). To that end, we use the following result on Rademacher chaos, whose proof is deferred

to the appendix.

Claim IV.17. For random vectors θ, θ′ ∈ {−1, 1}k/2 with each θi and θ′i distributed uniformly over

{−1, 1}, independent of each other and independent for different i’s. Then, for a positive semi-definite

matrix H ,

logEθθ′
[
eλθ

THθ′
]
≤ λ2

2
· ‖H‖2F

1− 4λ2ρ(H)2
, ∀ 0 ≤ λ < 1

2ρ(H)
,

where ‖·‖F denotes the Frobenius norm and ρ(·) the spectral radius.

With this result at our disposal, we are ready to complete our proof. Setting λ := 4nε2

k , under assumption

in Eq. (19) we have

1 ≥ 16nε2 ·maxW∈W‖H(W )‖F
k

≥ 16nε2 · ‖H̄‖F
k

≥ 16nε2 · ρ(H̄)

k
= 4λρ(H̄),
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where the second inequality uses convexity of norm. Rearranging the terms we obtain that λ2/(1 −
4λ2ρ(H̄)2) ≤ 4λ2/3, which when applied along with Claim IV.17 to Eq. (20) further yields

χ(2) (Wn | P) ≤ 8n2ε4

k2

‖H̄‖2F
1− 4λ2ρ(H̄)2

≤ 8n2ε4

k2
· 4

3
· ‖H̄‖2F

≤ 32n2ε4

3k2
· 1

n

n∑

j=1

‖H(Wj)‖2F

≤ 32n2ε4

3k2
· max
W∈W

‖H(W )‖2F ,

where the penultimate inequality uses the convexity of x2 in x; the proof is complete.

Finally, we provide a bound for the maxmin chi-square fluctuation for a channel family W .

Theorem IV.18. Given n ∈ N and ε ∈ (0, 1), for a channel family W the (n, ε)-maxmin chi-square

fluctuation is bounded as

χ(2)(Wn, ε) = O

(
n2ε4

k3
· max
W∈W

‖H(W )‖2∗
)
,

whenever

n ≤ k3/2

4c2ε2 maxW∈W ‖H(W )‖∗
, (22)

where c > 0 is a constant.

Remark IV.19. Comparing the bound above with Eq. (14) shows that the decoupled chi-square fluctuation

contracts by a factor of (1/k2) maxW∈W ‖H(W )‖2∗ due to local information constraints, when restricting

to private-coin protocols, which is worse than the contraction for public-coin protocols in view of Eq. (3).

Note that combining the maxmin decoupled chi-square fluctuation bound for testing in Lemma IV.10

with Theorem IV.18 yields the following lower bound for sample complexity of uniformity testing using

private-coin protocols.

Corollary IV.20 (Chi-square contraction bound for testing using private-coin protocols). For 0 < ε < 1,

the sample complexity of (k, ε)-uniformity testing using W for private-coin protocols is at least

Ω

(√
k

ε2
· k

maxW∈W‖H(W )‖∗

)
.

Before we provide a formal proof for Theorem IV.18, we summarize the high-level heuristics. In the

proof of Theorem IV.14, we showed a bound for decoupled chi-square fluctuation of P for the induced

perturbed family corresponding to the best choice of Wn ∈ Wn. When only private-coin protocols are
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allowed, we can in fact design a perturbed family with the least decoupled chi-square fluctuation for the

specific choice of Wn used. Furthermore, we identify this least favorable direction of perturbation for

Wn by exploiting the spectrum of the positive semi-definite matrix H̄ given in Eq. (21); details follow.

Proof of Theorem IV.18. To obtain the desired bound for maxmin chi-square fluctuation, we derive a bound

for decoupled chi-square fluctuation for an appropriately chosen almost ε-perturbation Pζ . Specifically,

consider random variable Z = (Z1, . . . , Zk/2) taking values in [−1, 1]k/2 and with distribution ζ such

that for some constants α ≥ 1/10 and c > 0,

Pr

[
‖Z‖1 ≥

k

c

]
≥ α. (23)

For ε ∈ (0, c−1), consider the perturbed family around u consisting of elements pz , z ∈ [−1, 1]k/2, given

by

pz =
1

k

(
1 + cεz1, 1− cεz1, . . . , 1 + cεzt, 1− cεzt, . . . , 1 + cεzk/2, 1− cεzk/2

)
. (24)

By our assumption for random variable Z, pZ satisfies the following property with probability greater

than α:

dTV(pZ ,u) =
c

2

k/2∑

i=1

2ε|Zi|
k

=
cε

k
‖Z‖1 ≥ ε.

