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Abstract

Our work is motivated by impromptu (or “as-you-go”) deployment of wireless
relay nodes along a path, a need that arises in many situations. In this paper,
the path is modeled as starting at the origin (where there is the data sink,
e.g., the control centre), and evolving randomly over a lattice in the positive
quadrant. A person walks along the path deploying relay nodes as he goes.
At each step, the path can, randomly, either continue in the same direction or
take a turn, or come to an end, at which point a data source (e.g., a sensor)
has to be placed, that will send packets to the data sink. A decision has to
be made at each step whether or not to place a wireless relay node. Assuming
that the packet generation rate by the source is very low, and simple link-by-
link scheduling, we consider the problem of sequential relay placement so as to
minimize the expectation of an end-to-end cost metric (a linear combination of
the sum of convex hop costs and the number of relays placed). This impromptu
relay placement problem is formulated as a total cost Markov decision process.
First, we derive the optimal policy in terms of an optimal placement set and
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Figure 1: A wireless network being deployed as a person steps along a random lattice path.
Inverted V: location of the deployment person; path drawn with a solid line: path already
covered; circles: deployed relays; path drawn with a thick dashed line: a possible evolution of
the remaining path. The source to be placed at the end is also shown as the black rectangle.

show that this set is characterized by a boundary (with respect to the position
of the last placed relay) beyond which it is optimal to place the next relay. Next,
based on a simpler one-step-look-ahead characterization of the optimal policy,
we propose an algorithm which is proved to converge to the optimal placement
set in a finite number of steps and which is faster than value iteration. We show
by simulations that the distance threshold based heuristic, usually assumed in
the literature, is close to the optimal, provided that the threshold distance is
carefully chosen.

Keywords: relay placement, as-you-go deployment of wireless sensor
networks, optimal stopping problems, placement boundary

1. Introduction

Wireless networks, such as cellular networks or multihop ad hoc networks,
would normally be deployed via a planning and design process. There are sit-
uations, however, that require the impromptu (or “as-you-go”) deployment of
a multihop wireless packet network. Such an impromptu approach would be
required to deploy a wireless sensor network for situational awareness in emer-
gency situations such as those faced by firemen or commandos ([2, 3]). For
example, as they attack a fire in a building, firemen might wish to place tem-
perature sensors on fire-doors to monitor the spread of fire, and ensure a route
for their own retreat; or commandos attempting to flush out terrorists might
wish to place acoustic or passive infra-red sensors to monitor the movement of
people in the building. As-you-go deployment may also be of interest when de-
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ploying a multi-hop wireless sensor network over a large terrain (such as a dense
forest) in order to obtain a first-cut deployment which could then be augmented
to a network with desired properties (connectivity and quality-of-service). Such
quick deployment of a wireless relay network also becomes necessary if the de-
ployment needs to be stealthy (for example, for detecting poachers or fugitives
in a forest), or if the network has to be redeployed at short time intervals to
track an evolving phenomenon.

With the above larger motivation in mind, in this paper we are concerned
with the rigorous formulation and solution of a problem of impromptu deploy-
ment of a multihop wireless network along a random lattice path, see Fig. 1,
which, while being a simple model for providing insights into a larger class of
problems, could also be a reasonable model for a forest trail on flat ground. The
objective is to create a multihop wireless path for packet communication from
the end of the path to its beginning. The problem is formulated as an optimal
sequential decision problem. The formulation gives rise to a total cost Markov
decision process, which we study in detail in order to derive structural proper-
ties of the optimal policy. We also provide an efficient algorithm for computing
the optimal policy.

1.1. Related Work

“As-you-go” deployment of wireless relay networks has, in the past, been
motivated by “first responder” networks, a concept that has been around at
least since 2001. In [3], Howard et al. provide heuristic algorithms for the prob-
lem of incremental deployment of sensors (such as surveillance cameras) with
the objective of covering the deployment area. Their problem is related to that
of self-deployment of autonomous robot teams and to the art-gallery problem.
Creation of a communication network that is optimal in some sense is not an
objective in [3]. In a somewhat similar vein, the work of Loukas et al. [4] is
concerned with the dynamic locationing of robots that, in an emergency situa-
tion, can serve as wireless relays between the infrastructure and human-carried
wireless devices. The problem of impromptu deployment of static wireless net-
works has been considered in [5, 6, 7, 8, 9]. In [5], Naudts et al. provide a
methodology in which, after a node is deployed, the next node to be deployed is
turned on and begins to measure the signal strength to the last deployed node.
When the signal strength drops below a predetermined level, the next node is
deployed and so on. Souryal et al. provide a similar approach in [6, 8], where
an extensive study of indoor RF link quality variation is provided, and a system
is developed and demonstrated. The work reported in [9] is yet another exam-
ple of the same approach for relay deployment. More recently, Liu et al. [10]
describe a “breadcrumbs” system for aiding firefighters inside buildings, and is
similar to our present paper in terms of the class of problems it addresses. In
a survey article [2], Fischer et al. describe various localization technologies for
assisting emergency responders, thus further motivating the class of problems
we consider. Bao and Lee [7] consider the problem of multiple persons, each
carrying some relays, exploring an unknown region, and collaboratively placing
relays to stay connected to a command center. The objective is to maximize the
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area they can explore while staying connected, using these relays. They propose
a heuristic algorithm based on measurements between the deployed relays and
between the mobile individuals.

In the literature referred to above, heuristic algorithms are proposed for re-
lay placement. In our earlier work (Mondal et al. [1]) we took the first steps
towards rigorously formulating and addressing the problem of impromptu op-
timal deployment of a multihop wireless network along a line at the end of
which a source has to placed. The source (e.g., a sensor) placement location
is discovered only as the network is deployed. A probabilistic model is used
for the unknown location of the source along the line. Once placed, the sensor
sends periodic measurement packets to a control centre near the start of the
line. It is assumed that the measurement rate at the sensor is low, so that (with
a very high probability) a packet is delivered to the control centre before the
next packet is generated at the sensor. This, so called, “lone packet model”
is realistic for situations in which the sensor makes a measurement every few
seconds, or where the main purpose of the sensor network is to detect sporadic
events, and communicate the detection to the sink.

The objective of the sequential decision problem is to minimise a certain
expected per packet cost (e.g., end-to-end delay or total energy expended by a
node), which can be expressed as the sum of the costs over each hop, subject to
a constraint on the number of relays used for the operation. It has been proved
in [1] that an optimal placement policy solving the above mentioned problem is
a threshold rule, i.e., there is a threshold r∗ such that, after placing a relay, if
the operative has walked r∗ steps without the path ending, then a relay must
be placed at r∗.

1.2. Outline and Our Contributions

In this paper, we adopt the following model features from [1]: (a) a single
operative moves step-by-step along a path, deciding to place or to not place a
relay; (b) the length of the path is a geometrically distributed random multiple
of the step size; (c) a source of packets is placed at the end of the path; (d)
the lone packet traffic model applies; (e) the total cost of a deployment is a
linear combination of the sum of convex hop costs and the number of nodes
placed. We, however, extend the work presented in [1] to the two-dimensional
case. The path evolves from a sink at the origin, over a lattice in the positive
quadrant. The spacing between the lattice points is equal to the step size
of the person deploying the network. The path evolves by stepping over the
lattice in the +x, or the +y, direction. This type of movement is common for
forest trails on flat ground, where the trail exhibits a steady drift towards some
direction in the positive quadrant. While the expected path length is fixed by
the parameter of the geometrically distributed number of steps, the “twistiness”
(or the frequency of turns) in the path is parameterised by a probability of the
path taking a turn at each step. We note that a similar mobility model has been
used in the simulation experiments used for evaluating the heuristics reported
in [7]. A radio link exists between successive nodes placed anywhere on the path
(see Fig. 2), but the quality of the link would depend on the distance between
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Figure 2: A depiction of relay deployment along a random lattice path.

the nodes. The lone packet model is a natural first assumption, and would be
useful in low-duty cycle monitoring applications. Once the network has been
deployed, an analytical technique such as that presented in [11] can be used to
estimate the actual packet carrying capacity of the network.

We will formally describe our system model and problem formulation in
Section 2. The following are our main contributions:

• We formulate the problem as a total cost Markov decision process (MDP),
and characterize the optimal policies in terms of placement sets. We show
that these optimal policies are threshold policies and thus the placement
sets are characterized by boundaries in the two-dimensional lattice (Sec-
tion 3). Beyond these boundaries, it is optimal to place a relay.

• Noticing that placement instants are renewal points in the random process,
we recognize and prove the One-Step-Look-Ahead (OSLA) characteriza-
tion of the placement sets (Section 4).

