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Learning with Trials and Feedback

Figure: Learning in everyday life. Images are taken from the internet.
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Multi-Agent Learning

Figure: Multi-player games, traffic signal control, autonomous driving.
Images are taken from the internet.

Connected local environments.

Individual rewards.

Action of one agent can impact

all local states.
the rewards of all agents.
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Mathematical Formulation

N agents.

Individual state space S = {1, 2, · · · , S}.
Individual action space A = {1, 2, · · · ,A}.
State and action of ith agent at time t: s it , and ait .

Joint state and action at time t: st = {s it}i∈{1,··· ,N}, and at .

Reward of ith agent at time t: ri (st , at).

State transition of ith agent: s it+1 ∼ Pi (st , at).
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Mathematical Formulation

Policy of ith agent: ait ∼ πi
t(st)

Joint policy-sequence: π = {πi
t}i∈{1,··· ,N},t∈{0,1,··· }

In cooperative setup, the following is maximized:

vN(s0,π) =
1

N

N∑
i=1

E

[ ∞∑
t=0

γtri (st , at)

]
(1)

over all policy-sequence π.

Expectation is over all trajectory generated by π from s0.

Joint state-space: SN . The goal is difficult in general.
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Existing Approaches

Localisation of Policy:

Each policy is dependent on local states i.e., πi
t(st) = πi

t(s
i
t)

Training:

Independent Q-Learning (IQL).

Centralised training with decentralised execution (CTDE)

VDN [7], QMIX [5], WQMIX [4], QTRAN [6] etc.

Merit and Demerit:

Works well empirically for moderately high number of agents.

No optimality guarantee.
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Mean-Field Control (MFC)

Basic Premise:

One can accurately infer group behaviour by studying only a
representative agent if the agents are

(A1) identical and exchangeable, and
(A2) infinite in number

Consequence of (A1) in an N-agent system:

ri (st , at) = r(s it , a
i
t ,µ

N
t ,ν

N
t )

Pi (st , at) = P(s it , a
i
t ,µ

N
t ,ν

N
t )

πi
t(st) = πt(s

i
t ,µ

N
t ) where

µN
t (s) ≜

1

N

N∑
i=1

δ(s it = s), νN
t (a) ≜

1

N

N∑
i=1

δ(ait = a) (2)
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Behaviour of an Infinite Agent System

State and action of representative at time t: st , and at .

Policy-sequence of representative: π = {πt}t∈{0,1,··· }.
State and action distributions at time t: µ∞

t , ν∞
t .

Action Distribution Evolution:

ν∞
t ≜ νMF(µ∞

t , πt) =
∑
s∈S

πt(s,µ
∞
t )µ∞

t (s) (3)

State Distribution Evolution:

µ∞
t+1 ≜ PMF(µ∞

t , πt)

=
∑
s∈S

∑
a∈A

P(s, a,µ∞
t ,ν∞

t )πt(s,µ
∞
t )(a)µ∞

t (s) (4)
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Goal in MFC

Expected reward of the representative at time t:

rMF(µ∞
t , πt) =

∑
s∈S

∑
a∈A

r(s, a,µ∞
t ,ν∞

t )πt(s,µ
∞
t )(a)µ∞

t (s)

(5)

Maximize over all π the following for initial distribution, µ0.

v∞(µ0,π) =
∞∑
t=0

γtrMF(µ∞
t , πt) (6)
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Research Gap

It is known [1] that for large N, and for all π,

|vN(s0,π)− v∞(µ0,π)| = O
(

1√
N

)
(7)

How the error changes when

agents are heterogeneous? (JMLR 2022 [2])
non-exchangeable? (UAI 2022 [3])
additional constraints are present? (Submitted to NeurIPS)

How to solve MFC sample-efficiently?

Construction of local policy? (Submitted to TMLR)
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Approximating Heterogeneous MARL

K classes of agents {N1, · · · ,NK}
Populations N1, · · · ,NK .

N1 + · · ·+ NK = N and N ≜ {N1, · · · ,NK}.
Agents within each class are identical and exchangeable.

Reward and state-transition depend on:

Case 1: Joint state and action distributions over all classes.

Case 2: State and action distributions of individual classes.

Case 3: Marginalized state and action distributions.