Note that if we set Zi = Yi for Y1, . . . , Yk/2 independent Rademacher random variables and the constant

c = 2, we recover the standard Paninski construction. However, we can do much more with this general

construction. In particular, we can set Zi’s to be dependent, which will be used crucially in our proof.

For a fixed channel family W , we bound its (n, ε)-maxmin decoupled chi-square fluctuation by fixing an

arbitrary Wn ∈ Wn and exhibit a perturbed family Pε(W) = PζW by designing a specific distribution

ζW to “fool” it.

We proceed by bounding χ(2) (Wn | Pζ) for a distribution ζ satisfying Eq. (23). Following the proof

of Theorem IV.14, we get

χ(2) (Wn | Pζ) = logEZZ′


exp


c

2ε2

k
· ZT




n∑

j=1

H(Wj)


Z ′




, (25)

where Z,Z ′ are independent random variables with common distribution ζ and H(Wj) is defined as

in Eq. (1). Note that

χ(2) (Wn | Pζ) = logEZZ′
[
exp

(
c2nε2

k
· ZT H̄Z ′

)]
,

where the matrix H̄ is from Eq. (21). Informally, the matrix H̄ captures the directions of the input space

where the n-fold channel Wn is the most informative; and thus, our goal is to design a distribution ζ

which avoids these directions as much as possible.
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To make this precise, let 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λk/2 be the eigenvalues of H̄ , and v1, . . . ,vk/2 be

corresponding (orthonormal) eigenvectors; in particular,

H̄ =

k/2∑

i=1

λiv
i(vi)T .

Denote by V the (k/2)× (k/4) matrix with columns given by vi for i ≤ k/4, i.e., the columns are the

vectors corresponding to the k/4 smallest eigenvalues of H̄ . Let Y1 . . . Yk/4 be i.i.d. Rademacher random

variables, and set ζ as the distribution of the random variable Z := V Y .

The first claim below shows that ζ satisfies Eq. (23).8

Claim IV.21. For Z = V Y described above, we have

Pr

[
‖Z‖1 ≥

k

12
√

2

]
≥ 1

9
.

Proof. For m ∈ [k/2], we have Zm =
∑k/4

i=1 Vm,iYi where Vm,i equals vim. Therefore, by Khintchine’s

inequality (cf. [46]),

E[‖Z‖1] =

k/2∑

m=1

E[|Zm|] ≥
1√
2

k/2∑

m=1

‖vm‖2,

where v1, . . . ,vk/2 denote the row vectors of the matrix V .

Next, we note that ‖vm‖2 ≤ 1 for every m ∈ [k/2]. Indeed, denoting by V ′ the (k/2)× (k/2) matrix

obtained by adding extra columns to V to obtain a complete orthonormal basis for Rk/2, we have

V ′TV ′ = I , whereby V ′V ′T = I . Thus, each row v′m of V ′ has ‖v′m‖2 = 1, which gives

‖vm‖22 ≤ ‖v′m‖
2
2 = 1.

On combining the bounds above, we obtain

E[‖Z‖1] ≥ 1√
2

k/2∑

m=1

‖vm‖2 ≥
1√
2

k/2∑

m=1

‖vm‖22 =
1√
2

k/2∑

m=1

k/4∑

i=1

V 2
m,i =

1√
2

k/4∑

i=1

‖vi‖22 =
k

4
√

2
,

where in the second inequality we used ‖vm‖22 ≤ 1.

Also, it is easy to see that

E
[
‖Z‖22

]
=

k/2∑

m=1

k/4∑

i=1

V 2
m,i =

k

4
,

which further gives

E
[
‖Z‖21

]
≤ k

2
E
[
‖Z‖22

]
=
k2

8
.

8The probability guarantees obtained in Claim IV.21 determined our choice 1/12 for probability of error in our formulations

in Section I.
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Therefore, by the Paley–Zygmund inequality, for any θ ∈ (0, 1)

Pr

[
‖Z‖1 ≥

θ

4
√

2
k

]
≥ (1− θ)2 E[‖Z‖1]2

E
[
‖Z‖21

] ≥ (1− θ)2

4
.

