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Measuring Randomness in Data

Estimating randomness of the observed data:

Neural signal processing Feature selection for machine learning

Image Registration

Approach: Estimate the “entropy” of the generating distribution

Shannon entropy H(p)

def
=

P
x �px log px
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Estimating Shannon Entropy

For an (unknown) distribution p with a (unknown) support-size k,

How many samples are needed for estimating H(p)?

PAC Framework or Large Deviation Guarantees

Let Xn
= X1, ..., Xn denote n independent samples from p

Performance of an estimator ˆH is measured by

SĤ
(�, ✏, k)

def
= min

⇢
n : p

n
⇣
| ˆH(Xn

) � H(p)| < �
⌘

> 1 � ✏,

8 p with support-size k

�

The sample complexity of estimating Shannon Entropy is defined as

S(�, ✏, k)

def
= min

Ĥ
SĤ

(�, ✏, k)
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Sample Complexity of Estimating Shannon Entropy

Focus only on the dependence of S(�, ✏, k) on k

I Asymptotically consistent and normal estimators:
[Miller55], [Mokkadem89], [AntosK01]

I [Paninski03] For the empirical estimator ˆHe, SĤe
(k)  O(k)

I [Paninski04] There exists an estimator ˆH s.t. SĤ
(k)  o(k)

I [ValiantV11] S(k) = ⇥(k/ log k)

- The proposed estimator is constructive and is based on a LP
- See, also, [WuY14], [JiaoVW14] for new proofs

But we can estimate the distribution itself using O(k) samples.

Is it easier to estimate some other entropy??

3



Sample Complexity of Estimating Shannon Entropy

Focus only on the dependence of S(�, ✏, k) on k

I Asymptotically consistent and normal estimators:
[Miller55], [Mokkadem89], [AntosK01]

I [Paninski03] For the empirical estimator ˆHe, SĤe
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Estimating Rényi Entropy

Definition. The Rényi entropy of order ↵, 0 < ↵ 6= 1, for a distribution
p is given by

H↵(p) =

1

1 � ↵
log

X

x

p

↵
x

Sample Complexity of Estimating Rényi Entropy

Performance of an estimator ˆH is measured by

SĤ
↵ (�, ✏, k)

def
= min

⇢
n : p

n
⇣
| ˆH(Xn

) � H↵(p)| < �
⌘

> 1 � ✏, 8 p 2 Pk

�

The sample complexity of estimating Rényi Entropy of order ↵ is given by

S↵(�, ✏, k)

def
= min

Ĥ
SĤ
↵ (�, ✏, k)

We mainly seek to characterize the dependence of S↵(�, ✏, k) on k and ↵
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SĤ
↵ (�, ✏, k)

def
= min

⇢
n : p

n
⇣
| ˆH(Xn

) � H↵(p)| < �
⌘

> 1 � ✏, 8 p 2 Pk

�

The sample complexity of estimating Rényi Entropy of order ↵ is given by

S↵(�, ✏, k)

def
= min

Ĥ
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Which Rényi Entropy is the Easiest to Estimate?

Notations:

S↵(k) �
⇠⇠
⌦ (k�) ) for every ⌘ > 0 and for all �, ✏ small,

S↵(�, ✏, k) � k��⌘, for all k large

S↵(k)  O(k�) ) there is a constant c depending on �, ✏ s.t.

S↵(�, ✏, k)  ck� , for all k large

S↵(k) = ⇥(k�) ) ⌦(k�)  S↵(k)  O(k�)

Theorem

For every 0 < ↵ < 1:

⇠⇠
⌦ (k1/↵

)  S↵(k)  O(k1/↵/ log k)

For every 1 < ↵ /2 N:

⇠⇠
⌦ (k)  S↵(k)  O(k/ log k)

For every 1 < ↵ 2 N: S↵(k) = ⇥(k1�1/↵
)
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Which Rényi Entropy is the Easiest to Estimate?
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Related Work

The ↵th power sum of a distribution p is given by

P↵(p)

def
=

X

x

p

↵
x

Estimating Rényi entropy with small additive error is the same as
estimating power sum with small multiplicative error

I [Bar-YossefKS01] Integer moments of frequencies in a sequence
with multiplicative and additive accuracies

I [JiaoVW14] Estimating power sums with small additive error

For ↵ < 1: Additive and multiplicative accuracy estimation have roughly
the same sample complexity

For ↵ > 1: Additive accuracy estimation requires only a constant number
of samples
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The Estimators



Empirical or Plug-in Estimator

Given n samples X1, ..., Xn,

Let Nx denote the empirical frequency of x.

p̂n(x)

def
=

Nx

n

ˆHe
↵

def
=

1

1 � ↵
log

X
p̂n(x)

↵

Theorem

For ↵ > 1: S
Ĥe

↵
↵ (�, ✏, k)  O

�
k

�max{4,1/(↵�1)} log

1
✏

�

For ↵ < 1: S
Ĥe

↵
↵ (�, ✏, k)  O

⇣
k1/↵

�max{4,2/↵} log

1
✏

⌘

Proof??
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Rényi Entropy Estimation to Power Sum Estimation

Estimating Rényi entropy with small additive error

is the same as

estimating power sum with small multiplicative error

Using a well-known sequence of steps,

suffices to show that bias and variance of p̂n are multiplicatively small

9
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Poisson Sampling

The empirical frequencies Nx are correlated.

