RIS-aided OTFS Modulation

A. Chockalingam Department of ECE, IISc, Bangalore

(special thanks to Gandhodi Harshavardhan and Vighnesh S. Bhat)

SPCOM 2022

Indian Institute of Science, Bangalore

13 July 2022

A. Chockalingam Department of ECE, IISc, B

RIS-aided OTFS Modulation

- RIS-aided communication
- OTFS modulation
- 3 RIS-aided OTFS modulation
- 4 Concluding remarks

æ

Reconfigurable intelligent surfaces (RIS)

- RIS is a planar array consisting of large number of passive low cost reflecting elements.
- Changes the reflection characteristics of incident electromagnetic wave by inducing a phase shift at every element.
- Phases at RIS are chosen in such a way that desired parameters at the receiver are optimized.

RIS-aided transmission

- Grouping into sub-surfaces
 - A set of adjacent elements with highly correlated channels are grouped into a sub-surface.
 - L such sub-surfaces.
- Both transmitter (Tx) and receiver (Rx) have single antenna each.
- h_r : Channel gain between Tx and rth sub-surface of RIS. g_r : Channel gain between rth sub-surface of RIS and Rx.
 - h_D : Direct link channel gain between Tx and Rx.

RIS-aided transmission

• The received signal at Rx

$$y = \sqrt{E_s} (h_D + \sum_{r=1}^{L} h_r e^{\phi_r} g_r) x + n$$
 (1)

 ϕ_r : adjustable phase introduced by the rth sub-surface of the RIS

- x : transmitted symbol $\in \mathbb{A}$
- n : additive white Gaussian noise
- In matrix form,

$$y = \mathbf{g}^T \mathbf{\Phi} \mathbf{h} x + n \tag{2}$$

 $\mathbf{h} = [h_1 \ h_2 \ \cdots \ h_L]^T$, $\mathbf{g} = [g_1 \ g_2 \ \cdots \ g_L]^T$, $\mathbf{\Phi} = ([e^{j\phi_1} \ e^{j\phi_2} \ \cdots \ e^{j\phi_L}])$

- Model in (2) resembles that of a precoding/beamforming system
- This 'beamforming' happens in the medium (not at Tx or Rx)

RIS-aided transmission

• Define
$$h_r = lpha_r e^{j heta_r}$$
, $g_r = eta_r e^{j \psi_r}$, and $h_D = arepsilon e^{j \eta}$

Instantaneous SNR at the receiver is

$$\mathrm{SNR} = \frac{E_s \left| \sum_{r=1}^{L} \alpha_r \beta_r e^{j(\phi_r + \theta_r + \psi_r)} + \varepsilon e^{j\eta} \right|^2}{\sigma^2}$$

- RIS is assumed to be controlled by a smart controller having the knowledge of the phases of channel coefficients.
- SNR at the receiver can be maximized by adjusting the reflection phases at the RIS, $\phi_r = (-\theta_r \psi_r + \eta)$.
- Detection at the receiver is carried out using ML detection.

A. Chockalingam Department of ECE, IISc, B

¹L. Yang, F. Meng, M. O. Hasna, and E. Basar, "A novel RIS-assisted modulation scheme," *IEEE Wireless Commun. Lett.*, vol. 10, no. 6, pp. 1359–1363, Jun. 2021

²E. Basar, M. D. Renzo, J. de Rosny, M. Debbah, M.-S. Alouini, and R. Zhang, "Wireless communications through reconfigurable intelligent surfaces," *IEEE Access*, vol. 7, pp. 116753-116773, Aug. 2019. If the surfaces are an experimental or an experimental surfaces and the surfaces are an experimental surfaces are an ex

BER performance of RIS-aided communication

- Performance improves with the aid of RIS.
- Performance improvement is more for large *L*.

A. Chockalingam Department of ECE, IISc, E

RIS-aided OTFS Modulation

- Transmitted OFDM symbol in frequency domain $\mathbf{x} \triangleq [X_0, X_1, \cdots, X_{N_s-1}]^T$, N_s : no. of sub-carriers.
- $h_{r,l}$: *l*th tap channel gain of Tx-RIS link associated with *r*th sub-surface.

 $g_{r,l}$: *l*th tap channel gain of RIS-Rx link associated with *r*th sub-surface.

• Received OFDM symbol in frequency domain $\mathbf{y} \triangleq [Y_0, Y_1, ..., Y_{N_s-1}]^T$.

