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Abstract—We are motivated by the need, in some applications,
for impromptu or as-you-go deployment of wireless sensor
networks. A person walks along a line, starting from a sink
node (e.g., a base-station), and proceeds towards a source node
(e.g., a sensor) which is at an a priori unknown location. At
equally spaced locations, he makes link quality measurements
to the previous relay, and deploys relays at some of these
locations, with the aim to connect the source to the sink by a
multihop wireless path. In this paper, we consider two approaches
for impromptu deployment: (i) the deployment agent can only
move forward (which we call a pure as-you-go approach), and
(ii) the deployment agent can make measurements over several
consecutive steps before selecting a placement location among
them (the explore-forward approach). We consider a very light
traffic regime, and formulate the problem as a Markov decision
process, where the trade-off is among the power used by the
nodes, the outage probabilities in the links, and the number of
relays placed per unit distance. We obtain the structures of the
optimal policies for the pure as-you-go approach as well as for
the explore-forward approach. We also consider natural heuristic
algorithms, for comparison. Numerical examples show that the
explore-forward approach significantly outperforms the pure as-
you-go approach in terms of network cost. Next, we propose
two learning algorithms for the explore-forward approach, based
on Stochastic Approximation, which asymptotically converge to
the set of optimal policies, without using any knowledge of the
radio propagation model. We demonstrate numerically that the
learning algorithms can converge (as deployment progresses)
to the set of optimal policies reasonably fast and, hence, can
be practical model-free algorithms for deployment over large
regions. Finally, we demonstrate the end-to-end traffic carrying
capability of such networks via field deployment.

I. INTRODUCTION

A wireless sensor network (WSN) typically comprises sen-
sor nodes (sources of measurements), a base station (or sink),
and wireless relays for multihop communication between the
sources and the sink. There are situations in which a WSN
needs to be deployed (i.e., the relays and the sensors need
to be placed) in an impromptu or as-you-go fashion. One
such situation is in emergencies, e.g., situational awareness
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Fig. 1. A wireless relay network, placed along a line, connecting a
source to a sink. The dots (filled and unfilled) denote potential locations for
node placement, and are successively δ meters apart. The deployed network
comprises two relays (filled dots) placed at two of the potential locations; the
solid arrows show the path from the source to the sink. The dotted arrows
show some more possible links between pairs of potential locations.

networks deployed by first-responders such as fire-fighters or
anti-terrorist squads. As-you-go deployment is also of interest
when deploying multihop wireless networks for sensor-sink
interconnection over large terrains, such as forest trails (see [2]
for an application of multi-hop WSNs in wildlife monitoring,
and [3, Section 5] for application of WSN in forest fire
detection), where it may be difficult to make exhaustive mea-
surements at all possible deployment locations before placing
the relay nodes. As-you-go deployment would be particularly
useful when the network is temporary and needs to be quickly
redeployed at a different place (e.g., to monitor a moving
phenomenon such as groups of wildlife).1

Our work is motivated by the need for as-you-go deploy-
ment of a WSN over large terrains, such as forest trails, where
planned deployment (requiring exhaustive measurements over
the deployment region) would be time consuming and difficult.
Abstracting the above-mentioned problems, we consider the
problem of deployment of relay nodes along a line, between a
sink node (e.g., the WSN base-station) and a source node (e.g.,
a sensor) (see Figure 1), where a single deployment agent (the
person who is carrying out the deployment) starts from the
sink node, places relay nodes along the line, and places the
source node where required. In applications, the location at
which sensor placement is required might only be discovered
as the deployment agent walks (e.g., in an animal monitoring
application, by finding a concentration of pugmarks, or a
watering hole).

In the perspective of an optimal planned deployment, we
would need to place relay nodes at all potential locations
(for example, with reference to Figure 1, this would mean
placing relays at all the four dots in between the source and
the sink) and measure the qualities of all possible links in
order to decide where to place the relays. This approach would
provide the global optimal solution, but the time and effort

1In remote places, cellular network coverage may not be available or
practicable. Hence, a multi-hop WSN is required for monitoring purposes.



2

required might not be acceptable in the applications mentioned
earlier. With impromptu deployment, the next relay placement
locations depend on the radio link qualities to the previously
placed nodes; these link qualities and also the source location
are discovered as the agent walks along the line. Such an
approach requires fewer measurements compared to planned
deployment, but, in general, is suboptimal.

In this paper, we mathematically formulate the problems
of impromptu deployment along a line as optimal sequential
decision problems. The cost of a deployment is evaluated as
a linear combination of three components: the sum transmit
power along the path, the sum outage probability along the
path, and the number of relays deployed; we provide a mo-
tivation for this cost structure. We formulate relay placement
problems to minimize the expected average cost per-step. Our
channel model accounts for path-loss, shadowing, and fading.

We explore deployment with two approaches: (i) the pure
as-you-go approach and (ii) the explore-forward approach. In
the pure as-you-go approach, the deployment agent can only
move forward; this approach is a necessity if the deployment
needs to be quick. Due to shadowing, the path-loss over
a link of a given length is random, and a more efficient
deployment can be expected if link quality measurements at
several locations along the line are compared and an optimal
choice is made among these; we call this approach explore-
forward. Explore-forward would require the deployment agent
to retrace his steps; but this might provide a good compromise
between deployment speed and deployment efficiency.

We formulate each of these problems as a Markov decision
process (MDP), obtain the optimal policy structures, illustrate
their performance numerically and compare with reasonable
heuristics. Next, we propose several learning algorithms and
prove that each of them asymptotically converges to the
optimal policy if we seek to minimize the long run average cost
per unit distance. We also demonstrate the convergence rate of
the learning algorithms via numerical exploration. Finally, we
demonstrate the end-to-end traffic carrying capability of such
networks via field deployment.

A. Related Work
Until recently, problems of impromptu deployment of wire-

less networks have been addressed primarily by heuristics and
by experimentation. Howard et al., in [4], provide heuristic
algorithms for incremental deployment of sensors in order to
cover the deployment area; their problem is related to that of
self-deployment of autonomous robot teams. Souryal et al.,
in [5], address the problem of impromptu wireless network
deployment by experimental study of indoor RF link quality
variation; a similar approach is taken in [6] also. The authors
of [7] describe a breadcrumbs system for aiding firefighting
inside buildings. Their work addresses the same class of
problems as ours, with the requirement that the deployment
agent has to stay connected to k previously placed nodes in
the deployment process. Their work considers the trade-off
between link qualities and the deployment rate, but does not
provide any optimality guarantee of their deployment schemes.
Their next work [8] provides a reliable multiuser breadcrumbs
system. Bao and Lee, in [9], study the scenario where a group

of first-responders, starting from a command centre, enter a
large area where there is no communication infrastructure, and
as they walk they place relays at suitable locations in order
to stay connected among themselves and with the command
centre. However, these approaches are based on heuristic
algorithms, rather than on rigorous formulations; hence they
do not provide any provable performance guarantee.

In our work we have formulated impromptu deployment
as a sequential decision problem, and have derived optimal
deployment policies. Recently, Sinha et al. ([10]) have pro-
vided an algorithm based on an MDP formulation in order to
establish a multi-hop network between a sink and an unknown
source location, by placing relay nodes along a random lattice
path. Their model uses a deterministic mapping between
power and wireless link length, and, hence, does not consider
statistical variability (due to shadowing) of the transmit power
required to maintain the link quality over links having the
same length. The statistical variation of link qualities over
space requires measurement-based deployment, in which the
deployment agent makes placement decisions at a point based
on the measurement of the power required to establish a link
(with a given quality) to the previously placed node.

We view the current paper as a continuation of our pa-
pers [11] (which provides the first theoretical formulation of
measurement-based impromptu deployment) and [12] (which
provides field deployment results using our algorithms).

B. Organization
The system model and notation have been described in

Section II. Impromptu deployment with a pure as-you-go
approach has been discussed in Section III. Section IV presents
our work on the explore-forward approach. A numerical com-
parison between these two approaches are made in Section V.
Section VI and Section VII describe the learning algorithms
for the explore-forward approach approach. Numerical results
are provided in Section VIII on the rate of convergence of
the learning algorithms. Experimental results demonstrating
the traffic carrying capability of the deployed networks are
provided in Section IX, followed by the conclusion.

II. SYSTEM MODEL AND NOTATION

The line is discretized into steps of length δ (Figure 1),
starting from the sink. Each point, located at a distance of
an integer multiple of δ from the sink, is considered to be a
potential location where a relay can be placed. As the single
deployment agent walks along the line, at each step or at some
subset of steps, he measures the link quality from the current
location to the previous node; these measurements are used to
decide the location and transmit power of the next relay.

