
Regret-Optimal Online Caching for 
Adversarial and Stochastic Arrivals

Sharayu Moharir

IIT Bombay

Joint work with Fathima Faizal, Priya Singh, and Nikhil Karamchandani  

�1



Caching

Library of L files

Requests

• Hit: requested file present in cache

• Miss: requested file not present in cache

• Algorithmic challenge: determine which files to cache over time

• Goal: maximize the number of hits/minimize the number of misses

Cache can store up to C(<L) files

Contents can be changed

!2



Request Models

!3

i.i.d. Stochastic Requests Adversarial Requests

• Requests are i.i.d. random variables • No assumptions on arrival sequence

• Online: Distribution unknown, caching 
decisions based on past arrivals

• Online: Caching decisions based on 
past arrivals


Request arrival, hit/miss

Cache update

Time

Caching decision



Performance Metric: Regret

!4

i.i.d. Stochastic Requests Adversarial Requests

• OPT: caches the C most popular files

• Popularity of File i = P(Request for file i)

• Static policy, knows popularity of files

• OPT: static cache configuration which 
maximizes number of hits in [1,T]


• Offline: knows arrival sequence apriori

• D: distribution of request arrivals

• Candidate policy P

• MP(T): number of misses in [1,T] under P 

Regret: RP(T) = ED,P[MP(T)] - ED[MOPT(T)]

 


• Guarantee on expected performance	

• A: arrival sequence, candidate policy P 

• MP(A,T): number of misses in [1, T] for A 

under policy P


Regret: RP(T) = maxA(EP[MP(A,T)] - MOPT(A,T))


• Worst-case performance guarantee

Is there a policy with order-optimal (w.r.t. time) regret

for both stochastic & adversarial arrivals?



Policy 1: Least Frequently Used

!5

File index

N
um

be
r o

f r
eq

ue
st

 
in

 [1
,t]

• Keep track of cumulative number of requests for each file

• Score(t) = cumulative number of requests in [1, t]

• Cache the C files with the C highest scores 

1     2     3     4      5     6     7     8     9    10    11   12                       

For example: If C = 3   ❌    ❌    ❌    ❌     ❌    ✅    ❌    ✅     ✅    ❌     ❌    ❌



Policy 2: Follow the Perturbed Leader

File index

N
um

be
r o

f r
eq

ue
st

 
in

 [1
,t]

!6

• Keep track of cumulative number of requests for each file

• Score(t) = cumulative number of requests in [1, t] + random perturbation

• Cache the C files with the C highest scores

For example: C=3     ❌    ✅    ❌    ❌     ✅     ✅    ❌   ❌     ❌    ❌     ❌     ❌

learning rate

Random perturbation ~ N(0, (ηt)2)

1     2     3     4      5     6     7     8     9    10    11   12                       



Overview of Known Results

!7

Policies i.i.d. Stochastic Requests Adversarial Requests

LFU O(1) regret (order-optimal)1 Ω(T) regret, strictly sub-optimal2

FTPL
O(√T) regret for ηt 𝝰 √T (order-optimal)2

O(√T) regret for ηt 𝝰 √t (order-optimal)3

1 A. Bura et al., Learning to Cache and Caching to Learn: Regret Analysis of Caching Algorithms, IEEE/ACM ToN

2 R. Bhattacharjee et al., Fundamental Limits of Online Network-Caching, ACM SIGMETRICS 2020

3 S. Mukhopadhyay et al., Online Caching with Optimal Switching Regret, ISIT 2021

🤔

https://arxiv.org/search/cs?searchtype=author&query=Bura%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Bhattacharjee%2C+R
https://arxiv.org/search/cs?searchtype=author&query=Mukhopadhyay%2C+S


FTPL with Constant Learning Rate

!8

Theorem: For i.i.d. stochastic arrivals and ηt 𝝰√T:   


RFTPL(T) = Ω(√T). 


Recall: 

• Random perturbation in time-slot t ~ N(0, (ηt)2)

• For i.i.d. stochastic arrivals, RLFU(T) = O(1)

FTPL with ηt 𝝰√T is strictly sub-optimal for i.i.d. stochastic arrivals



FTPL with Time-Varying Learning Rate

!9

Let:

• μi = P(an incoming request is for file i)

• WLOG, files indexed in decreasing order of μis

• Δ = μC - μC+1 

Theorem: For i.i.d. stochastic arrivals and ηt 𝝰√t:  


RFTPL(T) = O(log L/Δ2). 


