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Abstract

In this paper, we study a problem of designing a multi-hop wireless network for interconnecting sensors (hereafter
called source nodes) to a Base Station (BS), by deploying a minimum number of relay nodes at a subset of given
potential locations, while meeting a quality of service (QoS) objective specified as a hop count bound for paths from
the sources to the BS. The hop count bound suffices to ensure a certain probability of the data being delivered to
the BS within a given maximum delay under a light traffic model. We observe that the problem is NP-Hard. For
this problem, we propose a polynomial time approximation algorithm based on iteratively constructing shortest path
trees and heuristically pruning away the relay nodes used until the hop count bound is violated. Results show that the
algorithm performs efficiently in various randomly generated network scenarios; in over 90% of the tested scenarios,
it gave solutions that were either optimal or were worse than optimal by just one relay. We then use random graph
techniques to obtain, under a certain stochastic setting, an upper bound on the average case approximation ratio of a
class of algorithms (including the proposed algorithm) for this problem as a function of the number of source nodes,
and the hop count bound. To the best of our knowledge, the average case analysis is the first of its kind in the relay
placement literature. Since the design is based on a light traffic model, we also provide simulation results (using
models for the IEEE 802.15.4 physical layer and medium access control) to assess the traffic levels up to which the
QoS objectives continue to be met.

Keywords: wireless sensor networks, QoS based design of wireless sensor networks, relay placement for wireless
sensor networks, design of multi-hop CSMA networks, node-weighted Steiner tree, hop constrained Steiner tree

1. Introduction

1.1. Motivation and Problem Definition
Large industrial establishments such as refineries, power plants and electric power distribution stations typically

have a large number of sensors distributed over distances of hundreds of meters from the control center. Individual
wires carry the sensor readings to the control center. Recently there has been increasing interest in replacing these
wireline networks with wireless packet networks ([1, 2, 3]). A similar problem arises in an intrusion detection applica-
tion using a fence of passive infrared (PIR) sensors [4], where the event sensed by several sensors has to be conveyed
to a Base Station (BS) quickly and reliably.

The communication range of the sensing nodes is typically a few tens of meters (depending on the RF propagation
characteristics of the deployment region). Therefore, usually multi-hop communication is needed to transmit the
sensed data to the BS. The practical problem that our work is aimed towards is the following:

1. There are already deployed, static sensors from which measurements, encapsulated into packets, need to be
delivered to a single BS. We also refer to the sensors as sources.

2. Additional relays need to be placed in the region in order to provide multi-hop paths from the sources to the BS.
The sources can also act as relays for the packets from other sources.
In most practical applications, due to the presence of obstacles to radio propagation, or due to taboo regions,
we cannot place relay nodes anywhere in the region, but only at certain designated locations. This leads to the
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Figure 1: The constrained relay placement problem; circles indicate sources, and the hexagons indicate potential relay locations. The edges denote
the useful links between the nodes.

problem of constrained relay placement in which the relays are constrained to be placed at certain potential
relay locations. Furthermore, only certain links are permitted1. See Figure 1 for a depiction of the problem.

3. The objective of the design is to place as few additional relays as possible (at the potential relay locations) while
achieving a network that meets the following requirements:

(a) There is a path from each source node to the BS; i.e., we seek a tree that spans the source nodes, and is
rooted at the sink2.

(b) The hop count from each source to the sink is at most hmax. Under the assumption of light traffic and
CSMA/CA MAC, this hop count bound ensures a stochastic QoS objective, namely that the maximum
delay on any path is bounded by a given value dmax, and the packet delivery probability (the probability of
delivering a packet within the delay bound) on any path is at least pdel. See Section 2.2 and [5] for details.

1.2. An Overview of Our Approach and Contributions
We are concerned with the design of a QoS aware multi-hop CSMA/CA network for connecting wireless sensors

with a sink, by selecting a small number of potential locations at which to place relays. In this paper we limit ourselves
to the light traffic setting, which is adequate for modelling low arrival rates (say, one packet every few seconds from
each source) that are typical of the so called condition monitoring/industrial telemetry applications. In this setting,
analysis of the wireless physical layer and the medium access control used by the system (e.g., IEEE 802.15.4, which
is used by Zigbee networks [6]) yields the following (see Sections 2.1 and 2.2 for a summary of the arguments):
(i) A notion of a “feasible” edge between a pair of nodes (sources or potential relays), thus yielding a graph over the
sources and potential relay locations.
(ii) A hop count bound between each source and the sink, which ensures the stochastic QoS objective for packet
delivery.

Thus, we arrive at a graph design problem with the requirements mentioned earlier in Section 1.1. After an
extensive literature survey, we concluded that this problem of hop constrained, cost optimal network design has not
yet been well studied. Although Sitanayah et al. [7, 8] have proposed heuristics for this problem for general k, they
have not made any attempt at a formal study of the complexity of the problem, or the performance guarantees of their
algorithms. Very recently, Nigam and Agarwal [9] proposed a branch-and-cut algorithm to solve only a subclass of
this problem optimally. However, even for that subclass of problems, their algorithm is not polynomial time, and
hence cannot be used for large sized problem instances. Voss [10] studied a related problem of hop constrained,
minimum total edge-cost network design, and proposed tabu search based heuristics for the same; but again, no formal
theoretical study of either the problem, or the proposed algorithm was presented. As there is a considerable amount of
relevant literature to be discussed, we have placed our detailed survey of related literature in Section 7 just before the
Conclusion section.

The overall approach we take to solving the problem is the following:

1This could be because some links could be too long, leading to a high bit error rate and hence large packet delay, or due to an obstacle, e.g., a
firewall.

2We have also developed algorithms for the problem where the requirement is to have at least k > 1 paths from each source to the BS. See [5]
for details.
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1. Having converted the problem into a graph design problem, we analyze the complexity of this problem to show
that the problem is NP-Hard, and develop approximation algorithms for this problem.
The class of algorithms that we develop basically perform a series of shortest path computations from each
source to the sink, starting with an initial feasible solution and adopting a certain combinatorial relay pruning
strategy to prune relay nodes from the feasible solution sequentially; each time a relay node is pruned, a new
shortest path is computed involving only the remaining nodes, while still retaining hop count feasibility. These
algorithms are simple, intuitive, and fast, and we have found that they work very well (often yielding optimal
or close to optimal solutions) in our extensive numerical exploration. For brevity, we describe and analyze only
one such algorithm in this paper. For other algorithms of this class, see [11].

2. We have provided a worst case analysis of the proposed algorithm. Also, a bound on the average case ap-
proximation ratio of our algorithm has been derived for a particular stochastic setting using a random graph
model. While the bound we obtain is loose when compared to numerical simulations, our analysis technique
would be of independent interest, since there does not seem to exist similar average case analysis for the relay
placement/graph design algorithms proposed in the literature (see Section 7).

3. Finally, in order to study the limits of the performance of our designs with “positive” traffic (i.e., for non-zero
traffic arrival rates such that there may be contention in the network), we also provide packet level simulation re-
sults (using Qualnet, and assuming IEEE 802.15.4 CSMA/CA Medium Access Control) for the designs obtained
using our algorithm (see Section 6).

1.3. Organization of the Paper
The rest of the paper is organized as follows: in Section 2 we formally describe the problem formulation, and

discuss the complexity of the problem. In Section 3 we propose a polynomial time algorithm (SPTiRP) for the
problem, and provide a worst case analysis of the algorithm. Section 4 provides an average case analysis of the
SPTiRP algorithm under a certain stochastic setting. In Section 5 we provide extensive numerical results for the
SPTiRP algorithm applied to a set of random scenarios. Section 6 provides packet level simulation results for the
designs obtained using our algorithm. Finally, we present a detailed survey of closely related literature in Section 7,
and conclude the paper in Section 8.