• Based on the OSLA characterization, we propose an iterative algorithm,
which converges to the optimal placement set in a finite number of steps
(Section 5). We have observed that this algorithm converges much faster
than value iteration.

• In Section 7 we provide several numerical results that illustrate the theo-
retical development. The relay placement approach proposed in [5, 6, 8, 9]
would suggest a distance threshold based placement rule. We numerically
obtain the optimal rule in this class, and find that the cost of this policy
is numerically indistinguishable from that of the overall optimal policy
provided by our theoretical development. This suggests that it might suf-
fice to utilize a distance threshold policy. However, the distance threshold
should be carefully designed taking into account the system parameters
and the optimality objective.

For the ease of presentation we have moved most of the proofs to the Appendix.

5



2. System Model

We consider a deployment person, whose stride length is 1 unit, moving
along a random path in the two-dimensional lattice, placing relays at some of
the lattice points of the path and finally a source node at the end of the path.
Once placed, the source node periodically generates measurement packets which
are forwarded by the successive relays in a multihop fashion to the control centre
located at (0, 0); see Fig. 2.

2.1. Random Lattice Path

Let Z+ denote the set of nonnegative integers, and Z2
+ the nonnegative or-

thant of the two dimensional integer lattice. Starting from (0, 0) there is a lattice
path that takes random turns in the +x direction, or in the +y direction (this is
to avoid the path folding back onto itself, see Fig 2). Under this restriction, the
path evolves as a stochastic process over Z2

+. When the deployment person has
reached some lattice point, the path continues for one more step and terminates
with probability p, or does not terminate with probability 1− p. In either case,
the next step is in the +x direction with probability q, and in the +y direction
with probability 1 − q. Thus, for instance, (1 − p)q is the probability that the
path proceeds in the +x direction without ending. The person deploying the
relays is assumed to keep a count of m and n, the number of steps taken in the
x direction and in y direction, respectively, since the previous relay was placed.
He is also assumed to know the probabilities p and q. Thus the parameter p
governs the path length. If p is small then long paths will be sampled, whereas
if p is large then short paths will be sampled. In either case the path length is
finite w.p. 1. See Fig. 3 for an illustration of typical sample path evolutions for
a given path length (in number of steps), for different turn probabilities q.
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Figure 3: Sample path evolutions for 70-pitch and 120-pitch long paths with different turn
probabilities. x and y index the lattice coordinates.

As mentioned earlier, the above structure, while being a simple setting for
obtaining insights into the general problem of as-you-go deployment, could rea-
sonably model a winding forest trail on flat ground. If the step sizes are small,
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random movement on the integral lattice is a good practical approximation to
a situation such as traversing along a continuous two-dimensional random trail
in a forest. For example, while deploying relays along a forest trail, the lattice
pitch could be as little at 3 to 5 meters, while the deployment area could be a few
millions of square meters. Thus a path along a fine-pitch lattice can adequately
approximate a trail. The details of the model can be motivated as follows. The
length, say, L, of the path is a priori unknown, but there is prior information
(e.g., the mean distance, L, along the path from the source to the sink) that,
given the stride length δ, leads us to model L as a geometrically distributed
number of steps.3 The stride length δ and the mean length L can be used to
obtain the parameter of the geometric distribution, i.e., the probability p that
the source has to be placed at the next step.
As a practical example, the step size (the distance between points at which
placement decisions are taken) can be as small as, say, 5 meters. If the expected
distance to the sensor is, say, 500 meters, i.e., 100 steps, then p would be chosen
to be 0.01. With this value of p, Prob(L > 3000m) = (1−p)600 ≈ 0.0024. Hence,
if the forest under consideration has dimensions of a few kilometers, then these
forest dimensions are essentially “infinite” compared to the length of the path
that is being modeled. The probability q models the “twistiness” of the path,
and can also be based on prior information. If the path is known to follow a
straight line, then q can be taken to be 0 (the path is a straight line proceeding
in the +x direction), or, equivalently, 1 (the path is a straight line proceeding
+y direction). On the other hand a path that takes frequent turns would be
modelled by q close to 0.5.
We have used location independent path evolution probabilities. We note that
the Markov decision setting can be extended by making the turn probabilities
state dependent. However it would be hard to obtain prior information for
getting such state dependent path evolution parameters. Our model uses the
minimal information of expected path length, and provides a simple and com-
putable stationary deployment policy.
The sequential decision making formulation, later in this paper, assumes the
knowledge of p and q. In many situations (e.g. for deployment along a forest
trail) these parameters might be estimated to some accuracy (e.g., from a map).
In this paper we provide general structural results for the optimal policy for any
p and q, and investigate how well a simple policy performs as compared to the
optimal policy.

2.2. Traffic Model

In this paper, we assume that the source (i.e., the sensor placed at the end
of the path) generates packets at a rate so low that one packet exits to the

3One justification for the use of the geometric distribution, given the prior knowledge, L,
is that it is the maximum entropy discrete probability mass function with the given mean.
Thus, by using the geometric distribution, we are leaving the length of the line as uncertain
as we can, given the prior knowledge of its mean.

7



sink before the next packet is generated. Such a, so called, “lone packet” model
would be appropriate for situations in which the sensor makes low duty cycle
environment measurements (a measurement every few seconds), or generates an
occasional alarm packet.
As practical examples, applications such as forest fire detection, intrusion detec-
tion, animal surveillance, etc., while sensing would be performed continuously,
there will be packet transmission activities only when some activity is detected.
Also, there are many wireless sensor applications where continuous sensing is
required but the measurement period is of the order of a few seconds (e.g.,
soil moisture measurement, and ambient temperature measurement). In typi-
cal deployments (using, for example, IEEE 802.15.4 radios, and 4-6 hops), the
total transmission delay (sum of all one-hop delays) incurred by a packet would
be only of the order of milliseconds. This essentially means that consecutive
packets are unlikely to interfere with each other in time, thus justifying our
lone-packet assumption. A design based on such a lone packet model could also
be the starting point for a design for higher packet rates.

With such low packet arrival rates, each packet traverses the network with-
out encountering interference from any other packet. Hence, the delay on any
link, or the power required for a given link quality, depend on the path loss
characteristics of that link alone.

2.3. Cost Definition

In our model, packet transmission can take place between any two succes-
sive relays even if they are not on the same straight line segment of the lattice
path. Such a model is suitable, for example, when the deployment region is a
thickly wooded forest where the deployment person is restricted to move only
along some narrow path. The cost on each link could be the expected delay for
delivering a packet across the link (taking into account the medium access and
retransmission delays), or the power required to obtain a certain communica-
tion quality over the link. For example, the quality of a link can be specified
in terms of the probability of the received power on the link falling below a
certain minimum received power (i.e., the outage probability of the link) be-
low which the packet error rate (PER) exceeds a desired level (e.g., a -88dBm
received power, with receiver noise, could yield a PER of 3% for the packets
being carried by the network; see [12]). The outage probability can be lower
bounded by ensuring that the average received power across the link (averaged
over shadowing and fading) meets a received power target. Such a target aver-
age received power would be obtained by deriving a margin above the minimum
value of received power (e.g., the -88dBm above), from statistics of shadowing
and fading. Of course, this would be a conservative approach compared to one
where only a fade margin is applied and shadowing is accounted for by making
measurements (see [8] for a discussion of issues related to link quality measure-
ment). A measurement-based approach would require additional state to be
maintained in the decision formulation, and is a topic of our ongoing research.
We note, however, that measurements would take time at each step, and, thus,
might not be feasible if the deployment has to be carried out very quickly.

8



It is then easily seen that for two successive relays separated by a distance
r, the cost (expected delay or average power) would be a function d(r). A for-
mula for expected delay, under the IEEE 802.15.4 MAC has been derived in
[13]. In our numerical work we use the power cost, d(r) = Pm + γrη, where Pm
is the minimum power required, γ relates to an SNR (Signal-to-Noise Ratio)
constraint, and η is the path-loss exponent. Now suppose N relays are placed
such that the successive inter-relay distances are r0, r1, · · · , rN (r0 is the dis-
tance from the control centre at (0, 0) and the first relay, and rN is the distance
from the last relay to the source placed at the end of the path) then, under the
lone packet model, we take the total cost of this placement as the sum of the
one-hop costs C =

∑N
i=0 d(ri). Note that we require that all deployed relays are

used in the path from the source to the sink 4.

Justification for sum of hop costs. There are two ways in which the network
could be operated: (i) the nodes are always awake, or (ii) the nodes sleep-wake
cycle.