Recall: 

• Random perturbation in time-slot t ~ N(0, (ηt)2)

• L = library size, C = cache size

FTPL with ηt 𝝰√t has order-optimal regret (w.r.t. time) 
for i.i.d. stochastic and adversarial arrivals



Recall: Follow the Perturbed Leader

File index

N
um

be
r o

f r
eq

ue
st

 
in

 [1
,t]

!10

• Keep track of cumulative number of requests for each file

• Score(t) = cumulative number of requests in [0, t] + random perturbation

• Cache the C files with the C highest scores

Random perturbation ~ N(0, ηt)

1     2     3     4      5     6     7     8     9    10    11   12                       



Proof Outline (Part 1 of 2)

!11

Let 

• μi = P(an incoming request is for file i)

• WLOG, i < j ⟹ μi > μj 

Key idea: Low regret if FTPL mimics OPT w.h.p.

score of File j

score of File i

tμi = E[score of File i]

tμj = E[score of File j]

Sc
or

e

• OPT caches Files 1 to C

• Consider i ≤ C and j > C ⟹ μi > μj 

• Event E: score of File i > score of File j

• Lower bound P(E)

• Account for all possible pairs of i ≤ C & j > C 

and all time



Proof Outline (Part 2 of 2)

!12

Tt0
Time

1 use result from above

upper bound stochastic regret 
by adversarial regret*

• Optimize for t0, improves dependence of regret bound on library size L

• Event E: score of File i > score of File j  

• Account for all possible pairs of i ≤ C and j > C and all time

*J. Mourtada et al., On the optimality of the Hedge algorithm in the stochastic regime, JMLR 2019 



Simulations

!13

i.i.d. stochastic arrivals 
C = 4, L = 10, μi = 2-i for i<L, μL = 2-L+1

round robin arrivals 
C = 1, L = 2

Re
gr

et

0

12.5

25

37.5

50

Time
30 600 1170 1740 2310 2880

FTPL
FTPL
LFU

ηt 𝝰 √T
ηt 𝝰 √t

Re
gr

et

0

125

250

375

500

Time
20 260 500 740 980

FTPL
FTPL
LFU

ηt 𝝰 √T
ηt 𝝰 √t



Summary

!14

FTPL with ηt = √t has order-optimal regret for 
both stochastic & adversarial arrivals

Policies i.i.d. Stochastic Requests Adversarial Requests

LFU O(1) regret (order-optimal)1 Ω(T) regret, strictly sub-optimal2

FTPL
Ω(√T) regret for ηt 𝝰 √T (sub-optimal)


O(1) regret for ηt 𝝰 √t (order-optimal)
O(√T) regret for ηt 𝝰 √T (order-optimal)2


O(√T) regret for ηt 𝝰 √t (order-optimal)3

1 A. Bura et al., Learning to Cache and Caching to Learn: Regret Analysis of Caching Algorithms, IEEE/ACM ToN

2 R. Bhattacharjee et al., Fundamental Limits of Online Network-Caching, ACM SIGMETRICS 2020

3 S. Mukhopadhyay et al., Online Caching with Optimal Switching Regret, ISIT 2021

https://arxiv.org/search/cs?searchtype=author&query=Bura%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Bhattacharjee%2C+R
https://arxiv.org/search/cs?searchtype=author&query=Mukhopadhyay%2C+S


Generalizations

!15

• So far, no penalty for changing cache contents

• Generalizations: restricted switching and switching at a cost 

Is there a policy that has order-optimal (w.r.t. time) regret

for both stochastic & adversarial arrivals?

