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Abstract—A person walks along a line (which could be an
idealisation of a forest trail, for example), placing relays as he
walks, in order to create a multihop network for connecting a
sensor at a point along the line to a sink at the start of the line.
The potential placement points are equally spaced along the line,
and at each such location the decision to place or not to place
a relay is based on link quality measurements to the previously
placed relays. The location of the sensor is unknown apriori, and
is discovered as the deployment agent walks. In this paper, we
extend our earlier work on this class of problems to include
the objective of achieving a 2-connected multihop network.
We propose a network cost objective that is additive over the
deployed relays, and accounts for possible alternate routing over
the multiple available paths. As in our earlier work, the problem
is formulated as a Markov decision process. Placement algorithms
are obtained for two source location models, which yield a
discounted cost MDP and an average cost MDP. In each case
we obtain structural results for an optimal policy, and perform
a numerical study that provides insights into the advantages
and disadvantages of multi-connectivity. We validate the results
obtained from numerical study experimentally in a forest-like
environment.

I. INTRODUCTION

There are situations in which deployment of a wireless relay
network (for connecting wireless sensors to a base-station)
needs to be carried out in an “as-you-go” fashion (e.g., emer-
gency situation monitoring networks set up by first responders
[1],[2] or impromptu deployment over a large terrain, such as
a forest ). Motivated by as-you-go deployment of a wireless
relay network over a forest trail, in earlier work [3], [4], we
focussed on developing algorithms for the deployment of relay
nodes, and setting their powers, so as to provide a 1 node-
connected path from the source to the sink, the deployment
being done as an agent walks from the sink to the source.
Such a network, however, will not be reliable, as the network
will cease to work if any one node fails, or if on any one link
the radio propagation deteriorates.

In this work, we retain many of the assumptions we made
in our earlier work [3]: (i) a single deployment agent walks
along a line, away from a sink at the start of the line. (ii)
there are potential relay placement points at multiples of a
fixed, given, distance δ (say, 10 meters). (iii) based on link
quality measurements to the already placed relays, the agent
must decide whether to place a relay at a potential placement
location or move on. (iv) a sensor has to be placed at an
a priori unknown location that is discovered as the agent
walks over the line. (v) assuming a light packet rate regime,
the objective of the deployment is to minimise an expected

additive cost over the deployed nodes, where the cost at each
node placement is a linear combination of the node power and
the cost of placing a node. However, we now seek deployment
algorithms that place relays in such a way that the network is
K node-connected, with K > 1. The choice of K could be
determined by a statistical characterization of the long term
variations in the links. The goal, in this paper, is for the
deployment agent to place nodes as he walks along a line, so
as to ensure K (node disjoint) paths from the sensor (source)
to the sink (destination).

In this paper, we focus on the case of K = 2. In the forest
monitoring application, the source to sink distance can be
several hundreds of meters. In order to ensure a reasonable
probability of delivery, we need a network with a small number
of hops (up to 5, say). Hence the hop lengths will be relatively
large, and with typical transmit power levels of the radios
used in these systems, it is unlikely that good links will exist
between nodes that are more than two hops apart. Thus, in
practice, K = 2 would suffice.

In the K = 2 case, while formulating the sequential decision
problem, extending the earlier work [3], [4], we need to define
the cost of placing a relay at a potential location. We do this by
taking a linear combination of the costs of the two downstream
links so created and provide a method for determining the
combining coefficients. Then the problem is formulated as
a discounted cost or average cost Markov decision process,
and structural results for the optimal policy are obtained. The
techniques that we use easily extend to K > 2, albeit with
the need to take more measurements at each decision step,
and the increased computational complexity of determining
the optimal policy.

Related Work: Howard et al. [2] provide heuristic algorithms
for the incremental deployment problem. Souryal et al. [5],
study the problem with an experimental study of RF link
variation in an indoor setting. Their algorithms [5] consider
links to several of the previously placed relays and the decision
of placing relays is done heuristically approach. Liu et al. ([6])
describe a bread-crumb system to aid fire fighters inside build-
ings. The problem of relay placement is rigorously formulated
in [4] and extented to a measurement-based approach in [3].