2. The Network Design Problem

In Sections 2.1 and 2.2 below, we discuss how we have converted the problem of designing a multi-hop CSMA/CA
network with a stochastic QoS objective into a graph design problem. The resulting graph design problem is formally
defined in Section 2.3, and the remaining subsection discusses the complexity of the problem.

2.1. The Lone Packet Model
In this paper, we address the problem for the case where the traffic from the source nodes is light. Formally,

we are concerned with the situations in which the traffic is so light that at any point of time, only one measurement
packet travels from a source in the network to the BS. From now on, we shall refer to this as the “lone packet traffic
model,” which is realistic for many applications where the time between successive measurements being taken is
sufficiently long so that the measurements can be staggered so as not to occupy the medium at the same time. Such
slow measurement rates are typical of so-called condition monitoring/industrial telemetry applications [12, 13].

Moreover, it can be shown that for a CSMA/CA network to satisfy a probability of delivery objective for a given
positive traffic arrival rate, it is necessary that the network satisfies this QoS objective under the lone packet model (for
a formal proof3 of this fact, see [5]). As we shall see in subsequent sections, even under this lone packet model, the
problem of QoS constrained network design is computationally hard, and it does not seem to have been well studied
(see Section 7). We cannot hope to solve the general problem of QoS aware network design for arbitrary positive
traffic arrival rates unless we have a reasonably good solution to the more basic problem of lone packet based network
design.

2.2. The Network Design Setting
In this subsection, we discuss how we can map the packet level QoS objectives into graph level objectives under

the lone packet model. Given a set of source nodes or required vertices Q (including the BS) and a set of potential
relay locations R (also called Steiner vertices), we consider a graph G = (V, E) on V = Q ∪ R with E consisting of all
feasible edges.

3A formal proof is necessary for this seemingly obvious statement since, in CSMA/CA networks, in general, the performance is not monotone
with the arrival rates (see, e.g., [14]); hence, the statement about the lone-packet traffic model needs to be made with care.
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Note that there are several ways in which we can define the set of feasible edges E, keeping in mind the end-to-end
QoS objective. For example, we can impose a bound on the packet error rate (PER) of each link, or alternately, we
can constrain the maximum allowed link length (which, in turn, affects the link PER). Having thus characterized the
link quality of each feasible link in the graph G, it can be shown by an elementary analysis that the QoS objectives
(dmax and pdel) can be met by imposing a hop count bound of hmax between each source node and the sink. Details
of this analysis are provided in the technical report [5], where we have considered the practical situation of slowly
fading links, and packet losses due to random channel errors. Thus, there is a random delay at each hop due to packet
retransmissions, and packets could be dropped if a retransmission limit is reached. Note that as a consequence of the
lone packet assumption, the delay along a path is additive, i.e., it is simply the sum of the delays on each hop along
the path.

Note that in this paper we do not address the important practical issues of actually identifying the usable links on
the field (i.e., the edge set E of the on-field network graph G), or handling their variations over time. Those details and
other implementation issues are available in [16]. Furthermore, the graph design algorithms presented in this paper
are in no way tied to the link modelling approach mentioned above for defining the graph G, and the hop constraint
hmax. The algorithms can be applied as long as a graph on Q∪R, and a hop constraint is given, irrespective of how the
graph and the hop constraint were obtained.

Finally, throughout this paper, we assume that the potential relay locations are given to us. In case the user specifies
only certain available regions instead of the exact locations, there are several ways in which the potential locations can
be obtained. One possible random selection approach which ensures a feasible solution with high probability has been
prescribed in Section 4 in the context of the average case analysis of our algorithm.

2.3. Problem Formulation
Given the graph G = (V, E) on V = Q ∪ R with E consisting of all feasible edges (as explained in Section 2.2),

and a hop constraint hmax, the problem is to extract from this graph, a spanning tree on Q, rooted at the BS, using a
minimum number of relays such that the hop count from each source to the BS is at most hmax. We call this the Rooted
Steiner Tree-Minimum Relays-Hop Constraint (RST-MR-HC) problem.

2.4. Complexity of the Problem
Proposition 1. 1. The RST-MR-HC problem is NP-Hard.
2. It cannot be approximated to a factor better than O(log m), where m is the number of sources.

Proof. 1. The subset of RST-MR-HC problems where the hop count bound is trivially satisfied is precisely the class of
node-weighted Steiner tree (RST-MR) [17] problems (see our literature survey in Section 7 for a discussion of the node-
weighted Steiner tree (RST-MR) problem). Consider, for example, all RST-MR-HC problems where |Q| + |R| = N,
N being some positive integer, and the hop count bound is hmax = N − 1. Clearly, the hop count bound is trivially
satisfied in these problems. Thus, the RST-MR problem is a subclass of the RST-MR-HC problem. But, the RST-MR
problem is NP-Hard (see [17]). Hence, the RST-MR-HC problem is also NP-Hard by restriction argument[18, p. 63,
Section 3.2.1].

2. It was proved in [17], by a reduction from the set cover problem, that the node-weighted Steiner tree or RST-MR
problem cannot be approximated to a factor better than O(log m), where m is the number of sources. It follows that
the RST-MR-HC problem, being a superclass of the RST-MR problem, cannot be approximated to a factor better than
O(log m). �

In the literature, the edge-weighted Steiner tree problem frequently arises in the context of the design of wireline
telecommunication networks, as in such networks the cost of the network includes the cost of laying the links. On
the other hand, in a multihop wireless network, the cost of the network is just the cost of installing the relay nodes,
which leads to the node-weighted Steiner tree problem. While certain variations of the edge-weighted Steiner tree
problem are constant factor approximable, Proposition 1 shows that the node-weighted Steiner tree problem (even
without hop constraint) cannot be approximated to a factor better than O(log m). The following proposition shows that
the edge-weighted Steiner tree problem is, in fact, a subclass of the node-weighted Steiner tree problem.

Proposition 2. The node-weighted Steiner tree problem with hop constraint (resp., diameter bound) includes, as spe-
cial cases, the edge-weighted Steiner tree problem with hop constraint (resp., diameter bound), and the hop constrained
(resp., bounded diameter) minimum spanning tree problem4.

4The reason for considering this variation of the problem will be clear when we discuss related literature in Section 7.
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Proof. We present the proof for the hop constrained case. The proof for the diameter bounded case is essentially
identical.

First notice that the hop constrained minimum spanning tree problem is a special case of the hop constrained
edge-weighted Steiner tree problem (where the set of Steiner vertices is empty). Thus, it suffices to prove the result
for the hop constrained edge-weighted Steiner tree problem. The problem is stated as: given a graph G = (V, E) with
non-negative weights c(e) associated with each edge e ∈ E, a subset of vertices Q ⊂ V along with a designated root
node or sink, and a hop constraint hmax, find a tree with minimum total edge weight, rooted at the sink, and spanning
Q, such that the path from each vertex in Q to the sink has hop count at most hmax.