Suppose N ⇠ Poi(n) and X1, ..., XN be independent samples from p.

Then,
1. Nx ⇠ Poi(npx)

2. {Nx, x 2 X} are mutually independent

3. For each estimator ˆH, there is a modified estimator ˆH 0 such that

P
⇣
|H↵(p) � ˆH 0

(Xn
)| > �

⌘
 P

⇣
|H↵(p) � ˆH(XN

)| > �
⌘

+

✏

2

,

where N ⇠ Poi(n/2) and n � 8 log(2/✏).

It suffices to bound the error probability under Poisson sampling
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Performance of the Empirical Estimator

For the empirical estimator p̂n:

1

P↵(p)

����E
P

x N↵
x

n↵

�
� P↵(p)

���� 

8
>><

>>:

c1 max

⇢ �
k
n

�↵�1
,
q

k
n

�
, ↵ > 1,

c2

⇣
k1/↵

n

⌘↵
, ↵ < 1

1

P↵(p)

2Var

"
X

x

N↵
x

n↵

#


8
>>><

>>>:

c01 max

⇢ �
k
n

�2↵�1
,
q

k
n

�
, ↵ > 1,

c02 max

⇢ ⇣
k1/↵

n

⌘↵
,
q

k
n , 1

n2↵�1

�
, ↵ < 1

Theorem

For ↵ > 1: S
Ĥe

↵
↵ (�, ✏, k)  O

�
k

�max{4,1/(↵�1)} log

1
✏

�

For ↵ < 1: S
Ĥe

↵
↵ (�, ✏, k)  O

⇣
k1/↵

�max{4,2/↵} log

1
✏

⌘
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A Bias-Corrected Estimator

Consider an integer ↵ > 1

n↵ = n(n � 1)...(n � ↵+ 1) = ↵th falling power of n

Claim: For X ⇠ Poi(�), E[X↵
] = �↵

Under Poisson sampling, an unbiased estimator of P↵(p) is

ˆPu
n

def
=

X

x

N↵
x

n↵

Our estimator for H↵(p) is ˆHu
n

def
=

1
1�↵ log

ˆPu
n
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Performance of the Bias-Corrected Estimator

For the bias-corrected estimator p̂

u
n and an integer ↵ > 1

1

P↵(p)

2Var[p̂

u
n ] 

↵�1X

r=0

✓
↵2k1�1/↵

n

◆↵�r

Theorem

For integer ↵ > 1:

S
Ĥu

n
↵ (�, ✏, k)  O

✓
k1�1/↵

�2
log

1

✏

◆

To summarize:
For every 0 < ↵ < 1: S↵(k)  O(k1/↵

)

For every 1 < ↵ /2 N: S↵(k)  O(k)

For every 1 < ↵ 2 N: S↵(k)  O(k1�1/↵
)
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Constants are Small in Practice

Figure 1: Estimation of Rényi entropy of order 2 and order 1.5 using the bias-corrected estimator

and empirical estimator, respectively, for samples drawn from a uniform distribution. The boxplots

display the estimated values for 100 independent experiments.

� < 1 � = 1 � > 1

↵� < 1 log k 1���
1�� log k 1���

1�� log k

↵� = 1

����
��1 log k 1

2 log k 1
1�� log log k

↵� > 1

����
��1 log k �

��1 log log k constant

Table 1: The leading terms g(k) in the approximations H�(Z�,k) ⇠ g(k) for di�erent values of ↵�
and �. The case ↵� = 1 and � = 1 corresponds to the Shannon entropy of Z1,k.