As shown in Figure 1, the sink is called Node 0, the
relay closest to the sink is called Node 1, and the relays are
enumerated as nodes {1, 2, 3, · · · } as we walk away from the
sink. The link whose transmitter is Node i and receiver is
Node j is called link (i, j). A generic link is denoted by e.
The length of each link is an integer multiple of δ.

A. Channel Model and Outage Probability
We consider the usual aspects of path-loss, shadowing, and

fading to model the wireless channel. The received power of
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Fig. 2. Illustration of pure as-you-go deployment with A = 1 and B = 3. In
this “snap-shot” of the deployment process, the deployment agent has already
placed Relay 1 and Relay 2 at distances U1 and U2, has set their transmit
powers to Γ1 and Γ2, thereby achieving outage probabilities Q(1,0)

out and
Q

(2,1)
out (links shown by solid arrows). Having placed Relay 2, he skips the

next location (since A = 1); based on measurements made at the next location
(dashed arrow), the algorithm advises him to not place a relay and move on.
The diagram shows the agent in the process of evaluating the next location at
r = 3δ distance from Relay 2 (dotted arrow). Based on these measurements,
the deployment agent will decide whether to place a relay at r = 3δ; if a
relay is not placed here, it must be placed at the next location, since B = 3.

a packet (say the k-th packet, k ≥ 1) in a particular link (i.e.,
a transmitter-receiver pair) of length r is given by:

Prcv,k = PT c(
r

r0
)−ηHkW (1)

where PT is the transmit power, c is the path-loss at the
reference distance r0, η is the path-loss exponent, Hk denotes
the fading random variable seen by the k-th packet (e.g., it is
an exponentially distributed random variable for the Rayleigh
fading model), and W denotes the shadowing random variable.
Hk captures the variation of the received power over time, and
it takes independent values over different coherence times.

The path-loss between a transmitter and a receiver at a
given distance can have a large spatial variability around
the mean path-loss (averaged over fading), as the transmitter
is moved over different points at the same distance from
the receiver; this is called shadowing. Shadowing is usually
modeled as a log-normally distributed, random, multiplicative
path-loss factor; in dB, shadowing is distributed with values
of standard deviation as large as 8 to 10 dB. Also, shadowing
is spatially uncorrelated over distances that depend on the
sizes of the objects in the propagation environment (see
[13]); our measurements in a forest-like region of our Indian
Institute of Science (IISc) campus established log-normality of
the shadowing and gave a shadowing decorrelation distance
of 6 meters (see [12]). In this paper, we assume that the
shadowing at any two different links in the network are
independent, i.e., W(e1) is independent of W(e2) for e1 6= e2.
This is a reasonable assumption if δ is chosen to be at least the
decorrelation distance (see [13]) of the shadowing. Thus, from
our experiments in the forest-like region in the IISc campus,
we can safely assume independent shadowing at different
potential locations if δ is greater than 6 m. In this paper, W
is assumed to take values from a set W . We will denote by
pW (w) the probability mass function or probability density
function of W , depending on whether W is a countable set or
an uncountable set (e.g., log-normal shadowing).

A link is considered to be in outage if the received signal
power (RSSI) drops (due to fading) below Prcv−min (e.g.,
below −88 dBm, a figure that we have obtained via exper-
imentation for the popular TelosB “motes,” see [14]). Since
practical radios can only be set to transmit at a finite set
of power levels, the transmit power of each node can be
chosen from a discrete set, S := {P1, P2, · · · , PM}, where

Fig. 3. Illustration of explore-forward deployment with A = 1 and B =
2. In this “snap-shot” of the deployment process, the deployment agent has
already placed Relay 1 and Relay 2 at distances U1 and U2, has set their
transmit powers to Γ1 and Γ2, thereby achieving outage Q(1,0)

out and Q(2,1)
out

(links shown by solid arrows). Having placed Relay 2, he skips the next
location (since A = 1). The agent then evaluates the next two locations
(dotted arrows) (B = 2). Then, based on the measurements at these two
locations, the algorithm determines which of them to place the relay at and
which power level to use.

P1 ≤ P2 ≤ · · · ≤ PM . For a link of length r, a transmit
power γ and any particular realization of shadowing W = w,
the outage probability is denoted by Qout(r, γ, w), which is
increasing in r and decreasing in γ, w (according to (1)).
Qout(r, γ, w) depends on the fading statistics. For a link

with shadowing realization w, if the transmit power is γ, the
received power of a packet will be Prcv = γc( rr0 )−ηwH .
Outage is the event Prcv ≤ Prcv−min. If H is exponentially
distributed with mean 1 (i.e., for Rayleigh fading), then we
have, Qout(r, γ, w) = P(γc( rr0 )−ηwH ≤ Prcv−min) = 1 −

e−
Prcv−min( r

r0
)η

γcw . The outage probability of a randomly chosen
link of given length and given transmit power is a random
variable, where the randomness comes from shadowing W .
Outage probability can be measured by sending a sufficiently
large number of packets over a link and calculating the
percentage of packets whose RSSI is below Prcv−min.
B. Deployment Process and Related Notation

In this paper, we consider two approaches for deployment.
Pure as-you-go deployment: After placing a relay, the agent

skips the next A steps, and sequentially measures the outage
probabilities from locations (A+ 1), (A+ 2), · · · , (A+B) to
the previously placed node, at all transmit power levels γ ∈ S.
As the agent explores the locations (A+ 1), · · · , (A+B− 1)
and makes link quality measurements.2 At each step he decides
whether to place a relay there, and if the decision is to place
a relay, then he also decides the transmit power for the placed
relay. This has been depicted in Figure 2. In this process, if
he has walked (A + B) steps away from the previous relay,
or if he encounters the source location, then he must place a
node. A and B will be fixed before deployment begins. �

Explore-forward deployment: After placing a node, the
deployment agent skips the next A locations (A ≥ 0) and
measures the outage probabilities to the previous node from
locations (A + 1), · · · , (A + B), at each power level from
the set S. Then, based on these B|S| measurements3 of
the outage probability values, he places the relay at location
u∗ ∈ {A+ 1, · · · , A+B}, sets its transmit power to γ∗ ∈ S,
and repeats the same process for placing the next relay. This
procedure is illustrated in Figure 3. If the source location is

2At a distance r from the previous node, he measures the outage proba-
bilities {Qout(r, γ, w)}γ∈S from the current location to the previous node,
where w is the realization of the shadowing in the link being evaluated.

3Let us denote by wu the realization of shadowing in the potential link
between the u-th location (starting from the previously placed node) and
the previous node (see Figure 3). The agent measures the outage probabilities
{Qout(u, γ, wu)}A+1≤u≤A+B,γ∈S in order to make a placement decision.
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encountered within (A + B) steps from the previous node,
then the source is placed. �

Choice of A and B: If the propagation environment is very
good, or if we need to place a limited number of relays over
a long line, it is very unlikely that a relay will be placed
within the first few locations from the previous node. In such
cases, we can skip measurements at locations 1, 2, · · · , A and
make measurements from locations (A+ 1), · · · , (A+B). In
general, the choice of A and B will depend on the constraints
and requirements for the deployment. Larger A will result in
faster exploration, but very large A will result in very high
outage in each link. For a fixed A, a large B results in more
measurements, but we can expect a better performance.

C. Traffic Model
In order to develop the problem formulation, we assume that

the traffic is so low that there is only one packet in the network
at a time; we call this the “lone packet model.” Hence, there
are no simultaneous transmissions to cause interference. This
permits us to easily write down the communication cost on a
path over the deployed relays. However, this assumption does
not trivialize the deployment problem, since the deployment
must still take into account the stochastic shadowing and
fading in the links, and the effects of these factors on the
number of nodes deployed and the powers they use.

The lone packet traffic model is realistic for sensor networks
that carry low duty cycle measurements, or just carry an
occasional alarm packet. For example, recently there has been
an effort to design passive infra-red (PIR) sensor platforms that
can detect intrusion of a human or animal, and also can classify
whether the intruder is a human or an animal ([15]). The data
rate generated by such a platform deployed in a forest will
be very low. The authors in [2, Section 3.2] use only a 1.1%
duty cycle for a multi-hop wireless sensor network used for the
purpose of wildlife monitoring. The sensors gather data from
RFID collars on the animals; hence, the traffic to be supported
by the network is light. Lone packet model is also realistic for
condition monitoring/industrial telemetry applications ([16])
as well, where the time between successive measurements is
very large. Infrequent data model is common in machine-to-
machine communication ([17]). Table 1 and Table 3 of [18]
illustrate sensors whose sampling rate and the size of the
sampled data packets are small; it shows data rate requirement
as small as several bytes per second for habitat monitoring.