The proof is completed by setting θ = 1/3.

We proceed to bound χ(2) (Wn | Pζ). First, note that

max
W∈W

‖H(W )‖∗ ≥
1

n

n∑

j=1

‖H(Wj)‖∗ =
1

n

n∑

j=1

TrH(Wj) = Tr H̄,

where the first identity holds since H(W ) is positive semi-definite for every W ∈ W . Using this bound,

with the view of using Claim IV.17 and setting λ := (c2nε2)/k, under assumption Eq. (22) we have

1 ≥ 4c2nε2 ·maxW∈W‖H(W )‖∗
k3/2

≥ 4c2nε2 Tr H̄

k3/2
≥ 4λ‖V T H̄V ‖F ≥ 4λρ(V T H̄V ) ,

where the inequality Tr H̄ ≥ ‖V T H̄V ‖F holds since columns of V are a subset of eigenvectors of

the positive semi-definite matrix H̄ . Rearranging the terms to obtain λ2/(1− 4λ2ρ(H̄)2) ≤ 4λ2/3 and

applying Claim IV.17 to i.i.d. Rademacher random variables Y and the symmetric matrix V T H̄V ∈
Rk/4×k/4 gives

EZZ′
[
exp

(
c2nε2

k
· ZT H̄Z ′

)]
= EY Y ′ [e

c2nε2

k
Y TV T H̄V Y ′ ]− 1 ≤ e 2c4n2ε4

3k2
‖V T H̄V ‖2F − 1 . (26)

It remains to bound the Frobenius norm on the right-side above. To do that, note that since for i1, i2 ∈ [k/4],

we have

(V T H̄V )i1,i2 = (vi1)T



k/2∑

i=1

λiv
i(vi)T


vi2 =

k/2∑

i=1

λi(v
i1)Tvi(vi)Tvi2 =

k/2∑

i=1

λi
〈
vi1 ,vi

〉 〈
vi2 ,vi

〉
,

Thus, by the orthonormality of vi’s, the matrix V T H̄V is diagonal, with diagonal entries λ1, . . . , λk/4. It

follows that

‖V T H̄V ‖2F =

k/4∑

i=1

λ2
i ≤

k

4
· λ2

k/4 .

On the other hand, we also have

λk/4 ≤
4

k

k/2∑

i=k/4+1

λi ≤
4

k
Tr H̄

and therefore,

‖V T H̄V ‖2F ≤
4

k
(Tr H̄)2.

Previous bound along with Eq. (26), gives

EZZ′
[
exp

(
c2nε2

k
· ZT H̄Z ′

)]
≤ exp

(
8c4n2ε4

3k3
(Tr H̄)2

)
− 1 ,
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which completes the proof.

On comparing Corollary IV.16 and Corollary IV.20, we note that the effective contraction in decou-

pled chi-square fluctuation due to private-coin protocols is roughly k
maxW∈W‖H(W )‖∗

, which exceeds
√
k

maxW∈W‖H(W )‖F
for public-coin protocol since H(W ) has rank O(k) and so by Eq. (3), ‖H(W )‖∗ ≤√

k · ‖H(W )‖F .

Remark IV.22. Both channel families we consider in this paper, namely W` for the communication-limited

setting and Wρ for the LDP setting, are convex and satisfy W =W . Moreover, when evaluating bounds

in Corollary IV.13 and Corollary IV.16 for these families, weaker bounds derived using W in place of

W0 turn out to be optimal. Thus, our evaluations for these cases in the next section are based on W and

do not require us to consider W0 or W . However, the more general form reported in this section may

be useful elsewhere; in particular, in cases where one can identify a W0 that is more amenable to these

bounds than W itself.

V. EXAMPLES AND APPLICATIONS

We now instantiate our general bounds for distribution learning and uniformity testing derived in the

previous section to our two running examples of local information constraints, namely the communication-

limited and LDP settings. We obtain tight lower bounds for sample complexity of learning and testing

in these settings simply by bounding the Frobenius and trace norms of the associated matrices H(W );

see Table I for a summary of the results obtained. As mentioned earlier, we only focus on lower bounds

here and delegate matching upper bounds to subsequent papers in this series.