• End-to-end frequency domain input-output relation:

$$\mathbf{y} = \mathbf{X} \left(\sum_{r=1}^{L} \mathbf{q}_r \phi_r \odot \mathbf{b}_r \right) + \mathbf{n},$$

where

- $\mathbf{q}_r \in \mathbb{C}^{N_s \times 1}$: channel frequency response of Tx-RIS link associated with *r*th sub-surface.
- $\mathbf{b}_r \in \mathbb{C}^{N_s \times 1}$: channel frequency response of RIS-Rx link associated with rth sub-surface.
- \odot : Hadamard product.
- $\mathbf{X} \triangleq \mathsf{diag}(\mathbf{x}).$

• Reflection phases (ϕ_r , $r = 1 \cdots, L$) that maximize the rate are chosen.

• Performance of OFDM improves with the aid of RIS.

Orthogonal Time Frequency Space (OTFS) modulation

- A promising modulation scheme for doubly-selective channels
- Channel is viewed/represented in DD domain
- Information is multiplexed in the delay-Doppler (DD) domain
 - Map information from DD domain to time domain and transmit
 - $\bullet~{\sf Two-step}$ transformation: DD domain $\to {\sf TF}$ domain $\to {\sf time}$ domain
- Superior performance compared to OFDM

⁵R. Hadani, S. Rakib, M. Tsatsanis, A. Monk, A. J. Goldsmith, A. F. Molisch, and R. Calderbank, "Orthogonal time frequency space modulation," in *Proc. IEEE WCNC*, San Francisco, CA, USA, March 2017. () + (

11/28

Channel representation in DD domain

• $h(\tau,\nu)$ representation

- τ : determined by relative distance
- ν: determined by relative velocity
- τ,ν are time-invariant for long
- $h(\tau, \nu)$: slowly-varying, sparse

•
$$h(\tau,\nu) = \sum_{i=1}^{P} h_i \delta(\tau - \tau_i) \delta(\nu - \nu_i)$$

OTFS - Signaling in DD domain

Input-output relation

• Received signal in DD domain (for $\tau_i \triangleq \frac{\alpha_i}{M \Delta f}$, $\nu_i \triangleq \frac{\beta_i}{NT}$, α_i , β_i : integers) $y[k, l] = \sum_{i=1}^{P} h'_i \ x[(k - \beta_i)_N, (l - \alpha_i)_M] + v[k, l]$

where $h_i' = h_i e^{-j2\pi\nu_i\tau_i}$, $h_i \sim \mathcal{CN}(0, 1/P)$.

The DD domain input-output relation can be vectorized as

 $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{v},$

where $x_{k+Nl} = x[k, l], y_{k+Nl} = y[k, l], v_{k+Nl} = v[k, l],$ $\mathbf{H} \in \mathbb{C}^{MN \times MN}$: *j*th row (j = k + Nl) of \mathbf{H} is $\mathbf{H}_{[j] = [\hat{h}((k-0)_N, (l-0)_M), \hat{h}((k-1)_N, (l-0)_M), \cdots, \hat{h}((k-N-1)_N, (l-M-1)_M)],}$

$$\hat{h}(k,l) = \begin{cases} h'_i & \text{if } k = \beta_i \ \& \ l = \alpha_i \text{ for some } i \in \{1, \cdots, P\} \\ 0 & \text{otherwise.} \end{cases}$$

• H is block circulant with circulant blocks (P non-zeros in each row)

A. Chockalingam Department of ECE, IISc, E RIS-aided OTFS Modulation

⁶P. Raviteja, K. T. Phan, and E. Viterbo, "Interference cancellation and iterative detection for orthogonal time frequency space modulation," *IEEE Trans. Wireless Commun.*, vol. 17, no. 10, pp. 6501-6515, Oct. 2018 + (=) + (=

OTFS performance

• OTFS vs OFDM performance

Parameter	Value
Carrier frequency (GHz)	4
Subcarrier spacing (kHz)	15
Frame size (M, N)	(12,7)
Number of paths (P)	5
Delay profile	Exponential
Maximum speed (km/h)	500
Maximum Doppler (Hz)	1875
Modulation scheme	BPSK

* Smallest resource block used in LTE: M = 12, N = 7

MMSE detection

• OFDM performs poor due to Doppler-induced ICI

• OTFS performs significantly better than OFDM

A. Chockalingam Department of ECE, IISc, E RIS-aided OTFS Modulation

 $^{^{7}}$ G. D. Surabhi, R. M. Augustine, and A. Chockalingam, "On the diversity of uncoded OTFS modulation in doubly-dispersive channels," *IEEE Trans. Wireless Commun.*, vol. 18, no. 6, pp. 3049-3063, Jun. 2019. $\square \Rightarrow \langle \overrightarrow{a} \Rightarrow \langle a$

