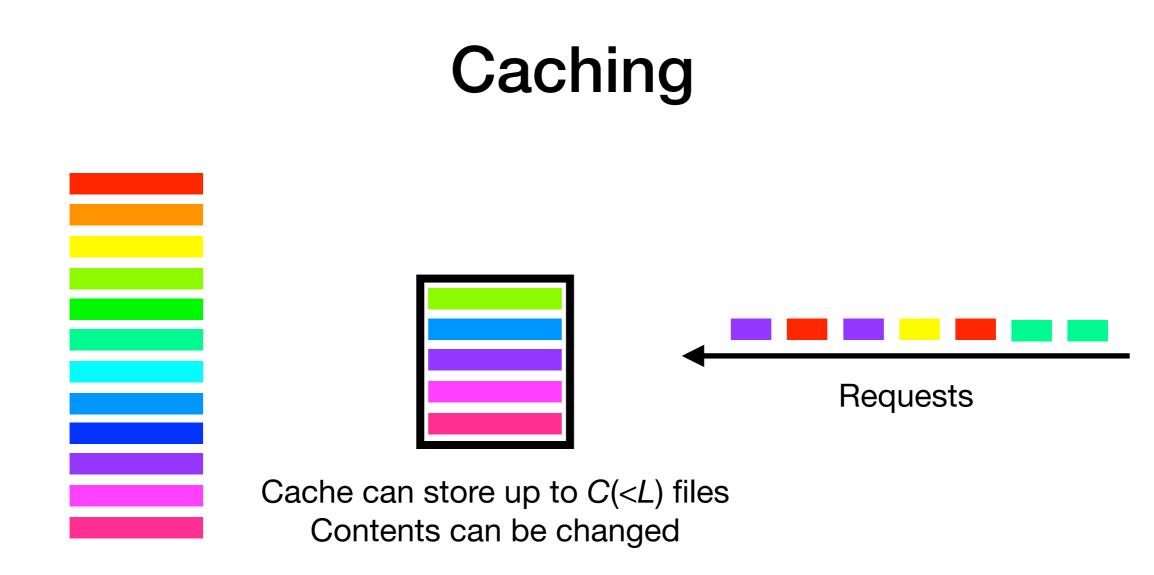
Regret-Optimal Online Caching for Adversarial and Stochastic Arrivals

Sharayu Moharir IIT Bombay

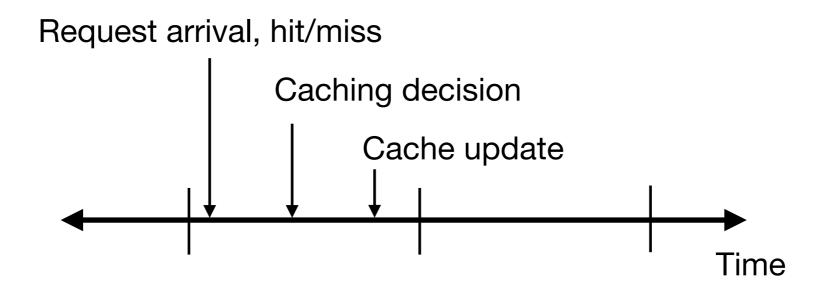
Joint work with Fathima Faizal, Priya Singh, and Nikhil Karamchandani



Library of *L* files

- *Hit*: requested file present in cache
- Miss: requested file not present in cache
- Algorithmic challenge: determine which files to cache over time
- Goal: maximize the number of hits/minimize the number of misses