A. Communication-constrained inference

Recall that in the communication-limited setting, each player can transmit at most ` bits, which can

be captured by using W =W`, the family of channels from [k] to Y = {0, 1}`. To derive lower bounds

for sample complexity of learning and testing for this case, Corollaries IV.16 and IV.20 require us to

obtain upper bounds for maxW∈W0
‖H(W )‖∗, maxW∈W0

‖H(W )‖∗ and maxW∈W‖H(W )‖∗. We begin

by observing that W is convex, whereby W =W which allows us to focus on ‖H(W )‖∗ and ‖H(W )‖F
for W ∈ W . Indeed, the convex combination of two `-bit output channels is an `-bit channel as well.

The next result provides bounds for the trace and Frobenius norms of the matrices H(W ) defined

in Eq. (1).

Lemma V.1. For a channel W : [k]→ {0, 1}` and H(W ) as in Eq. (1), we have

‖H(W )‖∗ ≤ 2` and ‖H(W )‖2F ≤ 2`+1.
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Proof. Since matrix H(W ) is a positive symmetric matrix, by the definition of nuclear norms in Section II,

we have

‖H(W )‖∗ = TrH(W ) =

k/2∑

i=1

∑

y∈Y

(W (y | 2i− 1)−W (y | 2i))2

∑
i′∈[k]W (y | i′)

≤
k/2∑

i=1

∑

y∈Y

W (y | 2i− 1) +W (y | 2i)∑
i′∈[k]W (y | i′)

=
∑

y∈Y

∑k/2
i=1W (y | 2i− 1) +W (y | 2i)∑

i′∈[k]W (y | i′) = 2` .

Moreover, for y ∈ Y , denote by ωy ∈ [0, 1][k/2] the vector with the ith coordinate given by ωy,i := W (y |
2i− 1) +W (y | 2i). Then,

‖H(W )‖2F =
∑

i1,i2∈[k/2]

(∑

y∈Y

(W (y | 2i1 − 1)−W (y | 2i1))(W (y | 2i2 − 1)−W (y | 2i2))∑
i∈[k]W (y | i)

)2

≤
∑

i1,i2∈[k/2]

(∑

y∈Y

ωy,i1ωy,i2∑
i∈[k/2] ωy,i

)2

=
∑

i1,i2∈[k/2]

∑

y1,y2∈Y

ωy1,i1ωy1,i2ωy2,i1ωy2,i2∑
i∈[k/2] ωy1,i ·

∑
i∈[k/2] ωy2,i

=
∑

y1,y2∈Y

∑
i1∈[k/2] ωy1,i1ωy2,i1 ·

∑
i2∈[k/2] ωy1,i2ωy2,i2∑

i∈[k/2] ·ωy1,i
∑

i∈[k/2] ωy2,i

=
∑

y1,y2∈Y

〈ωy1 , ωy2〉2
〈ωy1 ,1〉 〈ωy2 ,1〉

≤
∑

y1,y2∈Y

〈ωy1 , ωy2〉
〈ωy1 ,1〉

= 2
∑

y1∈Y

〈ωy1 ,1〉
〈ωy1 ,1〉

= 2`+1 ,

where in the penultimate identity we used the observation that
∑

y∈Y ωy,i = 2, for every i ∈ [k/2].

Plugging these bounds into Corollaries IV.13, IV.16 and IV.20 and recalling that W = W yield the

following corollaries.

Theorem V.2 (Communication-limited learning using public-coins). The sample complexity of (k, ε)-

distribution learning using W` for public-coin protocols is at least Ω
(
k2/(2`ε2)

)
.

Theorem V.3 (Communication-limited testing using public-coins). The sample complexity of (k, ε)-

uniformity testing using W` for public-coin protocols is at least Ω
(
k/(2`/2ε2)

)
.
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Theorem V.4 (Communication-limited testing using private-coins). The sample complexity of (k, ε)-

uniformity testing using W` for private-coin protocols is at least Ω
(
k3/2/(2`ε2)

)
.

Thus, the blow-up in sample complexity for communication-limited learning with public-coin protocols

is a factor of k/2`, which is the same for testing with private-coin protocols. This blow-up is reduced

to a factor of
√
k/2` for testing with public-coin protocols. In fact, these bounds are tight and match

the upper bounds in [3], [32] for learning, with a private-coin protocol achieving the public-coin lower

bound, and [3] for both testing using private- and public-coin protocols.