Given any instance of the hop constrained edge-weighted Steiner tree problem, we can convert it into an instance
of the hop constrained node-weighted Steiner tree problem as follows (this is a minor variation of a similar reduction
presented in [19, p. 77, Section 4.1.1]): on each edge e ∈ E of the graph G, we introduce a new Steiner vertex,
and assign it a cost c(e), the cost of the edge. Note that this splits the edge into two edges. Notice that the new
Steiner vertices have degree exactly two, and a new Steiner vertex is used if and only if both the edges obtained from
the original edge are used. In the resulting graph, all other Steiner vertices are assigned zero cost, and all edges are
assigned zero cost. Note that this procedure does not affect the set Q. We now set the hop constraint to 2hmax. Then,
it is easy to verify that on this modified graph, an optimal solution to the hop constrained node-weighted Steiner tree
problem corresponds to an optimal solution to the hop constrained edge-weighted Steiner tree problem in the original
graph G, and vice-versa.

Since the instances resulting from the above reduction are a strict subset of the class of all possible instances of the
hop constrained node-weighted Steiner tree problem, the claim follows. �

3. RST-MR-HC: A Heuristic and its Worst Case Analysis

3.1. Shortest Path Tree (SPT) based Iterative Relay Pruning Algorithm (SPTiRP)
1. The Zero Relay Case: Let GQ be the restriction of the graph G to the node set Q. Find an SPT on GQ, rooted

at the sink. If the hop count is at most hmax for each path, we are done; no relays are required in an optimal
solution. Else, go to the next step.

2. Find a Shortest Path Tree T on G, rooted at the sink.
3. Checking Feasibility: If for any path in the SPT, the path cost exceeds hmax, declare the problem infeasible.

(Clearly, if the shortest path from a node to the sink does not meet the hop count bound, no other path from the
node to the sink will meet the hop count bound). Else, go to the next step.

Pruning the SPT:
4. Discard all nodes in R that are not in T . Note that this step may lead to suboptimality as some of these discarded

relay nodes could be part of an optimal solution.
5. For the remaining nodes in R, define the weight of a relay node as the number of paths in T that use that node.
6. Arrange the paths in T in increasing order of hop count.
7. Among the paths in T that use relay nodes, choose the least cost path, i.e., the one that has the least number

of hops. This path has the maximum “slack” in the hop constraint. Arrange the relay nodes on this path in
increasing order of their weights as defined in Step 5.

8. Remove the least weight relay node, and consider the restriction of G to the remaining nodes in T . Find an SPT
on this graph. If in this SPT, path cost exceeds hmax for any path, then discard this SPT, replace the removed
relay node, and repeat this step with the next least weight relay node. If all the relays in the least cost path have
been tried without success, move on to the next least cost path, and repeat steps 7 and 8 for the relays in this
path that have not yet been tried.

9. If in the above step, the SPT obtained satisfies the hop constraint for all the paths, then delete the removed relay
node permanently from R, denote the newly obtained SPT by T , and repeat Steps 4 through 9.

10. Stop when no more relay pruning is possible without violating the hop constraint on one or more of the paths.
Output T as the final solution.

Remarks:
1. Step 1 of the above algorithm ensures that if the optimal design does not use any relay node, then the same holds

true for our algorithm. That way we can make sure that the algorithm does not do infinitely worse in the sense
that Relayalgo

Relayopt
is finite.

The idea behind Steps 7, 8 and 9 is that choosing to remove a relay from the path with the most slack in cost
(i.e., hop constraint), we stand a better chance of still meeting the hop count requirement with the remaining
relays. Also, removing a relay of less weight would mean affecting the cost of a small number of paths. So
by pruning relays in the manner as described in Steps 7, 8 and 9, we aim for a better exploration of the search
space.
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2. Note that the SPTiRP algorithm (and the worst case analysis presented next) can be applied to arbitrary input
graphs in any dimensions, as opposed to geometric graphs in two dimensions considered in most of the previous
work (see, for example, [20, 21, 22, 23]).

3. Recall that our objective is to select a minimal subset of the relays R′ ⊆ R, and a topology on Q ∪ R′, so that
on the subgraph thus obtained there is a path from each source to the sink, each path meeting the QoS objective
under the lone packet model. The SPTiRP algorithm in this section is a network design algorithm aimed at
achieving this objective. Once we obtain a network topology using this design algorithm, any routing algorithm
that can select one of the QoS-satisfying routes, from each source to the sink, statically or dynamically, can be
used. For example the routing algorithm can dynamically select one of the possible QoS-satisfying routes from
each source, so as to balance the relay energy consumption over time, or a standard routing protocol such as
RPL (with an appropriately defined objective function) can be used.

Numerical experiments demonstrating the performance of the SPTiRP algorithm compared to the optimum solu-
tions are presented in Section 5.2.

3.2. Analysis of SPTiRP
3.2.1. Complexity

The complexity of determining the shortest path tree on N nodes is O(N log N) [24]. Let us denote this function
by gSPT(·). In Iteration 1 of the algorithm, the complexity is gSPT(|Q|) and in Iteration 2, it is gSPT(|Q| + |R|). In
subsequent iterations, we remove one relay node at a time and find the SPT on the resultant restricted graph; if no
improvement is found, we replace that node and continue. Thus, for the kth iteration, the worst case complexity will
be (|R| − k + 3)gSPT(|Q| + |R| − k + 2), where in the worst case, k = 3, 4, . . . , |R| + 1. Let gsptirp(·) denote the overall
complexity. Thus, the overall complexity will be

gsptirp(|Q| + |R|) = gSPT(|Q| + |R|)+
|R|∑

j=1

(gSPT(|Q| + |R| − j))(|R| − j + 1)

≤ (1 + |R|2)(gSPT(|Q| + |R|))
which is polynomial time.

3.2.2. Worst Case Approximation Factor
Theorem 1. The worst case approximation guarantee for the SPTiRP algorithm is min{m(hmax − 1), (|R| − 1)}, where
m is the number of sources, hmax is the hop constraint, and |R| is the number of potential relay locations.

Proof. The worst case occurs when the SPT obtained before we enter Step (4) does not contain any relay node(s)
that correspond to some optimal design. If no relays are used in any optimal design, then the algorithm will yield an
optimal design (Step (1)). If an optimal solution uses a positive number of relays but not all of them, then SPTiRP
cannot stop by using all the relays. Indeed, suppose that SPTiRP stops and uses all the relays. Since there is a feasible
tree containing a strict subset of the relays, the pruning steps in SPTiRP will succeed in pruning at least one relay.
Hence, the worst possibility is that the optimal design uses just 1 relay node, whereas the SPT obtained in Step (2)
consists of all the remaining (|R| − 1) relays, and moreover, pruning any of these (|R| − 1) relays will cause one or more
paths in the resulting SPT to violate the hop constraint. Thus, in the worst case, the algorithm may lead to a design
with (|R| − 1) relays instead of the optimal design with one relay. Also note that for a problem with m sources, and a
hop constraint hmax, no feasible solution can use more than m(hmax − 1) relays. Hence, we have a polynomial factor
worst case approximation guarantee of min{m(hmax − 1), (|R| − 1)}. �

3.2.3. Sharp Examples (for Worst Case Approximation and for Optimality)
Let us now present a sequence of problems of increasing complexity for which the approximation guarantee is

strict, i.e., for these problems, the algorithm ends up using |R| − 1 relays, while the optimum design uses one relay.
Such examples are worthwhile to explore as they help to show that the approximation factor obtained above cannot
be improved. Consider the situation shown in Figure 2. The green hexagons denote the relay node locations and the
black circles represent the source node locations. Only the edges shown (coloured or black) are permitted. Consider
the RST-MR-HC problem on this graph with hmax = 3. Clearly the optimal solution will use only one relay, R1, to
reach from each source to the BS within the specified hop count bound. The black dotted links correspond to the
optimal solution. The red link between source S1 and the BS will belong to both the optimal solution and the outcome
of our algorithm as it is a direct link. Our SPT based algorithm will calculate the shortest paths and thus end up
using relays R2, R3, . . . , Rn, leaving out R1. The black solid links correspond to the solution given by our algorithm.
Clearly, in such problems, we end up using |R| − 1 relays instead of just one.
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Figure 2: A sequence of problems where the worst case approximation guarantee is strict.