(i) It is a well known fact that the current drawn by an awake radio, waiting
to receive a packet, is almost as large as the current required to transmit a
packet (e.g, see [15, Page 13]). A network with continuously awake nodes will
have a short life span (two or three days, depending on the battery size), and
will be employed for transient applications where the network is deployed and
removed within a few 10s of hours. During the operational period, an objective
could be to minimize the mean end-to-end packet delay. If the network cost is
end-to-end delay, then, under the lone-packet model, the end-to-end mean delay
is just the sum of the expected hop delays.

(ii) If the network has to last for a long time (several months) then the nodes
must sleep-wake cycle, packet delays will be large, and the primary criterion of
network cost would be in terms of life-time. When nodes are sleeping, then
a node with a packet to transmit (the “custodian” node) requires an awake
downstream relay in order to forward the packet. If nodes are equipped with
wake-on radios then the custodian node sends a low power “wake” signal to the
sleeping relay followed immediately by the packet [16][17]. Alternatively, the
clocks of the neighbouring nodes could be synchronized, so that the custodian
node knows when to transmit its packet so as to “catch” the downstream node
just when it wakes up [18]. If the node battery energy is E joules, the trans-
mission power required is d(r), the receiver power required is Prcv, the packet
transmission time is tpkt

5, then the life-time of a relay whose next hop node is a

4We have investigated the case where relay skipping is allowed in our work [14] under a
measurement based setting. After the relays are placed, the path using all the relays from the
source to the sink is not necessarily the shortest path. Thus, the agent could have kept this in
mind when deploying the relays in the first place. However, the complexity of the formulation
and its solution is significantly more, since, at each decision point, the deployment agent
needs to keep some information pertaining to all relays deployed up to any point.

5Assuming a constant packet size, and a constant physical layer bit rate (the IEEE 802.15.4
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distance r away is given by Ti := E
A(d(r)+Prcv)tpkt

, where A is the rate at which the

source generates packets. It follows that if the network objective is to minimize
the rate of replacing node batteries (i.e.,

∑
0≤i≤N

1
Ti

) then the criterion should
be min

∑
0≤i≤N d(ri), whereas if the objective is to maximize the life-time then

the criterion should be min max0≤i≤N d(ri). However note that

N
max
i=1

d(ri) = lim
α→∞

(

N∑
i=1

d(ri)
α)

1
α (1)

Hence if we solve the min-sum problem with a new cost-function f(r) = d(r)α,
for some fixed, yet large enough α, we have a good approximate solution for the
min-max problem via the solution of the min-sum problem. It is easy to verify
that the function f(r) also satisfies the required technical conditions. This is
quite a standard technique for solving min-max problems via a min-sum relax-
ation and a set of useful references for this method is [19] and the references
cited therein.

We now impose a few technical conditions on the one-hop cost function d(·):
(C1) d(0) > 0, (C2) d(r) is convex and increasing in r, and (C3) for any r and
δ > 0 the difference d(r + δ)− d(r) increases to ∞ as the argument r →∞.

(C1) is imposed considering the fact that it requires a non-zero amount of
delay or power for transmitting a packet between two nodes, however close they
may be. (C2) and (C3) are properties we require to establish our results on
the optimal policies. They are satisfied by the power cost, Pm + γrη , and also
by the mean hop delay (see [13]).

We will overload the notation d(·) by denoting the one-hop cost between the
locations (0, 0) and (x, y) ∈ <2 as simply d(x, y) instead of d(||(x, y)− (0, 0)||).
Using the conditions on d(r) we prove the following convexity result of d(x, y).

Lemma 1. The function d(x, y) is convex in (x, y), where (x, y) ∈ R2.

Proof. Since d(·) is convex, non-decreasing in its argument, the proof follows by
invoking the composition rule [20, Section 3.2.4].

We further impose the following condition on d(x, y) where (x, y) ∈ <2. We
allow a general cost-function d(x, y) endowed with the following property: (C4)
The function d(x, y) is positive, twice continuously partially differentiable in
variables x and y and ∀x, y ∈ R+,

dxx(x, y) > 0, dxy(x, y) > 0, dyy(x, y) > 0, (2)

where dxy(x, y) = ∂2d(x,y)
∂x∂y . These properties also hold for the mean delay and

the power functions mentioned earlier.
Finally define, for (m,n) ∈ Z2

+, ∆1(m,n) = d(m + 1, n) − d(m,n) and
∆2(m,n) = d(m,n+ 1)− d(m,n).

physical layer has just one bit rate).
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Lemma 2. ∆1(m,n) and ∆2(m,n) are non-decreasing in both the coordinates
m and n.

Proof. See Appendix A.

2.4. Deployment Policies and Problem Formulation

A deployment policy π is a sequence of mappings (µk : k ≥ 0), where at
the k-th step of the path (provided that the path has not ended thus far) µk
allows the deployment person to decide whether to place or not to place a
relay where, in general, randomization over these two actions is allowed. The
decision is based on the entire information available to the deployment person
at the k-th step, namely the set of vertices traced by the path and the location
of the previous vertices where relays were placed. Let Π represent the set of all
policies. For a given policy π ∈ Π, let Eπ represent the expectation operator
under policy π. Let C denote the total hop cost (as defined earlier) and N (a
random variable) the total number of relays used. We are interested in solving
the following problem,

min
π∈Π

EπC + λEπN, (3)

where λ > 0 may be interpreted as the cost of a relay. Solving the problem in
(3) can also help us solve the following constrained problem,

min
π∈Π

EπC

Subject to: EπN ≤ ρavg, (4)

where ρavg > 0 is a constraint on the expected number of relays (we will describe
this procedure in Section 6; for details see [21]).
Remark: A constraint on the expected number of relays would be applicable to
a situation in which relays are deployed along multiple paths to connect a sink
and a source at the ends of each path. Because of the randomness in the lengths
of the paths, we will place more relays along some paths and less along others,
with the total number of relays deployed being governed by the constraint on
the mean number of relays. For deployment along a line, a constraint on the
actual number of relays was dealt with in [13], and leads to a nonstationary
deployment policy.

In Sections 3 to 5, we work towards obtaining an efficient solution to the
problem in (3).

3. MDP Formulation and Solution

In this section we formulate the problem in (3) as a total cost infinite horizon
MDP and derive the optimal policy in terms of optimal placement set. We show
that this set is characterized by a two-dimensional boundary, upon crossing
which it is optimal to place a relay.
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3.1. States, Actions, State-Transitions and Cost Structure

We formulate the problem as a sequential decision process starting at the
origin of the lattice path. The decision to place or not place a relay at the k-th
step is based on ((Mk, Nk), Zk), where (Mk, Nk) denotes the coordinates of the
deployment person with respect to the previous relay and Zk ∈ {e, c}; Zk = e
means that at step k the random lattice path has ended and Zk = c means that
the path will continue in the same direction for at least one more step. Thus,
the state space is given by:

S =
{

(m,n, z) : (m,n) ∈ Z2
+, z ∈ {e, c}

}
∪ {φ}, (5)

where φ denotes the cost-free terminal state, i.e., the state after the end of the
path has been discovered. The action taken at step k is denoted Uk ∈ {0, 1},
where Uk = 1 is the action to place a relay, and Uk = 0 is the action of not
placing a relay. When the state is (m,n, c) and when action u is taken, the
transition probabilities are given by:

• If u is 0 then,
(i) (m,n, c) −→ (m+ 1, n, c) w.p. (1− p)q
(ii) (m,n, c) −→ (m+ 1, n, e) w.p. pq
(iii) (m,n, c) −→ (m,n+ 1, c) w.p. (1− p)(1− q)
(iv) (m,n, c) −→ (m,n+ 1, e) w.p. p(1− q).

• If u is 1 then
(i) (m,n, c) −→ (1, 0, c) w.p. (1− p)q
(ii) (m,n, c) −→ (1, 0, e) w.p. pq
(iii) (m,n, c) −→ (0, 1, c) w.p. (1− p)(1− q)
(iv) (m,n, c) −→ (0, 1, e) w.p. p(1− q).

If Zk = e then the only allowable action is u = 1 and we enter into the
state φ. If the current state is φ, we stay in the same cost-free termination state
irrespective of the control u. The one step cost when the state is s ∈ S is given
by:

c(s, u) =

 d(m,n) if s = (m,n, e),
λ+ d(m,n) if u = 1 and s = (m,n, c),
0 if u = 0 or s = φ.

For simplicity we write the state (m,n, c) as simply (m,n).