Even though the network is designed for the lone packet
traffic, it will be able to carry some amount of positive traffic.
See Section IX for experimental evidence of this claim; a five-
hop line network deployed using one algorithm proposed in
this paper, over a 500 m long line in a forest-like environment,
was able to carry 127 byte packets at a rate of 4 packets per
second, with end-to-end packet loss probability less than 1%,
which is sufficient for the applications mentioned above.

Lone packet model is also valid when interference-free
communication is achieved via multi-channel access. Recently
there have been efforts to use multiple channels available in
802.15.4 radio in a network; see [19], [20], [21], [22]. In a line
topology, this reduces to frequency reuse after certain hops,
which, in turn, mitigates interference in the network. Thus, as

with the lone packet assumption, the availability of multiple
channels, and appropriate channel allocation over the network,
eliminates the need to optimize over link schedules.

It has been proved that design with the lone packet model
can be the starting point for a design with desired positive
traffic (see [23]). Network design for carrying a given positive
traffic rate is left as a future research work.

D. Network Cost Structure
In this section we develop the cost that we use to evaluate

the performance of a given deployment policy. Given the
current location of the deployment agent with respect to
the previous relay, and given the measurements made to the
previous relay, a policy will provide the placement decision
(in the case of pure as-you-go deployment, whether or not to
place the relay, and if place then at what power, and in the case
of explore-forward deployment, where among the B locations
to place the relay and at which power).

Let us denote the number of placed relays up to x steps
(i.e., xδ meters) from the sink by Nx (≤ x); define N0 =
0. Since deployment decisions are based on measurements to
already placed relays, and since the path-loss over a link is a
random variable (due to shadowing), we see that {Nx}x≥1 is a
random process. In this paper we have assumed that each node
forwards each packet to the immediately previously placed
relay (e.g., with reference to Figure 1, the source forwards
all packets to Relay 2, which, in turn, forwards all packets to
Relay 1, etc.). See [11] for the considerably more complex
possibility of relay skipping while forwarding packets.

When the node i is placed, the deployment policy also
prescribes the transmit power that this node should use, say,
Γi; then the outage probability over the link (i, i − 1), so
created, is denoted by Q(i,i−1)

out (see Figure 2 and Figure 3). We
evaluate the cost of the deployed network, up to xδ distance,
as a linear combination of three cost measures:

(i) The number of relays placed, i.e., Nx.
(ii) The sum outage, i.e.,

∑Nx
i=1Q

(i,i−1)
out . The motivation for

this measure is that, for small values of Qout, the sum-
outage is approximately the probability that a packet sent
from the point x to the source encounters an outage along
the path from the point x back to the sink.

(iii) The sum power over the hops, i.e.,
∑Nx
i=1 Γi.

These three costs are combined into one cost measure
by combining them linearly and taking expectation (under a
policy π), as follows:

Eπ(

Nx∑
i=1

Γi + ξout

Nx∑
i=1

Q
(i,i−1)
out + ξrelayNx) (2)

The multipliers ξout ≥ 0 and ξrelay ≥ 0 can be viewed as
capturing the emphasis we wish to place on the corresponding
measure of cost. For example, a large value of ξout will aim
for a network deployment with smaller end-to-end expected
outage. We can view ξrelay as the cost of placing a relay.

A Motivation for the Sum Power Objective: In case all the
nodes have wake-on radios, the nodes normally stay in sleep
mode, and each sleeping node draws a very small current
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from the battery (see [24]). When a node has a packet, it
sends a wake-up tone to the intended receiver. The receiver
wakes up and the sender transmits the packet. The receiver
sends an ACK packet in reply. Clearly, the energy spent
in transmission and reception of data packets governs the
lifetime of a node, given that the ACK size is negligible.
We assume that a fixed modulation scheme is used, so that
the transmission bit rate over all links is the same (e.g., in
IEEE 802.15.4 radios, that are commonly used for sensor
networking, the standard modulation scheme provides a bit
rate of 250 Kbps). We also assume a fixed packet length.
Let tp be the transmission duration of a packet over a link,
and suppose that the node i (1 ≤ i ≤ Nx) uses power Γi
during transmission. Let Pr denote the packet reception power
expended in the electronics at any receiving node. If the packet
generation rate ζ at the source is very small, the lifetime of the
k-th node (1 ≤ k ≤ Nx) is Tk := E

ζ(Γk+Pr)tp
seconds (E is

the total energy in a fresh battery). Hence, the rate at which we
have to replace the batteries in the network from the sink up
to distance x steps is given by

∑Nx
k=1

1
Tk

=
∑Nx
k=1

ζ(Γk+Pr)tp
E .

The term ζPrtp
E can be absorbed into ξrelay . Hence, the battery

depletion rate is proportional to
∑Nx
k=1 Γk.

E. Deployment Objective
We assume that the distance L to the source from the sink is

a priori unknown, and its distribution is also unknown. Hence,
we assume that L = ∞ (deployment along a line of infinite
length) and develop deployment policies that seek to minimize
the average cost per step. This setting can be useful in practice
when L is large (e.g., a long forest trail). Also, if we seek
to create networks along multiple trails in a forest, and if
deployment is done serially along multiple trails, then this
is effectively equivalent to deployment along a single long
line, provided that the trails have statistically identical radio
propagation environment. Note that, in case we deploy serially
along multiple lines but use this formulation, it means that we
seek to optimize the per-step cost averaged over multiple lines.

1) Unconstrained Problem: Motivated by the cost structure
and the L =∞ model, we seek to solve the following:

inf
π∈Π

lim sup
x→∞

Eπ
∑Nx
i=1(Γi + ξoutQ

(i,i−1)
out + ξrelay)

x
(3)

where π is a placement policy, and Π is the set of all possible
placement policies (to be formalized later). We formulate (3)
as a long-term average cost Markov decision process (MDP).

2) Connection to a Constrained Problem: Note that, (3)
is the relaxed version of the following constrained problem
where we seek to minimize the mean power per step subject
to a constraint on the mean outage per step and a constraint
on the mean number of relays per step:

inf
π∈Π

lim sup
x→∞

Eπ
∑Nx
i=1 Γi

x

s.t. lim sup
x→∞

Eπ
∑Nx
i=1 Q

(i,i−1)
out

x
≤ q and lim sup

x→∞

EπNx
x
≤ N

(4)

The following standard result tells us how to choose the

Lagrange multipliers ξout and ξrelay (see [25], Theorem 4.3):
Theorem 1: Consider the constrained problem (4). If there

exists a pair ξ∗out ≥ 0, ξ∗relay ≥ 0 and a policy π∗ such that π∗

is the optimal policy of the unconstrained problem (3) under
(ξ∗out, ξ

∗
relay) and the constraints in (4) are met with equality

under π∗, then π∗ is an optimal policy for (4) also. �

III. PURE AS-YOU-GO DEPLOYMENT
A. Markov Decision Process (MDP) Formulation

Here we seek to solve problem (3), for the pure as-you-go
approach. When the agent is r steps away from the previous
node (A+ 1 ≤ r ≤ A+B), he measures the outage probabil-
ities {Qout(r, γ, w)}γ∈S on the link from the current location
to the previous node, where w is the realization of the shadow-
ing random variable in the link being evaluated. He uses the
knowledge of r and the outage probabilities to decide whether
to place a node at his current location, and what transmit power
γ ∈ S to use if he places a relay. In this case, we formulate the
impromptu deployment problem as a Markov Decision Process
(MDP) with state space {A + 1, · · · , A + B} × W . At state
(r, w), (A + 1) ≤ r ≤ (A + B − 1), w ∈ W , the action is
either to place a relay and select a transmit power, or not to
place. When r = A + B, the only feasible action is to place
and select a transmit power γ ∈ S . If, at state (r, w), a relay
is placed and it is set to use transmit power γ, a hop-cost of
γ + ξoutQout(r, γ, w) + ξrelay is incurred. 4

A deterministic Markov policy π is a sequence of mappings
{µk}k≥1 from the state space to the action space, and it is
called a stationary policy if µk = µ for all k. Given the
state (i.e., the measurements), the placement decision is made
according to the policy.

B. Formulation for L ∼ Geometric(θ)
Under the pure as-you-go approach, we will first minimize

the expected total cost for L ∼ Geometric(θ), and then take
θ → 0; this approach provides the policy structure for the
average cost problem (see [26], Chapter 4).

In the L ∼ Geometric(θ) case, the deployment process
regenerates (probabilistically) after placing a relay, because
of the memoryless property of the geometric distribution, and
because of the fact that deployment of a new node will involve
measurement of qualities of new links not measured before,
and the new links have i.i.d. shadowing independent of the
previously measured links. The (special) state of the system at
such regeneration points is denoted by 0 (apart from the states
of the form (r, w)). When the source is placed at the end of
the line, the process terminates. Suppose N is the (random)
number of relays placed, and node N + 1 is the source node
(as shown in Figure 1). We first seek to solve the following:

min
π∈Π

Eπ
(N+1∑

i=1

Γi + ξout

N+1∑
i=1

Q
(i,i−1)
out + ξrelayN

)
(5)

We will first investigate this approach assuming finite W .

