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Abstract—A subset of a set of terminals that observe correlated
signals seek to compute a given function of the signals using
public communication. It is required that the value of the
function be kept secret from an eavesdropper with access to the
communication. We show that the function is securely computable
if and only if its entropy is less than the “aided secret key”
capacity of an associated secrecy generation model, for which a
single-letter characterization is provided.

I. INTRODUCTION
Suppose that the terminals in M = {1, . . . , m} observe

correlated signals, and that a subset A = {1, . . . , a} of them
are required to compute “securely” a given (single-letter)
function g of all the signals. To this end, following their
observations, all the terminals are allowed to communicate
interactively over a public noiseless channel of unlimited
capacity, with all such communication being observed by all
the terminals. The terminals in A seek to compute g in such
a manner as to keep its value information theoretically secret
from an eavesdropper with access to the public interterminal
communication. A typical application arises in a wireless
network of colocated sensors which seek to compute a given
function of their correlated measurements using public com-
munication that does not give away the value of the function.
Our goal is to characterize necessary and sufficient con-

ditions under which such secure computation is feasible. We
formulate a new Shannon theoretic multiterminal source model
that addresses the elemental question: When can a function g
be computed so that its value is independent of the public
communication used in its computation?
In [9], we had addressed the special caseA = M and shown

that g is securely computable if and only if its entropy does not
exceed the secret key capacity of a standard secrecy generation
model [7], [1], [5], [6]. In the general case considered here,
a natural extension of this result does not hold, as seen from
the Example 1 given in Appendix A, which partly motivates
the present work.
We establish that the answer to the question above is

innately connected to a new problem of secret key (SK) gener-
ation in which all the terminals inM seek to generate “secret

common randomness” at the largest rate possible, when the
terminals in Ac = M/A are provided with side information
for limited use, by means of public communication from
which an eavesdropper can glean only a negligible amount
of information about the SK. The public communication from
a terminal can be any function of its own observed signal and
of all previous communication. Side information is provided
to the terminals in Ac in the form of the value of g, and can be
used only for recovering the key. Such a key, termed an aided
secret key (ASK), constitutes a modification of the original
notion of a SK in [7], [1], [5], [6]. The largest rate of such
an ASK is the ASK capacity C. Since a securely computable
function g for A will yield an ASK (forM) of rate equal to its
entropy H , it is clear that g necessarily must satisfy H ≤ C.
We show that surprisingly,H < C is a sufficient condition for
the existence of a protocol for the secure computation of g for
A. When all the terminals in M seek to compute g securely,
the corresponding ASK capacity reduces to the standard SK
capacity forM [5], [6]. Furthermore, we show that a function
that is securely computed by A can be augmented by residual
secret common randomness to yield a SK for A of optimum
rate, bringing out an operational decomposition of the entropy
in the model.
Preliminaries and the problem formulation are contained in

section II. The characterization of the secure computability of
g is provided in Section III and a decomposition result for the
total entropy of the model is provided in Section IV. The proof
of the characterization of the secure computability of g is given
in Section V followed by the concluding remarks in Section
VI. A full-length version of this submission is currently under
review [10].

II. PRELIMINARIES
Let X1, . . . , Xm, m ≥ 2, be rvs with finite alphabets

X1, . . . ,Xm, respectively. For any nonempty set A ⊆ M =
{1, . . . , m}, we denote XA = (Xi, i ∈ A). Similarly,
for real numbers R1, . . . , Rm and A ⊆ M, we denote
RA = (Ri, i ∈ A). Let Ac be the set M\A. We denote
n i.i.d. repetitions of XM = (X1, . . . , Xm) with values in
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XM = X1×. . .×Xm by Xn
M = (Xn

1 , . . . , Xn
m) with values in

Xn
M = Xn

1 ×. . .×Xn
m. Following [5], given ε > 0, for rvs U, V,

we say that U is ε-recoverable from V if Pr (U &= f(V )) ≤ ε
for some function f(V ) of V . All logarithms and exponentials
are with respect to the base 2.