3.2. Optimal Placement Set Pλ
Let Jλ(m,n) denote the optimal cost-to-go when the current state is (m,n).

When at some step the state is (m,n) the deployment person has to decide
whether to place or not place a relay at the current step. Jλ is the solution of
the Bellman equation [22, Page 137, Prop. 1.1],

Jλ(m,n) = min{cp(m,n), cnp(m,n)}, (6)
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where cp(m,n) and cnp(m,n) denote the expected cost incurred when the deci-
sion is to place and not place a relay, respectively. cp(m,n) is given by

cp(m,n) = λ+ d(m,n) + (1− p)(1− q)Jλ(0, 1)

+(1− p)qJλ(1, 0) + pd(1). (7)

The term λ+ d(m,n) in the above expression is the one step cost which is first
incurred when a relay is placed. The remaining terms are the average cost-to-go
from the next step. The term (1−p)(1−q)Jλ(0, 1) can be understood as follows:
(1−p)(1−q) is the probability that the path proceeds in the +x direction without
ending. Thus the state at the next step is (0, 1, c) w.p. (1−p)(1−q), the optimal
cost-to-go from which is Jλ(0, 1). Similarly for the term (1−p)qJλ(1, 0), (1−p)q
is the probability that the path will proceed, without ending, towards the +y
direction (thus the next state is (1, 0, c)) and Jλ(1, 0) is the cost-to-go from the
next state. Finally, in the term pd(1), p is the probability that the path will
end, either proceeding in the +x direction, or in the +y direction, at the next
step and d(1) is the cost of the last link. Following a similar explanation, the
expression for cnp(m,n) can be written as:

cnp(m,n) =

(1− p)qJλ(m+ 1, n) + (1− p)(1− q)Jλ(m,n+ 1)

+pqd(m+ 1, n) + p(1− q)d(m,n+ 1). (8)

We define the optimal placement set Pλ as the set of all lattice points (m,n),
where it is optimal to place rather than to not place a relay. Formally,

Pλ =
{

(m,n) : cp(m,n) ≤ cnp(m,n)
}
. (9)

In this definition, if the costs of placing and not-placing are the same, we have
arbitrarily chosen to place at that point, which is equivalent from the point of
view of minimizing the total cost-to-go. This is because, if we do not place the
relay at the current step and the path continues, the earliest opportunity to
place a relay is at the next (random) lattice point, thus increasing our current
hop-length. Hence, although we do not incur any relay-cost λ > 0 at the current
step, the total expected placement cost will increase due to increased value of
the current hop-cost, which is strictly increasing in hop-length. On the other
hand, if we do place a relay at the current step, we will incur a placement cost
of λ immediately at our current step plus a smaller hop-cost for the next hop,
due to convexity of the hop-cost function d(·) and relay placement points being
regenerative points for the process. Hence when these two costs are equal, either
action is as good for minimizing the total cost.

The above result yields the following main theorem of this section which
characterizes the optimal placement set Pλ in terms of a boundary.

Theorem 1. The optimal placement set Pλ is characterized by a boundary, i.e.,
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there exist mappings m∗ : Z+ → Z+ and n∗ : Z+ → Z+ such that:

Pλ =
⋃
n∈Z+

{(m,n) : m ≥ m∗(n)} (10)

=
⋃

m∈Z+

{(m,n) : n ≥ n∗(m)}. (11)

Proof Outline. The proof utilizes the conditions C2 and C3 imposed on the cost
function d(·). First, using (7) and (8) in (9) and rearranging we alternatively
write Pλ as, Pλ = {(m,n) : F (m,n) ≥ K}, where K is a constant and F (·, ·)
is some function of m and n. Then, we complete the proof by showing that
F (m,n) is non-decreasing in both m and n. This requires us to prove (using an
induction argument) that Hλ(m,n) := Jλ(m,n)− d(m,n) is non-decreasing in
m and n. Also, Lemma 2 has to be used here. For a formal proof see Appendix
B.

Remark: Though the optimal placement set Pλ was characterized nicely in
terms of a boundary m∗(·) and n∗(·), a naive approach of computing this bound-
ary, using value iteration to obtain Jλ(m,n) (for several values of (m,n) ∈ Z2

+),
would be computationally intensive. Our effort in the next section (Section 4)
is towards obtaining an alternate simplified representation for Pλ, using which
we propose an algorithm in Section 5, which is guaranteed to return Pλ in a
finite (in practice, small) number of steps.

4. Optimal Stopping Formulation

We observe that the points where the path has not ended, and a relay is
placed, are renewal points of the decision process. This motivates us to think
of the decision process after a relay is placed as an optimal stopping problem
with termination cost Jλ(0, 0) (which is the optimal cost-to-go from a relay
placement point). Let Pλ denote the placement set corresponding to the OSLA
rule (to be defined next). In this section we prove our next main result that
Pλ = Pλ.

4.1. One-Step-Look-Ahead Stopping Set Pλ
Under the OSLA rule, a relay is placed at state (m,n, c) if and only if the

“cost c1(m,n) of stopping (i.e., placing a relay) at the current step” is less than
the “cost c2(m,n) of continuing (without placing relay at the current step) for
one more step, and then stopping (i.e., placing a relay at the next step)”. The
expressions for the costs c1(m,n) and c2(m,n) can be written as:

c1(m,n) = λ+ d(m,n) + Jλ(0, 0)

and

c2(m,n) =

pq(d(m+ 1, n) + p(1− q)d(m,n+ 1)) + (1− p)(
qd(m+ 1, n) + (1− q)d(m,n+ 1) + λ+ Jλ(0, 0)

)
.
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Then we define the OSLA placement set Pλ as:

Pλ = {(m,n) ∈ Z2
+ : c1(m,n) ≤ c2(m,n)}.

Substituting for c1(m,n) and c2(m,n) and simplifying we obtain:

Pλ =
{

(m,n) ∈ Z2
+ : p(λ+ Jλ(0, 0)) ≤ ∆q(m,n)

}
, (12)

where ∆q(m,n) = q∆1(m,n) + (1− q)∆2(m,n).

Theorem 2. The OSLA rule is a threshold policy, i.e., there exist mappings
m̄ : Z+ → Z+ and n̄ : Z+ → Z+, which define the one-step placement set Pλ as
follows,

Pλ =
⋃
n∈Z+

{(m,n) : m ≥ m̄(n)} (13)

=
⋃

m∈Z+

{(m,n) : n ≥ n̄(m)}. (14)

Proof. Noticing that in (12) ∆q(m,n) is non-decreasing in (m,n) and p(λ +
Jλ(0, 0)) is a constant, the proof follows along the lines of the proof of Theorem 1.

Now, we present the main theorem of this section.

Theorem 3.

Pλ = Pλ.

Proof. See Appendix C.

Remark: The characterization in (12) is much simpler than the one in (9)
once the value of Jλ(0, 0) is given. In the following subsection, we define a
function g(·) and express Jλ(0, 0) as the minimum value of this function.

4.2. Computation of Jλ(0, 0)

Let us start by defining a collection of placement sets indexed by h ≥ 0:

P(h) = {(m,n) ∈ Z2
+ : p(λ+ h) ≤ ∆q(m,n)}. (15)

Referring to (12), note that P(Jλ(0, 0)) = Pλ. Let g(h) denote the cost-to-go,
starting from (0, 0), if the placement set P(h) is employed. Then, since Jλ(0, 0)
is the optimal cost-to-go and Pλ ∈ {P(h)}h≥0, we have Jλ(0, 0) = minh≥0 g(h).

To compute g(h), we proceed by defining the boundary B(h) of P(h) as
follows:

B(h) = {(m,n) ∈ P(h) : (m− 1, n) ∈ Pc(h) or

(m,n− 1) ∈ Pc(h)}, (16)
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where Pc(h) := Z2
+ − P(h).

Suppose the corridor ends at some (m,n) ∈ Pc(h)∪B(h), then only a cost of
d(m,n) is incurred. Otherwise (i.e., if the corridor reaches some (m,n) ∈ B(h)
and continues), using a renewal argument, a cost of d(m,n)+λ+g(h) is incurred,
where d(m,n)+λ is the cost of placing a relay and g(h) is the future cost-to-go.
We can thus write:

g(h) =
∑

(m,n)∈Pc(h)∪B(h)

P((m,n), e)d(m,n) +

∑
(m,n)∈B(h)

P((m,n), c)(g(h)+λ+d(m,n)), (17)

where P((m,n), e) is the probability of the corridor ending at (m,n) and P((m,n), c)
is the probability of the corridor reaching the boundary and continuing. Solving
for g(h), we obtain:

g(h) =
1

1−
∑

(m,n)∈B(h) P((m,n), c)

( ∑
(m,n)∈Pc(h)∪B(h)

P((m,n), e)d(m,n) +

∑
(m,n)∈B(h)

P((m,n), c)(λ+ d(m,n))

)
. (18)

The above expression is extensively used in our algorithm proposed in the next
section.