S1

S2

S3
Sn−1

Sn R1

R2

R3Rn−1

Rn BS

Figure 3: A sequence of problems where SPTiRP gives optimal solution.

Another sequence of problems of increasing complexity for which the algorithm gives the optimal design can be
constructed as shown in Figure 3. Such examples help to show that the proposed algorithm does provide an optimal
solution in some scenarios.

As before, the green hexagons represent relay locations and the black dots represent source nodes. Suppose
hmax = 2. Then clearly, the optimal solution is as shown in the figure. The algorithm, after calculating the SPT, will
end up with the same solution.

4. Average Case Analysis of SPTiRP

We shall derive below an upper bound on the average case approximation factor of SPTiRP in a certain stochastic
setting. The derivation, in fact, applies to any algorithm that starts with an SPT, and proceeds by pruning relays from
the SPT in some manner. The setting is chosen so as to ensure the existence of a feasible solution with high probability.
For the purposes of this analysis, we restrict ourselves to two dimensional geometric graphs.

We consider a square area A(⊂ <2
+) of side a. The BS is located at (0,0). We deploy n potential locations randomly

over A, yielding the potential locations vector x ∈ An. Then we place m sources over A, yielding source location vector
y ∈ Am. Let ω = (x, y), i.e., ω denotes the joint potential locations vector and source locations vector. We assume
a model where a link of length at most r has the desired PER, and hmax is the hop constraint. We then consider the
geometric graph, Gr(ω), over these n + m points; i.e., in Gr(ω) there is an undirected edge between a pair of nodes in
ω if the Euclidean distance between these nodes is at most r. If in this graph the shortest path from each source to the
BS (at (0, 0)) has a hop count at most hmax, then ω is feasible. Define

H j(ω): Hop distance (i.e., the number of hops in the shortest path) of source j from the BS in Gr(ω), 1 ≤ j ≤ m. (∞
if source j is disconnected from the BS in Gr(ω))

X = {(x, y) : ∀y j, 1 ≤ j ≤ m, H j ≤ hmax}: Set of all feasible instances

We would like X to be a high probability event. For this we need to limit the locations of the sources to be no
more than (1 − ε)rhmax from the BS; Theorem 2, later, will help characterize the relationship between ε, the number
of potential locations, and the probability of X.
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For a given ε ∈ (0, 1), let Aε(⊂ A) denote the quarter circle of radius (1 − ε)hmaxr centered at the BS, where hmax is
the hop constraint, and r is the maximum allowed communication range.

Formally, we deploy n potential locations independently and identically distributed (i.i.d) uniformly randomly over
the area A; then deploy m sources i.i.d uniformly randomly over the area Aε . The probability space of this random
experiment is denoted by (Ω(n)

m,ε ,B(n)
m,ε , P

(n)
m,ε), where,

Ω
(n)
m,ε = (An × Am

ε )(⊂ <2(n+m)
+ ): Sample space; the set of all possible deployments

B(n)
m,ε : The Borel σ-algebra in Ω

(n)
m,ε

P(n)
m,ε : Probability measure induced on B(n)

m,ε by the uniform i.i.d deployment of nodes

Consider the random geometric graph Gr(ω) induced by considering all links of length at most r on an instance
ω ∈ Ω

(n)
m,ε . We introduce the following notation:

NSPTiRP(ω): number of relays in the outcome of the SPTiRP algorithm on Gr(ω) (∞ if ω ∈ Xc)

ROpt(ω): number of relays in an optimal solution to the RST-MR-HC problem on Gr(ω) (∞ if ω ∈ Xc)

The average case approximation ratio of the SPTiRP algorithm over feasible instances is defined as

Average case approximation ratio, α 4=
E[NSPTiRP|X]

E[ROpt|X]
(1)

Remark: This would be a useful quantity if the user of the algorithm wishes to apply the algorithm to several
instances of the problem, yielding the required number of relays N1,N2, . . . ,Nk, as against the optimal number of
relays R1,R2, . . . ,Rk, and is interested in the ratio N1+N2+···+Nk

R1+R2+···+Rk
.

In the derivation to follow, we will need X to be a high probability event, i.e., with probability greater than 1−δ for
a given δ > 0, the locations of the sources and potential relays form a feasible instance. The following result ensures
that this holds for the construction provided earlier, provided the number of potential locations is large enough.

Theorem 2. For any given ε, δ ∈ (0, 1), hmax > 0 and r > 0, there exists n0(ε, δ, hmax, r) ∈ N such that, for any n ≥ n0,
P(n)

m,ε(X) ≥ 1 − δ in the random experiment (Ω(n)
m,ε ,B(n)

m,ε , P
(n)
m,ε).

Proof. The proof follows along the lines of the proof of Theorem 3 in [25]. An outline is given below. For details, see
[5].

We make a geometric construction as follows: construct radial “blades” (see Figure 4) to cover the entire portion
of the circle of radius hmaxr centered at the BS, and lying inside the area A. Then, in each of these blades, we construct
hmax rectangular strips (again see Figure 4). Denote by Xε,δ, the event that at least one potential location (out of the n
uniformly distributed locations) falls in each of the first (hmax − 1) strips (counting from the BS at (0, 0)) in each blade.
We can choose the widths and separation of the strips such that occurrence of the event Xε,δ ensures that the resulting
instance has a feasible solution, i.e., Xε,δ ⊆ X, or equivalently, P(n)

m,ε(X) ≥ P(n)
m,ε(Xε,δ). Then, we use the union bound

along with some geometric arguments to lower bound P(n)
m,ε(Xε,δ) as a function of n, hmax and ε. This, in conjunction

with the requirement that P(n)
m,ε(X) ≥ 1 − δ, yields n0(ε, δ, hmax, r), and the sufficient condition that n ≥ n0 ensures this

probability. �

Remark: For fixed hmax and r, n0(ε, δ) increases with decreasing ε and δ.

The experiment: In light of Theorem 2, we employ the following node deployment strategy to ensure, w.h.p, fea-
sibility of the RST-MR-HC problem in the area A. Choose arbitrary small values of ε, δ ∈ (0, 1). Given the hop
count bound hmax and the maximum communication range r, obtain n0(ε, δ, hmax, r) as defined in Theorem 2. Deploy
n ≥ n0 potential locations i.i.d uniformly randomly over the area of interest, A. m sources are deployed i.i.d uniformly
randomly within a radius (1 − ε)hmaxr from the BS, i.e., over the area Aε . By virtue of Theorem 2, this ensures that
any source deployed within a distance (1 − ε)hmaxr is no more than hmax hops away from the BS w.h.p, thus ensuring
feasibility of the RST-MR-HC problem w.h.p. We check whether the deployment is feasible by computing the SPT on
the induced random geometric graph with hop count as cost. In this stochastic setting, we derive an upper bound on
the average case approximation ratio, α, of the SPTiRP algorithm as follows.
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Figure 4: Construction using the blades cutting the circumference of the circle of radius hmaxr (adapted from Nath et al. [25]).

Lemma 1.