We consider a multiterminal source model for secure com-
putation with public communication; this basic model was
introduced in [5] in the context of SK generation with pub-
lic transaction. Terminals 1, . . . , m observe, respectively, the
sequences Xn

1 , . . . , Xn
m, of length n. Let g : XM → Y be a

given mapping, where Y is a finite alphabet. For n ≥ 1, the
(single-letter) mapping gn : Xn

M → Yn is defined by

gn(xn
M) = (g(x11, . . . , xm1), . . . , g(x1n, . . . , xmn)),

xn
M = (xn

1 , . . . , xn
m) ∈ Xn

M.

For convenience, we shall denote the rv gn (Xn
M) by Gn, n ≥

1, and, in particular, G1 = g (XM) simply by G. The
terminals in a given set A ⊆M wish to “compute securely”
the function gn(xn

M), xn
M ∈ Xn

M. To this end, the terminals
are allowed to communicate over a noiseless public channel,
possibly interactively in several rounds. Randomization at the
terminals is permitted; we assume that terminal i generates
a rv Ui, i ∈ M, such that U1, . . . , Um and Xn

M are
mutually independent. While the cardinalities of range spaces
of Ui, i ∈ M, are unrestricted, we assume that H (UM) < ∞.

Definition 1. Assume without any loss of generality that the
communication of the terminals in M occurs in consecutive
time slots in r rounds; such communication is described in
terms of the mappings

f11, . . . , f1m, f21, . . . , f2m, . . . , fr1, . . . , frm,

with fji corresponding to a message in time slot j by terminal
i, 1 ≤ j ≤ r, 1 ≤ i ≤ m; in general, fji is allowed to
yield any function of (Ui, Xn

i ) and of previous communication
described in terms of {fkl : k < j, l ∈ M or k = j, l < i}.
The corresponding rvs representing the communication will
be depicted collectively as

F = {F11, . . . , F1m, F21, . . . , F2m, . . . , Fr1, . . . , Frm},

where F = F(n)(UM, Xn
M). A special form of such com-

munication will be termed noninteractive communication if
F = (F1, ..., Fm), where Fi = fi (Ui, Xn

i ), i ∈ M.

Definition 2. For εn > 0, n ≥ 1, we say that g is εn-securely
computable (εn- SC) by (the terminals in) a given set A ⊆M
with |A|≥ 1 from observations of length n, randomization
UM and public communication F = F(n), if
(i) gn is εn- recoverable from (Ui, Xn

i ,F) for every i ∈ A,
i.e., there exists ĝ(n)

i satisfying

Pr
(
ĝ(n)

i (Ui, X
n
i ,F) &= Gn

)
≤ εn, i ∈ A, (1)

and

Public communication F , I(F ∧ Gn) ∼= 0

Xn
1

ĝ
(n)
2= =Pr

{ }
∼= 1= gn(Xn

M)ĝ
(n)
a

Xn
mXn

2 Xn
a

F1 F2 Fa Fm

A

=ĝ
(n)
1

Fig. 1. Secure computation of g

(ii) gn satisfies the “strong” secrecy condition1

I(Gn ∧F) ≤ εn. (2)

By definition, an εn-SC function g is recoverable (as gn)
at the terminals in A and is effectively concealed from an
eavesdropper with access to the public communication F.

Definition 3. We say that g is securely computable by A if
g is εn- SC by A from observations of length n, suitable
randomization UM and public communication F, such that
lim
n
εn = 0.

Figure 1 shows the setup for secure computing.

III. WHEN IS g SECURELY COMPUTABLE?
A characterization of securely computable functions will be

seen to be linked inherently to a new SK generation problem
that is formulated next.
We consider an extension of the SK generation problem [7],

[1], [5], [6] which now involves additional side information
Gn that is provided to the terminals not in A for use in only
the recovery stage of SK generation.