II. SYSTEM MODEL

Starting from the sink node, the deployment agent stops
at multiples of a fixed “step-length” δ (e.g., 10 meters),
makes measurements, and given certain state variables and
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Fig. 1. A topology in which each relay, except the first, has a link to two
(immediately) previous neighbours.

the measurements, decides whether or not to place a relay
at that point. Thus, starting from the sink, we can think of
points along the line at multiples of δ as being potential node
locations. We assume that the source has to be placed at one
of these locations. Since the deployment is based on on-line
measurements of the channel qualities, the locations of the
deployed relays and their number N , are random. As shown
in Figure 1, the sink is called Node 0, the relay closest to the
sink is called Node 1, and the source is called Node (N + 1).

Length of the Line: We consider two cases : (1) We assume
that the source (i.e., the sensor) is at an unknown distance L×δ
away, where L ≥ 1 is an integer valued random variable with
mean L. The choice of the step length δ will be discussed in
Section VII. It is well known that the geometric distribution is
the maximum entropy discrete probability mass function with
a given mean. With this motivation, one model is to take L
to be geometrically distributed with "continuation" probability
θ; i.e., Prob(L > k) = θ(k−1), k ≥ 1. Then θ is obtained by
setting 1

θ = L. By using the geometric distribution, we are
leaving the length of the line as uncertain as we can, given
the prior knowledge of L. In the analysis part of this paper,
we assume δ = 1 for simplicity.

(2) An alternate model is to take the line to be of infinite
length. The agent aims to deploy a string of relays so that
the average cost of the network per unit distance is small.
Such a deployment of relays could then be used to connect
pairs of sources and sinks placed along the trail, provided the
aggregate traffic over the network is very light. This model
would be useful in a situation (such as a forest trail) where
the line is long and there is no additional information about
the location along it at which the sensor needs to be placed.
Indeed, the optimal deployment policy for this case is obtained
from the previous formulation by taking θ → 0.

Channel Model: The received signal power for a particular
link (i.e., a transmitter-receiver pair) of length r is given by:

Prcv = Pxmtc

(
r

r0

)−η
HW (1)

where Pxmt is the transmit power, c corresponds to the path-
loss at the reference distance r0, η is the path-loss exponent,
H denotes the marginal random variable of the fading random
process, and W denotes the shadowing. For a given link
the value of W is fixed, whereas the fading is a random
process. Thus, over a link, for a given transmitter power, due
to fading, there is a positive probability that the receive power
(RSSI) falls below a given target; we call this the outage
probability. For a link of length r steps, we denote the transmit
power required (for a preset target outage) by Γr. Owing to

shadowing, this is modeled as a random variable over the
various links of length r. Γr takes values from a discrete set, S,
as practical radios can transmit only a finite set of power levels.
The cumulative distribution function and the probability mass
function of Γr are denoted by Gr(·) and g(r, ·) respectively.
g(r, γ) denotes the probability that to establish a link of length
r (with the target outage probability), the least transmit power
level is γ.

Traffic Model: We consider a traffic model where the traffic
intensity is very low. We assume that there is only one packet
in the network at a time. We call this the “lone packet model”.
As the traffic is very low, the transmit power over a link only
depends on losses in the propagation environment. This is
because there are no simultaneous transmissions and hence
no interference. Very light traffic is a practical assumption for
ad-hoc networks that carry occasional alarm packets.

III. 2-CONNECTED TOPOLOGIES

Given any deployment environment, radio links are infeasible
between locations that are very far apart. Let us denote the
set of potential locations by Vp := {0, 1, 2, · · · }, with the sink
at location 0. We assume that there is a given positive integer
parameter B, such that there is a potential link between a
pair of potential node locations only if the two locations are
no more than B steps apart, i.e., the set of potential edges
is Ep := {(i, j) : j < i, i − j ≤ B, i ∈ Vp, j ∈ Vp}. The
corresponding directed graph is denoted by Gp = (Vp, Ep).

Given a deployment of N relays, indexed 1, 2, · · · , N, at
the potential locations {`1, `2, · · · , `N}, we denote V :=
{0, `1, `2, · · · , `N , L}. Let E ⊂ Ep denote the set of edges
(on V ) selected by the deployment algorithm. Consider the
directed acyclic graph G = (V,E). The deployment should be
such that there are two node disjoint and edge disjoint directed
paths on this graph, connecting the sensor to the sink, such
that the paths have acceptable end-to-end performance. After
the deployment is over, the link whose transmitter is Node
m (at location `m) and receiver is Node n (at location `n)
is called link (m,n). Let Γ(m,n) denote the (random) power
required to establish one such link (m,n).

