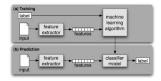
Sample Complexity of Estimating Entropy

Himanshu Tyagi Indian Institute of Science, Bangalore

Joint work with Jayadev Acharya, Ananda Theertha Suresh, and Alon Orlitsky

Measuring Randomness in Data

Estimating randomness of the observed data:



Neural signal processing

Feature selection for machine learning

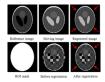
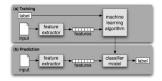


Image Registration

Measuring Randomness in Data

Estimating randomness of the observed data:



Neural signal processing

Feature selection for machine learning

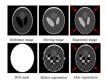
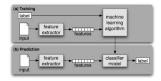


Image Registration

Approach: Estimate the "entropy" of the generating distribution

Measuring Randomness in Data

Estimating randomness of the observed data:



Neural signal processing

Feature selection for machine learning

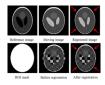


Image Registration

Approach: Estimate the "entropy" of the generating distribution Shannon entropy $H(\mathbf{p}) \stackrel{\text{def}}{=} \sum_x -\mathbf{p}_x \log \mathbf{p}_x$

Estimating Shannon Entropy

For an (unknown) distribution p with a (unknown) support-size k,

How many samples are needed for estimating H(p)?

For an (unknown) distribution p with a (unknown) support-size k,

How many samples are needed for estimating H(p)?

PAC Framework or Large Deviation Guarantees

Let $X^n = X_1, ..., X_n$ denote n independent samples from p Performance of an estimator \hat{H} is measured by

$$S^{\hat{H}}(\delta,\epsilon,k) \stackrel{\text{def}}{=} \min\left\{n: \mathbf{p}^n\left(|\hat{H}(X^n) - H(\mathbf{p})| < \delta\right) > 1 - \epsilon, \\ \forall \mathbf{p} \text{ with support-size } k\right\}$$

The sample complexity of estimating Shannon Entropy is defined as

$$S(\delta,\epsilon,k) \stackrel{\text{def}}{=} \min_{\hat{H}} S^{\hat{H}}(\delta,\epsilon,k)$$

Sample Complexity of Estimating Shannon Entropy

Focus only on the dependence of $S(\delta,\epsilon,k)$ on k

- Asymptotically consistent and normal estimators: [Miller55], [Mokkadem89], [AntosK01]
- ▶ [Paninski03] For the empirical estimator \hat{H}_e , $S^{\hat{H}_e}(k) \leq O(k)$
- ▶ [Paninski04] There exists an estimator \hat{H} s.t. $S^{\hat{H}}(k) \leq o(k)$
- [ValiantV11] $S(k) = \Theta(k/\log k)$
 - The proposed estimator is constructive and is based on a LP
 - See, also, [WuY14], [JiaoVW14] for new proofs

Sample Complexity of Estimating Shannon Entropy

Focus only on the dependence of $S(\delta,\epsilon,k)$ on k

- Asymptotically consistent and normal estimators: [Miller55], [Mokkadem89], [AntosK01]
- ▶ [Paninski03] For the empirical estimator \hat{H}_e , $S^{\hat{H}_e}(k) \leq O(k)$
- ▶ [Paninski04] There exists an estimator \hat{H} s.t. $S^{\hat{H}}(k) \leq o(k)$
- [ValiantV11] $S(k) = \Theta(k/\log k)$
 - The proposed estimator is constructive and is based on a LP
 - See, also, [WuY14], [JiaoVW14] for new proofs

But we can estimate the distribution itself using O(k) samples.

Sample Complexity of Estimating Shannon Entropy

Focus only on the dependence of $S(\delta,\epsilon,k)$ on k

- Asymptotically consistent and normal estimators: [Miller55], [Mokkadem89], [AntosK01]
- ▶ [Paninski03] For the empirical estimator \hat{H}_e , $S^{\hat{H}_e}(k) \leq O(k)$
- ▶ [Paninski04] There exists an estimator \hat{H} s.t. $S^{\hat{H}}(k) \leq o(k)$
- [ValiantV11] $S(k) = \Theta(k/\log k)$
 - The proposed estimator is constructive and is based on a LP
 - See, also, [WuY14], [JiaoVW14] for new proofs

But we can estimate the distribution itself using O(k) samples.

Is it easier to estimate some other entropy??