4We have taken (r, w) as a typical state for simplicity of representation;
so long as the channel model given by (1) is valid, we can also take
(r, {Qout(r, γ, w)}γ∈S) as a typical state. This happens because the cost of
an action depends on the state (r, w) only via the outage probabilities.
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C. Bellman Equation
Let us denote the optimal expected cost-to-go at state (r, w)

and at state 0 be J(r, w) and J(0) respectively. Note that here
we have an infinite horizon total cost MDP with a finite state
space and finite action space. The assumption P of Chapter 3
in [26] is satisfied, since the single-stage costs are nonnegative.
Hence, by the theory developed in [26], we can focus on the
class of stationary deterministic Markov policies.

By Proposition 3.1.1 of [26], the optimal value function
J(·) satisfies the Bellman equation which is given by, for all
(A+ 1) ≤ r ≤ (A+B − 1),

J(r, w) = min

{
min
γ∈S

(γ + ξoutQout(r, γ, w)) + ξrelay + J(0),

θEW min
γ∈S

(γ + ξoutQout(r + 1, γ,W ))

+(1− θ)EW J(r + 1,W )

}
,

J(A+B,w) = min
γ∈S

(γ + ξoutQout(A+B, γ, w) + ξrelay) + J(0)

J(0) =

A+1∑
k=1

(1− θ)k−1θEW min
γ∈S

(γ + ξoutQout(k, γ,W ))

+(1− θ)A+1EW J(A+ 1,W ) (6)

These equations are understood as follows. If the current
state is (r, w), (A + 1) ≤ r ≤ (A + B − 1) and the line
has not ended yet, we can either place a relay and set its
transmit power to γ ∈ S , or we may not place. If we place,
the cost minγ∈S(γ+ξoutQout(r, γ, w)+ξrelay) is incurred at
the current step, and the cost-to-go from there is J(0). If we
do not place a relay, the line will end with probability θ in the
next step, in which case a cost EW minγ∈S(γ+ ξoutQout(r+
1, γ,W )) will be incurred. If the line does not end in the next
step, the next state will be a random state (r + 1,W ) and a
mean cost of EWJ(r+ 1,W ) will be incurred. At state (A+
B,w) the only possible decision is to place a relay. At state
0, the deployment agent starts walking until he encounters the
source location or location (A + 1); if the line ends at step
k, 1 ≤ k ≤ A + 1 (with probability (1 − θ)k−1θ), a cost of
EW minγ∈S(γ + ξoutQout(k, γ,W )) is incurred. If the line
does not end within (A+ 1) steps (this event has probability
(1− θ)A+1), the next state will be (A+ 1,W ).

D. Value Iteration

The value iteration for (5) is obtained by replacing J(·) in
(6) by J (k+1)(·) on the L.H.S (left hand side) and by J (k)(·)
on the R.H.S (right hand side), and by taking J (0)(·) = 0 for
all states. The standard MDP theory says that J (k)(·) ↑ J(·)
for all states as k →∞.

E. Policy Structure: OptAsYouGo Algorithm

Lemma 1: J(r, w) is increasing in r, ξout and ξrelay, de-
creasing in w, and jointly concave in ξout and ξrelay . J(0) is
increasing and jointly concave in ξout and ξrelay.

Proof: See Appendix A.
Next, we propose an optimal algorithm OptAsYouGo (Opti-

mal algorithm with pure As-You-Go approach).
Algorithm 1: (OptAsYouGo Algorithm) At state (r, w)

(where A + 1 ≤ r ≤ A + B − 1), place a relay if and

only if minγ∈S(γ + ξoutQout(r, γ, w)) ≤ cth(r), where
cth(r) := θEW minγ∈S(γ + ξoutQout(r + 1, γ,W )) + (1 −
θ)EWJ(r+ 1,W )− (ξrelay + J(0)) is a threshold increasing
in r. If the decision is to place a relay, the optimal power
to be selected is given by argminγ∈S(γ+ ξoutQout(r, γ, w)).
At state (A + B,w), select transmit power argminγ∈S(γ +
ξoutQout(A+B, γ,w)). �

Theorem 2: Under the pure as-you-go approach, Algo-
rithm 1 provides the optimal policy for Problem (3).

Proof: See Appendix A.
Remark: The trade-off in the impromptu deployment prob-

lem is that if we place relays far apart, the cost due to outage
increases, but the cost of placing the relays decreases. The
intuition behind the threshold structure of the policy is that if
at distance r we get a good link with the combination of power
and outage less than a threshold, then we should accept that
link because moving forward is unlikely to yield a better link.
cth(r) is increasing in r. Since Qout(r, γ, w) is increasing in
r for any γ,w, and since shadowing is i.i.d across links, the
probability of a link (to the previous node) having desired QoS
decreases as we move away from the previous node. Hence,
the optimal policy will try to place relays as soon as possible
if r is large, and this explains why cth(r) is increasing in r.
Note that the threshold cth(r) does not depend on w, due to
the fact that shadowing is i.i.d. across links.

F. Computation of the Optimal Policy
Let us write V (r) := EWJ (r,W ) =∑
w∈W pW (w)J (r, w), and V (0) := J(0). Also,

for each stage k ≥ 0 of the value iteration, define
V (k)(r) := EWJ (k) (r,W ) and V (k)(0) := J (k)(0).
Multiplying both sides of the value iteration by pW (w) and
summing over w ∈ W , we obtain an iteration in terms of
V (k)(·) and this iteration does not involve J (k)(·). Since
J (k)(r, w) ↑ J(r, w) for each r, w and J (k)(0) ↑ J(0) as
k ↑ ∞, we can argue that V (k)(r) ↑ EWJ(r,W ) = V (r)
for all r (by Monotone Convergence Theorem) and
V (k)(0) ↑ J(0) = V (0). Then we can compute cth(r)
by knowing V (·) itself (see the expression of cth(r) in
Algorithm 1); we need not keep track of the cost-to-go values
J (k)(r, w) for each state (r, w), at each stage k. Here we
simply need to keep track of V (k)(·). Similar iterations were
proposed in [11] (Section III-A-5).

G. Average Cost Problem: Optimality of OptAsYouGo
Note that the problem (5) can be considered as an infinite

horizon discounted cost problem with discount factor (1− θ).
Hence, keeping in mind that we have finite state and action
spaces, we observe that for the discount factor sufficiently
close to 1, i.e., for θ sufficiently close to 0, the optimal
policy for problem in (5) is optimal for the problem in (3)
(see [26, Proposition 4.1.7]). In particular, the optimal average
cost per step with pure as-you-go approach, λ∗, is given by
λ∗ = limθ→0 θJθ(0) (see [26, Section 4.1.1]), where Jθ(0) is
the optimal cost for problem (5) under pure as-you-go with
the probability of the line ending in the next step is θ.

In case W is a Borel subset of R, we still have a finite
action space, and bounded, nonnegative cost per step. By [27,
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Theorem 5.5.4], one can show that the optimal average cost
per step is again λ∗ = limθ→0 θJθ(0). As θ ↓ 0, we will
obtain a sequence of optimal policies (i.e., mappings from the
state space to the action space), and a limit point of them will
be an average cost optimal policy.

H. HeuAsYouGo: A Suboptimal Pure As-You-Go Heuristic
Algorithm 2: (HeuAsYouGo) The power used by the relays

is set to a fixed value. At each potential location, the deploy-
ment agent checks whether the outage to the previous relay
meets a certain predetermined target with this fixed transmit
power level. After placing a relay, the next relay is placed at
the last location where the target outage is met; or place at
the (A + 1)-st location (after the previously placed relay) in
the unlikely situation where the target outage is violated in the
(A+ 1)-st location itself. If the agent reaches the (A+B)-th
step and if all previous locations violate the outage target, he
must place the next relay at step (A+B). �

HeuAsYouGo is a modified version of the heuristic deploy-
ment algorithm proposed in [5]. HeuAsYouGo is not exactly a
pure as-you-go algorithm since it sometimes requires the agent
to move one step back in case the outage target is violated.

IV. EXPLORE FORWARD DEPLOYMENT

A. Semi-Markov Decision Process (SMDP) Formulation
Let us recall explore-forward deployment from Sec-

tion II-B; we denote by wu the realization of shadowing
in the potential link between the u-th location (starting
from the previously placed node) and the previous node
(see Figure 3). The agent measures the outage probabili-
ties {Qout(u, γ, wu)}A+1≤u≤A+B,γ∈S from locations (A +
1), · · · , (A + B) at all available transmit power levels from
the set S, in order to make a placement decision.