RIS-aided OTFS

• DD domain to TF domain conversion using ISFFT :

$$X[n,m] = \frac{1}{\sqrt{MN}} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} x[k,l] e^{j2\pi \left(\frac{nk}{N} - \frac{ml}{M}\right)}$$

• Transmitted time-domain signal :

$$x(t) = \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} X[n,m]g_{tx}(t-nT)e^{j2\pi m\Delta f(t-nT)}$$

 $g_{tx}(t)$: transmit pulse

RIS-aided OTFS

• Tx to RIS channel (associated with *r*th sub-surface)

$$h^{r}(\tau,\nu) = \sum_{p=1}^{P_{1}} h_{p}^{r} \delta(\tau - \tau_{p}^{r,1}) \delta(\nu - \nu_{p}^{r,1})$$

• Signal received at rth sub-surface of RIS

$$z^{r}(t) = \int_{\nu} \int_{\tau} h^{r}(\tau,\nu) x(t-\tau) e^{j2\pi\nu(t-\tau)} d\tau d\nu$$

• Time-domain signal at Rx (reflected from rth sub-surface of RIS)

$$y^{r}(t) = \phi_{r} \int_{\nu_{2}} \int_{\tau_{2}} g^{r}(\tau_{2}, \nu_{2}) z^{r}(t - \tau_{2}) e^{j2\pi\nu_{2}(t - \tau_{2})} d\tau_{2} d\nu_{2}$$

 \bullet Here, $\phi_r=\gamma_r e^{j\theta_r}$ is the reflection coefficient

- γ_r : reflection amplitude of $r{\rm th}$ sub-surface
- θ_r : reflection phase of rth sub-surface

Demodulation at OTFS receiver

• Wigner transform : time domain to TF domain

$$Y^{r}(t,f) = \int_{t'} g_{rx}^{*}(t'-t)y^{r}(t')e^{-j2\pi f(t'-t)}dt'$$
$$Y^{r}[n,m] = Y^{r}(t,f)|_{t=nT,f=m\Delta f}$$

 $g_{rx}(t)$: receive pulse.

• TF domain input-output relation :

$$Y^{r}[n,m] = \phi_{r} \sum_{n'=0}^{N-1} \sum_{m'=0}^{M-1} H^{r}_{n,m}[n',m']X[n',m']$$

• In $H_{n,m}^r[n',m']$, a term of cross-ambiguity function $A_{g_{rx},g_{tx}}\Big((n-n')T - (\tau_1 + \tau_2), (m-m')\Delta f - (\nu_1 + \nu_2)\Big)$ is present. $A_{g_{rx},g_{tx}}(t,f) = \int_{t'} g_{rx}^*(t'-t)g_{tx}(t')e^{-j2\pi f(t'-t)}dt'$

Demodulation at OTFS receiver

• For ideal pulses,

$$A_{g_{rx},g_{tx}}(t,f) = \begin{cases} 1, & n = 0, m = 0\\ 0, & \text{otherwise}, \end{cases}$$

for $t \in (nT - \tau_{max}, nT + \tau_{max})$ and $f \in (m\Delta f - \nu_{max}, m\Delta f + \nu_{max})$ • Assuming ideal pulses, TF domain input-output relation :

$$Y^{r}[n,m] = \phi_{r}H^{r}_{n,m}[n,m]X[n,m]$$

• SFFT: TF domain to DD domain

$$y^{r}[k,l] = \frac{1}{\sqrt{MN}} \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} Y^{r}[n,m] e^{-j2\pi(\frac{nk}{N} - \frac{ml}{M})}$$

DD domain input-output relation

• The derived input-output relation in DD domain:

$$y^{r}[k,l] = \phi_{r} \sum_{q=1}^{P_{2}} g_{q}^{r} e^{-j2\pi\nu_{q}^{r,2}\tau_{q}^{r,2}} \sum_{p=1}^{P_{1}} h_{p}^{r} e^{-j2\pi\nu_{p}^{r,1}(\tau_{p}^{r,1}+\tau_{q}^{r,2})} x[[k - (\beta_{p}^{r,1} + \beta_{q}^{r,2})]_{N}, [l - (\alpha_{p}^{r,1} + \alpha_{q}^{r,2})]_{M}],$$

$$\tau_p^{r,1} \triangleq \frac{\alpha_p^{r,1}}{M\Delta f}, \ \nu_p^{r,1} \triangleq \frac{\beta_p^{r,1}}{NT}, \ \tau_q^{r,2} \triangleq \frac{\alpha_q^{r,2}}{M\Delta f}, \ \text{and} \ \nu_q^{r,2} \triangleq \frac{\beta_q^{r,2}}{NT}.$$

• $\alpha_p^{r,1}, \beta_p^{r,1}, \alpha_q^{r,2}, \text{and } \beta_q^{r,2}$ are assumed to be integers.

