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Abstract—Secret key generation is considered for a pair of
terminals that observe correlated sources and communicate
interactively over a public channel. It is argued that optimum
rate secret key generation is linked inherently to the Wyner’s
notion of common information between two dependent random
variables. The minimum rate of interactive public communication
required to generate an optimum rate secret key is characterized
in terms of a variant of this notion of common information.

I. INTRODUCTION

Consider secret key (SK) generation by a pair of terminals
that observe independent and identically distributed (i.i.d.)
repetitions of two dependent random variables (rvs) of known
distribution. It is assumed that the rvs are discrete and finite-
valued. The terminals communicate over a public channel of
unlimited capacity, interactively in multiple rounds, to agree
upon the value of the key. This value is required to be
almost independent of the observations of an eavesdropper
with access to the public channel. The maximum rate of such
an SK was characterized in [7], [1].
In this paper, we characterize the minimum overall rate of

public communication required to establish a maximum rate
SK. This question was raised in [4, Section VI]. While our
main result does not constitute a single-letter characterization,
it nonetheless reveals a central link between secrecy generation
and Wyner’s notion of common information (CI) between two
dependent rvs [9]. CI was defined as the minimum rate of a
function of i.i.d. repetitions of the rvs that facilitated a certain
distributed source coding task. In [9], another interpretation
was given in terms of the minimum rate of shared bits for
generation of correlated sources. In [5], CI was related to
the minimum number of shared bits required for distributed
channel simulation. We introduce a variant of this notion of
CI called the interactive CI where the minimum of the rate
is taken over those functions in Wyner’s definition that addi-
tionally can be recovered as “common randomness” [2]. Our
main contribution is to establish a one-to-one correspondence
between such functions and optimum rate secret keys. This
correspondence is then used to characterize the aforemen-
tioned minimum communication rate for the generation of an
optimum rate secret key. In fact, it is shown that this minimum
rate is simply interactive CI minus the secret key capacity.

Basic notions of common randomness and SKs are ex-
plained in the next section. The definition of interactive CI
and the heuristics for our approach are given in Section III.
Our main result is proved in Section IV.

II. INTERACTIVE COMMUNICATION, COMMON
RANDOMNESS AND SECRET KEYS

In this section, we review some pertinent definitions. Con-
sider discrete rvsX and Y taking values in finite sets X and Y ,
respectively. A discrete memoryless multiple source (DMMS)
with two components generates n i.i.d. repetitions ofX and Y ,
denoted respectively by Xn and Y n. An r-rounds interactive
communication f = (f1, g1, f2, g2, ..., fr, gr) is a sequence of
finite valued mappings with

fi : Xn ×F i−1 × Gi−1 → Fi,

gi : Yn ×F i × Gi−1 → Gi, 1 ≤ i ≤ r,

where {Fi,Gi}r
i=1 are finite sets and F0 = G0 = ∅. Let F =

f (Xn, Y n) be the corresponding random variable. The rate of
this communication is given by

1
n

log ‖f‖,

where ‖f‖ denotes the cardinality of the range space of f .
The communication is taken to be a deterministic function of
the observations, i.e., randomization at the terminals is not
allowed.
For interactive communication F, a function L of (Xn, Y n)

is εn-recoverable common randomness (εn-CR), recoverable
from F, if there exist mappings L1 = L

(n)
1 (Xn,F) and L2 =

L
(n)
2 (Y n,F) such that

Pr {L = L1 = L2} ≥ 1 − εn.

L is recoverable from F if it is εn-recoverable with lim
n→∞ εn =

0.
A function K of (Xn, Y n) forms an εn-secret key (εn-SK)

if K is εn-CR recoverable from interactive public communi-
cation F and

1
n

I(K ∧ F) < εn.
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The SK capacity C is the largest rate lim inf
n

(1/n)H
(
K(n)

)
of εn-SKs as above, such that lim

n→∞ εn = 0. The following
result is well known.

Theorem 1. [7], [1] The SK capacity is given by

C = I(X ∧ Y ).