Definition. The *Rényi entropy* of order α , $0 < \alpha \neq 1$, for a distribution p is given by

$$H_{\alpha}(\mathbf{p}) = \frac{1}{1-\alpha} \log \sum_{x} \mathbf{p}_{x}^{\alpha}$$

Sample Complexity of Estimating Rényi Entropy

Performance of an estimator \hat{H} is measured by

$$S_{\alpha}^{\hat{H}}(\delta,\epsilon,k) \stackrel{\text{def}}{=} \min\left\{n: \mathbf{p}^{n}\left(|\hat{H}(X^{n}) - H_{\alpha}(\mathbf{p})| < \delta\right) > 1 - \epsilon, \forall \mathbf{p} \in \mathcal{P}_{k}\right\}$$

The sample complexity of estimating Rényi Entropy of order α is given by

$$S_{\alpha}(\delta,\epsilon,k) \stackrel{\text{def}}{=} \min_{\hat{H}} S_{\alpha}^{\hat{H}}(\delta,\epsilon,k)$$

Definition. The *Rényi entropy* of order α , $0 < \alpha \neq 1$, for a distribution p is given by

$$H_{\alpha}(\mathbf{p}) = \frac{1}{1-\alpha} \log \sum_{x} \mathbf{p}_{x}^{\alpha}$$

Sample Complexity of Estimating Rényi Entropy

Performance of an estimator \hat{H} is measured by

$$S_{\alpha}^{\hat{H}}(\delta,\epsilon,k) \stackrel{\text{def}}{=} \min\left\{n: \mathbf{p}^{n}\left(|\hat{H}(X^{n}) - H_{\alpha}(\mathbf{p})| < \delta\right) > 1 - \epsilon, \forall \mathbf{p} \in \mathcal{P}_{k}\right\}$$

The sample complexity of estimating Rényi Entropy of order α is given by

$$S_{\alpha}(\delta,\epsilon,k) \stackrel{\text{def}}{=} \min_{\hat{H}} S_{\alpha}^{\hat{H}}(\delta,\epsilon,k)$$

We mainly seek to characterize the dependence of $S_{\alpha}(\delta,\epsilon,k)$ on k and α

Notations:

$$\begin{split} S_{\alpha}(k) \geq & \widetilde{\Omega}(k^{\beta}) \Rightarrow \text{ for every } \eta > 0 \text{ and for all } \delta, \epsilon \text{ small,} \\ & S_{\alpha}(\delta, \epsilon, k) \geq k^{\beta - \eta}, \quad \text{for all } k \text{ large} \\ S_{\alpha}(k) \leq O(k^{\beta}) \Rightarrow \text{ there is a constant } c \text{ depending on } \delta, \epsilon \text{ s.t.} \\ & S_{\alpha}(\delta, \epsilon, k) \leq ck^{\beta}, \quad \text{for all } k \text{ large} \\ S_{\alpha}(k) = \Theta(k^{\beta}) \Rightarrow \Omega(k^{\beta}) \leq S_{\alpha}(k) \leq O(k^{\beta}) \end{split}$$

Notations:

$$\begin{split} S_{\alpha}(k) \geq & \widetilde{\Omega}(k^{\beta}) \Rightarrow \text{for every } \eta > 0 \text{ and for all } \delta, \epsilon \text{ small,} \\ & S_{\alpha}(\delta, \epsilon, k) \geq k^{\beta - \eta}, \quad \text{for all } k \text{ large} \\ S_{\alpha}(k) \leq O(k^{\beta}) \Rightarrow \text{there is a constant } c \text{ depending on } \delta, \epsilon \text{ s.t.} \\ & S_{\alpha}(\delta, \epsilon, k) \leq ck^{\beta}, \quad \text{for all } k \text{ large} \\ S_{\alpha}(k) = \Theta(k^{\beta}) \Rightarrow \Omega(k^{\beta}) \leq S_{\alpha}(k) \leq O(k^{\beta}) \end{split}$$

Theorem

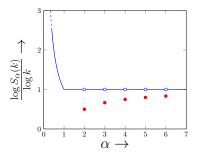
 $\begin{array}{ll} \text{For every } 0 < \alpha < 1: & \qquad \widetilde{\Omega} \ (k^{1/\alpha}) \leq S_{\alpha}(k) \leq O(k^{1/\alpha}/\log k) \\ \\ \text{For every } 1 < \alpha \notin \mathbb{N}: & \qquad \widetilde{\Omega} \ (k) \leq S_{\alpha}(k) \leq O(k/\log k) \end{array}$

