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Motivation
The increasing computing, communication

and sensing capabilities can help intelligent 
transportation systems (ITS)

Two Examples
o Inferring road maps from Global 

Positioning System (GPS) data
o Detecting road potholes from 

accelerometer data
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Inferring Road Maps from GPS Data
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Map Usage

5

Courtesy of Google Maps

Google Map for going from CMU to the Sri Venkateswara Temple in Pittsburgh



Map Making
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Traditional Modern
 Traditional map making is labor-intensive
 Modern map making is mostly the domain of big tech 

companies and may not be updated sufficiently frequently
 Can maps be inferred from data collected by vehicle 

sensors?



Vehicle Sensors

7



Global Positioning System (GPS) Basics

https://www.worthview.com/what-is-and-how-does-a-gps-work/
GPS provides latitude and longitude coordinates of the GPS receiver



Map Inference

Map inference from GPS 
traces  is the automatic 
generation of road 
locations and shapes from 
large amounts of 
opportunistically collected 
data from GPS sensors in 
multiple vehicles
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Challenges to Map Inference from GPS Traces

 Undersampled data
o Sensors may operate below 

Nyquist rate
o Requires multiple sensors to 

increase effective sampling rate
 Non-uniformly spaced data

o Mapping from time to spatial 
domain

o Asynchronous samples
 GPS Location errors
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X. Liu, J. Biagioni, J. Eriksson, Y. Wang, G. Forman, and Y. Zhu, “Mining large-scale, sparse gps traces for map inference: comparison of 
approaches,” in Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2012, pp. 669–677.

GPS data available in a region of Beijing
Each black dot is a sample taken from a 
taxi’s GPS device. 



Impact of Errors
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GPS Traces Map Inference Result

J. Biagioni and J. Eriksson, “Inferring road maps from global positioning 
system traces,” Transportation Research Record: Journal of the 
Transportation Research Board, vol. 2291, no. 1, pp. 61–71, 2012.



Multi-Source Variable-Rate (MSVR)
Map Inference Method

Step 1:
Data 

Association

Step 2:
MSVR 

Reconstruction

Step 3:
Geographic 
Alignment
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*A. Fox, B. V. K.Vijaya Kumar, B. Fan, "Multi-source variable-rate sampled 
signal reconstructions in vehicular cps," Proc. of IEEE INFOCOM, 2016.

1. Data Association: Associating GPS datapoints to road segments

2. MSVR Reconstruction: Then we estimate the shapes of the road 
segments using these sets of GPS samples with the Multi-Source 
Variable Rate (MSVR) Signal Reconstruction method*

3. Geographic Alignment: Use domain knowledge to align road 
segments to better fit the shapes of the real road networks



Data Association
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Original Image Blurred Image Thinned then Thickened 

Image

Segmented Data



GPS Data Compilation
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MSVR Signal Reconstruction
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 Represent a road as a signal or function f(.): Latitude as a 
function of longitude

 f(.) could be a straight line, an arc, a curve, etc.
 Estimate the parameters of f(.) from the crowd-sourced GPS 

samples in each segment



Errors in Both Variables
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MSVR Signal Reconstruction

min
𝜃𝜃,Δ

𝑓𝑓𝜃𝜃 𝑞𝑞1 − 𝑦𝑦1
⋮

𝑓𝑓𝜃𝜃 𝑞𝑞𝑁𝑁 − 𝑦𝑦𝑁𝑁
𝑞𝑞1 − 𝑥𝑥1

⋮
𝑞𝑞𝑁𝑁 − 𝑥𝑥𝑁𝑁

T

𝐂𝐂−1

𝑓𝑓𝜃𝜃 𝑞𝑞1 − 𝑦𝑦1
⋮

𝑓𝑓𝜃𝜃 𝑞𝑞𝑁𝑁 − 𝑦𝑦𝑁𝑁
𝑞𝑞1 − 𝑥𝑥1

⋮
𝑞𝑞𝑁𝑁 − 𝑥𝑥𝑁𝑁

– 𝐂𝐂 is the covariance matrix of the errors in Latitude and Longitude, 
– 𝜃𝜃 are the parameters of the reconstructed signal 𝑓𝑓𝜃𝜃 .
– 𝑞𝑞𝑛𝑛 and 𝑓𝑓𝜃𝜃 𝑞𝑞𝑛𝑛 are the true Longitude and Latitude of sample 𝑛𝑛, and 𝑥𝑥𝑛𝑛

and 𝑦𝑦𝑛𝑛 are the reported Latitude and Longitude of sample 𝑛𝑛
– Δ are the errors between the reported coordinates and true coordinates
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Error Vector
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𝒇𝒇𝜽𝜽 𝒙𝒙 Basis Functions

Majority of road shapes are lines or gentle curves, 
which can be characterized by 3rd order piecewise 
smooth polynomials (splines)