Approximating Large Cooperative Multi-Agent Reinforcement Learning (MARL) Problems via Mean-Field Control (MFC)



Approximating Heterogeneous MARL: Case 1

For an agent i belonging to k-th class,

ri (st , at) = rk(s
i
t , a

i
t ,µ

N
t ,ν

N
t )

Pi (st , at) = Pk(s
i
t , a

i
t ,µ

N
t ,ν

N
t )

where µN
t = {µk,Nk

t }k∈{1,··· ,K}, ν
N
t = {νk,Nk

t }k∈{1,··· ,K} and

µk,Nk
t (s) =

1

N

∑
i∈Nk

δ(s it = s), (8)

νk,Nk
t (a) =

1

N

∑
i∈Nk

δ(ait = a) (9)

Example: Ride sharing market where classes may be vehicle type,
driver type etc.
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Approximating Heterogeneous MARL: Results

The error between MARL and MFC is O(e) where

e =
[
1
N

∑
k

√
Nk

]
[
√
S +

√
A] (Case 1)

e =
[∑

k
1√
Nk

]
[
√
S +

√
A] (Case 2)

e =
[
A
N

∑
k

√
Nk +

∑
k

B√
Nk

]
[
√
S +

√
A] for some constants

A,B (Case 3)

We also develop an algorithm that approximately solves MFC and
therefore also solves MARL with O(e) error and O(e−3) sample
complexity.
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Crux of the Proof for Case 1

Assumptions

|r(x , u,µ1,ν1)| ≤ M

|r(x , u,µ1,ν1)− r(x , u,µ2,ν2)| ≤ LR [|µ1−µ2|1+ |ν1−ν2|1]
|P(x , u,µ1,ν1)−P(x , u,µ2,ν2)|1 ≤ LP [|µ1−µ2|1+|ν1−ν2|1]
|π(x ,µ1)− π(x ,µ2)| ≤ LQ |µ1 − µ2|

µ1,µ2,ν1,ν2 are arbitrary joint distributions

Bounded reward

Lipschitz reward, transition, policy
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Crux of the Proof for Case 1

Consequence of Assumption

Lipschitz continuity extends to mean field system

|νMF(µ1, π)− νMF(µ2, π)|1 ≤ (1+ LQ)|µ1 −µ2|1 (Lemma 1)

|PMF(µ1, π)− PMF(µ2, π)|1 ≤ SP |µ1 − µ2|1 (Lemma 2)

|rMF(µ1, π)− rMF(µ2, π)|1 ≤ SR |µ1 − µ2|1 (Lemma 3)
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Crux of the Proof for Case 1

Where does
√
N factor come from?

Lemma 4

If {Xm,n}m∈[M],n∈[N] are random variables and {Cm,n}m∈[M],n∈[N]

are constants such that

If ∀m ∈ [M], {Xm,n}n∈[N] are independent

0 ≤ Xm,n ≤ 1, ∀m, n∑
m∈[M] E[Xm,n] = 1, ∀n ∈ [N]

|Cm,n| ≤ C , ∀m ∈ [M], ∀n ∈ [N], then

M∑
m=1

E

∣∣∣∣∣
N∑

n=1

Cm,n

(
Xm,n − E[Xm,n]

)∣∣∣∣∣ ≤ C
√
MN (10)
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Consequence of Lemma 4

Lemma 5:

E|νN
t − νMF(µN

t ,πt)|1 ≤
1

N

∑
k∈[K ]

√
Nk

√|U|

Lemma 6:

E
∣∣∣µN

t+1 − PMF(µN
t ,πt)

∣∣∣
1

≤ CP

[√
|X |+

√
|U|
] 1

N

∑
k∈[K ]

√
Nk
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Consequence of Lemma 4

Lemma 7:

E

∣∣∣∣∣∣ 1

Npop

∑
k∈[K ]

Nk∑
j=1

rk(x
t,N
j ,k , ut,Nj ,k ,µN

t ,ν
N
t )−

∑
k∈[K ]

rMF
k (µN

t ,πt)

∣∣∣∣∣∣
≤ CR

√
|U| 1

N

∑
k∈[K ]

√
Nk


What do these differences (Lemma 5, 6, 7) mean?

Characterizing a one-step difference between MARL and MFC

µN
t → µN

t+1 (MARL update)

µN
t → PMF(µN

t , πt) (MFC update)
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Multi-Step Difference

Via Recursion, E
∣∣µN

t+1 − µt+1

∣∣
1
can be bounded.