Notations:

 $S_{\sim}(k) > \widetilde{\widetilde{\Omega}}(k^{\beta}) \Rightarrow$ for every $\eta > 0$ and for all δ, ϵ small, $S_{\alpha}(\delta, \epsilon, k) > k^{\beta - \eta}$, for all k large $S_{\alpha}(k) \leq O(k^{\beta}) \Rightarrow$ there is a constant c depending on δ, ϵ s.t. $S_{\alpha}(\delta, \epsilon, k) \leq ck^{\beta}$, for all k large $S_{\alpha}(k) = \Theta(k^{\beta}) \Rightarrow \Omega(k^{\beta}) \le S_{\alpha}(k) \le O(k^{\beta})$

Theorem

For every $0 < \alpha < 1$:	$\overset{\approx}{\Omega}(k^{1/\alpha}) \leq S_{\alpha}(k) \leq O(k^{1/\alpha}/\log k)$
For every $1 < \alpha \notin \mathbb{N}$:	$\overset{\approx}{\Omega}(k) \leq S_{\alpha}(k) \leq O(k/\log k)$
For every $1 < \alpha \in \mathbb{N}$:	$S_{\alpha}(k) = \Theta(k^{1-1/\alpha})$



Theorem

For every $0 < \alpha < 1$:

For every $1 < \alpha \notin \mathbb{N}$:

For every $1 < \alpha \in \mathbb{N}$:

 $\widetilde{\widetilde{\Omega}} (k^{1/\alpha}) \le S_{\alpha}(k) \le O(k^{1/\alpha}/\log k)$ $\widetilde{\widetilde{\Omega}} (k) \le S_{\alpha}(k) \le O(k/\log k)$ $S_{\alpha}(k) = \Theta(k^{1-1/\alpha})$

The $\alpha {\rm th}$ power sum of a distribution p is given by

$$P_{\alpha}(\mathbf{p}) \stackrel{\text{def}}{=} \sum_{x} \mathbf{p}_{x}^{\alpha}$$

Estimating Rényi entropy with small additive error is the same as estimating power sum with small multiplicative error

- ► [Bar-YossefKS01] Integer moments of frequencies in a sequence with multiplicative and additive accuracies
- ▶ [JiaoVW14] Estimating power sums with small additive error

The αth power sum of a distribution p is given by

$$P_{\alpha}(\mathbf{p}) \stackrel{\text{def}}{=} \sum_{x} \mathbf{p}_{x}^{\alpha}$$

Estimating Rényi entropy with small additive error is the same as estimating power sum with small multiplicative error

- ► [Bar-YossefKS01] Integer moments of frequencies in a sequence with multiplicative and additive accuracies
- ▶ [JiaoVW14] Estimating power sums with small additive error
- For $\alpha < 1:$ Additive and multiplicative accuracy estimation have roughly the same sample complexity
- For $\alpha > 1$: Additive accuracy estimation requires only a constant number of samples

The Estimators

Empirical or Plug-in Estimator

Given n samples $X_1, ..., X_n$,

Let N_x denote the empirical frequency of x.

$$\hat{\mathbf{p}}_n(x) \stackrel{\text{def}}{=} \frac{N_x}{n}$$
$$\hat{H}^e_\alpha \stackrel{\text{def}}{=} \frac{1}{1-\alpha} \log \sum \hat{\mathbf{p}}_n(x)^\alpha$$

Empirical or Plug-in Estimator

Given n samples $X_1, ..., X_n$,

Let N_x denote the empirical frequency of x.

$$\hat{\mathbf{p}}_n(x) \stackrel{\text{def}}{=} \frac{N_x}{n}$$
$$\hat{H}^e_\alpha \stackrel{\text{def}}{=} \frac{1}{1-\alpha} \log \sum \hat{\mathbf{p}}_n(x)^\alpha$$

