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Motivation

JdThe increasing computing, communication
and sensing capabilities can help intelligent
transportation systems (ITS)

JdTwo Examples

o Inferring road maps from Global
Positioning System (GPS) data

o Detecting road potholes from
accelerometer data

ectrical & Computer
) ENGINEERIN °



Carnegie Mellon

Inferring Road Maps from GPS Data
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Map Usage
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Map Making

Google maps :

Street View

Traditional Modern

 Traditional map making is labor-intensive

1 Modern map making is mostly the domain of big tech
companies and may not be updated sufficiently frequently

 Can maps be inferred from data collected by vehicle
sensors?
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Vehicle Sensors

@ Rear camera

Fuel sensor

Video cameras

A/C sensor

. Exhaust gas sensor
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Global Positioning System (GPS) Basics

ﬂ Each satellite broadcast radio
signals with their location,
statuses and precise time
information.

G GPS radio signal travels at
speed of light ~ 300,000 km/s.

T,
Vi

i._l..-u
e = 4

9 GPS device receives radio signalﬁ.
noting their exact time of arrival
and uses these to calculate its
distance from each satellite it can
sea.

) Once a GPS receiver knows its distance from at least 4 satellites,
it uses geometry to determine its exact location on Earth in 3D,

] ] _https://www.worthv_iew.com/what—is-and—how—does-a—grzs—work/
GPS provides latitude and longitude coordinates of the GPS receiver
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Map Inference

Map inference from GPS
traces is the automatic
generation of road
locations and shapes from
large amounts of . ;
opportunistically collected /

data from GPS sensors in o
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Challenges to Map Inference from GPS Traces

1 Undersampled data 09.09 oy

o Sensors may operate below s AR
Nyquist rate #

o Requires multiple sensors to
increase effective sampling rate s 7

 Non-uniformly spaced data

o Mapping from time to spatial oo MR
domain . 1 W ewir
o Asynchronous samples Pfess vesss 1ess s e tiess e
3 GPS Location errors GPS data available in a region of Beijing

Each black dot is a sample taken from a
taxi’s GPS device.

X. Liu, J. Biagioni, J. Eriksson, Y. Wang, G. Forman, and Y. Zhu, “Mining large-scale, sparse gps traces for map inference: comparison of
approaches,” in Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2012, pp. 669-677.
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Impact of Errors

| Vn

o

Map Inference Result

J. Biagioni and J. Eriksson, “Inferring road maps from global positioning

system traces,” Transportation Research Record: Journal of the
Transportation Research Board, vol. 2291, no. 1, pp. 61-71, 2012.
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Multi-Source Variable-Rate (MSVR)

Map Inference Method

Step 1: Step 2: Step 3:
Data > MSVR " Geographic
Association Reconstruction Alignment

1. Data Association: Associating GPS datapoints to road segments

2. MSVR Reconstruction: Then we estimate the shapes of the road
segments using these sets of GPS samples with the Multi-Source
Variable Rate (MSVR) Signal Reconstruction method*

3. Geographic Alignment: Use domain knowledge to align road
segments to better fit the shapes of the real road networks

*A. Fox, B. V. K.Vijaya Kumar, B. Fan, "Multi-source variable-rate sampled

signal reconstructions in vehicular cps," Proc. of IEEE INFOCOM, 2016.
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Data Association
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GPS Data Compilation
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MSVR Signal Reconstruction

Signal Versions of Roads

33 8525

33.552 -

13.5515

335511

Latitude

33,8505 -

33.55

112463 -112.462 -112.461 -11246 -112458 -112.458
Longitude

1 Represent a road as a signal or function f(.): Latitude as a

function of longitude
4 f(.) could be a straight line, an arc, a curve, etc.
1 Estimate the parameters of f(.) from the crowd-sourced GPS

samples in each segment

ectrical & Computer
) ENGINEERINE

15



Carnegie Mellon

Errors in Both Variables

yfo=mno-- - f()
o b |
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MSVR Signal Reconstruction

Error V r _ T - -
e fa(q) — y1 fo(q1) — y1
min folan) — yn c-1 folan) — vy
6,A qd1 — X1 qd1 — X1
. 4y — XN . 4y — Xy

— C is the covariance matrix of the errors in Latitude and Longitude,
- 0 are the parameters of the reconstructed signal f5(.)