Request Models



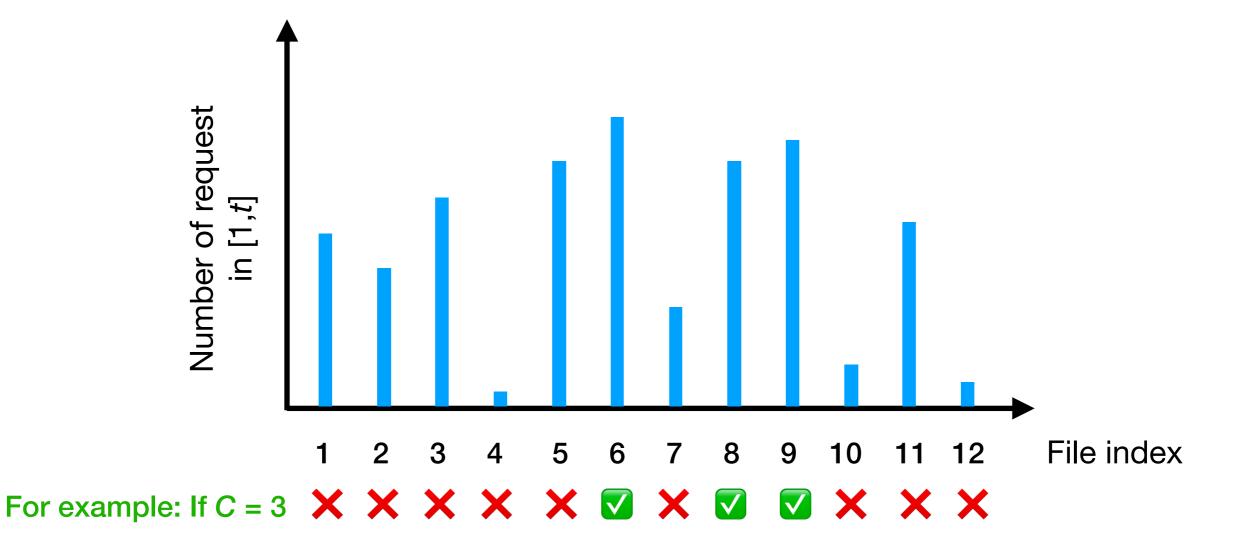
i.i.d. Stochastic Requests	Adversarial Requests
 Requests are i.i.d. random variables 	No assumptions on arrival sequence
 Online: Distribution unknown, caching decisions based on past arrivals 	 Online: Caching decisions based on past arrivals

Performance Metric: Regret

i.i.d. Stochastic Requests	Adversarial Requests
 OPT: caches the <i>C</i> most popular files Popularity of File <i>i</i> = P(Request for file i) Static policy, knows popularity of files 	 OPT: static cache configuration which maximizes number of hits in [1,7] Offline: knows arrival sequence apriori
 D: distribution of request arrivals Candidate policy <i>P</i> M_P(T): number of misses in [1,T] under <i>P</i> 	 A: arrival sequence, candidate policy <i>P</i> <i>M</i>_{<i>P</i>}(<i>A</i>,<i>T</i>): number of misses in [1, <i>T</i>] for <i>A</i> under policy <i>P</i>
Regret: $R_{\mathcal{P}}(T) = E_{D,\mathcal{P}}[M_{\mathcal{P}}(T)] - E_D[M_{OPT}(T)]$	Regret: $R_{\mathcal{P}}(T) = \max_{A}(\mathbb{E}_{\mathcal{P}}[M_{\mathcal{P}}(A,T)] - M_{OPT}(A,T))$
Guarantee on expected performance	Worst-case performance guarantee