𝑓𝑓𝜃𝜃 𝑥𝑥 = �
𝑖𝑖=0

𝐷𝐷

𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖 + �
𝑘𝑘=1

𝐾𝐾

𝑏𝑏𝑘𝑘 𝑥𝑥 − 𝜉𝜉𝑘𝑘 +
𝐷𝐷

𝑥𝑥 − 𝜉𝜉 + = �0, 𝑥𝑥 < 𝜉𝜉
𝑥𝑥 − 𝜉𝜉, 𝑥𝑥 > 𝜉𝜉
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Geographic Alignment

Once given the road segments 
output by the MSVR 
Reconstruction, we incorporate 
additional domain knowledge 
to align the geography of the 
road map.

o Road Segment Pruning
o Road Segment Merging
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Qualitative Results (Beijing)
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BJ1 BJ2 BJ3

KDE Results

MSVR Results



Qualitative Results (Shanghai)
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SH1 SH2 SH3

KDE Results

MSVR Results



Quantitative Results - Fscore

BJ1 BJ2 BJ3 BJ4 BJ5
MSVR 0.8501 0.8010 0.7325 0.7994 0.7047
KDE 0.4510 0.5581 0.6176 0.6569 0.4501
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BJ6 SH1 SH2 SH3
MSVR 0.6371 0.6320 0.6296 0.7041
KDE 0.3770 0.7014 0.4316 0.5399

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (Fraction of identified roads that are roads) =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
,

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (Fraction of real road that are correctly identified) =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 ×

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅



Road Pothole Detection from Crowd-
sourced Vehicle Sensor Data
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Road Potholes
• Potholes damage vehicles and 

create dangerous driving 
conditions
– Over 500,000 pothole-related 

insurance claims per year
– $6.4 billion in repairs

• Detecting potholes and 
disseminating data is critical for 
pothole avoidance

• Use crowd-sourced vehicle 
sensor data (e.g., accelerometer 
signals) to detect road potholes

AAA Mid-Atlantic News Release
http://www.wusa9.com/story/news/nation/2014/02/24/potholes-damage-cost-us/5773501/



Detection Framework
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Individual Vehicle Sensor Data 
(GPS, Speed, Accel.)

Real-world 
Data

Simulated 
Data

Model
Testing Data

Model
Training Data

Transmit 
Vehicle Data 

To Cloud

Data Grouping
Sliding Window

Greedy Forward Feature Selection

Feature 
Selection

SVM 
Classifier 
Training

Transmit 
Vehicle Data 

To Cloud

Final 
Feature

Set

SVM
Pothole 

Classifier

Transmit 
Vehicle Data 

To Cloud

Data Grouping
Sliding Window

Transmit 
Vehicle Data 

To Cloud

Pothole 
Detection 
Results



Training Data
• Require lots of data or 

vehicle(s) runs to capture full 
variability of the relevant data

• Pothole accelerometer output 
signal affected by sensor 
location, vehicle size, weight, 
dimensions, speed, quality of 
the suspension system, etc. 

• Used simulated data 
(CarSim®) and real data to 
train algorithms
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Feature Selection

• Candidate Features
– 𝑎𝑎𝑧𝑧,𝑎𝑎𝑥𝑥, 𝑎𝑎𝑧𝑧

𝑣𝑣
, 𝑎𝑎𝑥𝑥
𝑣𝑣

, 𝑎𝑎𝑥𝑥
𝑎𝑎𝑧𝑧

,𝑎𝑎𝑧𝑧𝑣𝑣,𝑎𝑎𝑥𝑥𝑣𝑣,𝑎𝑎𝑥𝑥𝑎𝑎𝑧𝑧
– Max, Mean, Standard Deviation, 

Absolute Value
• Support Vector Machines

– Two class regression classifier
– Maximize margin between data sets
– Radial basis kernel function

• Greedy Forward Feature Selection
– Iteratively add best performing feature
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Binary Voting Detection

• SVM detector run on individual vehicles
• Single bit (plus location) sent to Cloud indicating if pothole 

is detected
• Greater than ϵ data points vote for pothole results in 

pothole decision
28



Binary Voting Detection Results
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True Detection Rate False Alarms Per True Pothole

• Increasing voting threshold decreases detection and false alarm rate
• Relies on weak detectors on individual vehicles

• Voting threshold, ε, must be low
• 500 vehicles – 1.00 detection rate, 0.022 false alarms per true pothole



Real-world Data Results

• 90.3% detection rate
• 0.25 false alarms per true 

pothole
– 68 total false alarms
– Need to reduce false alarm 

rate

• False Alarm categories
– 9 – regions following large 

potholes
– 14 – cracked roads
– 30 – accelerating or 

decelerating from stop
• Missed in simulation

• SVM classifiers trained using simulated 
data are applied to real-world data



Conclusions

Increasing computing, communication and sensing capabilities 
offer opportunities for new transportation applications, e.g.,

o Map inference
o Pothole detection
o Virtual traffic lights
o Augmented vision for vehicles
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