Theorem

$$\textit{For } \alpha > 1 : \qquad \quad S^{H^{\alpha}_{\alpha}}_{\alpha}(\delta,\epsilon,k) \leq O\left(\tfrac{k}{\delta^{\max\{4,1/(\alpha-1)\}}} \log \tfrac{1}{\epsilon} \right)$$

$$\textit{For } \alpha < 1: \qquad \quad S_{\alpha}^{\hat{H}_{\alpha}^{e}}(\delta, \epsilon, k) \leq O\left(\frac{k^{1/\alpha}}{\delta^{\max\{4, 2/\alpha\}}}\log \frac{1}{\epsilon}\right)$$

Empirical or Plug-in Estimator

Given n samples $X_1, ..., X_n$,

Let N_x denote the empirical frequency of x.

$$\hat{\mathbf{p}}_n(x) \stackrel{\text{def}}{=} \frac{N_x}{n}$$
$$\hat{H}^e_\alpha \stackrel{\text{def}}{=} \frac{1}{1-\alpha} \log \sum \hat{\mathbf{p}}_n(x)^\alpha$$

Theorem

$$\textit{For } \alpha > 1 \text{:} \qquad \quad S_{\alpha}^{\dot{H}_{\alpha}^{e}}(\delta,\epsilon,k) \leq O\left(\frac{k}{\delta^{\max\{4,1/(\alpha-1)\}}}\log\frac{1}{\epsilon}\right)$$

$$\textit{For } \alpha < 1: \qquad \quad S_{\alpha}^{\hat{H}_{\alpha}^{e}}(\delta, \epsilon, k) \leq O\left(\frac{k^{1/\alpha}}{\delta^{\max\{4, 2/\alpha\}}}\log \frac{1}{\epsilon}\right)$$

Proof??

Rényi Entropy Estimation to Power Sum Estimation

Estimating Rényi entropy with small additive error is the same as

estimating power sum with small multiplicative error

Rényi Entropy Estimation to Power Sum Estimation

Estimating Rényi entropy with small additive error is the same as estimating power sum with small multiplicative error

Using a well-known sequence of steps, suffices to show that bias and variance of \hat{p}_n are multiplicatively small The empirical frequencies N_x are correlated.

Suppose $N \sim \text{Poi}(n)$ and $X_1, ..., X_N$ be independent samples from p. Then,

- 1. $N_x \sim \operatorname{Poi}(n\mathbf{p}_x)$
- 2. $\{N_x, x \in \mathcal{X}\}$ are mutually independent

3. For each estimator \hat{H} , there is a modified estimator \hat{H}' such that

$$\mathbb{P}\left(|H_{\alpha}(\mathbf{p}) - \hat{H}'(X^n)| > \delta\right) \le \mathbb{P}\left(|H_{\alpha}(\mathbf{p}) - \hat{H}(X^N)| > \delta\right) + \frac{\epsilon}{2},$$

where $N \sim \operatorname{Poi}(n/2)$ and $n \geq 8 \log(2/\epsilon)$.

It suffices to bound the error probability under Poisson sampling

Performance of the Empirical Estimator

For the empirical estimator \hat{p}_n :

$$\frac{1}{P_{\alpha}(\mathbf{p})} \left| \mathbb{E}\left[\frac{\sum_{x} N_{x}^{\alpha}}{n^{\alpha}}\right] - P_{\alpha}(\mathbf{p}) \right| \leq \begin{cases} c_{1} \max\left\{\left(\frac{k}{n}\right)^{\alpha-1}, \sqrt{\frac{k}{n}}\right\}, & \alpha > 1, \\ c_{2} \left(\frac{k^{1/\alpha}}{n}\right)^{\alpha}, & \alpha < 1 \end{cases}$$
$$\frac{1}{P_{\alpha}(\mathbf{p})^{2}} \mathbb{V}\mathrm{ar}\left[\sum_{x} \frac{N_{x}^{\alpha}}{n^{\alpha}}\right] \leq \begin{cases} c_{1}^{\prime} \max\left\{\left(\frac{k}{n}\right)^{2\alpha-1}, \sqrt{\frac{k}{n}}\right\}, & \alpha > 1, \\ c_{2}^{\prime} \max\left\{\left(\frac{k^{1/\alpha}}{n}\right)^{\alpha}, \sqrt{\frac{k}{n}}, \frac{1}{n^{2\alpha-1}}\right\}, & \alpha < 1 \end{cases}$$