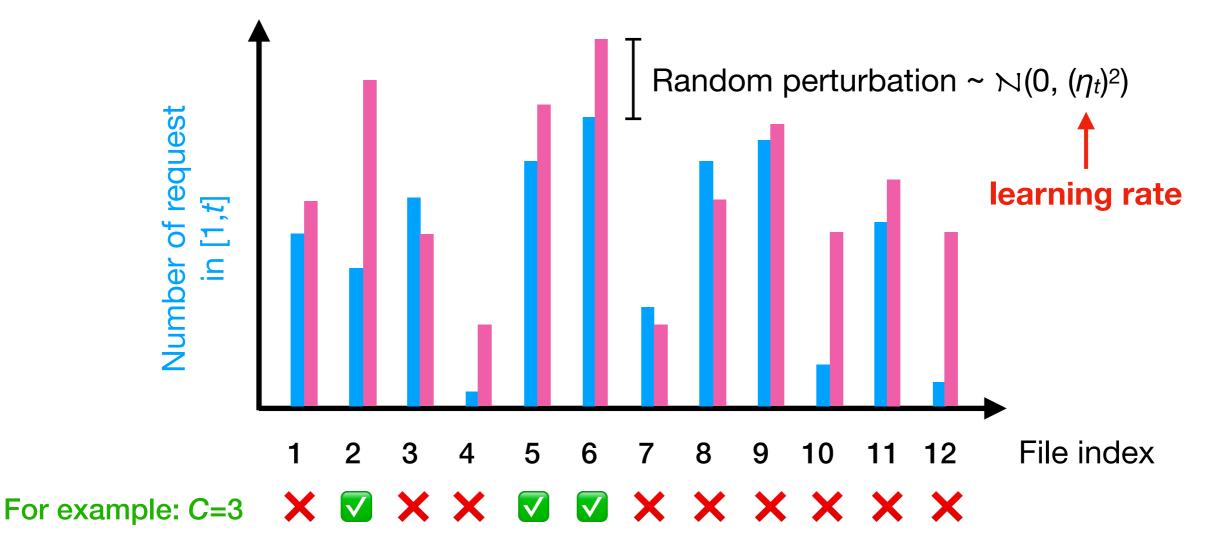
Is there a policy with order-optimal (w.r.t. time) regret for both stochastic & adversarial arrivals?

Policy 1: Least Frequently Used



- Keep track of cumulative number of requests for each file
- Score(*t*) = cumulative number of requests in [1, *t*]
- Cache the C files with the C highest scores

Policy 2: Follow the Perturbed Leader



- Keep track of cumulative number of requests for each file
- Score(*t*) = cumulative number of requests in [1, *t*] + random perturbation
- Cache the C files with the C highest scores

Overview of Known Results

Policies	i.i.d. Stochastic Requests	Adversarial Requests
LFU	O(1) regret (order-optimal)1	$\Omega(T)$ regret, strictly sub-optimal ²
FTPL		O(\sqrt{T}) regret for $\eta_t \propto \sqrt{T}$ (order-optimal) ² O(\sqrt{T}) regret for $\eta_t \propto \sqrt{t}$ (order-optimal) ³

1 A. Bura et al., Learning to Cache and Caching to Learn: Regret Analysis of Caching Algorithms, *IEEE/ACM ToN* 2 R. Bhattacharjee et al., Fundamental Limits of Online Network-Caching, *ACM SIGMETRICS* 2020

3 S. Mukhopadhyay et al., Online Caching with Optimal Switching Regret, ISIT 2021

FTPL with Constant Learning Rate

Recall:

- Random perturbation in time-slot $t \sim N(0, (\eta_t)^2)$
- For i.i.d. stochastic arrivals, $R_{LFU}(T) = O(1)$

Theorem: For i.i.d. stochastic arrivals and $\eta_t \alpha \sqrt{T}$:

```
R_{\text{FTPL}}(T) = \Omega(\sqrt{T}).
```

FTPL with $\eta_t \alpha \sqrt{T}$ is strictly sub-optimal for i.i.d. stochastic arrivals