III. RELATION BETWEEN SECRET KEY AND WYNER’S
COMMON INFORMATION

We interpret Wyner’s CI corresponding to a pair of rvs
(X, Y ) as the minimum rate of a function of i.i.d. repetitions of
the rvs (Xn, Y n) that renders them conditionally independent.
Formally, given n i.i.d. repetitions of finite valued rvs X and
Y , taking values in the sets X and Y , respectively, consider
a sequence of finite valued mappings L =

{
L(n) (Xn, Y n)

}
that satisfy the following property:

lim
n→∞

1
n

I
(
Xn ∧ Y n | L(n)

)
= 0. (1)

A trivial such mapping L is the identity map Id (Xn, Y n) =
(Xn, Y n). The CI corresponding to a pair of rvs (X, Y ) is
defined as

CI(X, Y ) := inf
L

lim inf
n

1
n

H
(
L(n)

)
, (2)

where the infimum is taken over the set of all sequences of
functions L satisfying (1). The definition in (2), though not
stated explicitly in [9], follows from analysis therein. The
following theorem characterizes CI(X, Y ).

Theorem 2. [9] The CI of two rvs is given by

CI(X, Y ) = min
W

I(X, Y ∧ W ), (3)

where the rv W takes values in a finite set W with |W| ≤
|X ||Y| and satisfies the Markov condition X −◦− W −◦− Y .

The direct part follows from [9, equation 5.12]. The proof
of converse is straightforward.
The rvs L satisfying (1) have a special role in SK generation.

While generating an SK K, if the terminals have recovered
L as CR, then they cannot augment K further with another
SK that is independent of L; therefore, such a K is maximal.
However, to recover L as a CR at the terminals observing
Xn and Y n, interactive public communication is needed. The
overall CR established now should also include F. Inspired
by this we have the following definition.

Definition 1. Let F be an r-rounds interactive communication
and J be an εn-CR recoverable from F, for some εn → 0.
Further assume that the function L of (Xn, Y n) defined by
L = (J,F) satisfies (1). The r-rounds interactive common
information CIr

i (X, Y ) is defined as the infimum in (2) taken
over all such L.

Remark. By definition, the nonnegative sequence CIr
i (X, Y )

is nonincreasing with increasing r and is bounded below by
CI(X, Y ). Define

CIi(X, Y ) = lim
r→∞CIr

i (X, Y ).

Then CIi(X,Y ) ≥ CI(X, Y ) ≥ 0. Further, since L = Xn

satisfies (1) and can be recovered from Y n and a com-
munication F = F (Xn), CIi(X, Y ) ≤ H(X). Similarly,
CIi(X, Y ) ≤ H(Y ). To summarize, we have

0 ≤ CI(X,Y ) ≤ CIi(X, Y ) ≤ min{H(X),H(Y )},

where each inequality above can be shown to be strict.
Out main result asserts the following. An interactive CR

that satisfies (1) can be used to generate an optimum rate SK
and conversely, an optimum rate SK yields an interactive CR
satisfying (1). In fact, such a CR of rate R can be recovered
from an interactive communication of rate R − C, where C
is the SK capacity. Therefore, to find the minimum rate of
interactive communication needed to generate an optimum
rate SK it is sufficient to characterize CIi(X,Y ).

IV. MAIN RESULT

Let Rr
CI be the infimum of the rate of r-rounds interactive

communication F such that, for some εn ≥ 0 with εn → 0,
some J is εn-CR recoverable from F and L = (J,F) satisfies
(1). Similarly, let Rr

SK be the infimum of the rate of r-rounds
interactive communication F such that, for some εn ≥ 0,
εn → 0, a sequence K of SKs of rate C = I(X ∧ Y ) can be
generated using F. Note that by their definitions, both Rr

CI

and Rr
SK are nonincreasing with increasing r. Since both the

sequences are also bounded below by zero, they converge to
nonnegative limits RCI and RSK respectively. The following
theorem constitutes our main result.

Theorem 3.

RSK = RCI = CIi(X, Y ) − I(X ∧ Y ). (4)

Remark. Theorem 3 can be interpreted as follows. Any CR J
that is recoverable from a communication F, with L = (J,F)
satisfying (1), can be decomposed into two mutually inde-
pendent parts: An SK K of optimum rate and the interactive
communication F. Rewriting equation (4) as CIi(X, Y ) =
I(X ∧ Y ) + RCI , for such a CR L of rate CIi(X, Y ), this
communication F is of rate RCI . Furthermore, RCI is same
as RSK . In fact, the proof of Theorem 3 entails showing
a structural equivalence between a CR L as above and an
optimum rate SK.
Theorem 3 follows from the following Lemma.