We assume that the powers required to establish any two
different potential links in the network are independent; it
holds if δ is chosen to be greater than the shadowing de-
correlation distance.

Two Neighbour (2N) Topologies: Consider a subgraph in
which for each j, 2 ≤ j ≤ N, we retain the links (j, i1) and
(j, i2), such that 0 ≤ i2 < i1 < j, i.e., every node has a link
with two of the earlier placed nodes. It is easy to see, and will
be proved in Theorem 1, that each node j, 2 ≤ j ≤ N+1, has
two node disjoint and edge disjoint directed paths to the sink.
The special case in which, with j ≥ 2, it holds that i1 = j−1,
and i2 = j − 2 will be called Two Nearest Neighbour (2NN)
Topologies. Figure 1 shows a 2NN topology with N = 4.

Definition 1. In a directed graph, a pair of nodes (s, t) is
said to be K edge connected (resp., K relay connected) if the



removal of any K − 1 arbitrary edges (resp., relays) ensures
the existence of a directed (s, t) path.

Theorem 1. In a 2N topology with number of relays N ≥ 1,
the (source, sink) pair is 2 edge-connected as well as 2 relay-
connected.

Proof: The proof is straightforward, and, due to lack
of space, we provide a brief sketch. Two edge connectivity
follows from the max-flow min-cut theorem as the minimum
edge cut is of size 2. Also, due the 2NN structure, if any single
node is removed, it can easily be shown that there is a path
that by-passes the removed node.

IV. FORMULATION AS AN MDP

As described previously in [3], we will formulate the
measurement-based optimal deployment problem as a Markov
decision problem. At multiples of the step-length δ, the agent
stops, makes link quality measurements to the previously
placed nodes, and then decides whether to place a relay at
that location or not, and, if a relay is placed, the power levels
to be used over the links to each of the previous relays.
Step Costs: The Markov decision process formulation requires
the notion of a step cost, i.e., an evaluation of the cost of
placing a relay at a potential placement point. The cost of the
entire network is then evaluated in terms of this sequence of
step costs: as a discounted sum of the step costs, or a per step
average of the step costs. In our previous work, where the step
cost involves only the immediately previous relay, if a power
γ is used with some preset outage probability, then the step
cost for placing a relay at this point, at power γ was evaluated
as γ+ ξ, where ξ is the cost of placing a relay. In the present
problem at each potential placement point, the previous two
relays are probed with power, say, γ (the immediate previous
relay) and γ1 (the node (sink, or relay) before the immediate
previous relay). In order to specify the step cost, we need to
somehow combine the two costs γ+ξ and γ1 +ξ. We propose
to combine them by the linear combination, cγ + c1γ1 + ξ,
thus leaving us with the task of coming up with reasonable
choices for c ≥ 0 and c1 ≥ 0. We discuss this next.

An approach for choosing c and c1: It would be reasonable to
base the choice of c and c1 on the probability of the one-hop or
the two-hop link being used to forward a packet. We, therefore,
conclude that the choice of c and c1 should be governed by
the routing protocol over the realised network. We consider
probabilistic routing, i.e. during network operation a relay uses
the one hop previous neighbour with probability p, and the two
hop previous neighbour with probability 1− p.

With probabilistic routing, in order to develop expressions for
c and c1 in terms of p, we consider an infinitely long network
with a 2NN topology, and trace the path of a packet from
the source to the sink. In this set up, consider the kth relay
from the source, and define ηk to be the probability that the
packet traverses this node. It can then be shown (Lemma 2 in
the Appendix) that limk→∞ ηk = 1

2−p . Thus, for large k, the
probability that the link to the immediate neighbour towards

γ

γ1

rr1

Fig. 2. Illustration of the MDP state.

the sink is used is p
2−p , whereas the probability that the other

link is used is 1−p
2−p . Based on this analysis we take c = p

2−p
and c1 = 1−p

2−p .