Definition 4. For εn > 0, n ≥ 1, a function K of Xn
M is

an εn-aided secret key (εn-ASK) for (the terminals in) M ,
achievable from observations of length n, randomization UM

and public communication F = F(n)(UM, Xn
M) as above, if

(i) K is εn-recoverable from (Ui, Xn
i ,F) for every i ∈ A and

from (Ui, Xn
i , Gn,F) for every i ∈ Ac;

(ii) K satisfies the “strong” secrecy condition

log |K|− H(K | F) = log |K|− H(K) + I(K ∧ F)

≤ εn, (3)

where K = K(n) denotes the set of possible values of K . The
ASK capacity CASK(M) = CASK(M; g,A) is the largest
rate lim

n
(1/n)H(K) of εn-ASKs such that lim

n
εn = 0.

1The notion of strong secrecy for SK generation was introduced in [8], and
developed further in [2], [4].
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Remark. The secrecy condition (3) is tantamount jointly to
a nearly uniform distribution for K (i.e., log |K|− H(K) is
small) and to the near independence ofK and F (i.e., I(K∧F)
is small).
A single-letter characterization of the ASK capacity

CASK(M) is given by the following theorem.

Theorem 1. The ASK capacity CASK(M) equals

CASK(M) = H(XM) − Rg(A) (4)

where

Rg(A) = min
RM∈Rg(A)

∑

i∈M

Ri (5)

with

Rg(A) = {RM : ∀B ! M,

RB ≥ H(XB | XBc), if A " B

RB ≥ H(XB | XBc , G), if A ⊆ B}.

Furthermore, the ASK capacity can be achieved with noninter-
active communication and without recourse to randomization
at the terminals in M.

The proof of Theorem 1 can be given along the lines of
[5, Theorem 1] or as a consequence of a general result in our
extended paper [10, Theorem 4].
Remark. It is seen that the ASK capacity CASK(M) is not
increased if the secrecy condition (3) is replaced by the
following weaker requirement:

1

n
I(K ∧F) ≤ εn. (6)

A comparison of the conditions in (2) and (6) that must be
met by a securely computable g and an ASK K , respectively,
shows for a given g to be securely computable, it is necessary
that

H(G) ≤ CASK(M). (7)

Our main result says that the necessary condition (7) is tight.

Theorem 2. A function g is securely computable by A ⊆M
if

H(G) < CASK(M). (8)

Furthermore, under the condition above, g is securely com-
putable with noninteractive communication and without re-
course to randomization at the terminals in M.
Conversely, if g is securely computable by A ⊆M , then

H(G) ≤ CASK(M).

IV. DECOMPOSITION RESULTS

We recall from [5] the definition of a (standard) SK for
the terminals in A as a rv K = K(Xn

M) that satisfies
the conditions of Definition 4 but without the recoverability
requirement for the terminals in Ac in (i). The corresponding

SK capacity for A, denoted by CSK(A), equals [5], [6]

CSK(A) = H(XM) − RCO(A), (9)

where

RCO(A) = min
RM∈R(A)

m∑

i=1

Ri

with

R(A) =

{
RM : B ! M,A′ " B,

RB ≥ H(XB | XBc)

}
.

The sufficiency condition (8) prompts the following two
natural questions: Does the differenceCASK(M)−H(G) pos-
sess an operational significance? If g is securely computable
by terminals in A, clearly Gn forms a SK for A. Can Gn be
augmented suitably to form a SK (see [5]) for A of maximum
achievable rate?
The answers to both these questions are in the affirmative.

In particular, our approach to the second question involves a
characterization of the minimum rate of communication for
omniscience for A, under the additional requirement that this
communication be independent of Gn. Specifically, we show
that for a securely computable function g, this minimum rate
remainsRCO(A), i.e., the minimum rate of communication for
omniscience for A in absence of additional secrecy constraints
on the communication.
Addressing the first question, we introduce a rv Kg = K(n)

g

such that K = (Kg, Gn) constitutes an εn-ASK satisfying the
additional requirement

I (Kg ∧ Gn) ≤ εn. (10)

Let the largest rate limn(1/n)H (Kg) of such an ASK be
Cg(A). Observe that since K is required to be nearly indepen-
dent of F, where F is the public communication involved in
its formation, it follows by (10) that Kg is nearly independent
of (Gn,F).
Turning to the second question, in the same vein let K ′

g

be a rv such that K ′ =
(
K ′

g, G
n
)
constitutes an εn-SK for

A ⊆M and satisfying (10). Let Cg′(A) denote the largest
rate of K ′

g. As noted above, K ′
g will be nearly independent of

(Gn,F′), where F′ is the public communication involved in
the formation of K ′.