Lemma 4. For each r ≥ 1, the following inequalities hold

Rr
SK ≥ Rr

CI ≥ Rr+1
SK (5)

Rr
CI ≥ CIr

i (X, Y ) − I(X ∧ Y ) ≥ Rr+1
CI . (6)

Theorem 3 is proved by taking the limit r → ∞ in (5) and
(6).
A computable characterization of the operational term

CIi(X, Y ) is not known. The next result, however, gives a
characterization of CIr

i (X,Y ).
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Lemma 5. Given rvs X, Y and r ≥ 1, we have

CIr
i (X, Y ) = min

U1,V1,...,Ur,Vr

I(X, Y ∧ U1, V1, ..., Ur, Vr),

(7)

where the minimum is taken over rvs U1, V1..., Ur, Vr taking
values in sets finite sets U1,V1, ...,Ur,Vr, respectively, that
satisfy the following conditions

(i)Ui −◦− X, U i−1, V i−1 −◦− Y

Vi −◦− Y,U i, V i−1 −◦− X, 1 ≤ i ≤ r,

(ii)X −◦− Ur, V r −◦− Y

(iii) |Ui| ≤ |X |
i−1∏
j=1

|Uj ||Vj | + 1

|Vi| ≤ |Y||Ui|
i−1∏
j=1

|Uj ||Vj | + 1, 1 ≤ i ≤ r,

with U0 = V0 = ∅ and U0 = V0 = constant. Here U i denotes
the rvs (U1, ..., Ui).

Remarks. (i) Note that (7) has the same form as (3) with
W replaced by (U1, V1, ..., Ur, Vr) satisfying the conditions
above.
(ii) In this paper, we have considered interactive communi-

cation with an even number of interactions. However, a similar
analysis can be extended to the case of an odd number of
interactions. In particular, when only one terminal is allowed
to communicate, the minimum rate of public communication
Rone

SK required to generate an SK of rate C is given by

Rone
SK = min

U
I(X,Y ∧ U) − I(X ∧ Y )

= min
U

I(X ∧ U) − I(X ∧ Y ),

where the U valued rv U satisfies U−◦−X−◦−Y , X−◦−U−◦−Y
and |U| ≤ |X | + 1.

A. Proof of Lemma 4
For an r-rounds interactive communication F and an arbi-

trary function J of (Xn, Y n) the following equality holds

I(X ∧ Y ) =
1
n

[
I (Xn ∧ Y n | J,F) + H(J,F)

− H(J | F, Xn) − H(J | F, Y n)
− H(F | Xn) − H(F | Y n)

]
. (8)

The proof of (8) follows readily upon rewriting the terms on
the right side and is omitted here. This equality is the central
tool for our proofs. We now prove (5) and (6).

(i) Rr
CI ≥ CIr

i (X,Y ) − I(X ∧ Y ):
Let J be an εn-CR recoverable from F. Using the Fano’s

inequality we have

1
n

[
H(J | F, Xn) + H(J | F, Y n)

]
≤ 2εn log |X ||Y| + 2

n
.

(9)

Further assume that L defined by L = (J,F) satisfies (1).
This assumption and (9) together with (8) yield∣∣∣∣ 1

n

[
H(J,F) − H(F | Xn) − H(F | Y n)

]
− I(X ∧ Y )

∣∣∣∣
≤ 2εn log |X ||Y| + εn +

1
n

.

Since H(F) ≥ H(F | Xn)+H(F | Y n), as can be seen upon
rewriting the right side in terms of the components of F, we
have
1
n

H(J,F) − I(X ∧ Y ) ≤ H(F) + 2εn log |X ||Y| + εn +
2
n

,

which gives CIr
i (X,Y ) − I(X ∧ Y ) ≤ Rr

CI .