B. Local differential privacy setting

Moving now to the inference under LDP setting, recall that the information constraints here are captured

by the family Wρ of ρ-LDP channels W : [k]→ Y satisfying

sup
y∈Y

sup
i1,i2∈[k]

W (y | i1)

W (y | i2)
≤ eρ . (27)

As in the previous section, here, too, we seek bounds for ‖H(W )‖∗ and ‖H(W )‖F . In fact, the family

Wρ is convex as well. Indeed, if W1 and W2 belong to Wρ, then for any θ ∈ [0, 1], ∈ W , and i 6= j,

θW1(y | i) + (1− θ)W2(y | i) ≤ (θW1(y | j) + (1− θ)W2(y | j)) · eρ.

Thus, Wρ =Wρ, and, in the result below, we may restrict to bounds for trace and Frobenius norms of

H(W ) for W ∈ Wρ.

Lemma V.5. For ρ ∈ (0, 1], a ρ-LDP channel W ∈ Wρ and H(W ) as in Eq. (1), we have

‖H(W )‖∗ = O(ρ2) and ‖H(W )‖2F = O(ρ4) .

Proof. For the symmetric matrix H(W ) with W ∈ Wρ, we have

‖H(W )‖∗ = TrH(W ) =

k/2∑

i=1

∑

y∈Y

(W (y | 2i− 1)−W (y | 2i))2

∑
i′∈[k]W (y | i′)

≤ (eρ − 1)2

k/2∑

i=1

∑

y∈Y

(
1
k

∑
i′∈[k]W (y | i′)

)2

∑
i′∈[k]W (y | i′)

=
(eρ − 1)2

2k

∑

y∈Y

∑

i′∈[k]

W (y | i′) =
1

2
(eρ − 1)2 ,

where the first inequality holds since by LDP condition Eq. (27), for every W ∈ Wρ, y ∈ Y , and

i1, i2, i3 ∈ [k],

W (y | i1)−W (y | i2) ≤ (eρ − 1)W (y | i3). (28)
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For establishing the previous inequality, when W (y | i3) ≤W (y | i2), by Eq. (27) we get

W (y | i1)−W (y | i2) ≤ (eρ − 1)W (y | i2) ≤ (eρ − 1)W (y | i3) ,

and when W (y | i3) > W (y | i2) we get

W (y | i1)−W (y | i2) ≤ eρW (y | i3)−W (y | i2) < (eρ − 1)W (y | i3) ,

thereby establishing Eq. (28). Note that 1
2(eρ − 1)2 = O(ρ2) for ρ ∈ (0, 1], which completes the proof of

the bound for ‖H(W )‖∗. Moreover, from Eq. (3), we have ‖H(W )‖2F ≤ ‖H(W )‖2∗ = O(ρ4), concluding

the proof of the lemma.

Combining this with Corollaries IV.13, IV.16 and IV.20, respectively, we obtain the following lower

bounds.

Theorem V.6 (LDP learning using public-coins). For ρ ∈ (0, 1], the sample complexity (k, ε)-distribution

learning using Wρ for public-coin protocols is at least Ω
(
k2/(ρ2ε2)

)
.

Theorem V.7 (LDP testing using public-coins). For ρ ∈ (0, 1], the sample complexity of (k, ε)-uniformity

testing using Wρ for public-coin protocols is at least Ω
(
k/(ρ2ε2)

)
.

Theorem V.8 (LDP testing using private-coins). For ρ ∈ (0, 1], the sample complexity of (k, ε)-uniformity

testing using Wρ for private-coin protocols is at least Ω
(
k3/2/(ρ2ε2)

)
.

As for the communication-limited setting, here, too, we see a separation between lower bounds

for private- and public-coin protocols even for testing under LDP constraints. In fact, the public-coin

protocols for learning under LDP constraints from [19], [35], [54], [4], [50] match our lower bounds.

Furthermore, [2], [1] provide private- and public-coin protocols for testing under LDP constraints that

match our lower bounds here. Thus, indeed shared randomness strictly reduces sample complexity of

testing when operating under LDP constraints.