V. OPTIMAL DEPLOYMENT

A. Geometrically Distributed L: Discounted cost MDP

The problem is to place the relay nodes sequentially such
that the expected sum of the total power cost in all links and
the relay cost is minimized. We formulate this problem as a
Markov Decision Process with state (r, r1, γ, γ1), where r is
the distance of the current location from the previous node,
γ is the transmit power required to establish a link to the
previous node from the current location (with a preset target
outage probability), r1 is the distance between the previous
placed relay from the next to previous placed relay, and γ1 is
the transmit power required for link establishment to that node
(Figure 2). Based on (r, r1, γ, γ1) a decision is made whether
to place a relay at the current position or not. 0 denotes the
state at the beginning of the process (at the sink node), and
(0; r) denotes the state where a relay has just been placed
at the current location and the distance between the current
location and the previous relay location is r. When the source
is placed, the deployment process terminates. The action space
is {place, do not place}.

Recall the definition of Γ(m,n) from Section III. The problem
we seek to solve is:

min
π∈Π

Eπ
(
c

N+1∑
i=1

Γ(i,i−1) + c1

N+1∑
i=2

Γ(i,i−2) + ξN

)
(2)

where Π is the set of all stationary deterministic Markov
placement policies, since by Proposition 1.1.1 of Bertsekas
[7], we can restrict ourselves to this class of policies. Let us
define Jξ(r, r1, γ, γ1) and Jξ(0) to be the optimal cost-to-go
starting from state (r, r1, γ, γ1) and 0 respectively.

Bellman Equation: We have an infinite horizon total cost
MDP with finite state space, finite action space and nonnega-
tive single-stage costs. Hence, by Proposition 3.1.1 of [7], the
optimal value function Jξ(·) satisfies the following Bellman
equation (the explanation is provided after the expressions):

Jξ(r, r1, γ, γ1) = min{cp, cnp}; r + r1 ≤ B − 1 (3)

Jξ(r,B − r, γ, γ1) = cp(r,B − r, γ, γ1) (4)

Where cp and cnp are given by,
cp(r, r1, γ, γ1) = cγ + c1γ1 + ξ + Jξ(0; r) (5)

cnp(r, r1, γ, γ1) = θE(cΓr+1 + c1Γr+r1+1) + (1− θ)
EJξ(r + 1, r1,Γr+1,Γr+r1+1) (6)



Jξ(0; r) = θ[cE(Γ1) + c1E(Γr+1)] + (1− θ)
EJξ(1, r,Γ1,Γr+1); r ≤ B − 1 (7)

Consider the current state is (r, r1, γ, γ1) and the line has not
ended. If a relay is placed, a cost of cγ + c1γ1 + ξ and an
additional cost of Jξ(0; r) is incurred. If the relay is not placed
and if the line does not end at the next step, the expected cost-
to-go from there is EJξ(r + 1, r1,Γr+1,Γr+r1+1). If the line
ends (with probability θ), a cost of θE(cΓr+1 + c1Γr+r1+1)
is incurred. Unless the first relay is placed, there is only one
downstream neighbour with respect to the current location and
hence, the typical state in this situation is denoted by (r, γ).

Jξ(r, γ) = min{ξ + γ + J(0; r),

θE(Γr+1) + (1− θ)EJξ(r + 1,Γr+1)}; r ≤ B − 1

Jξ(B, γ) = ξ + γ + J(0;B) (8)

The optimal cost-to-go from state 0 (sink) is given by:
Jξ(0) = θE(Γ1) + (1− θ)EJξ(1,Γ1) (9)

Value Iteration: The value iteration for (2) is given by the
same set of equations (3) to (9), where Jξ(·) in the L.H.S of
each equation is replaced by J (k+1)

ξ (·) and Jξ(·) in the R.H.S
of each equation is replaced by J

(k)
ξ (·). We must initialize

J
(0)
ξ (·) = 0 for all states.

Lemma 1. The value iteration provides a nondecreasing se-
quence of iterates that converges to the optimal value function,
i.e., J (k)

ξ (·) ↑ Jξ(·) for all states as k ↑ ∞.

Theorem 2. (Policy Structure) The optimal policy for Prob-
lem (2) is a threshold policy with a threshold γth(r, r1) such
that at a state (r, r1, γ, γ1) it is optimal to place a relay if
and only if cγ + c1γ1 ≤ γth(r, r1). This corresponds to the
condition cp ≤ cnp.