• Vectorized input-output relation:

$$\mathbf{y} = \sum_{r=1}^{L} \phi_r \mathbf{H}^r \mathbf{x} + \mathbf{v},$$

 $\mathbf{y}, \mathbf{x} \in \mathbb{C}^{MN \times 1}$, the (k + Nl)th entry of $\mathbf{x}, x_{k+Nl} = x[k, l]$ $\mathbf{H}^r \in \mathbb{C}^{MN \times MN}$: effective cascaded channel matrix for rth sub-surface.

A. Chockalingam Department of ECE, IISc, B

⁸G. Harshavardhan, V. S. Bhat, and A. Chockalingam, "RIS-aided OTFS modulation in high-Doppler channels," accepted in IEEE PIMRC'2022, Sep. 2022.

Reflection phase design

- We fix $\gamma_r = 1$, and choose $\theta_r \in [-\pi, \pi]$.
- We choose $\Theta = [\theta_1 \theta_2 \cdots \theta_L]$ that maximizes $\|\sum_{r=1}^L e^{j\theta_r} \mathbf{H}^r\|^2$.
- Approximate solution:
 - Multiple random phase vector realizations are generated.
 - *i*th realization : $\Theta^i = [\theta_1^i \theta_2^i \cdots \theta_L^i]$, θ_r^i : uniformly distributed in $[-\pi, \pi]$.
 - Choose Θ^{i^*} where $i^* = \arg \max_i \{ \| \sum_{r=1}^L e^{j\theta_r^i} \mathbf{H}^r \|^2 \}.$

Parameter	Value
Frame size (M, N)	(2, 2)
DD (au_i, u_i) profile for 2 paths	$(0,0)$, $(rac{1}{M\Delta f},rac{1}{NT})$
DD (au_i, u_i) profile for 4 paths	$(0,0), (0,rac{1}{NT}), \ (rac{1}{M\Delta f},0), (rac{1}{M\Delta f},rac{1}{NT})$
Maximum speed	506.25 km/h
Modulation	BPSK

- Carrier frequency f_c : 4 GHz
- Maximum Doppler : 1.875 kHz
- Sub-carrier spacing : 3.75 kHz

Performance of OTFS w/o RIS and RIS-aided OTFS

- OTFS performance improves with aid of RIS
- Increased performance gain with increased number of sub-surfaces

Effect of number of sub-surfaces L on BER

Performance gain improves with increase in the number of sub-surfaces.

24 / 28

RIS-aided OTFS vs RIS-aided OFDM

• Power-delay profile : Extended vehicular A (EVA) model.

• *i*th path Doppler shift $(\nu_i) = \nu_{max} \cos \theta$, $\nu_{max} = 1.34$ KHz.

A. Chockalingam Department of ECE, IISc, E RIS-aided C

⁹ Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) Radio Transmission and Reception, Version 14.3.0, Release 14, document TS 36.104, 3GPP, Apr. 2017. ← □ → ← ∂ → ← ≧ → ← ≧ → ← ≧ → ∈ ≧ → ∈ ≧

Effect of number of sub-surfaces on BER

- BER performance gap between RIS-OTFS and RIS-OFDM at L=5 is one order.
- At L = 20, it is three orders.

Concluding remarks

• RIS and OTFS are promising technologies for 6G and beyond

- $\bullet~\text{RIS} \rightarrow \text{energy}$ efficient communication
- $\bullet\ {\sf OTFS} \to {\sf high}{\text{-mobility support and radar sensing}}$
- $\bullet~\mathsf{RIS}\text{-aided}~\mathsf{OTFS}\to\mathsf{offers}$ the benefit of both

RIS-OTFS research

- in early stages and promising
- derived end-to-end input-output relation can trigger algorithm development/performance evaluation related work for RIS-OTFS
- phase design optimization, channel estimation can be studied
- scope for more research

Thank you

• • • • • • • •

2