E[NSPTiRP|X] ≤ m

hmax − 1
(1 − ε)2h2

max
−

hmax−1∑

j=2

j2

h2
max

 − m + mδ(hmax − 1) (2)

Proof. We provide an outline below. For details, see [5].
We upper bound the desired conditional expectation by the conditional expectation (conditioned on X) of the relay

count in an SPT (since the SPTiRP algorithm starts by finding an SPT, and prunes relays therefrom), which in turn, is
upper bounded as follows:

1. Conditioning on the event Xε,δ defined in the earlier proof, and upper bounding the resulting conditional expec-
tation using geometric arguments, and the fact that the potential locations are uniformly distributed.

2. Observing that for a deployment in X\Xε,δ, the number of nodes in the SPT can be trivially upper bounded as
m(hmax − 1).

Combining the above upper bounds yields the desired result. �

Lemma 2.

E[ROpt|X] ≥
1 −

(
hmax − 1

(1 − ε)hmax

)2m (1 − δ)
hmax−1∑

i=1

1 −
n2

i
3

(1 − ε)2h2
max



m−1

(3)

where, ni = min(i, hmax − i).

Proof. We provide an outline below. For details, see [5].
We consider the joint event that Xε,δ has occurred, and the farthest source is beyond (hmax − 1)r from the BS.

Denote this event by Xhmax . Then, we can make the following observations:

1. For any instance ω ∈ Xhmax , the optimum relay count, ROpt(ω), is lower bounded by the number of relays in the
path from the farthest source, s(ω), to the BS in any optimal solution in ω.

2. Irrespective of which optimal solution we consider in ω, the jth intermediate node in the path from s(ω) to the
BS is located in the lens shaped intersection of the circle of radius jr centered at s(ω), and the circle of radius
(hmax − j)r centered at the BS (see Figure 5). Further, these lenses are disjoint.
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Figure 5: Illustration of the lenses L(s)
j , 1 ≤ j ≤ hmax−1, used in the proof of Lemma 2; L(s)

j contains in it, the jth lens, and hence the jth intermediate
node in a feasible path from source s(ω) to the BS. The solid triangles indicate the intermediate nodes in a feasible path from source s(ω) to the BS.

This enables us to define random variables (uniquely determined by ω), to lower bound ROpt(ω) (conditioned on
Xhmax ). We can then show, using some probabilistic and trigonometric arguments, that the conditional expectation
E[ROpt|Xhmax ] is lower bounded by the third term in the R.H.S of Lemma 2. Finally, the desired Lemma follows by
using certain conditional independence arguments to lower bound E[ROpt|X] in terms of E[ROpt|Xhmax ]. �

It follows from Lemma 1 and Lemma 2 that:

Theorem 3. The average case approximation ratio of the SPTiRP algorithm over all feasible instances in the stochas-
tic setting described earlier is upper bounded as

α ≤ N
ROpt

(4)

where, N is given by the R.H.S of (2), and ROpt is given by the R.H.S of (3).

Related numerical experiments are presented in Section 5.1.

5. SPTiRP: Numerical Results

We performed two sets of experiments to test the SPTiRP algorithm. In all these experiments, the relays and
the sources are placed randomly. The first set of experiments were performed with a large number of relays, in a
setting that conforms to the conditions mentioned in Theorem 2, and hence a feasible solution is guaranteed with high
probability. However, due to the large number of relays only a lower bound to the optimum value can be obtained. The
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second set of experiments were performed with a small number of relays, so that feasibility cannot be assured, but the
optimum value can be obtained in every feasible instance.

In Experiment Set 1, we need a large number of potential relay locations to ensure the high probability of feasibility.
For such large problem instances, an exhaustive enumeration of all possible solutions to obtain the optimum solution
is impractical. Hence, for each of these problem instances, we obtained a lower bound on the optimum relay count by
solving the LP relaxation of an ILP formulation for the RST-MR-HC problem. For details of the ILP formulation, see
[5].

In Experiment Set 2, however, the number of potential relay locations, and hence, the problem size was moderate;
so we obtained the exact optimum relay count for each instance by an exhaustive enumeration technique, starting with
the solution provided by the SPTiRP algorithm. The details are provided below.

5.1. Experiment Set 1
We generated 100 random networks as follows (in what follows, all distances are in meters, unless otherwise

mentioned): we chose r = 60, and hmax = 4 for this set of experiments. We also chose ε = δ = 0.1 (see Theorem 2).
For the chosen parameter values and for a square area of 216 × 216, the required number of potential relay locations
was found to be n(ε, δ, hmax, r) ≥ 1908. Hence, 1908 potential relay locations were selected uniformly randomly over
a 216 × 216 square area. This ensures that any point within a distance (1 − ε)hmaxr from the BS is at most hmax hops
away from the BS with a high probability (≥ (1 − δ) = 0.9). 10 source nodes were deployed uniformly randomly over
the quarter circle of radius (1 − ε)hmaxr = 216; hence we have a feasible solution with a high probability (≥ 0.9).

The SPTiRP algorithm was run on the 100 scenarios thus generated; none of the 100 scenarios tested turned out to
be infeasible. For each scenario, a lower bound on the optimum relay count was obtained by solving the LP relaxation
of the corresponding ILP formulation.

The results are summarized in Table 1.

Table 1: Test Set 1: Performance of the SPTiRP algorithm compared to a lower bound on the optimum solution
Potential Scenarios Design Off by one Max off

relay matched with from from
count lower bound (hence, was optimal) lower bound lower bound
1908 100 23 21 10

Observations

1. In 44% of the tested scenarios, the algorithm ends up giving optimal or near-optimal (exceeding the optimum
by just one relay) solutions. However, note that the comparison was only against a lower bound on the optimum
solution, which can potentially be loose depending on the problem scenario, and we suspect the actual perfor-
mance of the algorithm to be much better (indeed, as we shall see in Experiment Set 2 by comparing against the
actual optimum solution, the algorithm performed close to the optimum in most of the tested scenarios).

2. In the remaining cases, where it is off by more than one relay, the maximum difference from the lower bound
was found to be 10 relays.

3. We computed the empirical worst case approximation factor from the experiments as follows: for each scenario,
we computed the approximation factor given by the SPTiRP algorithm w.r.t the lower bound obtained from the
LP relaxation as approximation factor =

RelayAlgo

Relaylowerbound
. The maximum of these over all the tested scenarios (in the

current set of experiments) was taken to be the (empirical) worst case approximation factor.
4. We also computed the theoretical bound on the average approximation ratio for the given setting and parameter

values using Equation 4, and compared it against the empirical average case approximation ratio obtained from
the experiments as

Empirical average case approx. ratio =
Average relaycount of SPTiRP over 100 scenarios

Average lower bound from LP relaxation over 100 scenarios
(5)

The results are summarized in Table 2.

Table 2: Test Set 1: Approximation ratio for the SPTiRP algorithm
Potential Scenarios Worst case Average case

relay approximation ratio approximation ratio
count Theoretical Experimental Theoretical bound (Eqn. (4)) Experimental(Eqn. (5))
1908 100 30 5 14 1.66
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In Table 3, we have compared the execution time of the SPTiRP algorithm against the time required to compute a
lower bound on the optimum solution by solving the LP relaxation. Both the algorithms were run in MATLAB 7.11,
using a single compute node (Linux based) with 16 GB main memory, and a single processor with 4 cores, i.e., 4
CPUs. As can be seen from the table, while the SPTiRP algorithm computes a very good (often optimal) solution in at
most a few seconds, computing even the lower bound on the optimal solution (i.e., solving the LP relaxation instead
of the actual ILP) can be actually quite time consuming, running into several hours (up to about 12 hours in the worst
case).