Here we seek to solve the unconstrained problem (3).
We formulate our problem as a Semi-Markov Decision
Process (SMDP) with state space WB and action space
{A + 1, A + 2, · · · , A + B} × S. The vector w :=
(wA+1, wA+2, · · · , wA+B), i.e., the shadowing from B lo-
cations, is the state in our SMDP. In the state w, an action
(u, γ) ∈ {A+1, A+2, · · · , A+B}×S is taken where u is the
distance of the next relay (from the previous relay) that would
be placed and γ is the transmit power that this relay will use.
In this case, a hop-cost of γ + ξoutQout(u, γ, wu) + ξrelay
is incurred. After placing a relay, the next state becomes
w
′

:= (w
′

A+1, w
′

A+2, · · · , w
′

A+B) with probability g(w
′
) :=∏A+B

r=A+1 pWr
(w
′

r) (since shadowing is i.i.d. across links).
Let us denote, by the vector W (k), the (random) state at

the k-th decision instant, and by µk(W (k)) the action at the
k-th decision instant. For a deterministic Markov policy π :=

{µk}k≥1, let us define the functions µ(1)
k : WB → {A +

1, A + 2, · · · , A + B} and µ
(2)
k : WB → S as follows: if

µk(w) = (u, γ), then µ(1)
k (w) = u and µ(2)

k (w) = γ.

B. Policy Structure: Algorithm OptExploreLim
Note that, W (k) is i.i.d across k, k ≥ 1. The state space is

a Borel space and the action space is finite. The hop cost and
hop length (in number of steps) are uniformly bounded across
all state-action pairs. Hence, we can work with stationary

deterministic policies (see [28] for finite state space, i.e., finite
W , and [29] for a general Borel state space, i.e., when W is
a Borel set). Under our current scenario, the optimal average
cost per step, λ∗, exists (in fact, the limit exists) and is same
for all states w ∈ WB . For simplicity, we work with finite W ,
but the policy structure holds for Borel state space also.

We next present a deployment algorithm called “OptEx-
ploreLim,” an optimal algorithm for limited exploration.

Algorithm 3: (OptExploreLim Algorithm:) In the state w
which is captured by the measurements {Qout(u, γ, wu)} for
A+ 1 ≤ u ≤ A+B, γ ∈ S, place the new relay according to
the stationary policy µ∗ as follows:

µ∗(w) = argmin
u,γ

(
γ + ξoutQout(u, γ, wu) + ξrelay − λ∗u

)
(7)

where λ∗ (or λ∗(ξout, ξrelay)) is the optimal average cost
per step for the Lagrange multipliers (ξout, ξrelay). �

Theorem 3: The policy µ∗ given by Algorithm 3 is optimal
for the problem (3) under the explore-forward approach.

Proof: The optimality equation for the SMDP is given by
(see [28], Equation 7.2.2):

v∗(w) = min
u,γ

{
γ + ξoutQout(u, γ, wu) + ξrelay

−λ∗u+
∑

w′∈WB

g(w
′
)v∗(w

′
)

}
(8)

v∗(w) is the optimal differential cost corresponding to state
w. The structure of the optimal policy is obvious from (8),
since

∑
w′∈WB g(w

′
)v∗(w

′
) does not depend on (u, γ).

Later we will also use the notation π∗ or π∗(ξout, ξrelay) to
denote the OptExploreLim policy under the pair (ξout, ξrelay),
since here π∗ = {µ∗, µ∗, µ∗, · · · }.

Remark 1: The same optimal policy structure will hold for
a Borel state space, by the theory presented in [29].

Remark 2: The optimal decision depends on state w only
via the outage probabilities which can be easily measured.

Remark 3: For an action (u, γ), a cost (γ +
ξoutQout(u, γ, wu) + ξrelay) will be incurred. On the
other hand, λ∗u is the reference cost over u steps. The policy
minimizes the difference between these two for each link.

Remark 4: The policy requires the deployment agent to
know λ∗, and computation of λ∗ will require perfect knowl-
edge of propagation environment (e.g., the path-loss exponent
η in (1), the distribution of shadowing, etc.); see Section IV-C.

Theorem 4: λ∗(ξout, ξrelay) is jointly concave, increasing
and continuous in ξout and ξrelay.

Proof: See Appendix B.
Let us consider a sub-class of stationary deployment policies

(parameterized by λ ≥ 0, ξout ≥ 0 and ξrelay ≥ 0) given by:

µ(w) = argmin
u,γ

(
γ + ξoutQout(u, γ, wu) + ξrelay − λu

)
(9)

where λ is not necessarily equal to λ∗(ξout, ξrelay).
Under the class of policies given by (9), let

(Uk,Γk, Q
(k,k−1)
out ), k ≥ 1, denote the sequence of inter-

node distances, transmit powers and link outage probabilities
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that the optimal policy yields during the deployment process.
By the assumption of i.i.d. shadowing across links, it follows
that (Uk,Γk, Q

(k,k−1)
out ), k ≥ 1, is an i.i.d. sequence.

Let Γ(λ, ξout, ξrelay), Qout(λ, ξout, ξrelay) and
U(λ, ξout, ξrelay) denote the mean power per link, mean
outage per link and mean placement distance (in steps)
respectively, under the policy given by (9), where λ is not
necessarily equal to λ∗(ξout, ξrelay). Also, let Γ

∗
(ξout, ξrelay),

Q
∗
out(ξout, ξrelay) and U

∗
(ξout, ξrelay) denote the optimal

mean power per link, the optimal mean outage per link and the
optimal mean placement distance (in steps) respectively, under
the OptExploreLim algorithm (i.e., policy π∗(ξout, ξrelay)
when λ in (9) is replaced by λ∗(ξout, ξrelay)). By the
Renewal-Reward theorem, the optimal mean power per
step, the optimal mean outage per step, and the optimal
mean number of relays per step are given by Γ

∗
(ξout,ξrelay)

U
∗
(ξout,ξrelay)

,
Q
∗
out(ξout,ξrelay)

U
∗
(ξout,ξrelay)

and 1
U
∗
(ξout,ξrelay)

.
Theorem 5: For a given ξout, the mean number of relays

per step under the OptExploreLim algorithm (Algorithm 3),
1

U
∗
(ξout,ξrelay)

, decreases with ξrelay . Similarly, for a given

ξrelay, the mean outage probability per step, Q
∗
out(ξout,ξrelay)

U
∗
(ξout,ξrelay)

,
decreases with ξout under the optimal policy.

Proof: See Appendix B.
Remark: The proof of Theorem 5 is quite general; the results

hold for the pure as-you-go approach also.
Theorem 6: For Problem (3), under the optimal policy

(with explore-forward approach) characterized by λ∗ (i.e.,
under the OptExploreLim algorithm), we have EW minu,γ(γ+
ξoutQout(u, γ,Wu) + ξrelay − λ∗u) = 0.

Proof: See Appendix B.
C. Policy Computation

We adapt a policy iteration (from [28]) based algorithm to
calculate λ∗. The algorithm generates a sequence of stationary
policies {µk}k≥1 (note that the notation µk was used for a
different purpose in Section IV-A; here each µk is a stationary,
deterministic, Markov policy), such that for any k ≥ 1, µk(·) :
WB → {A+1, · · · , A+B}×S maps a state into some action.
Define the sequence {µ(1)

k , µ
(2)
k }k≥1 of functions as follows:

if µk(w) = (u, γ), then µ(1)
k (w) = u and µ(2)

k (w) = γ.
Algorithm 4: The policy iteration algorithm is as follows:
Step 0 (Initialization): Start with an initial policy µ0.
Step 1 (Policy Evaluation): Calculate the average cost λk

corresponding to the policy µk, for k ≥ 0. λk is equal to the
following quantity (by the Renewal Reward Theorem):

ξrelay +
∑
w g(w)

(
µ

(2)
k (w) + ξoutQout(µ

(1)
k (w), µ

(2)
k (w), w

µ
(1)
k

(w)
)

)
∑
w g(w)µ

(1)
k (w)

Step 2 (Policy Improvement): Find a new policy µk+1 by
solving the following:

µk+1(w) = argmin
(u,γ)

(
γ +Qout(u, γ, wu) + ξrelay − λku

)
(10)

If µk and µk+1 are same (i.e., if λ(k−1) = λk), then stop
and declare µ∗ = µk, λ∗ = λk. Otherwise, go to Step 1. �

Remark: By the theory in [28], this policy iteration will
converge (to λ∗) in a finite number of iterations, for finite
state and action spaces. For a general Borel state space (e.g.,
for log-normal shadowing), only asymptotic convergence to
λ∗ can be guaranteed.