Theorem

$$\textit{For } \alpha > 1 \text{:} \qquad \quad S_{\alpha}^{\hat{H}_{\alpha}^{e}}(\delta, \epsilon, k) \leq O\left(\frac{k}{\delta^{\max\{4, 1/(\alpha-1)\}}}\log \frac{1}{\epsilon}\right)$$

 $\textit{For } \alpha < 1 \text{:} \qquad \quad S_{\alpha}^{\hat{H}_{\alpha}^{e}}(\delta, \epsilon, k) \leq O\left(\tfrac{k^{1/\alpha}}{\delta^{\max\{4, 2/\alpha\}}} \log \tfrac{1}{\epsilon} \right)$

Consider an integer $\alpha>1$

 $n^{\underline{\alpha}} = n(n-1)...(n-\alpha+1) = \alpha \mathsf{th}$ falling power of n

Claim: For $X \sim \operatorname{Poi}(\lambda)$, $\mathbb{E}[X^{\underline{\alpha}}] = \lambda^{\alpha}$

Under Poisson sampling, an unbiased estimator of $P_{\alpha}(\mathbf{p})$ is

$$\hat{P}_n^u \stackrel{\text{def}}{=} \sum_x \frac{N_x^{\alpha}}{n^{\alpha}}$$

Our estimator for $H_{\alpha}(\mathbf{p})$ is $\hat{H}_{n}^{u} \stackrel{\text{def}}{=} \frac{1}{1-\alpha} \log \hat{P}_{n}^{u}$

Performance of the Bias-Corrected Estimator

For the bias-corrected estimator $\hat{\mathbf{p}}_n^u$ and an integer $\alpha>1$

$$\frac{1}{P_{\alpha}(\mathbf{p})^{2}}\mathbb{V}\mathrm{ar}[\hat{\mathbf{p}}_{n}^{u}] \leq \sum_{r=0}^{\alpha-1}\left(\frac{\alpha^{2}k^{1-1/\alpha}}{n}\right)^{\alpha-r}$$

Theorem

For integer $\alpha > 1$:

$$S_{\alpha}^{\hat{H}_{n}^{u}}(\delta,\epsilon,k) \leq O\left(\frac{k^{1-1/\alpha}}{\delta^{2}}\log\frac{1}{\epsilon}\right)$$

Performance of the Bias-Corrected Estimator

For the bias-corrected estimator $\hat{\mathbf{p}}_n^u$ and an integer $\alpha>1$

$$\frac{1}{P_{\alpha}(\mathbf{p})^{2}}\mathbb{V}\mathrm{ar}[\hat{\mathbf{p}}_{n}^{u}] \leq \sum_{r=0}^{\alpha-1}\left(\frac{\alpha^{2}k^{1-1/\alpha}}{n}\right)^{\alpha-r}$$

Theorem

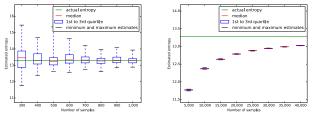
For integer $\alpha > 1$:

$$S_{\alpha}^{\hat{H}_{n}^{u}}(\delta,\epsilon,k) \leq O\left(\frac{k^{1-1/\alpha}}{\delta^{2}}\log\frac{1}{\epsilon}\right)$$

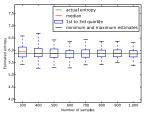
To summarize: For every $0 < \alpha < 1$: For every $1 < \alpha \notin \mathbb{N}$: For every $1 < \alpha \in \mathbb{N}$:

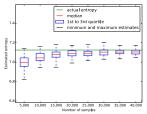
 $S_{\alpha}(k) \le O(k^{1/\alpha})$ $S_{\alpha}(k) \le O(k)$ $S_{\alpha}(k) \le O(k^{1-1/\alpha})$

Constants are Small in Practice



Renyi entropy of order 2 for a uniform distribution on 10000 symbols





Renvi entropy of order 1.5 for a uniform distribution on 10000 symbols

Lower Bounds

$S_{\alpha}(\delta,\epsilon,k) \geq g(k)$ for all δ,ϵ sufficiently small:

Show that there exist two distributions \boldsymbol{p} and \boldsymbol{q} such that

- 1. Support-size of both p and q is k;
- 2. $|H_{\alpha}(\mathbf{p}) H_{\alpha}(\mathbf{q})| > \delta;$
- 3. For all n < g(k), the variation distance $||\mathbf{p}^n \mathbf{q}^n||$ is small.