Table 3: Test Set 1: Computation time of the SPTiRP algorithm compared to optimal solution (lower bound) computation

Potential Scenarios Mean execution time Mean Execution time Max execution time Max execution time
Relay of SPTiRP of obtaining of SPTiRP† of obtaining

a lower bound on optimal solution a lower bound on optimal solution†
Count in sec in sec in sec in sec
1908 100 6.6621 7002 18.4438 41716

† These were not attained on the same problem

5.2. Experiment Set 2
In this set of experiments we deployed a smaller number of relays randomly. Due to the small number of relays,

the probabilistic analysis of feasibility is not useful. We generated 1000 random networks as follows (in what follows,
all distances are in meters, unless otherwise mentioned): A 150 × 150 square area is partitioned into square cells of
side length 10. Consider the lattice created by the corner points of the cells. 10 source nodes are placed at random
over these lattice points. Then the potential relay locations are obtained by selecting n points uniformly randomly over
the 150 × 150 area; n was varied from 100 to 140 in steps of 10, and for each value of n, we generated 200 random
network scenarios (thus yielding 1000 test cases). We chose r = 60, and hmax = 6 for the experiments.

Given the outcome of the SPTiRP algorithm, an optimal solution can be obtained as follows: Suppose the SPTiRP
algorithm uses n relays. Then perform an exhaustive search over all possible combinations of (n − 1) and fewer relays
to check if the hop constraint can still be met.

In none of the 1000 scenarios tested, the hop constraint turned out to be infeasible. The results are summarized in
Table 4.

Table 4: Test Set 2: Efficiency of the SPTiRP algorithm in obtaining the optimal design
Potential Scenarios Optimal design Off by one Max off

relay from from
count optimal optimal
100 200 154 42 3
110 200 154 40 2
120 200 158 39 2
130 200 155 36 2
140 200 161 38 2

Total 1000 782 195 3

Observations
1. As in the case of test set 1, even for test set 2, in over 97% of the tested scenarios, the algorithm ends up giving

optimal or near-optimal (exceeding the optimum by just one relay) solutions.
2. In the remaining cases, where it is off by more than one relay, the maximum difference was found to be 3 relays.

In Table 5, we have compared the execution time of the SPTiRP algorithm against the time required to compute an
optimal solution, given the outcome of the SPTiRP algorithm. Both the SPTiRP algorithm, and the postprocessing on
its outcome were run in MATLAB 7.0.1 on a Windows Vista (basic) based PC having Intel Core 2 Duo T5800 CPU
with processor speed of 2 GHz, and 3 GB RAM. Again, while the SPTiRP algorithm computed a very good (often
optimal) solution in at most a second or two (averaging less than a second), computing the optimum solution even
after being provided with a very good upper bound on the required number of relays by SPTiRP, turned out to be quite
time consuming, running into several minutes.

Also, we note from Table 5 that, as the node density increases, the computation time of the SPTiRP algorithm also
increases.

Remark: Both the above sets of experiments were performed on geometric graphs. However, our algorithm is appli-
cable to any arbitrary input graph. Hence, to test the performance of our algorithm on non-geometric input graphs,
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Table 5: Test Set 2: Computation time of the SPTiRP algorithm compared to optimal solution computation
Potential Scenarios Mean execution time Mean execution time Max execution time Max execution time

Relay of SPTiRP of directly obtaining of SPTiRP† of directly obtaining
an optimal solution an optimal solution†

Count in sec in sec in sec in sec
100 200 0.588 661.485 1.638 1828.7
110 200 0.705 240.85 2.081 722.29
120 200 0.812 423.89 1.591 944.74
130 200 0.993 951.495 2.606 2674.9
140 200 1.144 140.7 2.808 355.46

Overall 1000 0.848 483.684 2.808 2674.9

† These were not necessarily attained on the same problems

we have conducted experiments with Erdos-Renyi random graphs, where the feasible edges in the graph are chosen
i.i.d with some probability p. The results are extremely encouraging; in all the experiments conducted, the algorithm
ended up with an optimal solution. We omit the details of the experiments here. See [5] for details.

6. SPTiRP: Simulation Results

To test the QoS under positive traffic arrival rates, of the network topologies obtained using SPTiRP algorithm,
we performed extensive simulations using Qualnet v4.5 [26]. For these simulations, we assumed the PHY and MAC
layers to be as specified in the IEEE 802.15.4 standard[27].

We generated 20 network topologies as follows: in each case, 10 source nodes, and 120 potential relay locations
were randomly selected in a 150 × 150 square meters area in exactly the same way as described in Section 5.2. As
before, the BS was assumed to be at the corner (0, 0). We chose the maximum communication range, r = 30 meters,
which, for a transmit power of 0 dBm, and a PHY layer packet size of 131 bytes, corresponds to a PER of ≤ 1%,
assuming the path loss model given in the standard [27, 28], a fade margin of 20 dB, and receiver sensitivity of −98.8
dBm. The hop constraint was chosen as hmax = 9, which, for a PER of 1%, corresponds to an end-to-end delivery
probability of 91.35% (under the lone packet model), and an end-to-end mean delay of 56.16 msec, also under the lone
packet model, assuming the CSMA/CA backoff parameters given in the standard, and a PHY layer packet size of 131
bytes (see [11] for details of how this mean end-to-end delay can be computed). Having chosen r, we had a graph on
the sources, and the potential relay locations. We used the SPTiRP algorithm on this network graph with the above
mentioned hop constraint, to obtain a tree topology connecting the sources to the BS using a small number of relays,
and satisfying the hop constraint.

Qualnet simulation was performed on each of the 20 network topologies thus generated, for six different traffic
arrival rates, namely, λ =0.1, 0.2, 0.3, 0.4, 0.5, and 2 packets/sec from each source. The arrival process was assumed
to be Poisson. The simulation procedure is described below:

1. We used the following interference model in Qualnet: any two nodes that are within Carrier Sense (CS) range
of each other can hear each other’s transmission. If two nodes are within the CS range of a receiver node, then
their transmissions interfere with each other at the receiver node. The CS range, rcs, was set equal to r for the
simulations (see above).

2. We used the collision model in Qualnet to account for packet losses due to interference. If two or more packet
transmissions interfere with one another at a receiver node, then all of those packets are lost.

3. For each topology, and each arrival rate, the simulation was repeated for 25 iterations, with each iteration being
run for 1500 seconds of simulated time..

4. For each topology, and each arrival rate, we recorded the end-to-end delivery probability (we shall use the
shorthand pdel for this from now on, with slight abuse of notation) from each source to the sink, averaged over
the 25 iterations, and the mean end-to-end packet delay from each source to the sink, also averaged over 25
iterations.
The results are summarized in Table 6. To keep the table concise, we have adopted the following strategy:
for each arrival rate and each topology, we have computed pdel averaged over the 10 sources, and reported
only the minimum average pdel for each rate, the minimum being taken over the 20 scenarios. This constitutes
column 3 of Table 6. A similar strategy has been adopted for reporting the end-to-end delay (column 6 of the
table). We have also reported the minimum pdel and the maximum delay encountered over all sources and all
the 20 scenarios for each rate (columns 2 and 5 respectively), and the maximum pdel and the minimum delay
encountered over all sources and scenarios for each rate (columns 4 and 7 respectively).