- qn and fy(q,) are the true Longitude and Latitude of sample n, and x,
and y, are the reported Latitude and Longitude of sample n

- A are the errors between the reported coordinates and true coordinates

Electrical & Computer 17
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fo(x) Basis Functions

Majority of road shapes are lines or gentle curves,
which can be characterized by 3™ order piecewise
smooth polynomials (splines)

D K
fol) = ) it + ) bl — 08
1=0 k=1

10, x < ¢&
(x_€)+_{x—f,x>§
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Geographic Alignment

Once given the road segments |
output by the MSVR .. _
Reconstruction, we incorporate - I
additional domain knowledge ol
to align the geography of the o I— .
road map.

o Road Segment Pruning e :

o Road Segment Merging

Electrical & Computer 19
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Qualitative Results (Beijing)

5
MSVR Results
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Qualitative Results (Shanghai)

MSVR Results

KDE Results
SH1 SH2 SH3
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Quantitative Results - Fscore

______BJI___B)2 __|BJ3___BJ____BJS

MSVR 0.8501 0.8010 0.7325 0.7994 0.7047

KDE 0.4510 0.5581 0.6176 0.6569 0.4501
. |BJ6  [SH1  |SH2  |SH3 |
MSVR 0.6371 0.6320 0.6296 0.7041
KDE 0.3770 0.7014 0.4316 0.5399
P ST Fracti f identified ds that ds) = P
recision (Fraction of identified roads that are roads) _TP+€1§)'
R [l (Fracti freal d that tly identified) =
ecall (Fraction of real roa at are correctly identified) TP+ FN
Precision X Recall
Fscore = 2 X —
Precision + Recall
Electrical & Computer 22
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Road Pothole Detection from Crowd-
sourced Vehicle Sensor Data
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Road Potholes

* Potholes damage vehicles and
create dangerous driving
conditions

— Over 500,000 pothole-related
insurance claims per year

— $6.4 billion in repairs

* Detecting potholes and
disseminating data is critical for
pothole avoidance

» Use crowd-sourced vehicle
sensor data (e.g., accelerometer
signals) to detect road potholes

,(() Electrical & Computer  AaA Mid-Atlantic News Release
EN G | N EE R NG http://www.wusa9.com/story/news/nation/2014/02/24/potholes-damage-cost-us/5773501/
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Detection Framework
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Training Data

* Require lots of data or
vehicle(s) runs to capture full
variability of the relevant data

» Pothole accelerometer output
signal affected by sensor
location, vehicle size, weight,
dimensions, speed, quality of
the suspension system, etc. _

« Used simulated data
(CarSim®) and real data to
train algorithms
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Feature Selection

Candidate Features

15 Normal Roaq
- — SuUV
a, Ay Oy 11 Minivan
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— Max, Mean, Standard Deviation, & 7 '
Absolute Value of m————————
« Support Vector Machines 05/ T
— Two class regression classifier Spggfhg:/h)
— Maximize margin between data sets "o | SOV
— Radial basis kernel function d Socon |
« Greedy Forward Feature Selection

— lteratively add best performing feature
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Binary Voting Detection

Vehicles Cloud
| e e e mmcm e ccccceeco—o-
1 1
11 1 Hz
|| ePs Sliding
' Window Pothole Sliding Binary
1 1] ] Speed 1Hz | Detector Window Voting
: : Feature SVM Grouping Scheme
..:_ a,, a,, a,| |Calculation

« SVM detector run on individual vehicles

« Single bit (plus location) sent to Cloud indicating if pothole
IS detected

« Greater than ¢ data points vote for pothole results in
pothole decision

Electrical & Computer 28
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Binary Voting Detection Results

True Detection Rate False Alarms Per True Pothole
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Increasing voting threshold decreases detection and false alarm rate
Relies on weak detectors on individual vehicles

« Voting threshold, €, must be low
» 500 vehicles — 1.00 detection rate, 0.022 false alarms per true pothole29
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Real-world Data Results

 SVM classifiers trained using simulated
data are applied to real-world data

* 90.3% detection rate * False Alarm categories
« (.25 false alarms per true — 9 —regions following large
pothole potholes

— 14 — cracked roads

— 30 — accelerating or
decelerating from stop

 Missed in simulation

— 68 total false alarms

— Need to reduce false alarm
rate
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Conclusions

Increasing computing, communication and sensing capabilities
offer opportunities for new transportation applications, e.g.,

o Map inference

o Pothole detection

o Virtual traffic lights

o Augmented vision for vehicles
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