VI. FUTURE DIRECTIONS AND UPCOMING RESULTS

We have restricted our focus to lower bounds in this paper. Distributed inference schemes requiring

number of players matching the lower bounds derived here will appear in two upcoming papers in this

series. While these schemes will elaborate on the geometric view developed in this paper, the algorithms

are new and tools needed for analysis are varied. We chose to organize these closely related papers into

three separate parts for ease of presentation and to disentangle the distinct ideas involved.
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In [3], the second paper in this series, we focus on the communication-constrained setting and provide

public- and private-coin protocols for distributed inference whose performance matches the lower bounds

presented here. A general strategy of “simulate-and-infer,” which is a private-coin protocol (and, in fact,

a deterministic protocol), is used to achieve our bound learning as well as the bound for testing for

private-coin protocols. On the other hand, a different scheme based on a random partition of inputs is

used to attain bounds for testing with public-coin protocols. The efficacy of this latter scheme is closely

tied to the geometric view developed here.

In [1], the third paper in this series, we provide schemes for testing under the LDP setting. For private-

coin protocols, we simply use existing mechanisms such as RAPPOR and design sample-optimal tests for

the R. On the other hand, our bounds in this paper show that none of the existing LDP mechanisms,

which are all private-coin protocols, can attain the public-coin lower bound. We present a new public-coin

protocol that achieves our lower bounds here. Interestingly, our optimal public-coin protocol is similar to

the one used in the communication-limited setting and draws on the geometric view developed here.

Finally, we point out that our framework readily extends to the high-dimensional and continuous settings,

and can, for instance, be used to analyze the lower bounds for the problems of Gaussian mean testing

and testing of product distributions under information constraints. We defer these interesting research

directions to future work.
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APPENDIX

PROOF OF CLAIM IV.17

In this appendix, we prove Claim IV.17 which is recalled below for easy reference.

Claim A.1 (Claim IV.17, restated). For random vectors θ, θ′ ∈ {−1, 1}k/2 with each θi and θ′i distributed

uniformly over {−1, 1}, independent of each other and independent for different is. Then, for any symmetric

matrix H ,

logEθθ′
[
eλθ

THθ′
]
≤ λ2

2
· ‖H‖2F

1− 4λ2ρ(H)2
, ∀ 0 ≤ λ < 1

2ρ(H)
,

where ‖·‖F denotes the Frobenius norm and ρ(·) the spectral radius.

Proof. The proof follows closely that of [25, Proposition 8.13], which derives tail bounds on a homogeneous

Rademacher chaos of order 2 by bounding the moment-generating function. For θ, θ′ and H as above

and λ ∈ R,

Eθθ′
[
eλθ

THθ′
]

= Eθ
[
Eθ′
[
eλ

∑k/2
i1=1 θ

′
i1

∑k/2
i2=1 θi2Hi1i2

]]

≤ Eθe
λ2

2

∑k/2
i1=1(

∑k/2
i2=1 θi2Hi1i2)

2

, (29)

where to bound the inner expectation conditionally on θ we used the fact that Rademacher variables are

subgaussian and the sum of independent subgaussian variables is subgaussian. Since H is symmetric, we

can rewrite
∑k/2

i1=1

(∑k/2
i2=1 θi2Hi1i2

)2
=
∑

i2,i3
θi2θi3

∑
i1
Hi1i2Hi1i3 = θTH2θ. Thus, for M := H2 and

µ ∈ R, we can consider

Eθ
[
eµθ

TMθ
]

= Eθ
[
e
µ
∑k/2
i=1Mii+µ

∑
i1 6=i2 Mi1i2θi1θi2

]

= eµTrMEθ
[
e
µ
∑
i1 6=i2 Mi1i2

θi1θi2
]

≤ eµTrMEθθ′
[
e4µ

∑
i1,i2∈[k/2]

Mi1i2
θi1θ

′
i2

]

≤ eµTrMEθ
[
e8µ2

∑k/2
i1=1(

∑k/2
i2=1 θi2Mi1i2)

2]
,

where the first inequality is by the decoupling inequality E
[
eθ
TMθ ≤ E

[
eθ
TMθ′

]]
(used in [25] as well)

and the second uses subgaussianity once again. Since M = HTH is positive semidefinite, we can rewrite

k/2∑

i1=1




k/2∑

i2=1

θi2Mi1i2




2

= θTM2θ ≤ ‖M‖2 · θTMθ ,

where ‖M‖2 := sup‖x‖2≤1 〈Mx,x〉 is the operator norm of M . For 8µ‖M‖2 ≤ 1, we can apply Jensen’s

inequality to the concave function t 7→ t8µ‖M‖2 to get

Eθ
[
eµθ

TMθ
]
≤ eµTrMEθ

[
e8µ2‖M‖

2
θTMθ

]
≤ eµTrMEθ

[
eµe

θTMθ
]8µ‖M‖

2

,
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which yields

Eθ
[
eµθ

TMθ
]
≤ eµ

TrM

1−8µ‖M‖2 . (30)