We conclude this subsection by deriving the expression for the probabilities
P((m,n), e) and P((m,n), c). Let us partition the boundary B(h) into three
mutually disjoint sets:

Bw(h) = {(m,n) ∈ B(h) : (m− 1, n) ∈ B(h)}
Bs(h) = {(m,n) ∈ B(h) : (m,n− 1) ∈ B(h)}

Bnull(h) = {(m,n) ∈ B(h) : (m− 1, n) /∈ B(h) and

(m,n− 1) /∈ B(h)}.

For a depiction of the various boundary points, see Fig. 4. Now, P((m,n), e)
can be written as:

P((m,n), e) =
(
m+n
m

)
p(1− p)m+n−1qm(1− q)n

if (m,n) ∈ Pc(h) ∪ Bnull(h)(
m+n−1

m

)
p(1−p)m+n−1qm(1−q)n if (m,n)∈Bw(h)(

m+n−1
m−1

)
p(1−p)m+n−1qm(1−q)n if (m,n)∈Bs(h).

This can be understood as follows. Any point (m,n) ∈ Pc(h)∪Bnull(h) can be
reached from the left or from below.

(
m+n
m

)
is the number of possible paths for

reaching (m,n). Each such path has to go m times in the +x direction (thus the
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Figure 4: Example of a placement set of the form in (15): ’o’ denotes lattice points outside
the placement set; lattice points on the boundary can be partitioned into three sets according
to the direction, from which they can be reached.

term qm) and n times in the +y direction (thus the term (1 − q)n) and finally
ending at (m,n) (thus the term p(1− p)m+n−1). Any point (m,n) ∈ Bw(h) can
be reached only from the point (m,n−1). The probability of reaching (m,n−1)
without ending is

(
m+n−1

m

)
(1−p)m+n−1qm(1−q)n−1. Then, the corridor reaches

(m,n) and ends with probability p(1 − q). P((m,n), e) for (m,n) ∈ Bs(h) can
be obtained analogously.

Similarly, P((m,n), c) can be written as:

P((m,n), c) =
(
m+n
m

)
(1− p)m+nqm(1− q)n

if (m,n) ∈ Pc(h) ∪ Bnull(h)(
m+n−1

m

)
(1− p)m+nqm(1− q)n if (m,n) ∈ Bw(h)(

m+n−1
m−1

)
(1− p)m+nqm(1− q)n if (m,n) ∈ Bs(h).

5. OSLA Based Fixed Point Iteration Algorithm

In this section, we present an efficient fixed point iteration algorithm (Al-
gorithm 1) using the OSLA rule in (12) for obtaining the optimal placement
set, Pλ, and the optimal cost-to-go, Jλ(0, 0). There are two advantages of our
algorithm over the naive approach of directly trying to minimize the function
g(·) to obtain Jλ(0, 0) (recall that Jλ(0, 0) = minh≥0 g(h)):

• On the theoretical side, this iterative algorithm avoids explicit optimiza-
tion altogether, which, otherwise would be performed numerically over a
continuous range. Without any structure on the objective function, direct
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numerical minimization of g(·) is difficult and often unsatisfactory, as it
invariably uses some sort of heuristic search over this continuous range.

• On the practical side, this algorithm is proved to converge within a finite
number of iterations and observed to be extremely fast (requires 3 to 4
iterations typically).

The following is our Algorithm (Algorithm 1) which we refer to as the OSLA
Based Fixed Point Iteration Algorithm.

Algorithm 1 OSLA Based Fixed Point Iteration Algorithm

Require: 0 < p < 1, 0 ≤ q ≤ 1, λ ≥ 0
1: k = 0, h(k) = 0
2: while 1 do
3: P(h(k))← {(m,n) ∈ Z2

+ : p(λ+ h(k)) ≤ ∆q(m,n)}
4: Compute g(h(k)) using (18)
5: if g(h(k)) == h(k) then
6: Break;
7: end if
8: h(k+1) ← g(h(k))
9: k ← k + 1

10: end while
11: return g(h(k)), P(h(k))

We now prove the correctness and finite termination properties of our algo-
rithm. First, we define g∗ := Jλ(0, 0) = minh≥0 g(h). Now consider a sample
plot of the function g(h) in Fig. 5. From Fig. 5(a) observe that whenever h > g∗

(which is around 150), h > g(h). Also, Fig. 5(b) (where we have plotted the
functions g(h) and l(h) = h) suggests that g(h) has a unique fixed point. We
formally prove these results.

Lemma 3. If h > g∗ then h > g(h).

Proof. This follows from the manipulation of (18). See Appendix D for details.

Lemma 4. g(h) has a unique fixed point.

Proof. From (15) and (12), we observe that P(Jλ(0, 0)) = Pλ. From Theorem
3, Pλ is the optimal placement set and thus the cost-to-go of using P(Jλ(0, 0))
is Jλ(0, 0), i.e., g(Jλ(0, 0)) = Jλ(0, 0). Hence, Jλ(0, 0) = g∗ is a fixed point of
g(·). Now, any h > g∗ cannot be a fixed point since, in this case, h > g(h) from
Lemma 3. On the other hand, any h < g∗ is such that h < g∗ ≤ g(h) because
g∗ is the optimal cost-to-go. Hence, g∗ is the unique fixed point of g(·).

We are now ready to prove the finite convergence property of our Algorithm.

Lemma 5. 1. The sequence {h(k)}k≥1 (in Algorithm 1) is non-increasing,
i.e., h(k+1) ≤ h(k), with the equality sign holding if and only if h(k) = g∗.
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Figure 5: (a) Cost-to-go g(h) as a function of h (b) Zoom on the cost-to-go g(h) as a function
of h. These plots are for p = 0.02, q = 0.5, and λ = 41.

2. The sequence {Pc(h(k))}k≥1 is non-increasing, i.e., Pc(h(k+1)) ⊆ Pc(h(k)),
where the containment is strict whenever Pc(h(k+1))  Pλc.

Proof. The first part of the Lemma follows from application of Lemma 3 and
the second part follows from application of Lemma 4. See Appendix E for
details.

Theorem 4. Algorithm 1 returns g∗ and Pλc in a finite number of steps.

Proof. Noting that h(1) = g(h(0)) ≥ g∗ and using (15), we have Pλc ⊆ Pc(h(1)).
Either Pλc = Pc(h(1)), in which case the algorithm terminates. Otherwise, note
that both sets, Pλc and Pc(h(1)) contain a finite number of lattice points (from
the definition of P(h) in (15)). Using Lemma 5, Pc(h(k)) converges to Pλc in at
most |Pc(h(1)) \ Pλc| <∞ iterations. We can also obtain a crude upper bound
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for the number of iterations needed. Assuming that we start with h(0) = 0,
|Pc(h(1)) \ Pλc| = |{(m,n) ∈ Z2

+ : p(λ+ g∗) ≤ ∆q(m,n) ≤ p(λ+ g(0))}|. Once

Pc(h(k)) converges to Pλ, the algorithm terminates and returns the optimal
cost-to-go g∗.

Performance comparison of Algorithm 1 with naive value iteration

To obtain the optimal placement policy directly using Eqn.(9) of section (3),
we need to compute the values of J(m,n) for all (m,n) ∈ Z2

+, which is usually
obtained through value iterations. Since the state-space under consideration is
countably-infinite, a direct numerical evaluation of the optimal cost-to-go func-
tion is computationally prohibitive. See section 3.1 of [22] for details.

On the contrary, exploiting the structure of the problem, Algorithm 1 per-
forms a finite amount of computation per iteration (which is bounded by the
number of lattice points in the set Pcλ(h(k) (See Eqn.15)) and correctly termi-
nates after provably finite number of iterations.

6. Solving the Constrained Problem

In this section, we devise a method to solve the constrained problem in (4)
using the solution of the unconstrained problem (3) provided by Algorithm 1.
This method is applied in Section 7.2 where, imposing a constraint on the aver-
age number of relays, we compare the performance of a distance based heuristic
with the optimal.

We begin with the following standard result which relates the solutions of
the problems in (3) and (4). See also [21].

Lemma 6. Let π∗λ ∈ Π be an optimal policy for the unconstrained problem in
(3) such that Eπ∗

λ
N = ρavg. Then π∗λ is also optimal for the constrained problem

in (4).

Proof. (We provide this proof for completeness.) Since π∗λ is optimal for the
unconstrained problem in (3) we can write, for any π ∈ Π,

Eπ∗
λ
C + λEπ∗

λ
N ≤ EπC + λEπN.