Proof: See Appendix A.

B. Formulation via an Average Cost MDP: Infinite length line
Let us denote the number of relays placed within x steps by
Nx. In this subsection, we seek to minimize the average cost
per step as follows:

inf
µ∈Π

lim sup
x→∞

c
∑Nx+1
i=1 Γ(i,i−1) + c1

∑Nx+1
i=2 Γ(i,i−2) + ξNx

x
(10)

where Π is the set of stationary, deterministic policies.
For any ξ, let the optimal value function of the problem (2)
be denoted by Jξ,θ(0). By Proposition 4.1.7 of Bertsekas
[7], the optimal policy for (10) is the same as that of (2)
where θ is sufficiently close to 0 since problem (2) can be
considered as infinite horizon discounted cost problem with
discount factor (1 − θ) and the state and action spaces are
finite. Also, the optimal per-step cost λ∗ of problem (10) is
equal to limθ→0 θJξ,θ(0) (by Section 4.1.1 of Bertsekas [7]).

VI. COMPUTATIONAL EXAMPLES (DEPLOYMENT FOR
MINIMUM AVERAGE COST PER STEP)

We take the path loss factor η = 4.7, the shadowing random
variable, W , to be log-normally distributed with σ = 7.7dB,

ξ = 0.001 ξ = 0.005 ξ = 0.01
u (in steps) 2.8 3.2 3.5
γ (in mW) 0.0394 0.0439 0.0473

λ∗ 0.01121 0.01195 0.01269

TABLE I
COMPONENTS OF NETWORK COST, AND AVERAGE NETWORK COST:

K = 2, p = 0.5, FOR VARIOUS VALUES OF RELAY COST ξ.
ξ = 0.001 ξ = 0.005 ξ = 0.01

u (in steps) 4.2 4.8 5.1
γ (in mW) 0.0372 0.0417 0.0421

λ∗ 0.00982 0.00996 0.01021

TABLE II
COMPONENTS OF NETWORK COST, AND AVERAGE NETWORK COST:

K = 1, FOR VARIOUS VALUES OF RELAY COST ξ.

δ = 6 meters and B = 10 (i.e., the maximum length of a link is
10 steps, i.e., 60 meters). The preset target outage probability
is 1%. Relay cost ξ is varied and mean power cost per relay,
γ, mean placement distance (in steps of δ), u, and average
cost per step, λ∗, is computed for p = 0.5 and p = 1. The
results are tabulated in Tables I, II.
Discussion: (i) As would be expected, in both cases (K = 1
and K = 2), the relays are placed farther apart as the relay
cost ξ increases. (ii) In both cases (K = 1 and K = 2), the
mean network power cost per link increases as ξ increases.
As the relays are placed farther apart, and a target outage
needs to be maintained over each selected link, we would
expect that the power for each link increases as ξ increases.
(iii) Comparing across the two cases (K = 1 and K = 2),
we observe that with K = 2, the relays are closer, in order to
enable workable links to two previously placed nodes. (iv) A
further comparison across the two cases is with respect to the
mean power cost per link. With K = 2, there is an increase in
mean power cost. With c = c1, an equal weight is given to the
link with the immediate neighbour and the two hop neighbour.
In order to make the two hop link workable more power is
needed, thus raising the average power cost for K = 2 above
that for K = 1.

VII. EXPERIMENTAL RESULTS

A total of 22 TelosB motes were deployed in the forest-like
Jubilee Park of the Indian Institute of Science (see Figure 3).
The length of the trail is 300m and 11 motes were placed
on each side of the trail. The distance between successive
motes along the trail edge (i.e., step size δ) is 11m. Each
relay broadcasts 2000 packets, at each power level, while the
others are quiet and collect measurements to assess their link
qualities from the transmitting node. In this manner, each relay
gets a turn to broadcast 2000 packets. At each power level,
the average received power, and link outage at each other node
is measured. A maximum likelihood approach gave the path-
loss exponent, η, as 4.7, the standard deviation of W , σ, as
7.7 dB and the spatial de-correlation distance of W as 6m. We
take the step size δ = 11m and B is taken to be 5. The set of
possible power transmit levels is S = {−25,−15,−10,−5, 0}
(in dBm). A link is said to be in outage if the received signal
power (RSSI) is less than −88 dBm. The cost of a link consists
of two components, power cost and relay cost (with a preset
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Fig. 3. A segment of the trail, motes were mounted on the trees at a height
of about 2 meters. The right panel shows as depiction of the deployment of
22 motes along a stretch of the trail