Computational Complexity: The finite state space has cardi-
nality |W|B . Then, O(|W|B) addition operations are required
to compute λk from the policy evaluation step. However,
careful manipulation leads to a drastic reduction in this com-
putational requirement, as shown by the following theorem.

Theorem 7: In the policy evaluation step in Algorithm 4,
we can reduce the number of computations in each iteration
from |W|B to O(B2M2|W|2).

Proof: See Appendix B.

D. HeuExploreLim: An Intuitive but Suboptimal Heuristic
A natural heuristic for (3) under the explore-forward ap-

proach is the following HeuExploreLim Algorithm (Heuristic
Algorithm for Limited Explore-Forward):

Algorithm 5: (HeuExploreLim Algorithm) Under the
explore-forward setting as discussed in Section IV, at state
w, make the decision according to the following rule:

(u∗, γ∗) = argmin
u,γ

γ + ξoutQout(u, γ, wu) + ξrelay
u

�

Under any stationary deterministic policy µ, let us denote
the cost of a link by Cµ (a random variable) and the length
of a link by Uµ (under any stationary deterministic policy µ,
the deployment process regenerates at the placement points).

Lemma 2: HeuExploreLim solves infµ Eµ(
Cµ
Uµ

).
Proof: See Appendix B.

Remark: This heuristic is not optimal. Our optimal policy
given in Theorem (3) solves infµ

Eµ(Cµ)
Eµ(Uµ) . However, HeuEx-

ploreLim solves infµ Eµ(
Cµ
Uµ

), which is, in general, different

from infµ
Eµ(Cµ)
Eµ(Uµ) . Note that Eµ(

Cµ
Uµ

) =
Eµ(Cµ)
Eµ(Uµ) if and only if

the variance of Uµ is zero. But this does not happen due to
the variability in shadowing over space.

V. COMPARISON BETWEEN EXPLORE-FORWARD AND
PURE AS-YOU-GO APPROACHES

Let us denote the optimal average cost per step (for a given
ξout and ξrelay) under the explore-forward and pure as-you-go
approaches by λ∗ef and λ∗ayg.

Theorem 8: λ∗ef ≤ λ∗ayg .
Proof: See Appendix C.

Next, we numerically compare various deployment algo-
rithms, in order to select the best algorithm for deployment.

A. Parameter Values Used in the Numerical Comparisons
We consider deployment for a given ξout and a given ξrelay,

for the objective in (3). We provide numerical results for
deployment with iWiSe motes ([30]) (based on the Texas
Instrument (TI) CC2520 which implements the IEEE 802.15.4
PHY in the 2.4 GHz ISM band, yielding a bit rate of 250 Kbps,
with a CSMA/CA medium access control (MAC)) equipped
with 9 dBi antennas. The set of transmit power levels S
is taken to be {−18,−7,−4, 0, 5} dBm, which is a subset
of the transmit power levels available in the chosen device.
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For the channel model as in (1), our measurements in a
forest-like environment inside the Indian Institute of Science
Campus gave path-loss exponent η = 4.7 and c = 100.17

(i.e., 1.7 dB); see [12]. Shadowing W was found to be log-
normal; W = 10

Y
10 with Y ∼ N (0, σ2), where σ = 7.7 dB.

Shadowing decorrelation distance was found to be 6 meters.
Fading is assumed to be Rayleigh; H ∼ Exponential(1).

We define outage to be the event when the received signal
power of a packet falls below Prcv−min = 10−9.7 mW
(i.e., −97 dBm); for a commercial implementation of the
PHY/MAC of IEEE 802.15.4, −97 dBm received power
corresponds to a 2% packet loss probability for 127 byte
packets for iWiSe motes, as per our measurements.

We consider deployment along a line with step size δ =
20 meters, A = 0, B = 5. Given A = 0, we chose B is
the following way. Define a link to be good if its outage
probability is less than 3%, and choose B to be the largest
integer such that the probability of finding a good link of
length Bδ is more than 20%, when the highest transmit power
is used (this will ensure that the agent does not measure
very long links having poor outage probabilities). For the
parameters η = 4.7, c = 100.17, σ = 7.7 dB, and 5 dBm
transmit power, B turned out to be 5. If B is increased further,
the probability of getting a good link will be very small. �

B. Numerical Comparison Among Deployment Policies
Assuming these parameter values, we computed (by MAT-

LAB) the mean power per step (in mW), mean outage per
step, mean placement distance (in steps), mean cost per step
and mean number of measurements made per step, for the four
deployment algorithms presented so far. The results are shown
in Table I. In order to make a fair comparison, we used the
mean power per node for OptAsYouGo as the fixed node trans-
mit power for HeuAsYouGo, and the mean outage per link of
OptAsYouGo as the target outage for HeuAsYouGo. The mean
number of measurements per step is defined as the ratio of the
mean number of links evaluated for deployment of one node
and the mean placement distance (in steps). The numerator
of this ratio is B = 5 for explore-forward algorithms (since
A = 0). OptAsYouGo makes one measurement per step, but
HeuAsYouGo makes more than one measurements per step
since the agent often evaluates a bad link, takes one step back
and places the relay. 5

We notice that the average per-step cost (COST in Table I)
of OptExploreLim (OEL) is the least. OEL uses the least mean
power per step (POW column), places nodes the widest apart
(DIST column), and the mean outage per step (OUT column) is
second to lowest. On the other hand, OEL requires about twice
as many measurements per step as compared to OptAsYouGo.6

Hence, we can conclude that the algorithms based on the
explore-forward approach significantly outperform the algo-
rithms based on the pure-as-you-go approach, at the cost of
slightly more measurements per step. Hence, for applications

5For planned deployment, we will have to evaluate all possible potential
links; from each potential location, we need to measure link quality to B = 5
preceding potential locations, which is not feasible.

6A more detailed comparison among the algorithms can be found in
Appendix C, along with elaborate discussion.

Algorithm POW (mW) OUT DIST (steps) COST MEAS
OEL 0.1955 0.001969 2.2859 0.8312 2.1873
HEL 0.2432 0.002507 2.673 0.8684 1.8706

OAYG 0.2904 0.003607 1.5 1.265 1
HAYG 0.3318 0.001752 1.313 1.267 1.6969

TABLE I
NUMERICAL COMPARISON AMONG VARIOUS ALGORITHMS FOR

ξout = 100 AND ξrelay = 1. ABBREVIATIONS: OEL-OPTEXPLORELIM,
HEL-HEUEXPLORELIM, OAYG-OPTASYOUGO, HAYG-HEUASYOUGO.
POW-MEAN POWER (IN MW UNIT) PER STEP, OUT- MEAN OUTAGE PER

STEP, DIST-MEAN PLACEMENT DISTANCE, COST-MEAN COST PER STEP,
MEAS-MEAN NUMBER OF MEASUREMENTS PER STEP.

that do not require very rapid deployment, such as deployment
along a long forest trail for wildlife monitoring, explore-
forward is a better approach to take. Thus, for the learning
algorithms presented later, we will consider only the explore-
forward approach. However, under the requirement of fast
deployment (e.g., emergency deployment by first responders),
pure as-you-go or deployment without measurements (as in
[10]) might be more suitable.

VI. OPTEXPLORELIMLEARNING: LEARNING WITH
EXPLORE-FORWARD, FOR GIVEN ξout AND ξrelay

Based on the discussion in Section V, we proceed, in the
rest of this paper, with developing learning algorithms based
on the policy OptExploreLim (to solve problem (3)). We
observe that the optimal policy (given by Algorithm 3) can
be completely specified by the optimal average cost per step
λ∗, for given values of ξout and ξrelay. But the computation
of λ∗ requires policy iteration. Policy iteration requires the
channel model parameters η and σ, and it is computationally
intensive. In practice, these parameters of the channel model
might not be available. Under this situation, the agent measures
{Qout(u, γ, wu) : A + 1 ≤ u ≤ A + B, γ ∈ S} before
deploying each relay, but he has to learn the optimal average
cost per step in the process of deployment, and, use the
corresponding updated policy each time he places a new relay.
In order to address this requirement, we propose an algorithm
which will maintain a running estimate of λ∗, and update it
each time a relay is placed. The algorithm is motivated by the
theory of Stochastic Approximation (see [31]), and it uses, as
input, the measurements made for each placement, in order
to improve the estimate of λ∗. We prove that, as the number
of deployed relays goes to infinity, the running estimate of
average network cost per step converges to λ∗ almost surely.