Rearranging the above expression and using Eπ∗
λ
N = ρavg, we obtain

Eπ∗
λ
C ≤ EπC + λ

(
EπN − ρavg

)
.

Thus, Eπ∗
λ
C ≤ EπC for any π such that EπN ≤ ρavg.

However, the above lemma is useful only when we are able to exhibit a λ
such that Eπ∗

λ
N = ρavg. The subsequent development in this section is towards

obtaining the solution to the more general case.
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The expected number of relays used by the optimal policy, π∗λ, which uses
the optimal placement set Pλ, can be computed as:

Eπ∗
λ
N =

∑
(m,n)∈Bλ P((m,n), c)

1−
∑

(m,n)∈Bλ P((m,n), c)
, (19)

where P((m,n), c) is the reaching probability corresponding to Pλ and Bλ is the
boundary of Pλ. A plot of Eπ∗

λ
N vs. λ is given in Fig. 6. We make the following

observations about Eπ∗
λ
N .

1) Eπ∗
λ
N decreases with λ; this is as expected, since as each relay becomes

“costlier” fewer relays are used on the average.
2) Even when λ = 0, Eπ∗

λ
N is finite. This is because d(0) > 0, i.e., there is

a positive cost for a 0 length link. Define the value of Eπ∗
λ
N with λ = 0 to be

ρmax.
3) Eπ∗

λ
N vs. λ is a piecewise constant function. This occurs because the

relay placement positions are discrete. For a range of values of λ the same
threshold is optimal. This structure is also evident from the results based on
the optimal stopping formulation and the OSLA rule in Section 4. It follows
that for a value of λ at which there is a step in the plot, there are two optimal
deterministic policies, π and π, for the relaxed problem. Let ρ = EπN and
ρ = EπN .

We have the following structure of the optimal policy for the constrained
problem:

Theorem 5. 1. For ρavg ≥ ρmax the optimal placement set is obtained for
λ = 0, i.e., is P0.

2. For ρavg < ρmax, if there is a λ such that (a) Eπ∗
λ
N = ρavg then the

optimal policy is π∗λ, or (b) ρ < ρavg < ρ then the optimal policy is obtained
by mixing π and π.

Proof. 1) is straight forward. For proof of 2)-(a), Lemma 6. Considering now 2)-
(b), define 0 < α < 1 such that (1−α)ρ+αρ̄ = ρavg. We obtain a mixing policy
πm by choosing π w.p. 1− α and π̄ w.p. α at the beginning of the deployment.
For any policy π we have the following standard argument:

EπmC + λEπmN
= (1− α)(EπC + λρ) + α(Eπ̄C + λρ̄)

≤ (1− α)(EπC + λEπN) + α(EπC + λEπN)

= EπC + λEπN. (20)

The inequality is because π and π are both optimal for the problem (3) with
relay price λ. Thus, we have shown that πm is also optimal for the relaxed
problem. Using this along with EπmN = ρavg in Lemma 6, we conclude the
proof.
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Figure 6: Average number of relays Eπ∗
λ
N (left scale; curve labelled (2)) and average power

cost Eπ∗
λ
C (right scale; curve labelled (1)) as a function of λ (p = 0.002, q = 0.5 and η = 2).

7. Numerical Work

For our numerical work we use the one-hop power function d(r) = Pm+γrη,
with Pm = 0.1, γ = 0.01. We first study the effect of parameter variation on the
various costs. Next, we compare the performance of a distance based heuristic
with the optimal.

7.1. Effect of Parameter Variation

In Fig. 4, we have already shown an optimal placement boundary for p =
0.002, q = 0.5, and η = 3. Since q = 0.5 the boundary is symmetric about the
m = n line.

In Fig. 6, we plot Eπ∗
λ
N and Eπ∗

λ
C vs. λ. The plot of Jλ(0, 0) vs. λ is in

Fig. 7. These plots are for p = 0.002 and q = 0.5. Since λ is the cost per
relay, as expected, Eπ∗

λ
N decreases as λ increases. We observe that Eπ∗

λ
C and

the optimal total cost Jλ(0, 0) increase as λ increases. A close examination of
Fig. 6 reveals that both the plots are step functions. This is due to the discrete
placement at lattice points, which results in the same placement boundary being
optimal for a range of λ values. Thus, as seen in Section 6, at the λ values, where
there is jump in Eπ∗

λ
N , a random mixture of two policies is needed.
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Figure 7: Average total cost Jλ(0, 0) as a function of λ (p = 0.002, q = 0.5 and η = 2).
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Figure 8: Average total cost Jλ(0, 0) as a function of q (p = 0.002 and η = 2).

Fig. 8 shows the variation of the total optimal cost Jλ(0, 0) with q. The
variation is symmetric about q = 0.5. For a given probability p of the path
ending, q = 0.5 results in the path folding frequently. In such a case, since
the path-loss is isotropic, fewer relays are required to be placed. On the other
hand, when q is close to 0 or to 1 the path takes fewer turns and more relays
are needed, leading to larger values of the total cost.

In Fig. 9 we show the variation of optimal boundaries with η. As η, the
path-loss exponent, increases the hop cost increases for a given hop distance.
This results in relays needing to be placed more frequently. As can be seen
the placement boundaries shrink with increasing η. We also notice that the
placement boundary for η = 2 is a straight line; indeed this provable result
holds for η = 2 for any values of p and q.
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Figure 9: Boundaries for various values of the path-loss exponent η (p = 0.002, q = 0.5).

7.2. Comparison with the Distance Based Heuristic

We recall from the literature survey in Section 1 that prior work invariably
proposed the policy of placing a relay after the RF signal strength from the
previous relay dropped below a threshold. For isotropic propagation (as we
have assumed in this paper), this is equivalent to placing the relay after a cir-
cular boundary is crossed. With this in mind, we obtained the optimal constant
distance placement policy (called the heuristic hereafter) numerically in a man-
ner similar to what is described in Section 4.2. A sample result is provided in
Fig. 10, for the parameters p = 0.002, q = 0.5 and η = 2. We observe that if the
path were to evolve roughly in the +x direction, or the +y direction, then the
heuristic will result in many more relays being placed. On the other hand, if the
path evolves diagonally (which has higher probability) then the two placement
boundaries will result in similar placement decisions.

This observation shows up in Fig. 11, where we show the cost incurred by
the optimal policy (for q = 0.5 and for q = 1, which corresponds to a straight
line corridor) and the heuristic (q = 0.5) vs. ρ for the constrained problem. As
expected, the cost is much larger for q = 1 since the path does not fold. We find
that for q = 0.5 the optimal placement boundary and the heuristic provide costs
that are almost indistinguishable at this scale. We have performed simulations
by varying the system parameters and observed the same good performance of
the optimal constant distance placement policy. This suggests that the heuristic
policy performs well provided that the threshold distance is optimally chosen
with respect to the system parameters.

8. Conclusion and Ongoing Work

We considered the problem of placing relays on a random lattice path to op-
timize a linear combination of average total hop cost and the average number of
relays deployed. The optimal placement policy was proved to be of a threshold
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Figure 10: Boundary of the optimal placement set (OSLA boundary) and boundary derived
from the heuristic policy (p = 0.002, q = 0.5 and η = 2).

type (Theorem 1). We further proved the optimality of the one-step-look-ahead
(OSLA) rule (in Theorem 3). We have also devised an OSLA based fixed point
iteration algorithm (Algorithm 1), which we have proved to converge to the
optimal placement set in a finite number of steps. In our numerical work we
assumed the hop cost to be the transmitter power. We observed that the per-
formance (in terms of average power incurred for a given relay constraint) of the
optimal policy is close to that of the distance threshold policy provided that the
threshold distance is optimally chosen with respect to the system parameters.

The work that we have presented in this paper can be extended in several
directions:

1. Measurement-based placement: When the cost of a link is taken as the
power required to sustain a certain quality of communication over it, in
this paper, we have taken the approach of modeling the required power by
a function of distance, by imposing a large shadowing and fading margin.
An alternative would be to make a measurement, at each step, to obtain
the power required to establish a good link from that point to the previous
node. This measurement, the distance from the previous node, and a
statistical model for the quality of links that will be encountered as-we-
go, could be used to obtain a more efficient placement. In addition, instead
of evaluating just the link to the last placed node, we could also evaluate
the links to the nodes placed earlier. Of course, the measurements would
require time to be spent at each step, which might not be feasible for rapid
deployment, as would be necessary for first responders. A measurement-
based approach is a topic of our ongoing work; our early results have been
presented in [14].