Proposition 3. For A ⊆M , it holds that

(i) Cg(A) = CASK(M) − H(G),

(ii) Cg′(A) = CSK(A) − H(G).

Remarks. (i) For the case A = M, both (i) and (ii) above
reduce to Cg(M) = CSK(M) − H(G).
(ii) Proposition 3 (ii) and (9) lead to the observation

H(XM) = RCO(A) + H(G) + Cg′(A),

which admits the following heuristic interpretation. The “total
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randomness” Xn
M that corresponds to omniscience decom-

poses into three “nearly mutually independent” components:
a minimum-sized communication for omniscience for A and
the independent parts of an optimum-rate SK for A composed
of Gn and K ′

g.

V. OUTLINE OF THE PROOF OF THEOREM 2

The necessity of (7) follows by the comments preceding
Theorem 2.
The sufficiency of (8) will be established by showing the

existence of noninteractive public communication comprising
source codes that enable omniscience corresponding to Xn

M
at the terminals in A, and thereby the computation of g.
Furthermore, the corresponding codewords are selected so
as to be simultaneously independent of Gn, thus assuring
security.
First, from (8) and (4), there exists δ > 0 such that Rg(A)+

δ < H(XM|G), using G = g(XM). For each i and Ri ≥ 0,
consider a (map-valued) rv Ji that is uniformly distributed on
the family Ji of all mappings Xn

i → {1, . . . , -exp(nRi).},
i ∈ M. The rvs J1, ..., Jm, Xn

M are taken to be mutually
independent. Denote ZM = ZM(A) = {Zi}i∈M with

Zi =

{
0, i ∈ A

G, i ∈ Ac.
(11)

Fix ε,ε ′, with ε′ > mε and ε + ε′ < 1. It follows from
the proof of the general source network coding theorem [3,
Lemma 3.1.13 and Theorem 3.1.14] that for all sufficiently
large n,

Pr

({
jM ∈ JM : Xn

M is εn-recoverable from
(
Xn

i , jM\{i}

(
Xn

M\{i}

)
, Zn

i

)
, i ∈ M

})
≥ 1 − ε,

(12)

provided RM = (R1, ..., Rm) ∈ Rg(A), where εn vanishes
exponentially rapidly in n. This assertion follows exactly as
in the proof of [5, Proposition 1, with A = M] but with X̃i

there equal to (Xi, Zi) rather than Xi, i ∈ M. In particular,
we shall choose RM ∈ Rg(A) such that

m∑

i=1

Ri ≤ Rg(A) +
δ

2
. (13)

Below we shall establish that

Pr ({jM ∈ JM : I (jM(Xn
M) ∧ Gn) ≥ εn}) ≤ ε

′, (14)

for all n sufficiently large, to which end it suffices to show
that

Pr

({
jM ∈ JM : I

(
ji(X

n
i ) ∧ Gn, jM\{i}

(
Xn

M\{i}

))

≥
εn
m

})
≤
ε′

m
, i ∈ M,

(15)

since

I (jM (Xn
M) ∧ Gn)

≤
m∑

i=1

I
(
ji (Xn

i ) ∧ Gn, jM\{i}

(
Xn

M\{i}

))
.

Then it would follow from (12), (14) and definition of ZM in
(11) that

Pr

({
jM ∈ JM : Gn is

εn-recoverable from
(
Xn

i , jM\{i}

(
Xn

M\{i}

))
, i ∈ A,

and I(jM(Xn
M) ∧ Gn) < εn

})
≥ 1 − ε− ε′.

This shows the existence of a particular realization jM of JM

such that Gn is εn-SC from
(Xn

i , jM\{i}

(
Xn

M\{i}

)
) for each i ∈ A.