Recalling that TrM = Tr(H2) = ‖H‖2F and ‖M‖2 = ‖H2‖2 = ρ(H)2, and choosing µ = λ2/2 (which

satisfies 8µ‖M‖2 ≤ 1), we get from Eqs. (29) and (30) that

Eθθ′
[
eλθ

THθ′
]
≤ Eθ

[
e
λ2

2
θTH2θ

]
≤ e

λ2

2

‖H‖2F
1−4λ2ρ(H)2 ,

which completes the proof.

PROOFS OF CHI-SQUARE FLUCTUATION BOUNDS

Proof of Lemma III.5. Using the definition of chi-square distance, we have

χ2(Eθ[Qnθ ], Pn) = EPn
[(

Eθ
[
Qnθ (Xn)

Pn(Xn)

])2
]
− 1 = EPn



(
Eθ

[
n∏

i=1

(1 + ∆θ
i )

])2

− 1 ,

where the outer expectation is for Xn using the distribution Pn. For brevity, denote by ∆ϑ
i the random

variable δϑi (Xi). The product in the expression above can be expanded as
n∏

i=1

(1 + ∆θ
i ) = 1 +

∑

i∈[n]

∆θ
i +

∑

i1>i2

∆θ
i1∆

θ
i2 + . . . ,

whereby we get

χ2(Eθ[Qnθ ], Pn) = EPn



(

1 +
∑

i

Eθ
[
∆θ
i

]
+
∑

i1>i2

Eθ
[
∆θ
i1∆

θ
i2

]
+ . . .

)2

− 1

= EPn


∑

i

Eθ
[
∆θ
i

]
+
∑

j

Eθ′
[
∆θ′

j

]
+
∑

i,j

Eθ,θ′
[
∆θ
i∆

θ′

j

]
+ . . .


 .

Observe now that EPn
[
∆ϑ
i

]
= 0 for every ϑ. Furthermore, θ′ is an independent copy of θ and ∆θ

i and

∆θ′
j are independent for i 6= j. Therefore, the expectation on the right-side above equals

E

[∑

i

Hi(θ, θ
′) +

∑

i1>i2

Hi1(θ, θ
′)Hi2(θ, θ

′) + . . .

]
= E

[
n∏

i=1

(1 +Hi(θ, θ
′))

]
− 1 ,

which completes the proof.

Proof of Lemma III.6. The proof uses Le Cam’s two-point method. We note first that

dTV(E[pnZ ] ,pn)2 ≤ dχ2(E[pnZ ] ,pn) ,
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and bound the right-side further using Lemma III.5 with θ replaced by z, Qnϑ = pnz , and Pi = p to get

dTV(E[pnZ ] ,pn)2 ≤ EZZ′
[
(1 +H1(Z,Z ′))n

]
− 1

≤ EZZ′
[
enH1(Z,Z′)

]
− 1

= exp
(
χ(2)(Pn)

)
− 1, (31)

since H1(Z,Z ′) = 〈δZ , δZ′〉. Now, to complete the proof, consider an (n, ε)-test T . By definition, we

have PrXn∼pn [ T (Xn) = 1 ] > 11/12 and PrXn∼pnz [ T (Xn) = 1 ] > 11/12 for every z, whereby

1

2
Pr

Xn∼pn
[ T (Xn) 6= 1 ] +

1

2
Pr

Xn∼E[pnZ ]
[ T (Xn) 6= 0 ] ≤ 1

12
. (32)

The left-hand-side above coincides with the Bayes error for test T for the simple binary hypothesis testing

problem of E[pnZ ] versus pn, which must be at least

1

2
(1− dTV(E[pnZ ] ,pn)) .

Thus, we obtain dTV(E[pnZ ] ,pn) ≥ 5/6, which together with Eq. (31) completes the proof.

Proof of Lemma IV.7. The proof is nearly identical to that of Lemma III.4, with few additional observations.