$S_{\alpha}(\delta,\epsilon,k) \geq g(k)$ for all δ,ϵ sufficiently small:

Show that there exist two distributions \boldsymbol{p} and \boldsymbol{q} such that

- 1. Support-size of both p and q is k;
- 2. $|H_{\alpha}(\mathbf{p}) H_{\alpha}(\mathbf{q})| > \delta;$
- 3. For all n < g(k), the variation distance $||\mathbf{p}^n \mathbf{q}^n||$ is small.

We can replace X^n with a sufficient statistic $\psi(X^n)$ to replace (3) with:

For all n < g(k), the variation distance $\|p_{\psi(X^n)} - q_{\psi(X^n)}\|$ is small.

Distance between Profile Distributions

Definition. Profile of X^n refers $\Phi = (\Phi_1, ..., \Phi_n)$ where

$$\Phi_i =$$
 number of symbols appearing i times in X^n
 $= \sum_x \mathbb{1}(N_x = i)$

Two simple observations:

- 1. Profile is a sufficient statistic for the probability multiset of \boldsymbol{p}
- 2. We can assume Poisson sampling without loss of generality

Let p_Φ and q_Φ denote the distribution of profiles under Poisson sampling

Distance between Profile Distributions

Definition. Profile of X^n refers $\Phi = (\Phi_1, ..., \Phi_n)$ where

$$\Phi_i =$$
 number of symbols appearing i times in X^n
= $\sum_x \mathbb{1}(N_x = i)$

Two simple observations:

- 1. Profile is a sufficient statistic for the probability multiset of \boldsymbol{p}
- 2. We can assume Poisson sampling without loss of generality

Let p_Φ and q_Φ denote the distribution of profiles under Poisson sampling

Theorem (Valiant08)

Given distributions p and q such that $\max_x \max\{p_x; q_x\} \leq \frac{\epsilon}{40n}$, for Poisson sampling with $N \sim \text{Poi}(n)$, it holds that

$$\|\mathbf{p}_{\Phi} - \mathbf{q}_{\Phi}\| \le \frac{\epsilon}{2} + 5\sum_{a} n^{a} |P_{a}(\mathbf{p}) - P_{a}(\mathbf{q})|.$$

Derivation of our Lower Bounds

For distributions \boldsymbol{p} and $\boldsymbol{q}\text{:}$

$$||\mathbf{p}_{\Phi} - \mathbf{q}_{\Phi}|| \lesssim 5 \sum_{a} n^{a} |P_{a}(\mathbf{p}) - P_{a}(\mathbf{q})|$$

$$\bullet |H_{\alpha}(\mathbf{p}) - H_{\alpha}(\mathbf{q})| = \frac{1}{1-\alpha} \left| \log \frac{P_{\alpha}(\mathbf{p})}{P_{\alpha}(\mathbf{q})} \right|$$

Choose \mathbf{p} and \mathbf{q} to be mixtures of d uniform distributions as follows:

$$p_{ij} = \frac{|x_i|}{k ||x||_1}, \quad 1 \le i \le d, 1 \le j \le k$$
$$q_{ij} = \frac{|y_i|}{k ||y||_1}, \quad 1 \le i \le d, 1 \le j \le k$$

Derivation of our Lower Bounds

For distributions \boldsymbol{p} and $\boldsymbol{q}\text{:}$

$$||\mathbf{p}_{\Phi} - \mathbf{q}_{\Phi}|| \lesssim 5 \sum_{a} n^{a} |P_{a}(\mathbf{p}) - P_{a}(\mathbf{q})|$$

$$\bullet |H_{\alpha}(\mathbf{p}) - H_{\alpha}(\mathbf{q})| = \frac{1}{1-\alpha} \left| \log \frac{P_{\alpha}(\mathbf{p})}{P_{\alpha}(\mathbf{q})} \right|$$

Choose \mathbf{p} and \mathbf{q} to be mixtures of d uniform distributions as follows:

$$p_{ij} = \frac{|x_i|}{k ||x||_1}, \quad 1 \le i \le d, 1 \le j \le k$$
$$q_{ij} = \frac{|y_i|}{k ||y||_1}, \quad 1 \le i \le d, 1 \le j \le k$$