In particular, for ↵ > 1

H�(Z1,k) =

↵

1 � ↵
log log k + ⇥

✓
1

k��1

◆
+ c(↵),

and the di�erence |H2(p) � H2+�(p)| is O (✏ log log k). Therefore, even for very small ✏ this di�er-

ence is unbounded and approaches infinity in the limit as k goes to infinity. Figure 2 shows the

performance of our estimators for samples drawn from Z1,k. �

Figures 1 and 2 above illustrate the estimation of Rényi entropy for ↵ = 2 and ↵ = 1.5 using

the empirical and the bias-corrected estimators, respectively. As expected, for ↵ = 2 the estimation

works quite well for n =

p
k and requires roughly k samples to work well for ↵ = 1.5. Note that

the empirical estimator is negatively biased for ↵ > 1 and the figures above confirm this. Our goal

in this work is to find the exponent of k in S�(k), and as our results show, for noninteger ↵ the

empirical estimator attains the optimal exponent; we do not consider the possible improvement in

performance by reducing the bias in the empirical estimator.

1.6 Organization

The rest of the paper is organized as follows. Section 2 presents basic properties of power sums

of distributions and moments of Poisson random variables, which may be of independent interest.

8

Figure 2: Estimation of Rényi entropy of order 2 and order 1.5 using the bias-corrected estimator

and empirical estimator, respectively, for samples drawn from Z1,k. The boxplots display the

estimated values for 100 independent experiments.

The estimation algorithms are analyzed in Section 3, in Section 3.1 we show results on the empirical

or plug-in estimate, in Section 3.2 we provide optimal results for integral ↵ and finally we provide

an improved estimator for non-integral ↵ > 1. Finally, the lower bounds on the sample complexity

of estimating Rényi entropy are established in Section 4.

2 Technical preliminaries

2.1 Bounds on power sums

Consider a distribution p over [k] = {1, . . . , k}. Since Rényi entropy is a measure of randomness

(see [Rén61] for a detailed discussion), it is maximized by the uniform distribution and the following

inequalities hold:

0  H�(p)  log k, ↵ 6= 1,

or equivalently

1  P�(p)  k1��, ↵ < 1 and k1��  P�(p)  1, ↵ > 1. (2)

Furthermore, for ↵ > 1, P�+�(p) and P���(p) can be bounded in terms of P�(p), using the

monotonicity of norms and of Hölder means (see, for instance, [HLP52]).

Lemma 1. For every 0  ↵,
P2�(p)  P�(p)

2

Further, for ↵ > 1 and 0  �  ↵,

P�+�(p)  k(��1)(���)/� P�(p)

2,

and
P���(p)  k� P�(p).

9
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Lower Bounds



The General Approach

S↵(�, ✏, k) � g(k) for all �, ✏ sufficiently small:

Show that there exist two distributions p and q such that

1. Support-size of both p and q is k;

2. |H↵(p) � H↵(q)| > �;

3. For all n < g(k), the variation distance kp

n � q

nk is small.

We can replace Xn with a sufficient statistic  (Xn
) to replace (3) with:

For all n < g(k), the variation distance kp (Xn) � q (Xn)k is small.

16
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Distance between Profile Distributions

Definition. Profile of Xn refers � = (�1, ..., �n) where

�i = number of symbols appearing i times in Xn

=

X

x

(Nx = i)

Two simple observations:

1. Profile is a sufficient statistic for the probability multiset of p

2. We can assume Poisson sampling without loss of generality

Let p� and q� denote the distribution of profiles under Poisson sampling

Theorem (Valiant08)

Given distributions p and q such that maxx max{px; qx}  ✏
40n , for

Poisson sampling with N ⇠ Poi(n), it holds that

kp� � q�k  ✏

2

+ 5

X

a

na|Pa(p) � Pa(q)|.

17
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Derivation of our Lower Bounds

For distributions p and q:
I kp� � q�k . 5

P
a na|Pa(p) � Pa(q)|

I |H↵(p) � H↵(q)| =

1
1�↵

���log

P↵(p)
P↵(q)

���

Choose p and q to be mixtures of d uniform distributions as follows:

pij=
|xi|

kkxk1
, 1  i  d, 1  j  k

qij=
|yi|

kkyk1
, 1  i  d, 1  j  k

Thus,

kp� � q�k . 5

X

a

⇣ n

k1�1/a

⌘a
����

✓
kxka

kxk1

◆a

�
✓

kyka

kyk1

◆a����

|H↵(p) � H↵(q)| =

↵

(1 � ↵)k↵�1

����log

kxk↵
kyk↵

· kxk1

kyk1

����
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Derivation of our Lower Bounds: Key Construction

Distributions with kx|r = ky|r, 81  r  m� 1 cannot be distinguished

with fewer than k1�1/m samples

Distributions with kx|↵ 6= ky|↵ have different H↵

Lemma

For every d 2 and ↵ not integer, there exist positive vectors x,y 2 d

such that

kxkr = kykr, 1  r  d � 1,

kxkd 6= kykd,

kxk↵ 6= kyk↵.
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In Closing ...
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Rényi entropy of order 2 is the “easiest” entropy to estimate,

requiring only O(

p
k) samples

Sample complexity of estimating other information measures
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