Inferring Road Information from Crowd-sourced Vehicle Sensor Data

Vijayakumar Bhagavatula

U.A. & Helen Whitaker Professor of Electrical and Computer Engineering

Acknowledgments

Research collaborators

- Dr. Andrew Fox
- o Dr. Eric He
- Dr. Fan Bai (General Motors)

Research Sponsor

• General Motors

Motivation

The increasing computing, communication and sensing capabilities can help intelligent transportation systems (ITS)

Two Examples

- Inferring road maps from Global Positioning System (GPS) data
- Detecting road potholes from accelerometer data

Inferring Road Maps from GPS Data

Map Usage

Courtesy of Google Maps

Google Map for going from CMU to the Sri Venkateswara Temple in Pittsburgh

Map Making

Traditional

Modern

Traditional map making is labor-intensive
 Modern map making is mostly the domain of big tech companies and may not be updated sufficiently frequently
 Can maps be inferred from data collected by vehicle sensors?

Vehicle Sensors

Global Positioning System (GPS) Basics

https://www.worthview.com/what-is-and-how-does-a-gps-work/ GPS provides latitude and longitude coordinates of the GPS receiver

Map Inference

Map inference from GPS traces is the automatic generation of road locations and shapes from large amounts of opportunistically collected data from GPS sensors in multiple vehicles

Challenges to Map Inference from GPS Traces

Undersampled data

- Sensors may operate below Nyquist rate
- Requires multiple sensors to increase effective sampling rate

□ Non-uniformly spaced data

- Mapping from time to spatial domain
- Asynchronous samples

GPS Location errors

GPS data available in a region of Beijing Each black dot is a sample taken from a taxi's GPS device.

X. Liu, J. Biagioni, J. Eriksson, Y. Wang, G. Forman, and Y. Zhu, "Mining large-scale, sparse gps traces for map inference: comparison of approaches," in Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2012, pp. 669–677.

Impact of Errors

GPS Traces

Sudders How Control Co

Map Inference Result

J. Biagioni and J. Eriksson, "Inferring road maps from global positioning system traces," Transportation Research Record: Journal of the Transportation Research Board, vol. 2291, no. 1, pp. 61–71, 2012.

Carnegie Mellon

Multi-Source Variable-Rate (MSVR) Map Inference Method

- 1. Data Association: Associating GPS datapoints to road segments
- 2. MSVR Reconstruction: Then we estimate the shapes of the road segments using these sets of GPS samples with the Multi-Source Variable Rate (MSVR) Signal Reconstruction method*
- **3. Geographic Alignment**: Use domain knowledge to align road segments to better fit the shapes of the real road networks

*A. Fox, B. V. K.Vijaya Kumar, B. Fan, "Multi-source variable-rate sampled signal reconstructions in vehicular cps," *Proc. of IEEE INFOCOM*, 2016.

Data Association

GPS Data Compilation

90

100

х₈

MSVR Signal Reconstruction

Represent a road as a signal or function f(.): Latitude as a function of longitude

- \Box f(.) could be a straight line, an arc, a curve, etc.
- Estimate the parameters of f(.) from the crowd-sourced GPS samples in each segment

Electrical & Computer

Errors in Both Variables

MSVR Signal Reconstruction

Error Vector

$$\min_{\substack{\theta,\Delta}} \begin{bmatrix} f_{\theta}(q_{1}) - y_{1} \\ \vdots \\ f_{\theta}(q_{N}) - y_{N} \\ q_{1} - x_{1} \\ \vdots \\ q_{N} - x_{N} \end{bmatrix}^{\mathrm{T}} \mathbf{C}^{-1} \begin{bmatrix} f_{\theta}(q_{1}) - y_{1} \\ \vdots \\ f_{\theta}(q_{N}) - y_{N} \\ q_{1} - x_{1} \\ \vdots \\ q_{N} - x_{N} \end{bmatrix}$$