Placement No. Total Po- Total
K p Locations of wer Cost Cost

(Location no.) relays (in mW) (in mW)
1 1 3,5,7,8,10 5 0.463 0.963
2 0.5 2,3,5,7,8,9,10 7 0.513 1.213

TABLE III
NETWORK REALIZATION FOR THE LEFT SIDE OF THE TRAIL UNDER

CONSIDERATION FOR DIFFERENT VALUES OF p

Placement No. Total Po- Total
K p Locations of wer Cost Cost

(Location no.) relays (in mW) (in mW)
1 1 2,3,5,7,9 5 0.536 1.036
2 0.5 3,4,5,6,7,9,10 7 0.606 1.306

TABLE IV
NETWORK REALIZATION FOR THE RIGHT SIDE OF THE TRAIL UNDER

CONSIDERATION FOR DIFFERENT VALUES OF p

target outage of 1%). We assume average cost formulation as
described in Section V.

Since our experimental set up is quite small, we take ξ = 0.1,
i.e., a large node cost, in order to prevent the algorithm from
placing relays at all potential locations. Given the measure-
ments described above, we have all possible measurements that
can be possibly made during an actual deployment. Thus, we
can use the measurements to determine the actual network that
will be deployed if an agent was to walk along the trail starting
from sink at location 1 (Figure 3) and the source at location
11. In Tables III, IV, we report the "virtual" deployment results
obtained. In Table III, we see that with 2 connectivity, a total
of 7 relays are being placed over a 110m trail whereas with 1
connectivity, the agent places only 5 relays. The "Total Power
Cost" columns show the sum of the weighted transmitter
powers over all the deployed nodes. We note that this measure
is proportional to the rate at which batteries will need to be
replaced in the network ([4]). Comparing the K = 1 with the
K = 2 deployment, we notice that the number of deployed
relays increased by 40% (from 5 to 7), whereas the total power
increased by 10% to 12%. This occurs because, with the nodes
closer together, the power required to the nearest neighbours
decreases. That, in essence, is the additional operational cost
we pay for the increase in path redundancy.

VIII. CONCLUSION AND FUTURE WORK
We have provided an approach for measurement-based as-you-
go deployment of a 2-connected wireless relay network along
a line, to connect a sensor with a sink, so as to carry very light
traffic. The problem was formulated as a Markov decision
process and policy structures were obtained. Computational

and experimental experience was reported. We found that
for a small increase in network cost, path redundancy can
be incorporated in the deployed network, thus rendering the
network robust to node failures and the inevitable long term
variations in link quality.

Our formulation in this paper assumed a given target outage
probability for each link. It will be interesting to extend the
formulation so that end-to-end outage is itself a part of the
cost. Also, we assumed the deployed network uses probabilis-
tic routing, thereby obtaining a simple characterisation of the
cost multipliers c and c1. In practice, however, the routing
would be adaptive (using a protocol such as RPL); determining
appropriate values for c and c1 in such a setting will be another
important item of future work. Innovative ways to use the
redundant downlink neighbours, perhaps using physical layer
techniques would also be of interest.

APPENDIX A
Lemma 2. For probabilistic routing in an infinite node 2NN
network, limk→∞ ηk = 1

2−p .

Proof: It is easily seen that

ηk = pηk+1 + (1− p)ηk+2 (11)

Clearly, η0 = 1, η1 = p. We take z-transform on both sides
of (11). After rearranging, taking the inverse z-transform and
taking the limit k →∞, limk→∞ ηk = 1

2−p .

Proof of Theorem 2 By Proposition 3.1.3 of [7], when the
state is (r, r1, γ, γ1) with r+r1 ≤ B−1, it is optimal to place
the relay if cp ≤ cnp, i.e.,

cγ + c1γ1 ≤ θE(cΓr+1 + c1Γr1+1)

+(1− θ)EJξ(r + 1, r1 + 1,Γr+1,Γr1+1)− (ξ + Jξ(0; r))

=: γth(r, r1)
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