(ii) Rr
SK ≥ Rr

CI :
Let K be an εn-SK recoverable from r-rounds interactive

communication F, εn → 0, satisfying
1
n

H(K) ≥ I(X ∧ Y ) − δ, (10)

for an arbitrary fixed δ > 0 and n sufficiently large. Substi-
tuting J = K in (8), Fano’s inequality, (10) and the fact that
(1/n)I(K ∧ F) ≤ εn imply

1
n

I(Xn ∧ Y n | K,F) ≤
[
I(X ∧ Y ) − 1

n
H(K)

]

+
1
n

[
H(F) − H(F | K)

]

+ 2εn log |X ||Y| + 2
n

≤ 2δ,

for all n sufficiently large. Hence L = (K,F) satisfies (1)
implying that the rate of F is greater than Rr

CI . Since F was
an arbitrary r-rounds interactive communication that generates
an optimum rate SK , the claimed inequality follows.

(iii) CIr
i (X, Y ) − I(X ∧ Y ) ≥ Rr+1

CI :
Consider a sequence of εn-CR J that is recoverable from

r-rounds interactive communication F, such that L = (J,F)
satisfies (1). Assume that (J,F) achieves CIr

i (X,Y ). Given
δ > 0, Fano’s inequality along with (8) gives
1
n

[
H(F | Xn) + H(F | Y n)

]
≤ CIr

i (X, Y ) − I(X ∧ Y ) + δ,

(11)

for n sufficiently large. Denote by J1 and J2 the estimates of
J formed at the terminals observing Xn and Y n, respectively.
Note that since L = (J,F) satisfies (1) and J is an εn-CR,
for all k ≥ 1

1
kn

I
(
Xnk ∧ Y nk | Jk

1 ,Fk
)
≤ δ,

for sufficiently large n. We show that by choosing k = k(n)
sufficiently large, we can find an (r + 1)-rounds interactive
communication F′ = F′ (Xnk, Y nk

)
of rate less than

1
n

[
H(F | Xn) + H(F | Y n)

]
+ δ,
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where the rate is defined with respect to block-length nk, such
that (Jk

1 ,Fk) form a δ-CR recoverable from F′. Specifically
we construct a communication F′ that is a function of (Jk

1 ,Fk)
and therefore
1
kn

I
(
Xnk ∧ Y nk | Jk

1 ,Fk
)

=
1
kn

I
(
Xnk ∧ Y nk | Jk

1 ,Fk,F′)
< δ.

It follows that

Rr+1
CI ≤ 1

n

[
H(F | Xn) + H(F | Y n)

]
+ δ,

which with (11) gives the required inequality.
It now remains to construct the (r + 1)-rounds interactive

communication F′. To that end, observe that for k sufficiently
large, [8] guarantees the existence of distributed source codes
of rate less than

1
n

[
H(F | Xn) + H(F | Y n)

]
+

δ

2
,

which are function of F and allow both the terminals to recon-
struct F with probability of error less than (δ/2). Note that we
need 2r such codes, each corresponding to one interaction and
together constituting the first r-rounds of F′. This allows the
construction of J11, ..., J1k at the terminal observing Xn and
J21, ..., J2k at the terminal observing Y n with probability of
error less than (δ/2). Here J1i = J1

(
Xni

n(i−1)+1, Y
ni
n(i−1)+1

)
and J2i = J2

(
Xni

n(i−1)+1, Y
ni
n(i−1)+1

)
are k i.i.d. repetitions

of rvs (J1, J2). Since J1 and J2 are estimates at each terminal
of the εn-CR J , Fano’s inequality implies

1
n

H(J1 | J2) ≤ εn log |X ||Y| + 1
n

.

Using [8] once again, for n and k sufficiently large, there exists
a function fr+1 = fr+1(Jk

1 ) of rate less than (δ/2) such that
terminal with Jk

2 can recover Jk
1 with error probability less

than (δ/2). Therefore, we have the required (r + 1)-rounds
communication scheme.