Observations:
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Table 6: Summary of Qualnet simulation results for 20 network topologies
Arrival Minimum Minimum Maximum Maximum Maximum Minimum

rate pdel average pdel pdel delay average delay delay
in pkts/sec in sec in sec in sec

0.1 0.874 0.905 0.982 0.0509 0.0401 0.0113
0.2 0.860 0.893 0.980 0.0510 0.0401 0.0113
0.3 0.846 0.879 0.981 0.0511 0.0402 0.0113
0.4 0.826 0.865 0.980 0.0513 0.0403 0.0114
0.5 0.802 0.848 0.978 0.0514 0.0404 0.0114
2.0 0.557 0.667 0.967 0.0535 0.0417 0.0117

1. From Table 6, we observe that the mean end-to-end delay never exceeded the lone-packet target end-to-end
delay of 56.16 msec.

2. For low arrival rates, the minimum pdel violated the lone-packet target pdel only by a small margin. The maxi-
mum percentage violations in pdel w.r.t the lone packet target pdel are summarized in Table 7.

Table 7: Proximity of positive traffic QoS to lone-packet target QoS
Arrival Maximum percent violation in pdel

rate w.r.t lone-packet target
in pkts/sec (over the 20 scenarios tested)

0.1 4.37
0.2 5.88
0.3 7.37
0.4 9.59
0.5 12.17
2.0 39

3. From Table 7, we note that the tested network topologies, although designed for the lone-packet model, can
handle light positive traffic arrival rate (up to 0.4 packets/sec) from each source, without exceeding the lone-
packet QoS by more than 10%.

7. Related Literature

The problem we have chosen to address belongs, broadly, to the class of Steiner Tree Problems (STP) on graphs
([29, 30]).

The classical STP is stated as: given an undirected graph G = (V, E), with a non-negative weight associated with
each edge, and a set of required vertices Q ⊆ V, find a minimum total edge cost subgraph of G that spans Q, and may
include vertices from the set S := V − Q, called the Steiner vertices.

The classical STP dates back to Gauss and it has been proven to be NP-Hard. Lin and Xue [20] proposed the
Steiner Tree Problem with Minimum Number of Steiner Points and Bounded Edge Length (STP-MSPBEL). The STP-
MSPBEL was stated as: given a set of n terminal points Q in 2-dimensional Euclidean plane, find a tree spanning Q,
and some additional Steiner points such that each edge has length no more than R, and the number of Steiner points
is minimized. This bound on edge length only constrains link quality, but not end to end QoS. The problem was
shown to be NP-complete and a polynomial time 5-approximation algorithm was presented. This problem was the
first well-studied problem on optimal relay placement (the relay locations were unconstrained). However, no average
case performance guarantee was provided for the proposed algorithm.

Cheng et al. [31] studied the same problem as Lin and Xue, and proposed a 3-approximation algorithm and a
2.5-approximation algorithm.

Lloyd and Xue [21] studied a generalization of STP-MSPBEL problem where each sensor node has range r and
each relay node has range R ≥ r. They provided a 7-approximation polynomial time algorithm. They also studied the
problem of minimum number of relay placement such that there exists a path consisting solely of relay nodes between
each pair of sensors. For this problem, they provided a (5 + ε)-approximation algorithm. The problems studied by
Lloyd and Xue, as well as Cheng et al. fall in the category of unconstrained relay placement problem. Neither work
provide any average case performance guarantee of their proposed algorithms.

Hao et al.[22], and Zhang et al.[23] extended the problem studied by Lloyd and Xue [21] to incorporate fault
tolerance by ensuring two-connectivity while deploying a minimum number of relay nodes. They provided polynomial
time approximation algorithms for the problems. In their formulations, the relay node locations are unconstrained.
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Moreover, they did not consider any hop constraint in their formulation. Also, no average case analysis was provided
for the proposed algorithms.

Voss [10] studied the Steiner Tree Problem with Hop Constraints (STPH). This problem is stated as: given a
directed connected graph G = (V, E), with non-negative weight associated with each edge, consider a subset of V,
namely, Q = {0, 1, 2, . . . ,m} with 0 being the root vertex, and a positive integer H. The problem is to find a minimum
total edge cost subgraph T of G such that there exists a path in T from 0 to each vertex in Q\{0} not exceeding H arcs
(possibly including vertices from S := V−Q). We can call this problem the Rooted Steiner Tree-Minimum Weight-Hop
Constraint problem (RST-MW-HC). This problem was shown to be NP-Hard, and a Minimal Spanning Tree based
heuristic algorithm was proposed to obtain a good quality feasible solution, followed by an improvement procedure
using a variation of Local Search method called the Tabu search heuristic. No performance guarantee or complexity
analysis of the heuristic was provided. Also, the tabu search heuristic may not be polynomial time.

Note that an instance of the RST-MR-HC problem can be converted to an instance of the RST-MW-HC problem
in polynomial time as follows: replace each relay with a directed edge of weight 1, and replace each edge associated
with the relay with two directed edges (each of weight 0), one incident into the tail of the edge substituting the relay,
and one going out of the tip of the edge substituting the relay. Then, minimizing the number of relays in the original
problem is equivalent to minimizing the total weight in the converted problem. Then, one could use Voss’s algorithm
on this instance of RST-MW-HC problem to solve the original problem. But, as we mentioned earlier, Voss’s algorithm
does not provide any performance guarantee, and because of the tabu search heuristic (which may not be polynomial
time), it may take long to converge to a solution.

Costa et al. [32] studied the Steiner Tree Problem with revenue, budget, and hop constraints. Given a graph
G = (V, E), with a cost associated with each edge, and a non-negative revenue associated with each vertex, the problem
is to determine a revenue maximizing tree subject to a total edge cost constraint, and a hop constraint between the root
vertex and every other vertex in the tree. They propose a greedy algorithm for initial solution followed by destroy-and-
repair or tabu search to improve the initial solution. They have evaluated the performance of the proposed algorithms
only through numerical experiments; no theoretical guarantee has been provided.

It is possible to cast our problem into the form of the one addressed by Costa et al. [32] as follows: assign a negative
revenue, say −1, to each relay node (Steiner vertex), and a large positive revenue, say |R| + 1, where |R| is the number
of potential relay locations, to each source vertex. This cost assignment would ensure that a revenue maximizing tree
has all the source vertices in it, since the gain in revenue by adding a source outweighs the loss in revenue due to
the additional relays, if any, required to connect the source to the BS. Also, the negative revenue on relays ensures
that the revenue maximizing tree contains in it, as few relays as possible. Now, choose the hop constraint to be the
same as that in the original RST-MR-HC problem. Also, assign a cost of zero to each edge, and choose a trivial total
edge cost constraint (any positive real number). With these assignments/choices, the problem of minimizing total
relay count while obtaining a hop constrained tree network (RST-MR-HC) is the same as the problem of obtaining
a revenue-maximizing Steiner tree subject to a hop constraint and a total edge cost constraint. This formulation,
however, requires the node weights to be negative, whereas the algorithm proposed by Costa et al. requires the non-
negativity of the node weights 5. Moreover, even if one could find a way to map the RST-MR-HC problem to the
revenue-budget-hop constrained STP, the tabu search based heuristic proposed by Costa et al. to improve the initial
solution to the revenue-budget-hop constraint problem is not guaranteed to be polynomial time in general, and may
take a long time to converge.

Kim et al. [33] studied the Delay and Delay Variation Constrained multicasting Steiner Tree problem. The problem
is similar to the one studied by Voss, with a delay constraint instead of the hop constraint, and a constraint on delay
variation between two sources. With the delay variation constraint relaxed, Kim’s problem becomes the Rooted Steiner
Tree-Minimum Weight-Delay Constraint problem. They proposed a polynomial time heuristic algorithm to obtain
feasible solutions, but they also did not provide any performance guarantee for their algorithm.