2. Multiple sources: In the work presented here, only one packet source is
placed (at the end of the path). The model can be extended to the case
where multiple sources might need to be placed along the path. A param-
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Figure 11: Average total power as a function of ρ for the optimal policy (q = 0.5 and q = 1,
which corresponds to the straight line) and for the heuristic (q = 0.5) for p = 0.002 and η = 2.

eter, say σ, 0 < σ < 1, could be the probability that the current step is a
source location given that the path has not ended thus far. When such a
location is encountered, a node will necessarily have to be placed at that
point. Since this would be a regeneration point for the remaining problem,
we expect that results analogous to Theorem 1 and 3 can be proved. This
will be a topic of our future work.

Appendix A. Proof of Lemma 2

Proof. It is easier to prove the lemma allowing the arguments m and n take
values from the Real line. We have,

∆1(x, y) = d(x+ δ, y)− d(x, y)

Partially differentiating both sides w.r.t. x, we get

∂∆1(x, y)

∂x
= dx(x+ δ, y)− dx(x, y)

= δdxx(ζ, y) where x < ζ < x+ δ

> 0,

where the equality follows from the application of Lagrange’s Mean Value The-
orem to the function dx(., y) and the inequality is due to assumption in (2). The
above proves the fact that ∆1(x, y) is non-decreasing in x.

To prove that ∆1(x, y) is non-decreasing in y, we partially differentiate
∆1(x, y) w.r.t. y and obtain

∂∆1(x, y)

∂y
= dy(x+ δ, y)− dy(x, y)

= δdxy(η, y) where x < η < x+ δ

> 0,
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where the equality follows from the application of Lagrange’s Mean Value The-
orem to the function dy(., y) and the inequality is due to assumption in (2).
This shows that the function ∆1(x, y) is non-decreasing in both the coordinates
x and y. In a similar way it can also be shown that ∆2(x, y) is non-decreasing
in x and y under the assumption made in (2). This completes the proof.

Appendix B. Proof of Theorem 1

We begin by defining Hλ(m,n) := Jλ(m,n) − d(m,n). Substituting for
cp(m,n) and cnp(m,n) (from (7) and (8), respectively) into (9) and rearranging
we obtain (recall the definitions of ∆1(m,n) and ∆2(m,n) from Section 2):

Pλ ={
(m,n) : (1−p)(qHλ(m+1, n)+(1−q)Hλ(m,n+1))

+p(q∆1(m,n) + (1− q)∆2(m,n)) ≥ λ+ (B.1)

(1− p)qJλ(1, 0) + (1− p)(1− q)Jλ(0, 1) + pd(1)
}
.

Lemma 7. For a fixed λ, Hλ(m,n) is non-decreasing in both m ∈ Z+ and
n ∈ Z+.

Proof. Consider a sequential relay placement problem where we have K steps
to go. The corridor length is the minimum of K and of a geometric random
variable with parameter p. The problem be formulated as a finite horizon MDP
with horizon length K. For any given (m,n), JK(m,n), K ≥ 2 is obtained
recursively:

JK(m,n) = min{cp(m,n), cnp(m,n)}
= min{λ+ d(m,n) + (1− p)qJK−1(1, 0) + pqd(1) +

(1− p)(1− q)JK−1(0, 1) + p(1− q)d(1),

(1− p)qJK−1(m+ 1, n) + pqd(m+ 1, n) +

(1−p)(1−q)JK−1(m,n+1)+p(1−q)d(m,n+1)}.

For K = 1, since the source must be placed at the next step, we have J1(m,n) =
min{λ+ d(m,n) + d(1), qd(m+ 1, n) + (1− q)d(m,n+ 1)}. Therefore,

H1(m,n) := J1(m,n)− d(m,n)

= min{λ+ d(1), q∆1(m,n) + (1− q)∆2(m,n)}.

From Lemma 2, it follows that H1(m,n) is non-decreasing in both m and n.
Now we make the induction hypothesis and assume that HK−1(m,n) is non-
decreasing in m and n. We have:

HK(m,n) = JK(m,n)− d(m,n)

= min{λ+ (1− p)qJK−1(1, 0) + pqd(1) +

(1− p)(1− q)JK−1(0, 1) + p(1− q)d(1), (1− p)
(qHK−1(m+ 1, n) + (1− q)HK−1(m,n+ 1)) +

q∆1(m,n) + (1− q)∆2(m,n)}.
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By the induction hypothesis and Lemma 2, it follows that HK(m,n) is non-
decreasing in both m and n. The proof is complete by taking the limit as
K →∞.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Referring to (B.1), utilizing Lemma 7 and the Lemma 2,
it follows that for a fixed n ∈ Z+, the LHS (Left Hand Side) of (B.1), describing
the placement set Pλ is an increasing function of m, while the RHS (Right
Hand Side) is a finite constant. Also, because of the assumed properties of the
function d(.), ∆1(m,n) → ∞ as m → ∞, for any fixed n. Hence it follows
that there exists an m∗(n) ∈ Z+ such that (m,n) ∈ Pλ ∀m ≥ m∗(n). Hence
we may write Pλ =

⋃
n∈Z+

{(m,n)|m ≥ m∗(n)}. The second characterization
follows by similar arguments.

Appendix C. Proof of Theorem 3

We require the following lemmas to prove Theorem 3.

Lemma 8. Pλ ⊂ Pλ
Proof. Suppose that (m,n) ∈ Pλ. Then from (10) (m + 1, n) ∈ Pλ and from
(11), (m,n+ 1) ∈ Pλ. Since (m,n) ∈ Pλ, we have from (7), (8) and (9) that

λ+d(m,n)+(1−p)qJλ(1, 0)+pqd(1)+(1−p)(1−q)×
Jλ(0, 1)+p(1−q)d(1)≤(1−p)qJλ(m+1, n)+ pq×
d(m+1, n)+(1−p)(1−q)Jλ(m,n+1)+p(1−q)d(m,n+1).

(C.1)

Also we may argue that at the state (0, 0), it is optimal not to place. Indeed,
if it had been optimal to place at the state (0, 0), at the next step, we return
to the same state, viz., (0, 0). Now, because of the stationarity of the optimal
policy, we would keep placing relays at the same point, and since “relay-cost”
λ > 0 and d(0, 0) > 0, the expected cost for this policy would be ∞. Hence,

Jλ(0, 0) = (1− p)qJλ(1, 0) + pqd(1)+

(1− p)(1− q)Jλ(0, 1) + p(1− q)d(1). (C.2)

Since (m+ 1, n) ∈ Pλ and (m,n+ 1) ∈ Pλ, we have (noticing that it is optimal
to place at these points and utilizing (7) and (C.2)),

Jλ(m+ 1, n) = λ+ d(m+ 1, n) + Jλ(0, 0) (C.3)

Jλ(m,n+ 1) = λ+ d(m,n+ 1) + Jλ(0, 0). (C.4)

Now, using (C.2), (C.3) and (C.4) in (C.1), we obtain:

p(λ+Jλ(0, 0)) ≤ q∆1(m,n)+(1−q)∆2(m,n). (C.5)

This proves that (m,n) ∈ P̄λ and hence Pλ ⊂ Pλ
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Using the above Lemma and from (10), (11), (13), (14) we can conclude
that:

n∗(m) ≥ n(m) ∀m ∈ Z+ (C.6)

m∗(n) ≥ m(n) ∀n ∈ Z+. (C.7)

Lemma 9. If (m,n) ∈ Pλ is such that (m,n + 1) ∈ Pλ and (m + 1, n) ∈ Pλ,
then (m,n) ∈ Pλ

Proof. Since (m,n) ∈ P̄λ, we have from (12),

p(λ+ Jλ(0, 0)) ≤ q∆1(m,n) + (1− q)∆2(m,n). (C.8)

Now (m,n+ 1) ∈ Pλ, and (m+ 1, n) ∈ Pλ, hence we have from (C.3) and (C.4):

Jλ(m+ 1, n) = λ+ d(m+ 1, n) + Jλ(0, 0)

Jλ(m,n+ 1) = λ+ d(m,n+ 1) + Jλ(0, 0).

The expression (C.2) is always true. Now using (C.2) and the above two equa-
tions in inequality (C.8), we obtain (C.1), which proves that (m,n) ∈ Pλ.

Lemma 10. If (m,n) ∈ Pλ (resp. Pλ), then (m + k, n) ∈ Pλ (resp. Pλ) and
(m,n+ k) ∈ Pλ (resp. Pλ) for any k ∈ Z+.

Proof. The proof follows easily because the LHS of (B.1) is increasing in both
m and n while the RHS is a constant. Similarly, the RHS of (12) is increasing
in both m and n while the LHS is a constant.