Using Fano’s inequality Eq. (8) and following the proof of Lemma III.4, it suffices to derive the counterpart

of Eq. (11). Note that by definition of W0, any public-coin protocol can be realized by using a shared

randomness U , together with W1, . . . ,Wn from W0. Thus, proceeding as in Eq. (11),

I(Z ∧ Y n) ≤ max
Wn∈Wn

0

E
[
D
(
pW

n

Z ‖pW
n)]

≤ max
Wn∈Wn

0

n∑

i=1

E
[
D
(
pWi

Z ‖pWi

)]

≤ max
Wn∈Wn

0

n∑

i=1

E
[
dχ2

(
pWi
z ,pWi

)]

≤ n · max
W∈W0

χ2(W | P),

which completes the proof together with Eq. (8).

Proof of Lemma IV.8. Consider an almost ε-perturbation Pζ . The proof of this extension is very similar

to the proof of Lemma III.6, except that E[pnZ ] and pn get replaced with E
[
pW

n

Z

]
and pW

n

, respectively.

The first part of the argument goes through verbatim, leading to

dTV

(
E
[
pW

n

Z

]
,pW

n)2 ≤ exp
(
χ(2) (Wn | P)

)
− 1, (33)

for every choice of channels Wn = (W1, . . . ,Wn). In the second step, we need to get a lower bound on the

left-side above, while restricting to Wi’s inW0. Towards that, consider an (n, ε)-test T using a public-coin
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protocol. Denoting by U the public randomness and by Y1, . . . , Yn the messages from each player and by

Z0 the set of z such that dTV(pz,p) ≥ ε. Since Pζ is an almost ε-perturbation, Pr[Z ∈ Z0] ≥ α ≥ 1/10.

Also, for the test T we have PrXn∼pn [ T (U, Y n) = 1 ] ≥ 11/12 and PrXn∼pnz [ T (U, Y n) = 1 ] ≥ 11/12

for every z ∈ Z0. Thus, in the manner of Eq. (32) we obtain

1

2
Pr

Xn∼pn
[ T (U, Y n) = 1 ] +

1

2
Pr

Xn∼E[pnZ ]
[ T (U, Y n) = 0 ] ≥ 11(1 + α)

24
≥ 121

240
, (34)

where in the last inequality we used α ≥ 1/10. Then, we can find a fixed realization U = u such that

1

2
Pr

Xn∼pn
[ T (U, Y n) 6= 1 | U = u ] +

1

2
Pr

Xn∼E[pnZ ]
[ T (U, Y n) 6= 0 | U = u ] ≤ 119

240
. (35)

An important remark here is that u may depend on Pζ . Observe that by definition of W0, we can emulate

the public-coin protocols by each player selecting its channel Wi ∈ W0 as a function of the shared

randomness U . Denote by Wn
u ∈ Wn

0 the channels chosen by the players when U = u. Then, conditioned

on U = u, Y n has distribution pW
n
u and p

Wn
u

z , respectively, when Xn has distribution pn and pnz . Thus,

as in the proof of Lemma III.6, we can find Wn
u ∈ Wn

0 such that

dTV

(
E
[
p
Wn
u

Z

]
,pW

n
u

)
≥ 1

120
,

which along with Eq. (33) yields

χ(2) (Wn
u | Pζ) ≥ c, (36)

where c = log(14401/14400). The result follows upon taking the maximum over Wn
u ∈ Wn

0 and minimum

over all almost ε-perturbations Pζ .

Proof of Lemma IV.10. The argument follows the same template as the proof of Lemma IV.8, but with

an important difference. Instead of derandomizing as in Eq. (35), which leads to a choice of channels

Wn
u that may depend on perturbation Pζ family, now in Eq. (36) we would like to take the minimum

over Pζ ∈ Υε first. Observe that for private-coin protocols, the effective channel used by each player is a

convex combination of channels from W , namely it is a channel from W . Thus, when Xn has distribution

either pn and pnz , respectively, Y n has distribution pW
n

and pW
n

z with Wn ∈ Wn. Therefore, following

the steps in the proof of Lemma IV.8, we get χ(2) (Wn | Pζ) ≥ c, where Wn ∈ Wn and the almost

ε-perturbation Pζ is arbitrary. The claim then follows by taking the minimum over Pε and maximum

over Wn ∈ Wn.
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