FTPL with Time-Varying Learning Rate

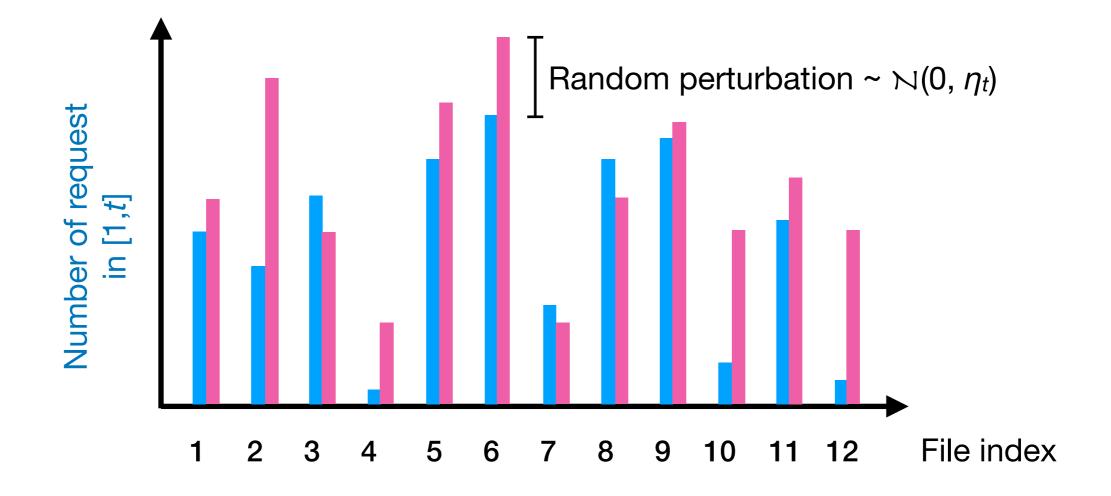
Recall:

- Random perturbation in time-slot $t \sim N(0, (\eta_t)^2)$
- *L* = library size, *C* = cache size

Let: • $\mu_i = P(an incoming request is for file i)$ • WLOG, files indexed in decreasing order of $\mu_i s$ • $\Delta = \mu_C - \mu_{C+1}$ Theorem: For i.i.d. stochastic arrivals and $\eta_t \alpha \sqrt{t}$: $R_{FTPL}(T) = O(\log L/\Delta^2).$

FTPL with $\eta_t \alpha \sqrt{t}$ has order-optimal regret (w.r.t. time) for i.i.d. stochastic and adversarial arrivals

Recall: Follow the Perturbed Leader



- Keep track of cumulative number of requests for each file
- Score(*t*) = cumulative number of requests in [0, *t*] + random perturbation
- Cache the C files with the C highest scores

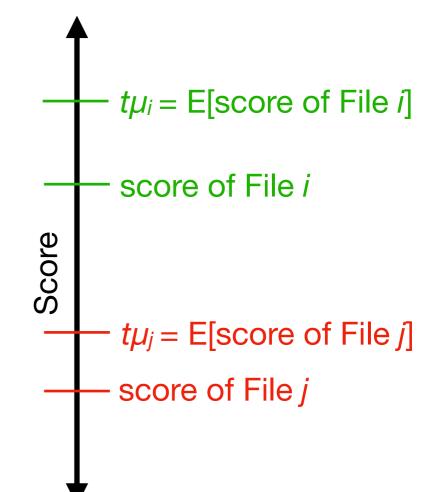
Proof Outline (Part 1 of 2)

Let

- $\mu_i = P(an incoming request is for file i)$
- WLOG, $i < j \implies \mu_i > \mu_j$

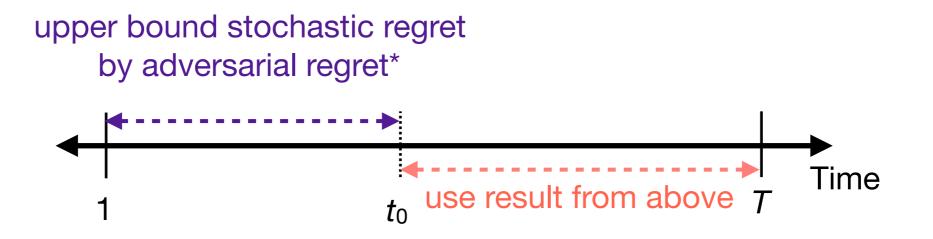
Key idea: Low regret if FTPL mimics OPT w.h.p.