(iv) Rr
CI ≥ Rr+1

SK :
Given a sequence of εn-CR J that is recoverable from r-

rounds interactive communication F of rate RF, with L =
(J,F) satisfying (1). Using the analysis of the last part, for a
fixed δ > 0, for sufficiently large n and k, there exists an (r+
1)-rounds interactive communication F′ = F′ (Xnk, Y nk

)
of

rate RF′ satisfying

RF′ ≤ 1
n

[
H(F | Xn) + H(F | Y n)

]
+ δ, (12)

such that (Jk
1 ,Fk) forms a δ-CR recoverable from F′. Using

the “balanced coloring lemma” [4, Lemma B.2] there exists a
function K = K(Jk

1 ,Fk) which forms an SK of rate greater
than

1
nk

H(Jk
1 ,Fk) − RF′ − δ

≥ 1
n

[
H(J1,F) − H(F | Xn) − H(F | Y n)

]
− 2δ

≥ I(X ∧ Y ) − 3δ,

where the final inequality holds using the definition of J1 and
F′ along with (8), for n sufficiently large. Therefore, RF′ is
greater than Rr+1

SK . But from (12) we have

RF′ ≤ RF + δ.

The proof can be completed by choosing RF ≤ Rr
CI + δ and

letting δ approach zero.

B. Outline of Proof of Lemma 5
We first address the achievability part. Consider rvs

U1, V1, ..., Ur, Vr satisfying the conditions (i)-(iii) of Lemma
5. We show that for any δ > 0, there exists δ-CR J =
J(Xn, Y n), recoverable from r-rounds interactive communi-
cation F of rate RF such that L = (J,F) satisfies (1) and the
cardinality ‖L‖ of the range of L satisfies

1
n

log ‖L‖ ≤ I (X, Y ∧ Ur, V r) + 2δ, (13)

whenever n is sufficiently large. The communication F used
to recover J will itself be a function of J and the entropy of
J will satisfy

1
n

H(J,F) =
1
n

H(J) ≥ I (X, Y ∧ Ur
1 , V r

1 ) + δ, (14)

for n sufficiently large. This condition says that J is almost
uniformly distributed. Furthermore, the rate RF will be chosen
such that

RF ≤ I (X, Y ∧ Ur, V r) − I(X ∧ Y ) + δ. (15)

Using conditions (14-15) with (8) we get

1
n

I (Xn ∧ Y n | J,F) ≤ I(X ∧ Y ) −
[

1
n

H(J) − RF

]
+ ∆(δ)

≤ ∆(δ),

where ∆(δ) → 0 as δ → 0. Therefore, L satisfies (1).
It remains to show that (J,F) satisfying (14-15) can be
constructed for n sufficiently large.
We use the interactive extension of the Wyner-Ziv coding

described, for instance, in [6]. Here we shall describe briefly
the scheme and point out the required properties. For each
1 ≤ k ≤ r, let (R1k, R2k) satisfy

R1k > I(X ∧ Uk | Uk−1, V k−1) +
δ

r
, (16)

R2k > I(Y ∧ Vk | Uk, V k−1) +
δ

r
. (17)

For fixed 1 ≤ ai ≤ 2nR1i and 1 ≤ bi ≤ 2nR2i for
1 ≤ i ≤ k − 1 the sequences {uk(1), ...,uk(2nR1k)} are
selected from the conditional typical set (see, for instance, [3])
T n

Uk|Uk−1
1 ,V k−1

1
(u1(a1), ...,vk−1(bk−1)). The communication

fk is a function of the index ak and it bins the index into
I(XU

k | Uk−1, V k−1, Y ) + (δ/2r) bins. Similarly, for a fixed
1 ≤ ak ≤ 2nR1k , the sequences {vk(1), ...,vk(2nR2k)} are
selected from T n

Vk|Uk
1 ,V k−1

1
(u1(a1), ...,vk−1(bk−1),uk(ak)).