- C is the covariance matrix of the errors in Latitude and Longitude,
- θ are the parameters of the reconstructed signal $f_{\theta}(.)$
- q_n and $f_{\theta}(q_n)$ are the true Longitude and Latitude of sample *n*, and x_n and y_n are the reported Latitude and Longitude of sample *n*
- Δ are the errors between the reported coordinates and true coordinates

$f_{\theta}(x)$ Basis Functions

Majority of road shapes are lines or gentle curves, which can be characterized by 3rd order piecewise smooth polynomials (splines)

$$f_{\theta}(x) = \sum_{i=0}^{D} \beta_{i} x^{i} + \sum_{k=1}^{K} b_{k} (x - \xi_{k})_{+}^{L}$$
$$(x - \xi)_{+} = \begin{cases} 0, & x < \xi \\ x - \xi, x > \xi \end{cases}$$

Geographic Alignment

Once given the road segments output by the MSVR Reconstruction, we incorporate additional domain knowledge to align the geography of the road map.

- Road Segment Pruning
- Road Segment Merging

Qualitative Results (Beijing)

Electrical & Computer

Qualitative Results (Shanghai)

Electrical & Computer

Quantitative Results - Fscore

	B	J1	BJ2		BJ3		BJ4		BJ5	
MSVR	0.	8501	0.8010		0.7325		0.7994		0.7047	
KDE	0.	4510	0.5581		0.6176		0.6569		0.4501	
		BJ6		SH1		SH2		SH3		
MSVR		0.6371		0.6320		0.6296		0.7041		
KDE		0.3770		0.7014		0.4316		0.5399		

 $Precision (Fraction of identified roads that are roads) = \frac{TP}{TP + FP},$ $Recall (Fraction of real road that are correctly identified) = \frac{TP}{TP + FN}$ $F_{score} = 2 \times \frac{Precision \times Recall}{Precision + Recall}$

Road Pothole Detection from Crowdsourced Vehicle Sensor Data

Road Potholes

- Potholes damage vehicles and create dangerous driving conditions
 - Over 500,000 pothole-related insurance claims per year
 - \$6.4 billion in repairs
- Detecting potholes and disseminating data is critical for pothole avoidance
- Use crowd-sourced vehicle sensor data (e.g., accelerometer signals) to detect road potholes

Detection Framework

Training Data

- Require lots of data or vehicle(s) runs to capture full variability of the relevant data
- Pothole accelerometer output signal affected by sensor
 location, vehicle size, weight,
 dimensions, speed, quality of
 the suspension system, etc.
- Used simulated data (*CarSim*[®]) and real data to train algorithms

Feature Selection

Candidate Features

$$- a_z, a_x, \frac{a_z}{v}, \frac{a_x}{v}, \frac{a_x}{a_z}, a_z v, a_x v, a_x a_z$$

- Max, Mean, Standard Deviation, Absolute Value
- Support Vector Machines
 - Two class regression classifier
 - Maximize margin between data sets
 - Radial basis kernel function
- Greedy Forward Feature Selection
 - Iteratively add best performing feature

Binary Voting Detection

- SVM detector run on individual vehicles
- Single bit (plus location) sent to Cloud indicating if pothole is detected
- Greater than ϵ data points vote for pothole results in pothole decision

Electrical & Computer

Binary Voting Detection Results

- Increasing voting threshold decreases detection and false alarm rate
- Relies on weak detectors on individual vehicles
 - Voting threshold, ε , must be low

 500 vehicles – 1.00 detection rate, 0.022 false alarms per true pothole Electrical & Computer ENGINEERING

Real-world Data Results

- SVM classifiers trained using simulated data are applied to real-world data
- 90.3% detection rate
- 0.25 false alarms per true pothole
 - 68 total false alarms
 - Need to reduce false alarm rate

- False Alarm categories
 - 9 regions following large potholes
 - 14 cracked roads
 - 30 accelerating or decelerating from stop
 - Missed in simulation

Conclusions

Increasing computing, communication and sensing capabilities offer opportunities for new transportation applications, e.g.,

- Map inference
- Pothole detection
- Virtual traffic lights
- Augmented vision for vehicles

Electrical & Computer