We can now prove the main theorem.

Proof of Theorem 3. We need to show that inequalities in (C.6) and (C.7) are
equalities. For any m ∈ Z+, suppose that in (C.6) n∗(m) > n∗(m)− 1 ≥ n̄(m).
Then we have the following inclusions:

(m,n∗(m)) ∈ Pλ
(m,n∗(m)− 1) ∈ Pλ
(m,n∗(m)− 1) /∈ Pλ. (C.9)

Let us index the collection of lattice-points (m + i, n∗(m) −1) by Ni, i ∈ Z+.
Since (m,n∗(m) − 1) ∈ Pλ, from Lemma 10, it follows that Ni ∈ Pλ. From
(C.9), N0 /∈ Pλ.

Then, the optimal policy being a threshold policy, we know that there exists
a finite k > 0, s.t. Nk ∈ Pλ, i.e.,

(m+ k, n∗(m)− 1) ∈ Pλ. (C.10)

Again from Lemma 10, since (m,n∗(m)) ∈ Pλ, we have for any k > 0:

(m+ k − 1, n∗(m)) ∈ Pλ. (C.11)
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Now we see that for the point Nk−1, the conditions of Lemma 9 are satisfied.
Hence Nk−1 ∈ Pλ. If k = 1, we already have a contradiction since N0 /∈ Pλ.
Otherwise for k > 1, using Lemma 10 and Nk−1 ∈ Pλ, we can show that Nk−2 is
subject to the conditions of Lemma 9 implying that Nk−2 ∈ Pλ. By iteration, we
finally obtain that N0 ∈ Pλ, which contradicts (C.9) and proves the result.

Appendix D. Proof of Lemma 3

We start by proving the following lemma.

Lemma 11. For any placement set P(h) of the form in (15), we have:∑
(m,n)∈Pc(h)

r(m,n)

(
∆q(m,n)− p(λ+ g(h))

)
+d(0, 0) + λ = 0, (D.1)

where r(m,n) = (1− p)m+n
(
m+n
m

)
qm(1− q)n.

Proof. We first introduce some notations and definitions.
Let us define a path σ as a possible realization of the corridor, starting

from (0, 0) and let P(σ) be the probability of such a path. The set of all paths
is denoted by Σ. Let Σmn denote the set of all paths that end at (m,n) ∈
Pc(h)∪B(h) and Σmn(c) the set of all paths that hit (m,n) ∈ B(h) and continue.

Let us denote the set of edges whose both end vertices belong to the set
Pc(h) ∪ B(h) by E. A path σ is completely characterized by its edge set Eσ.

The reaching probability, r(m,n), of a point (m,n) is defined as the proba-
bility that a random path σ reaches the point (m,n) and continues for at least
one step. Hence, r(m,n) = (1− p)m+n

(
m+n
m

)
qm(1− q)n.

The incremental cost function δ : E −→ R+ is defined as follows:

δ(e) =


d(m+ 1, n)− d(m,n) = ∆1(m,n)

if e = {(m,n), (m+ 1, n)}
d(m,n+ 1)− d(m,n) = ∆2(m,n)

if e = {(m,n), (m,n+ 1)}.

(D.2)

For (m,n) ∈ σ, the incremental cost function allows us to write:

d(m,n) =
∑

e∈Eσ∩E
δ(e) + d(0, 0). (D.3)
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Now consider ∑
Pc(h)∪B(h)

P((m,n), e)d(m,n) +
∑
B(h)

P((m,n), c)d(m,n)

=
∑

Pc(h)∪B(h)

∑
σ∈Σmn

P(σ)

( ∑
e∈Eσ

δ(e) + d(0, 0)

)
+

∑
B(h)

∑
σ∈Σmn(c)

P(σ)

( ∑
e∈Eσ∩E

δ(e) + d(0, 0)

)
=

∑
e∈E

δ(e)
∑

σ∈Σ:e∈Eσ

P(σ) + d(0, 0)

=
∑
e∈E

δ(e)t(e) + d(0, 0), (D.4)

where by t(e) we denote the probability that a random path goes through the
edge e ∈ E.

Now if e is horizontal, i.e., e = {(m,n), (m + 1, n)}, (m,n) ∈ Pc(h), we
have t(e) = qr(m,n) and δ(e) = ∆1(m,n). Similarly if e is vertical, i.e., e =
{(m,n), (m,n + 1)}, (m,n) ∈ Pc(h), we have t(e) = (1 − q)r(m,n) and δ(e) =
∆2(m,n). Using these relations, we may rewrite (D.4) as follows:∑

Pc(h)

r(m,n)

(
q∆1(m,n) + (1− q)∆2(m,n)

)
+ d(0, 0)

=
∑
Pc(h)

r(m,n)∆q(m,n) + d(0, 0). (D.5)

Now consider the probability
∑

(m,n)∈B(h) P((m,n), c). It is the probability

that a random path continues beyond the boundary B(h). Hence we may write∑
B(h)

P((m,n), c) = 1−
∑

Pc(h)∪B(h)

P((m,n), e)

= 1−
∑
Pc(h)

r(m,n)p. (D.6)

Using (D.5) and (D.6) in (18) and simplifying, we obtain the result.

Proof of Lemma 3. We recall the definition of Pc(h).

Pc(h) = {(m,n) ∈ Z2
+ : p(λ+ h) > ∆q(m,n)}. (D.7)

Since h > g∗, we immediately conclude that Pλc ⊂ Pc(h). From (D.1) in
Lemma 11, we may write for the optimal placement set Pλ:∑

Pλc
r(m,n)∆q(m,n) = p(λ+ g∗)

∑
Pλc

r(m,n)

−(d(0, 0) + λ). (D.8)
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We may similarly write for the placement set P(h):∑
Pc(h)

r(m,n)∆q(m,n) = p(λ+ g(h))
∑
Pc(h)

r(m,n)

−(d(0, 0) + λ). (D.9)

Now, since Pλc ⊂ Pc(h), we may expand the LHS of (D.9) as follows:∑
Pc(h)

r(m,n)∆q(m,n)

=
∑
Pcλ

r(m,n)∆q(m,n) +
∑

Pc(h)\Pcλ

r(m,n)∆q(m,n)

<
∑
Pcλ

r(m,n)∆q(m,n) + p(λ+ h)
∑

Pc(h)\Pcλ

r(m,n)

= p(λ+ g∗)
∑
Pcλ

r(m,n)− (d(0, 0) + λ)

+ p(λ+ h)
∑

Pc(h)\Pcλ

r(m,n), (D.10)

where, for the inequality, we used (D.7) and for (D.10), we have substituted the
value for the quantity from (D.8). We may alternatively write the RHS of (D.9)
as:

p(λ+ g(h))
∑
Pc(h)

r(m,n)− (d(0, 0) + λ)

= p(λ+ g(h))

(∑
Pλc

r(m,n) +
∑

Pc(h)\Pλc
r(m,n)

)
− (d(0, 0) + λ). (D.11)

Now comparing (D.10) and (D.11) and rearranging, we may write:

p(g(h)−g∗)
∑
Pλc

r(m,n) < p(h−g(h))
∑

Pc(h)\Pλc
r(m,n) (D.12)

Now
∑
Pc(h)\Pλc r(m,n) = 0 if and only if Pc(h)\Pλc = ∅, i.e., P(h) = Pλ. In

this case we get g(h) = g∗ < h. On the other hand, if
∑
Pc(h)\Pλc r(m,n) > 0,

since g∗ ≤ g(h), from the inequality (D.12), we conclude that h > g(h).

Appendix E. Proof of Lemma 5

Proof. 1) Note first that h(k) ≥ g∗ for k ≥ 1 because h(k) = g(h(k−1)) ≥ g∗.
Then, for k ≥ 1, we have either h(k) = g∗ or h(k) > g∗. In the first case
h(k+1) = g(h(k)) = g(g∗) = g∗ = h(k) and we can stop, whereas in the second
case, from Lemma 3 we have h(k+1) = g(h(k)) < h(k).
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2) From (15), h2 > h1 implies Pc(h1) ⊆ Pc(h2). Hence, as {h(k)}k≥1 is
non-increasing (from Part 1)), {Pc(h(k))}k≥1 is also non-increasing.

Suppose Pc(h(k+1)) = Pc(h(k)) then g(h(k+1)) = g(h(k)) = h(k+1) (second
equality is by the definition of {h(k)}), which implies h(k+1) = g∗ (since g(·) has
a unique fixed point, see Lemma 4). Thus, Pc(h(k+1)) = Pλc.
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