Thus,

$$\|\mathbf{p}_{\Phi} - \mathbf{q}_{\Phi}\| \lesssim 5 \sum_{a} \left(\frac{n}{k^{1-1/a}}\right)^{a} \left| \left(\frac{\|x\|_{a}}{\|x\|_{1}}\right)^{a} - \left(\frac{\|y\|_{a}}{\|y\|_{1}}\right)^{a} \right|$$
$$|H_{\alpha}(\mathbf{p}) - H_{\alpha}(\mathbf{q})| = \frac{\alpha}{(1-\alpha)k^{\alpha-1}} \left| \log \frac{\|x\|_{\alpha}}{\|y\|_{\alpha}} \cdot \frac{\|x\|_{1}}{\|y\|_{1}} \right|$$

Distributions with $\|\mathbf{x}|_r = \|\mathbf{y}|_r, \, \forall 1 \leq r \leq m-1$ cannot be distinguished with fewer than $k^{1-1/m}$ samples

Distributions with $\|\mathbf{x}|_{\alpha} \neq \|\mathbf{y}|_{\alpha}$ have different H_{α}

Distributions with $\|{\bf x}|_r=\|{\bf y}|_r,\,\forall 1\leq r\leq m-1$ cannot be distinguished with fewer than $k^{1-1/m}$ samples

Distributions with $\|\mathbf{x}|_{\alpha} \neq \|\mathbf{y}|_{\alpha}$ have different H_{α}

Lemma

For every $d \in \mathbb{N}$ and α not integer, there exist positive vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ such that

$$\begin{aligned} \|\mathbf{x}\|_{r} &= \|\mathbf{y}\|_{r}, \quad 1 \leq r \leq d-1, \\ \|\mathbf{x}\|_{d} \neq \|\mathbf{y}\|_{d}, \\ \|\mathbf{x}\|_{\alpha} \neq \|\mathbf{y}\|_{\alpha}. \end{aligned}$$

Lemma

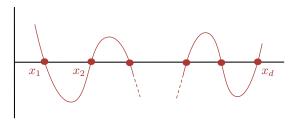
For every $d\in\mathbb{N}$ and α not integer, there exist positive vectors $\mathbf{x},\mathbf{y}\in\mathbb{R}^d$ such that

$$\begin{split} \|\mathbf{x}\|_{r} &= \|\mathbf{y}\|_{r}, \quad 1 \leq r \leq d-1, \\ \|\mathbf{x}\|_{d} \neq \|\mathbf{y}\|_{d}, \\ \|\mathbf{x}\|_{\alpha} \neq \|\mathbf{y}\|_{\alpha}. \end{split}$$

Lemma

For every $d\in\mathbb{N}$ and α not integer, there exist positive vectors $\mathbf{x},\mathbf{y}\in\mathbb{R}^d$ such that

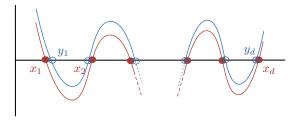
$$\begin{split} \|\mathbf{x}\|_{r} &= \|\mathbf{y}\|_{r}, \quad 1 \leq r \leq d-1, \\ \|\mathbf{x}\|_{d} \neq \|\mathbf{y}\|_{d}, \\ \|\mathbf{x}\|_{\alpha} \neq \|\mathbf{y}\|_{\alpha}. \end{split}$$



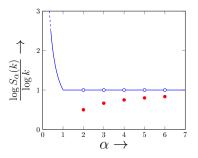
Lemma

For every $d\in\mathbb{N}$ and α not integer, there exist positive vectors $\mathbf{x},\mathbf{y}\in\mathbb{R}^d$ such that

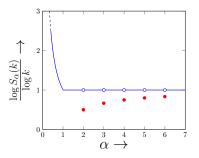
$$\begin{split} \|\mathbf{x}\|_{r} &= \|\mathbf{y}\|_{r}, \quad 1 \leq r \leq d-1, \\ \|\mathbf{x}\|_{d} \neq \|\mathbf{y}\|_{d}, \\ \|\mathbf{x}\|_{\alpha} \neq \|\mathbf{y}\|_{\alpha}. \end{split}$$



In Closing ...



Rényi entropy of order 2 is the "easiest" entropy to estimate, requiring only $O(\sqrt{k})$ samples



Rényi entropy of order 2 is the "easiest" entropy to estimate, requiring only $O(\sqrt{k})$ samples

Sample complexity of estimating other information measures