Our goal: the difference between MARL and MFC rewards

It translates to γ-discounted sum of E
∣∣µN

t+1 − µt+1

∣∣
1
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Approximating MARL with Non-Uniform Interaction

Motivational Example: Traffic Signal Control.

Nearby intersections interact stronger than far-away ones.

Model of Non-Uniform Interaction:

N agents with identical reward and state transition functions.

Interaction between agent i , j : W (i , j).

State and action distribution as seen by ith agent:

µi ,N
t (s) =

N∑
j=1

W (i , j)δ(s jt = s), (11)

ν i ,N
t (a) =

N∑
j=1

W (i , j)δ(ajt = a) (12)
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Approximating MARL with Non-Uniform Interaction

Reward of ith agent: r(s it , a
i
t ,µ

i ,N
t ,ν i ,N

t )

State transition of ith agent: s it+1 ∼ P(s it , a
i
t ,µ

i ,N
t ,ν i ,N

t )

Main Result:

MFC can still approximate MARL if

W is doubly-stochastic matrix (DSM)
reward functions are affine

The approximation error is O(e) where e = 1√
N

[√
S +

√
A
]
.

Developed algorithm to obtain optimal policy with

O(max{e, ϵ}) error, and
O(ϵ−3) sample complexity for any ϵ > 0.
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Numerical Results

Consider a network of N firms operated by a single operator. All of
the firms produce the same product but with varying quality (with
Q levels).
At each time, each firm decides whether to invest to improve the
quality of its product. The quality improves as

x it+1 =

x it +

⌊
χ

(
1− µ̄i ,N

t

Q

)
(Q − x it)

⌋
if uit = 1,

x it otherwise

where χ is a uniform random variable between [0, 1], and µ̄i ,N
t is

average product quality of its K < N neighbouring firms. The
total reward can be expressed as follows.

r(x it , u
i
t ,µ

i ,N
t ,ν i ,N

t ) = αRx
i
t − βR(µ̄

i ,N
t )σ − λRu

i
t
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Numerical Results

(a) Affine Reward (b) Nonlinear Reward

Figure: Percentage error between MARL and MFC as a function of N.
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Approximating Constrained MARL

Premise:

In addition to reward, each agent incurs cost c(s it , a
i
t ,µ

N
t ,ν

N
t )

Consider the reward and cost values:

V r
N(s0,π) =

1

N

N∑
i=1

E

[ ∞∑
t=0

γtr(s it , a
i
t ,µ

N
t ,ν

N
t )

]
, (13)

V c
N(s0,π) =

1

N

N∑
i=1

E

[ ∞∑
t=0

γtc(s it , a
i
t ,µ

N
t ,ν

N
t )

]
(14)
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Approximating Constrained MARL

max
π

V r
N(s0,π)

subject to: V c
N(s0,π) ≤ 0

(15)

Main Result:

MFC approximation error O(e) where e = 1√
N
[
√
S +

√
A].

Zero constraint violation for large N.

Devised Primal-Dual algorithm that computes the optimal
policy with

O(e) error,
Zero constraint violation for large N
O(e−6) sample complexity.
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Numerical Result

Figure: Percentage error in approximating the optimal objective value and
constraint violation respectively as functions of N.
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Constructing Near-Optimal Local Policy

Idea:

Collecting network-wide information to compute µN
t , ν

N
t is

costly or impossible at each instant.

µ∞
t , ν∞

t can be obtained deterministically via mean-field
updates if µ0 is known.

Can we use µ∞
t , ν∞

t as proxy for µN
t , ν

N
t ?

It eliminates the cost of communication except at t = 0.
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Constructing Near-Optimal Local Policy

Let, π∗
N be the optimal N-agent policy sequence.

π∗
∞ = {π∗

t,∞} be optimal infinite agent policy-sequence.

Define π̃∗
∞ = {π̃∗

t,∞} such that,

π̃∗
t,∞(s,µ) = π∗

t,∞(s,µ∞
t ), ∀s, ∀µ (16)

We show that,

|vN(s0,π∗
N)− vN(µ0, π̃

∗
∞)| = O (e) , e =

1√
N
[
√
S +

√
A]

We develop an algorithm that computes π̃∗
∞ with

O(max{e, ϵ}) error and O(ϵ−3) sample complexity.
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Numerical Result

Figure: Percentage error of approximating the optimal policy via a local
policy as a function of N.
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