The communication gk is a function of the index bk and it
bins the index into I(Y V

k | Uk, V k−1, X) + (δ/2r) bins.
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Knowing the previous indices a1, ..., bk−1, the termi-
nal observing Xn finds the unique index ak such that
(Xn,u1(a1), ...,vk−1(bk−1)),uk(ak) are jointly typical and
sends the corresponding fk(ak). If no such unique index can
be found, an encoding error occurs and ak is chosen as 1. The
index bk corresponding to Y n and a1, ..., bk−1, ak is found
similarly and gk(bk) is sent. At the end of r-rounds both the
terminals form an estimate of the CR J which corresponds to
the index a1, b1, ..., ar, br. It can be shown that for sufficiently
large n, such codebook sequences can be selected for which J
is a δ-CR recoverable from the communication defined above
(see [9], [6]). The overall rate of communication is given by

RF =
r∑

k=1

[
I(X ∧ Uk |Uk−1, V k−1, Y )

+ I(Y ∧ Vk | Uk, V k−1, X)
]
+ δ.
(18)

Note that (16-17) imply (13). Equation (15) follows from (18)
and conditions (i)-(ii) of the Lemma, since

I (X,Y ∧ Ur, V r) −
r∑

k=1

[
I(X ∧ Uk | Uk−1, V k−1, Y )

+ I(Y ∧ Vk | Uk, V k−1, X)
]

=
r∑

k=1

[
I(Y ∧ Uk | Uk−1, V k−1) + I(X ∧ Vk | Uk, V k−1)

]

+ I(X ∧ Y ) − I(X ∧ Y )

=
r∑

k=2

[
I(Y ∧ Uk | Uk−1, V k−1) + I(X ∧ Vk | Uk, V k−1)

]

+ I(X ∧ Y ) + I(X ∧ V1 | U1) + I(Y ∧ U1) − I(Y ∧ X)

=
r∑

k=2

[
I(Y ∧ Uk | Uk−1, V k−1) + I(X ∧ Vk | Uk, V k−1)

]

+ I(X ∧ Y ) − I(Y ∧ X | U1, V1) = . . . =
= I(X ∧ Y ).

It remains to verify (14). For a fixed (a1, b1, ..., ar, br), it
can be shown that the conditional probability of the event
{J = (a1, b1, ..., ar, br)} given that no encoding error occurs
is bounded above by

2−n[I(X,Y ∧Ur,V r)+ δ
2 ],

which implies (14) for large n as the probability of encoding
error goes to zero.
For the converse consider an εn-CR J , recoverable from

an r-rounds interactive communication F. Denote by J2 the
estimate of J at the terminal observing Y n. Here εn → 0 as
n → ∞. For a fixed n, define T as a uniformly distributed rv
over {1, ..., n}. Let rvs Ur

1 , V r
1 be defined as

U1 = f1, X
T−1, Y n

T+1, T,

Ui = fi, 2 ≤ i ≤ r.

Vi = gi, 1 ≤ i < r,

Vr = gr, J2,

where Y i
j denotes the rvs (Yj , ..., Yi). This definition of Ur

1 , V r
1

satisfies (i) using [6, equations (3.10)-(3.13)]. Next observe
that for some δn → 0

δn ≥ 1
n

I (Xn ∧ Y n | J,F) ≥ 1
n

I (Xn ∧ Y n | J2,F) − δn

= I
(
XT ∧ Y n | J2,F, XT−1, T

)
− δn

= I
(
Xn ∧ YT | J2,F, Y n

T+1, T
)
− δn,

implying

I (XT ∧ YT | Ur, V r) ≤ δn, (19)
I

(
XT ∧ Y n

T | J2,F, XT−1, T
)
≤ δn, (20)

I
(
Xn

T+1 ∧ YT | J2,F, Y n
T+1, X

T , T
)
≤ δn. (21)

The entropy rate of (J,F) is now bounded as
1
n

H(J,F)

≥ 1
n

H(J2,F) − δn ≥ 1
n

I (Xn, Y n ∧ J2,F) − δn

= H (XT , YT ) − H
(
XT | J2,F, XT−1, T

)
− H

(
YT | J2,F, Y n

T+1, X
T−1, T,XT , Xn

T+1

)
− δn,

which with (20) and (21) gives
1
n

H(J,F) ≥ I(XT , YT ∧ Ur, V r) − 3δn. (22)

The proof is now completed by interchanging rvs Ur, V r by
those of cardinalities bounded as in condition (iii), while still
maintaining (19), (21) and the Markov chains in (i). This can
be done using the support lemma [3, Lemma 3.4]. Finally,
since the set of probability measures over finite and discrete
rvs is compact, take the limit as n → ∞ in (19) to get (ii)
and in (21) to establish the converse.
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