- OPT caches Files 1 to C
- Consider $i \leq C$ and $j > C \implies \mu_i > \mu_j$
- Event E: score of File i > score of File j
- Lower bound P(E)
- Account for all possible pairs of *i* ≤ C & *j* > C and all time



Proof Outline (Part 2 of 2)

- Event E: score of File *i* > score of File *j*
- Account for <u>all possible pairs</u> of $i \le C$ and j > C and <u>all time</u>

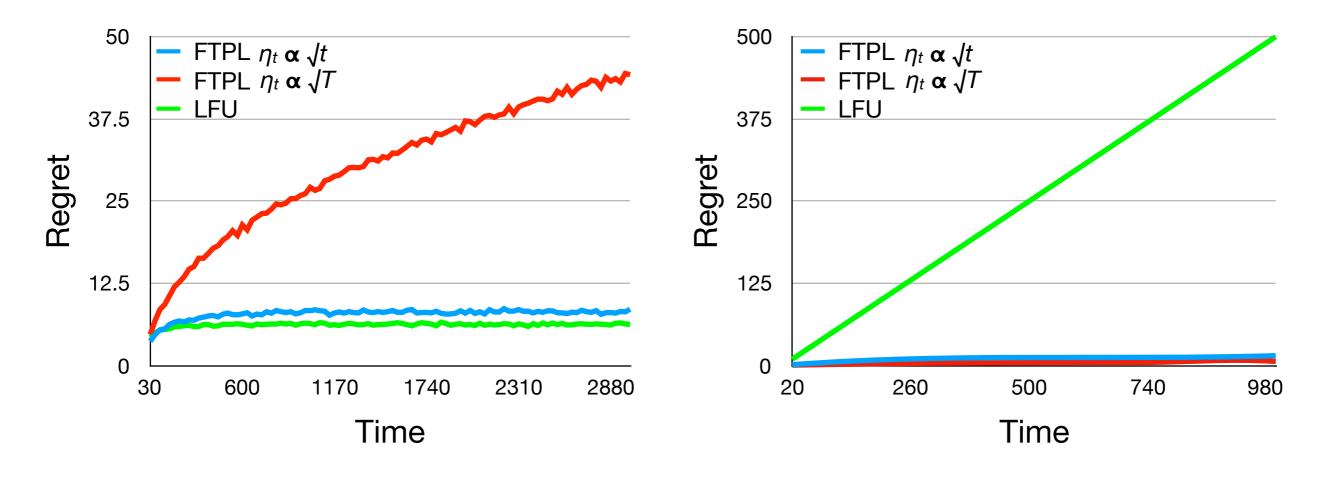


• Optimize for *t*₀, improves dependence of regret bound on library size *L*

^{*}J. Mourtada et al., On the optimality of the Hedge algorithm in the stochastic regime, JMLR 2019

Simulations

round robin arrivals C = 1, L = 2



Summary

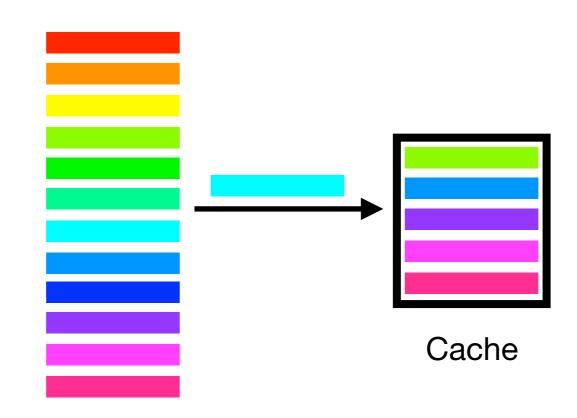
Policies	i.i.d. Stochastic Requests	Adversarial Requests
LFU	O(1) regret (order-optimal) ¹	$\Omega(T)$ regret, strictly sub-optimal ²
FTPL	$Ω(\sqrt{T})$ regret for $η_t α \sqrt{T}$ (sub-optimal) O(1) regret for $η_t α \sqrt{t}$ (order-optimal)	O(\sqrt{T}) regret for $\eta_t \propto \sqrt{T}$ (order-optimal) ² O(\sqrt{T}) regret for $\eta_t \propto \sqrt{t}$ (order-optimal) ³