It now remains to prove (15) leading to the existence of
communication jM = {j1, ..., jm} that achieves omniscience
while being independent simultaneously of Gn. This step of
the proof is performed relying on our generalized version
of the “balanced coloring Lemma” [5, Lemma B.2]. The
generalization is stated without proof in the Appendix B. The
details of this step are omitted.

VI. DISCUSSION

We obtain simple necessary and sufficient conditions for
secure computability involving function entropy and ASK ca-
pacity. The latter is the largest rate of a SK for a new model in
which side information is provided for use in only the recovery
stage of SK generation. This model could be of independent
interest. In particular, a function is securely computable if its
entropy is less than ASK capacity of an associated secrecy
model. The difference is shown to correspond to the maximum
achievable rate of an ASK which is independent of the securely
computed function and, together with it, forms an ASK of
optimum rate. Also, a function that is securely computed by
A can be augmented to form a SK for A of maximum rate.
Our results extend to functions defined on a block of

symbols of fixed length in an obvious manner by considering
larger alphabets composed of supersymbols of such length.
However, they do not cover functions of symbols of increasing
length (in n), e.g., a running average (in n).
In our proof of Theorem 2, g was securely computed

from omniscience at all the terminals in A ⊆M that was
attained using noninteractive public communication. However
omniscience is not necessary for the secure computation of g,
and it is possible to make do with communication of rate
less than RCO(A) using an interactive protocol. A related
unresolved question is: What is the minimum rate of public
communication for secure computation?
A natural generalization of the conditions for secure com-

putability of g by A ⊆M given here entails a characterization
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of conditions for the secure computability of multiple func-
tions g1, ..., gk by subsets A1, ...,Ak ofM, respectively. This
unsolved problem, in general, will not permit omniscience for
any Ai, i = 1, ..., k. For instance with m = 2, A1 = {1},
A2 = {2}, and X1 and X2 being independent, the functions
gi(xi) = xi, i = 1, 2, are securely computable trivially,
but not through omniscience since, in this example, public
communication is forbidden for the secure computation of
g1, g2.

VII. APPENDIX A
Example 1. Let m = 3, A = {1, 2} and consider rvs
X1, X2, X3 with X1 = X2, where X1 is independent of X3

andH(X3) < H(X1). Let g be defined by g(x1, x2, x3) = x3,
xi ∈ Xi, 1 ≤ i ≤ 3. Clearly, CSK({1, 2}) = H(X1).
Therefore, H(G) = H(X3) < CSK({1, 2}). However, for
g to be computed by the terminals 1 and 2, its value must be
conveyed to them necessarily by public communication from
terminal 3. Thus, g is not securely computable.

APPENDIX B
Our proof of Theorem 2 calls for a balanced coloring of

a set corresponding to a rv that differs from another rv for
which probability bounds are used. However, both rvs agree
with high probability when conditioned on a set of interest.
Consider rvs U, U ′, V with values in finite sets U ,U ′,V ,

respectively, where U ′ is a function of U , and a mapping
h : U →{ 1, . . . , r′}. For λ > 0, let U0 be a subset of U
such that
(i) Pr (U ∈ U0) > 1 − λ2;
(ii) given U ∈ U0, h(U) = j, U ′ = u′, V = v, there exists
u = u(u′) ∈ U0 satisfying

Pr (U = u | h(U) = j, V = v, U ∈ U0)

= Pr (U ′ = u′ | h(U) = j, V = v, U ∈ U0) ,

1 ≤ j ≤ r′, v ∈ V .

Then the following holds.

Lemma B1. Let the rvs U, U ′, V and the set U0 be as above.
Further, assume that

PUV

({
(u, v) : Pr (U = u | V = v) >

1

d

})
≤ λ2.

Then, a randomly selected mapping φ : U ′ → {1, . . . , r}
fails to satisfy

r′∑

j=1

∑

v∈V

Pr (h(U) = j, V = v)×

r∑

i=1

∣∣∣∣∣∣

∑

u′∈U ′: φ(u′)=i

Pr (U ′ = u′ | h(U) = j, V = v) −
1

r

∣∣∣∣∣∣

< 14λ,

with probability less than 2rr′|V| exp
(
− cλ3d

rr′

)
for a constant

c > 0.
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