After the deployment is over, let us denote the length,
transmit power and outage values of the link between node k
and node (k − 1) by uk, γk and Q

(k,k−1)
out . After placing the

(k − 1)-st node, we will place node k, and consequently uk,
γk and Q(k,k−1)

out will be decided by the following algorithm.
Algorithm 6: (OptExploreLimLearning) Let λ(k) be the es-

timate of the optimal average cost per step after placing the
k-th relay (sink is node 0), and let λ(0) be the initial estimate.
In the process of placing relay (k+1), if the measured outage
probabilities are {Qout(u, γ, wu) : A + 1 ≤ u ≤ A + B, γ ∈
S}, then place relay (k + 1) using the following policy:

(uk+1, γk+1) = argmin
u,γ

(
γ + ξoutQout(u, γ, wu) + ξrelay − λ(k)u

)
After placing relay (k+ 1), update λ(k) as follows (using the
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measurements made in the process of placing relay (k + 1)):

λ(k+1)

= λ(k) + ak+1 min
u,γ

(
γ + ξoutQout(u, γ, wu) + ξrelay − λ(k)u

)
= λ(k) + ak+1

(
γk+1 + ξoutQ

(k+1,k)
out + ξrelay − λ(k)uk+1

)
(11)

{ak}k≥1 is a decreasing sequence such that ak > 0 ∀ k ≥ 1,∑
k ak =∞ and

∑
k a

2
k <∞. One example is ak = 1

k . �
Theorem 9: If we employ Algorithm 6 in the deployment

process, we will have λ(k) → λ∗ almost surely.
Proof: By Theorem 6, under OptExploreLim, we have

EW minu,γ(γ+ ξoutQout(u, γ,Wu) + ξrelay − λ∗u) = 0; this
leads to the stochastic approximation update in Algorithm 6.
The detailed proof can be found in Appendix D.

While Algorithm 6 utilizes the general stochastic approxi-
mation update, Algorithm 7 ensures that the iterate λ(k) is the
actual average network cost per step up to the k-th relay.

Algorithm 7: Start with any λ(0) > 0. Let, for k ≥ 1, λ(k)

be the average cost per step for the portion of the network
already deployed between the sink and the k-th relay, i.e.,

λ(k) =

∑k
i=1(γi + ξoutQ

(i,i−1)
out + ξrelay)∑k

i=1 ui

Place the (k+1)-st relay according to the following policy:

(uk+1, γk+1) = argmin
u,γ

(
γ + ξoutQout(u, γ, wu) + ξrelay − λ(k)u

)
�

Corollary 1: Under Algorithm 7 in the deployment process,
we will have λ(k) → λ∗ almost surely.

Proof: See Appendix D.
VII. OPTEXPLORELIMADAPTIVELEARNING WITH

CONSTRAINTS ON OUTAGE PROBABILITY AND RELAY
PLACEMENT RATE

In Section VI, we provided a stochastic approximation
algorithm for relay deployment, with given multipliers ξout
and ξrelay, without knowledge of the propagation parameters.
Let us recall that Theorem 1 tells us how to choose the
Lagrange multipliers ξout and ξrelay (if they exist) in (3) in
order to solve the problem given in (4). However, we need
to know the radio propagation parameters (e.g., η and σ) in
order to compute an optimal pair (ξ∗out, ξ

∗
relay) (if it exists)

so that both constraints in (4) are met with equality. In real
deployment scenarios, these propagation parameters might not
be known. Hence, in this section, we provide a sequential
placement and learning algorithm such that, as the relays
are placed, the placement policy iteratively converges to the
set of optimal policies for the constrained problem displayed
in (4). The policy is of the OptExploreLim type, and the
cost of the deployed network converges to the optimal cost.
We modify the OptExploreLimLearning algorithm so that a
running estimate (λ(k), ξ

(k)
out, ξ

(k)
relay) gets updated each time a

new relay is placed. The objective is to make sure that the
running estimate (λ(k), ξ

(k)
out, ξ

(k)
relay) eventually converges to

the set of optimal (λ∗(ξout, ξrelay), ξout, ξrelay) tuples as the
deployment progresses. Our approach is via two time-scale
stochastic approximation (see [31, Chapter 6]).

A. OptExploreLim: Effect of Multipliers ξout and ξrelay
Consider the constrained problem in (4) and its relaxed

version in (3). We will seek a policy for the problem in
(4) in the class of OptExploreLim policies (see (7)). Clearly,
there exists at least one tuple (q,N) for which there exists
a pair ξ∗out > 0, ξ∗relay > 0 such that, under the optimal
policy π∗(ξ∗out, ξ

∗
relay), both constraints are met with equality.

In order to see this, choose any ξout > 0, ξrelay > 0 and
consider the corresponding optimal policy π∗(ξout, ξrelay)
(provided by OptExploreLim). Suppose that the mean outage
per step and mean number of relays per step, under the policy
π∗(ξout, ξrelay), are q0 and n0, respectively. Now, if we set
the constraints q = q0 and N = n0 in (4), we obtain one
instance of such a tuple (q,N).

On the other hand, there exist (q,N) pairs which are not fea-
sible. One example is the case N = 1

A+B (i.e., inter-node dis-
tance is always (A+B)), along with q < EWQout(A+B,PM ,W )

A+B ,
where PM is the maximum available transmit power level
at each node. In this case, the outage constraint cannot be
satisfied while meeting the constraint on the mean number of
relays per step, since even use of the highest transmit power
PM at each node will not satisfy the per-step outage constraint.

Definition 1: Let us denote the optimal mean power per
step for problem (4) by γ∗, for a given (q,N). The set K(q,N)
is defined as follows:

K(q,N) :=

{
(λ∗(ξout, ξrelay), ξout, ξrelay) :

Γ
∗
(ξout, ξrelay)

U
∗
(ξout, ξrelay)

= γ∗,
Q
∗
out(ξout, ξrelay)

U
∗
(ξout, ξrelay)

≤ q

1

U
∗
(ξout, ξrelay)

≤ N, ξout ≥ 0, ξrelay ≥ 0

}
where the optimal average cost per step of the unconstrained

problem (3) under OptExploreLim is λ∗(ξout, ξrelay). �
K(q,N) can possibly be empty (in case (q,N) is not a

feasible pair). Hence, we make the following assumption which
ensures the non-emptiness of K(q,N).

Assumption 1: The constraint parameters q and N in (4)
are such that there exists at least one pair ξ∗out ≥ 0, ξ∗relay ≥ 0

for which (λ∗(ξ∗out, ξ
∗
relay), ξ∗out, ξ

∗
relay) ∈ K(q,N). �

Remark: Assumption 1 implies that the constraints are
consistent (in terms of achievability). If ξ∗out > 0, ξ∗relay > 0, it
would imply that both of the constraints are active. If ξ∗out = 0,
it would imply that we can keep the mean outage per step
strictly less than q by using the minimum available power at
each node, while meeting the constraint on the relay placement
rate. The optimal policy in Algorithm 3, under ξout = 0, will
place relays with inter-relay distance (A+ B) steps, and use
the minimum available power level at each node. ξ∗out = ∞
implies that the outage constraint cannot be met even with the
highest power level at each node, under the relay placement
rate constraint. Similar arguments apply to ξ∗relay. �

We now establish some structural properties of K(q,N).
Theorem 10: If K(q,N) is non-empty, then:

• Suppose that there exists ξ∗out > 0, ξ∗relay > 0
such that the policy π∗(ξ∗out, ξ

∗
relay) satisfies both
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constraints in (4) with equality. Then, there does
not exist ξ′out ≥ 0, ξ′relay ≥ 0 satisfying (i)
(λ∗(ξ′out, ξ

′
relay), ξ′out, ξ

′
relay) ∈ K(q,N), and (ii)

Q
∗
out(ξ

′
out,ξ

′
relay)

U
∗
(ξ′out,ξ

′
relay)

< q or 1
U
∗
(ξ′out,ξ

′
relay)

< N .

• If there exists a ξ′relay ≥ 0 such that
(λ∗(0, ξ′relay), 0, ξ′relay) ∈ K(q,N), then, ∀ξrelay ≥ 0,
we have (λ∗(0, ξrelay), 0, ξrelay) ∈ K(q,N). �

Proof: See Appendix E, Section A.
Assumption 2: The shadowing random variable W has a

continuous probability density function (p.d.f.) over (0,∞);
for any w ∈ (0,∞), P(W = w) = 0. One example could be
log-normal shadowing. �

Theorem 11: Suppose that Assumption 2 holds. Under
the OptExploreLim algorithm, the optimal mean power per
step Γ

∗
(ξout,ξrelay)

U
∗
(ξout,ξrelay)

, the optimal mean number of relays per

step 1
U
∗
(ξout,ξrelay)

and the optimal mean outage per step
Q
∗
out(ξout,ξrelay)

U
∗
(ξout,ξrelay)

, are continuous in ξout and ξrelay .
Proof: See Appendix E, Section B.

Remark: Note that, by Theorem 11, we need not do any
randomization (see [32] for reference) among deterministic
policies in order to meet the constraints with equality.