FTPL with $\eta_t = \sqrt{t}$ has order-optimal regret for both stochastic & adversarial arrivals

1 A. Bura et al., Learning to Cache and Caching to Learn: Regret Analysis of Caching Algorithms, *IEEE/ACM ToN* 2 R. Bhattacharjee et al., Fundamental Limits of Online Network-Caching, *ACM SIGMETRICS* 2020

3 S. Mukhopadhyay et al., Online Caching with Optimal Switching Regret, ISIT 2021

Generalizations



Back-end server

- So far, no penalty for changing cache contents
- Generalizations: restricted switching and switching at a cost

Is there a policy that has order-optimal (w.r.t. time) regret for both stochastic & adversarial arrivals?

Restricted Switching

Setting: cache contents can only be changed every *r* time-slots

	i.i.d. Stochastic Requests	Adversarial Requests
Lower bound	Ω(<i>r</i>)	$\Omega(\sqrt{rT})$
FTPL	O(<i>r</i>) regret for $\eta_t = \sqrt{t}$ (order-optimal)	$O(\sqrt{rT})$ regret for $\eta_t \propto \sqrt{t}$ (order-optimal)

FTPL with $\eta_t = \sqrt{rt}$ has order-optimal (w.r.t. time) regret for both stochastic & adversarial arrivals

Extension: non-uniform gaps between changes to cache contents

Switching at a Cost

Setting: every change to cache contents costs *D* units Updated regret definition takes into account the switching cost

Recall:

- Random perturbation in time-slot $t \sim N(0, (\eta_t)^2)$
- L = library size
- *C* = cache size

Let:

- $\mu_i = P(an incoming request is for file i)$
- WLOG, files indexed in decreasing order of μ_i s

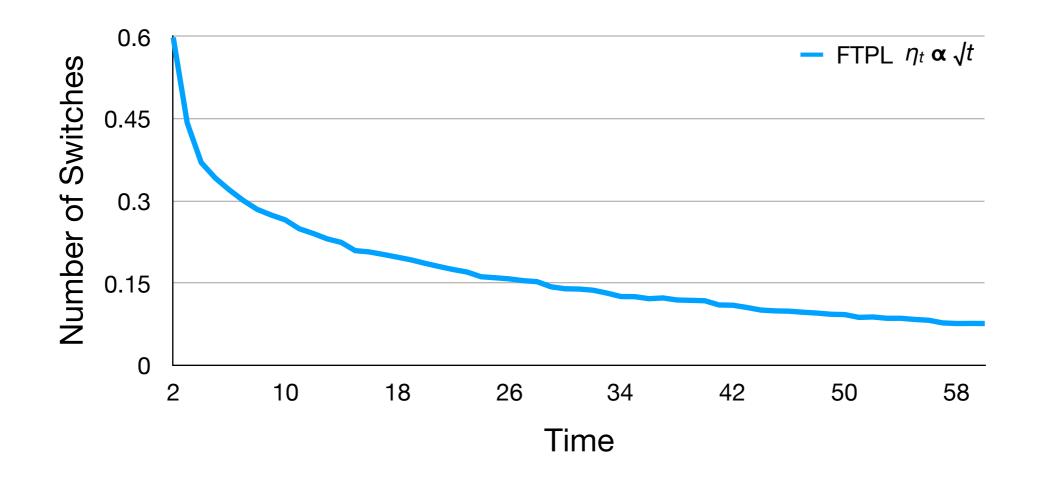
•
$$\Delta = \mu_C - \mu_{C+1}$$

Theorem: For i.i.d. stochastic arrivals and $\eta_t \alpha \sqrt{t}$:

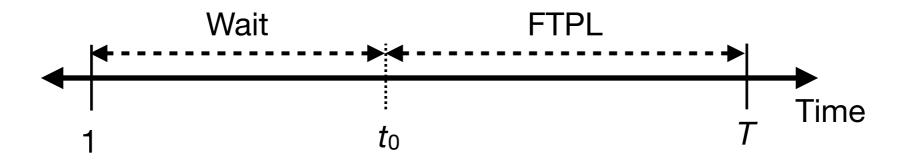
 $R_{\text{FTPL}}(T) = O(D \log L/\Delta^2).$

Switches under FTPL

i.i.d. stochastic arrivals C = 2, L = 5, μ = [0.5, 0.25, 0.125, 0.0625, 0.0625]



Our Policy: Wait-then-FTPL



Wait-then-FTPL: If $t < t_0$, do nothing, else mimic FTPL

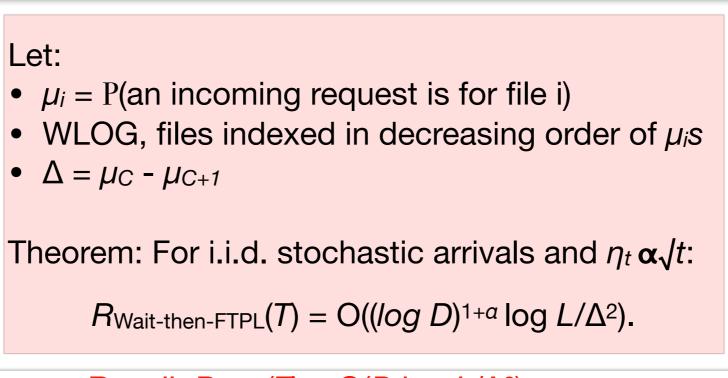
- Number of misses increases with the duration of the wait period
- Switch cost decreases with the duration of the wait period
- To balance this trade-off: $t_0 = u(\log D)^{1+a}$ for $u, a \ge 0$

Performance of Wait-then-FTPL

Setting: every change to cache contents costs *D* units Updated regret definition takes into account the switch cost

Recall:

- Random perturbation in time-slot $t \sim N(0, (\eta_t)^2)$
- *L* = library size, *C* = cache size



Recall: $R_{FTPL}(T) = O(D \log L/\Delta^2)$

Performance of Wait-then-FTPL

Setting: every change to cache contents costs *D* units Updated regret definition takes into account the switch cost

Recall:

- Random perturbation in time-slot $t \sim N(0, (\eta_t)^2)$
- L = library size
- C = cache size

Let:

- $\mu_i = P(an incoming request is for file i)$
- WLOG, files indexed in decreasing order of μ_i s

•
$$\Delta = \mu_C - \mu_{C+1}$$

Theorem: For adversarial arrivals and $\eta_t \alpha \sqrt{t}$:

 $R_{\text{Wait-then-FTPL}}(T) = O(D\sqrt{T}).$

Summary (with Switching Cost)

Recall: D units of cost incurred for each switch

	i.i.d. Stochastic Requests	Adversarial Requests
FTPL	O(D) regret for $\eta_t \propto \sqrt{t}$ (order-optimal w.r.t. time)	$O(D\sqrt{T})$ regret for $\eta_t \propto \sqrt{t}$ (order-optimal w.r.t. time) ¹
Wait- then- FTPL	O((<i>log D</i>) ^{1+a}) regret for $\eta_t \propto \sqrt{t}$ (order-optimal w.r.t. time)	$O(D\sqrt{T})$ regret for $\eta_t \propto \sqrt{t}$ (order-optimal w.r.t. time)