Bredin et al. [34] studied the problem of optimal relay placement (unconstrained) for k−connectivity. They pro-
posed an O(1) approximation algorithm for the problem with any fixed k ≥ 1. However, they did not provide any
average case analysis for their algorithm.

Klein and Ravi studied the constrained relay placement problem for connectivity in arbitrary input graphs (not
necessarily geometric); they called this problem, the node-weighted Steiner tree problem. Using our nomenclature,
we can also call this problem, the Rooted Steiner Tree-Minimum Relays (RST-MR) problem. They proved that the best
possible approximation factor for this problem is O(log m), and provided an algorithm that achieves this guarantee.

5The greedy algorithm that they proposed starts with the root node, and proceeds by adding a path connecting a non-selected profitable vertex to
the existing solution at each step; when the budget constraint can be trivially satisfied, this amounts to simply finding a hop constrained path from
a profitable vertex to the root. This is not enough to ensure revenue maximization if the revenues associated with some of the nodes is negative,
since the path selected from the profitable vertex to the root may contain vertices with negative revenue, thus reducing the profit along the way;
thus, additional constraints must be imposed for selection of paths from the profitable vertices to the root node to ensure minimal usage of the
negative-revenue vertices.
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However, they did not consider any hop constraint or diameter constraint in their formulation.
Misra et al. [35] studied the constrained relay placement problem for connectivity and survivability for the special

case of geometric graphs where the feasible edges are defined in terms of a maximum allowed edge length. They
provided O(1) approximation algorithms for both the problems. While the edge length bound in their formulation can
model the link quality, the formulation does not involve a path constraint such as the hop count along the path; hence,
there is no constraint on the end-to-end QoS.

Yang et al. [36] studied a variation of the problem in [35], namely the two-tiered constrained relay placement
problem for connectivity and survivability, where each source has to be covered by one (two) relay nodes, and the relay
nodes form a one (two)-connected network with the BS. They provided O(ln m) approximation algorithms for arbitrary
settings, and O(1) approximation for some special cases. Their formulation also does not involve any constraint on the
end-to-end QoS.

The numerical experiments in both [35] and [36] actually evaluate the empirical average case performance of their
proposed algorithms on random test scenarios, which they compare against the theoretically derived worst case per-
formance bounds. Neither work, however, attempt a formal analysis of the average case performance of the proposed
algorithms.

Sitanayah et al. [7, 8] addressed a more general version of the RST-MR-HC problem where they considered
k−connectivity with k ≥ 1. We call this problem, the Rooted Steiner Network for k-connectivity with Minimum
Relays and Hop Constraint (RSNk-MR-HC) problem. They proposed local search based heuristics for the problem.
However, they did not provide any analysis of the complexity of the problem, or the performance guarantee (time
complexity, worst case and average case approximation guarantees) of their algorithms. Moreover, in their numerical
experiments, they only compared their algorithm against a suitably modified version of another existing heuristic, and
no comparison against the optimal solution has been provided. Note that we have also developed algorithms for the
RSNk-MR-HC problem, and analyzed the performance of our proposed algorithms. Owing to lack of space, we do
not include that work here. See [5] for details.

Recently, Nigam and Agarwal [9] have proposed a branch-and-cut algorithm to solve the RST-MR-HC problem
optimally. However, unlike the SPTiRP algorithm, their algorithm can be used only for a subclass of problems where
none of the source nodes have a singleton node cut, i.e., deletion of a single node does not cause the hop constraint to
be infeasible for any source. To emphasize this fact, we refer to their problem as the RST-MR-HC-Subclass problem.
Moreover, their algorithm is exponential time in general, and hence cannot be used for large sized problem instances
such as the ones described in Section 5.1. Even for problem instances of moderate size comparable to our test instances
in Section 5.2, the running time of their algorithm was of the order of minutes in the worst case 6(see Table 3 in [9])
whereas the SPTiRP algorithm has running time of the order of one or two seconds while still being near-optimal in
97% of the tested scenarios.

Another class of problems arising in the context of telecommunication networks is the bounded diameter minimum
spanning tree (BDMST) problem. Given a graph G = (V, E), with edge cost c(e) ≥ 0 associated with each edge
e ∈ E, this problem asks for a tree spanning the vertex set V , with diameter not exceeding a given integer, D, and
having the minimum total edge cost. Note that this is not a relay placement problem, since there are no Steiner
vertices to be chosen. All the vertices in the input graph G must be part of the final solution. Gruber and Raidl [37]
studied the Euclidean version of the problem, and proposed a meta-heuristic for the problem. They did not provide
any performance guarantee for their algorithm. Also, the resulting solutions were compared only against existing
heuristics; no comparison with optimal solutions were provided. Moreover, recall from Proposition 2 that the BDMST
problem is a special case of the diameter bounded node-weighted Steiner tree problem. Thus, clearly, we cannot hope
to solve the general problem by only using an algorithm for the special case.

Table 8: A comparison with closely related literature; the “starred” problem is the one we address in this paper (we have also addressed the problem
of k-connectivity where k > 1. See [5] for details); an entry ‘×’ in a column means that the corresponding algorithm does not provide the attribute
given in the top of that column, whereas a ‘X’ means that it does provide the attribute.

End-to-end Time complexity Worst case approximation Average case approximation
Problem performance Complexity guarantee of guarantee of guarantee of

objective proposed proposed proposed
algorithm algorithm algorithm

RST-MR [35] × NP-Hard polynomial time 6.2 ×
RST-MW-HC [10] X NP-Hard × × ×
RST-MW-DC [33] X NP-Hard polynomial time × ×
RSNk-MR-HC [7, 8] X NP-Hard × × ×
RST-MR-HC-Subclass [9] X NP-Hard Exponential time 1 1
RST-MR-HC∗ X NP-Hard polynomial time polynomial factor polynomial factor

In Table 8, we present a brief comparison of the problem under study in this paper with some of the closely related

6Despite using more advanced processor, and computational software than ours, although with somewhat less RAM space.
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problems studied in the literature.

8. Conclusion

In this paper, we have studied the problem of determining an optimal relay node placement strategy such that
certain performance objective(s) (in this case, hop constraint, which, under a lone-packet model, ensures data delivery
to the BS within a certain maximum delay) is (are) met. We found that the problem is NP-Hard, and proposed
polynomial time approximation algorithm for the problem. The algorithm is simple, intuitive, and, as can be concluded
from numerical experiments presented in Section 5, gives solutions of very good quality from a practical perspective,
using extremely reasonable computation time. We have also provided worst case and average case bounds on the
performance of the algorithm. The average case analysis technique, while yielding loose bound compared to numerical
experiments, may still be of independent interest since it seems to be the first of its kind in the relay placement
literature.

One might ask why the local search algorithms presented in this paper work so well in the tested random scenarios.
The answer to this question is not immediately obvious, but, for the RST-MR-HC problem, the graphs we ran our tests
on were all geometric graphs; hence, a formal analysis of the properties of the underlying random geometric graph
might provide some useful insights into the performance of these local search algorithms. We wish to address this
issue in our future work.

Further, we are working on extending the design to traffic models more complex than the lone packet traffic model
considered here. This requires the analysis of packet delays in a mesh network with more complex traffic flows and
the nodes accessing the medium using CSMA/CA as defined in IEEE 802.15.4 (see [38] and [15] for efforts in this
direction).
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