Back-end server

Cache 



Restricted Switching

!16

i.i.d. Stochastic Requests Adversarial Requests
Lower 
bound Ω(r) Ω(√rT)

FTPL O(r) regret for ηt = √t (order-optimal) O(√rT) regret for ηt 𝝰 √t (order-optimal)

Setting: cache contents can only be changed every r time-slots

FTPL with ηt = √rt has order-optimal (w.r.t. time) regret 

for both stochastic & adversarial arrivals

Extension: non-uniform gaps between changes to cache contents



Switching at a Cost 

!17

Setting: every change to cache contents costs D units

Updated regret definition takes into account the switching cost

Let:

• μi = P(an incoming request is for file i)

• WLOG, files indexed in decreasing order of μis

• Δ = μC - μC+1 

Theorem: For i.i.d. stochastic arrivals and ηt 𝝰√t:   


RFTPL(T) =  O(D log L/Δ2). 


Recall: 

• Random perturbation in time-slot t ~ N(0, (ηt)2)

• L = library size

• C = cache size



Switches under FTPL

!18

i.i.d. stochastic arrivals 
C = 2, L = 5, μ = [0.5 , 0.25 , 0.125 , 0.0625, 0.0625]

N
um

be
r o

f S
w

itc
he

s

0

0.15

0.3

0.45

0.6

Time
2 10 18 26 34 42 50 58

FTPL ηt 𝝰 √t



Our Policy: Wait-then-FTPL

!19

Wait-then-FTPL: If t < t0, do nothing, else mimic FTPL

Tt0
Time

1

FTPLWait

• Number of misses increases with the duration of the wait period 

• Switch cost decreases with the duration of the wait period

• To balance this trade-off: t0 =u(log D)1+α for u, α≥0



Performance of Wait-then-FTPL

!20

Setting: every change to cache contents costs D units

Updated regret definition takes into account the switch cost

Let:

• μi = P(an incoming request is for file i)

• WLOG, files indexed in decreasing order of μis

• Δ = μC - μC+1 

Theorem: For i.i.d. stochastic arrivals and ηt 𝝰√t:   


RWait-then-FTPL(T) = O((log D)1+α log L/Δ2).


Recall: 

• Random perturbation in time-slot t ~ N(0, (ηt)2)

• L = library size, C = cache size

Recall: RFTPL(T) = O(D log L/Δ2) 



Performance of Wait-then-FTPL

!21

Setting: every change to cache contents costs D units

Updated regret definition takes into account the switch cost

Let:

• μi = P(an incoming request is for file i)

• WLOG, files indexed in decreasing order of μis

• Δ = μC - μC+1 

Theorem: For adversarial arrivals and ηt 𝝰√t:   


RWait-then-FTPL(T) =  O(D√T). 


Recall: 

• Random perturbation in time-slot t ~ N(0, (ηt)2)

• L = library size

• C = cache size



Summary (with Switching Cost)

!22

i.i.d. Stochastic Requests Adversarial Requests

FTPL
O(D) regret for ηt 𝝰 √t  

(order-optimal w.r.t. time)
O(D√T) regret for ηt 𝝰 √t  

(order-optimal w.r.t. time)1

Wait- 
then- 
FTPL

O((log D)1+α) regret for ηt 𝝰 √t  
(order-optimal w.r.t. time)

O(D√T) regret for ηt 𝝰 √t  
(order-optimal w.r.t. time)

1 S. Mukhopadhyay et al., Online Caching with Optimal Switching Regret, ISIT 2021

FTPL and W-FTPL with ηt 𝝰 √t have order-optimal (w.r.t. time) regret 
for both stochastic & adversarial arrivals

Recall: D units of cost incurred for each switch 

https://arxiv.org/search/cs?searchtype=author&query=Mukhopadhyay%2C+S


Simulations

!23

i.i.d. stochastic arrivals 
C = 2, L = 5, μ = [0.5 , 0.25 , 0.125 , 0.0625, 0.0625], α = 0, u = 5, T= 200

Re
gr

et

0

750

1500

2250

3000

Switch Cost
1 31 61 91 121 151 181

Wait-then-FTPL
FTPL ηt 𝝰 √t

ηt 𝝰 √t



Conclusions

!24

• Studied the online caching problem, performance metric: regret

• FTPL has order-optimal regret for stochastic and adversarial arrivals

• FTPL can have poor performance in the presence of switching cost

• Our variant Wait-then-FTPL addresses this limitation of FTPL

Library of L files

Requests

Cache can store up to C(<L) files

Contents can be changed



Thanks!

�25