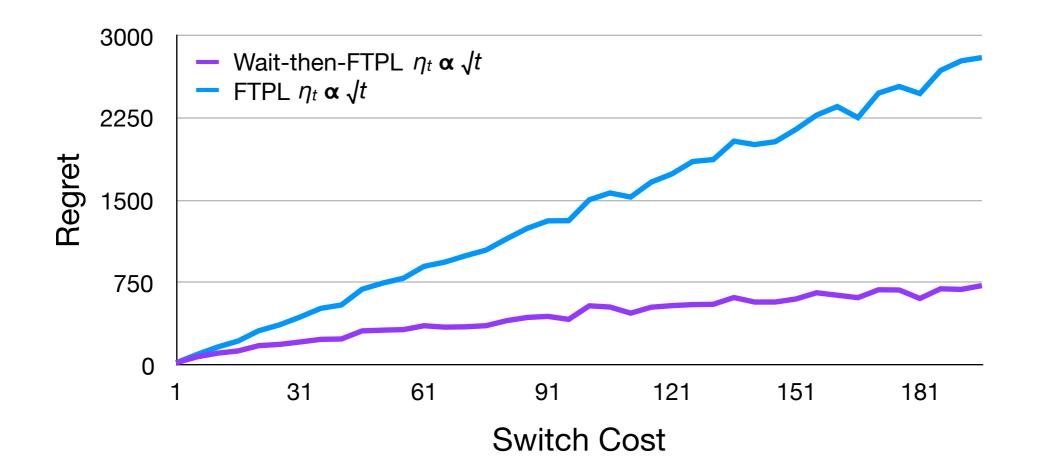
FTPL and W-FTPL with $\eta_t \propto \sqrt{t}$ have order-optimal (w.r.t. time) regret for both stochastic & adversarial arrivals

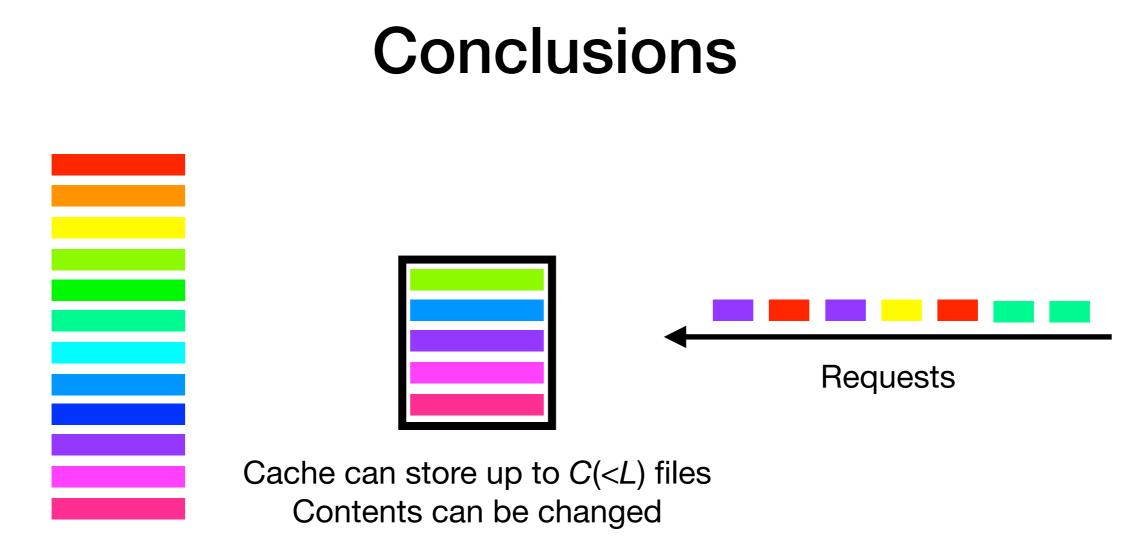
1 S. Mukhopadhyay et al., Online Caching with Optimal Switching Regret, ISIT 2021

Simulations

i.i.d. stochastic arrivals

 $C = 2, L = 5, \mu = [0.5, 0.25, 0.125, 0.0625, 0.0625], a = 0, u = 5, T = 200$





Library of *L* files

- Studied the online caching problem, performance metric: regret
- FTPL has order-optimal regret for stochastic and adversarial arrivals
- FTPL can have poor performance in the presence of switching cost
- Our variant Wait-then-FTPL addresses this limitation of FTPL

Thanks!