B. OptExploreLimAdaptiveLearning Algorithm
Algorithm 8: This algorithm iteratively updates

λ(k), ξ
(k)
out, ξ

(k)
relay after each relay is placed. Let

(λ(k), ξ
(k)
out, ξ

(k)
relay) be the iterates after placing the k-th

relay (the sink is called node 0), and let (λ(0), ξ
(0)
out, ξ

(0)
relay)

be the initial estimates. In the process of deploying the k-th
relay, if the shadowing (which is measured indirectly only
via Qout(u, γ, wu) for A + 1 ≤ u ≤ A + B and γ ∈ S) is
w = {wA+1, · · · , wA+B}, then place the k-th relay according
to the following policy:

(uk, γk) = argmin
u,γ

(
γ + ξ

(k−1)
out Qout(u, γ, wu) + ξ

(k−1)
relay − λ

(k−1)u

)
(12)

After placing the k-th relay, let us denote the transmit power,
distance (in steps) and outage probability from relay k to relay
(k−1) by γk, uk and Qout(uk, γk, wuk). After placing the k-
th relay, make the following updates (using the measurements
made in the process of placing the k-th relay):

λ(k) = λ(k−1) + ak min
u,γ

(
γ + ξ

(k−1)
out Qout(u, γ, wu)

+ξ
(k−1)
relay − λ

(k−1)u

)
ξ
(k)
out = Λ[0,A2]

(
ξ
(k−1)
out + bk(Qout(uk, γk, wuk )− quk)

)
ξ
(k)
relay = Λ[0,A3]

(
ξ
(k−1)
relay + bk(1−Nuk)

)
(13)

where Λ[0,A2](x) denotes the projection of x on the interval
[0, A2]. A2 and A3 need to be chosen carefully; the reason is
explained in the discussion later in this section (along with a
brief discussion on how A2 and A3 have to be chosen).
{ak}k≥1 and {bk}k≥1 are two decreasing sequences such

that ak, bk > 0,∀k ≥ 1,
∑
k ak =∞,

∑
k a

2
k <∞,

∑
k bk =

∞,
∑
k b

2
k < ∞ and limk→∞

bk
ak

= 0. In particular, we can
use ak = C1k

−n1 and bk = C2k
−n2 where C1 > 0, C2 > 0,

1
2 < n1 < n2 ≤ 1. �

Note that, for (ξout, ξrelay) ∈ [0, A2] × [0, A3], we have
0 < λ∗(ξout, ξrelay) ≤ (PM +A2 +A3). Let us define the set
K̂(q,N) := K(q,N)∩([0, (PM+A2+A3)]×[0, A2]×[0, A3])
which is a subset of K(q,N).

Theorem 12: Under Assumption 1, Assumption 2 and un-
der proper choice of A2 and A3, the iterates (λ(k), ξ

(k)
out, ξ

(k)
relay)

in Algorithm 8 converge almost surely to K̂(q,N) as k →∞.
Proof: See Appendix E, Section C.

Remark: Algorithm 8 induces a nonstationary policy. But
Theorem 12 establishes that the sequence of policies generated
by Algorithm 8 converges to the set of optimal stationary,
deterministic policies (for problem (4)).

Discussion of Theorem 12:

(i) Two timescales: The update scheme (13) can be rewritten
as a two-timescale stochastic approximation (see [31],
Chapter 6). Note that, limk→∞

bk
ak

= 0, i.e., ξout and
ξrelay are adapted in a slower timescale compared to λ
(which is adapted in the faster timescale). The dynamics
behaves as if ξout and ξrelay are updated simultaneously
in a slow outer loop, and, between two successive updates
of ξout and ξrelay, we update λ in an inner loop for a long
time. Thus, the λ update equation views ξout and ξrelay
as quasi-static, while the ξout and ξrelay update equations
view the λ update equation as almost equilibrated.

(ii) Structure of the iteration: Note that, (Qout(uk, γk, wuk)−
quk) is the excess outage compared to the allowed
outage quk for the k-th link. If this quantity is pos-
itive (resp., negative), the algorithm increases (resp.,
decreases) ξout in order to reduce (resp., increase) the
outage probability in subsequent steps. Similarly, if
uk < 1

N
, the algorithm increases ξrelay in order to

reduce the relay placement rate. The goal is to en-
sure limk→∞(Q

∗
out(ξ

(k)
out, ξ

(k)
relay) − qU

∗
(ξ

(k)
out, ξ

(k)
relay)) =

0 and limk→∞(1 − NU
∗
(ξ

(k)
out, ξ

(k)
relay)) = 0. In

the faster timescale, our aim is to ensure that
limk→∞ EW minu,γ(γ + ξ

(k)
outQout(u, γ,Wu) + ξ

(k)
relay −

λ(k)u) = 0.
(iii) Outline of the proof: The proof proceeds in five steps.

We first prove the almost sure boundedness of {λ(k)}k≥1.
Next, we prove that the difference between the sequences
λ(k) and λ∗(ξ

(k)
out, ξ

(k)
relay) converges to 0 almost surely;

this will prove the desired convergence in the faster
timescale. This result has been proved using the theory
in [31, Chapter 6] and Theorem 9.
In order to ensure boundedness of the slower timescale
iterates, we have used the projection operation in the
slower timescale. We pose the slower timescale iteration
in the same form as a projected stochastic approximation
iteration (see [33, Equation 5.3.1]).
In order to prove the desired convergence of the projected
stochastic approximation, we show that our iteration
satisfies certain conditions given in [33] (see [33, The-
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orem 5.3.1]).
Next, we argue (using Theorem 5.3.1 of [33]) that the
slower timescale iterates converge to the set of stationary
points of a suitable ordinary differential equation (o.d.e.).
But, in general, a stationary point on the boundary of
the closed set [0, A2]× [0, A3] in the (ξout, ξrelay) plane
may not correspond to a point in K(q,N). Hence, we will
need to ensure that if (ξ′out, ξ

′
relay) is a stationary point of

the o.d.e., then (λ∗(ξ′out, ξ
′
relay), ξ′out, ξ

′
relay) ∈ K(q,N).

In order to ensure this, we need to choose A2 and A3

properly. The choice of A2 and A3 is rather technical,
and is explained in detail in Appendix E, Section C5. Here
we will just provide the method of choosing A2 and A3,
without any explanation of why they should be chosen in
this way. The number A2 has to be chosen so large that
under ξout = A2 and for all A + 1 ≤ u ≤ A + B,
we will have P(argminγ∈S(γ + A2Qout(u, γ,W )) =
PM ) > 1 − κ for some small enough κ > 0. We must
also have Q

∗
out(A2,0)

U
∗
(A2,0)

≤ q. The number A3 has to be
chosen so large that for any ξout ∈ [0, A2], we will have
U
∗
(ξout, A3) > 1

N
(provided that 1

N
< A + B). The

numbers A2 and A3 have to be chosen so large that there
exists at least one (ξ′out, ξ

′
relay) ∈ [0, A2] × [0, A3] such

that (λ∗(ξ′out, ξ
′
relay), ξ′out, ξ

′
relay) ∈ K(q,N).

(iv) Asymptotic behaviour of the iterates: If the pair (q,N)
is such that one can be met with strict inequality and
the other can be met with equality while using the
optimal mean power per step for this pair (q,N), then
one Lagrange multiplier will converge to 0. This will
happen if q > EWQout(A+B,P1,W )

A+B ; we will have ξ(k)
out → 0

(obvious from OptExploreLim with ξout = 0) in this case.
Here we will place all the relays at the (A+ B)-th step
and use the smallest power level at each node. On the
other hand, if the constraints are not feasible, then either
ξ

(k)
out → A2 or ξ(k)

relay → A3 (since convergence to ∞ is
not possible due to projection) or both will happen.
K(q,N) may have multiple tuples. But simulation results
show that it has only one tuple in case it is nonempty.�

C. Asymptotic Performance of Algorithm 8
Let us denote by πoelal the (nonstationary) deployment

policy induced by Algorithm 8. We will now show that πoelal
is an optimal policy for the constrained problem (4).

Theorem 13: Suppose that Assumption 1 and Assumption 2
hold. Then, under proper choice of A2 and A3, the policy
πoelal solves the problem (4); i.e., we have:

lim sup
x→∞

Eπoelal
∑Nx
i=1 Γi

x
= γ∗

lim sup
x→∞

Eπoelal
∑Nx
i=1 Q

(i,i−1)
out

x
≤ q, lim sup

x→∞

EπoelalNx
x

≤ N

Proof: See Appendix E, Section D.

VIII. CONVERGENCE SPEED OF LEARNING ALGORITHMS:
A SIMULATION STUDY

In this section, we provide a simulation study to demonstrate
the convergence rate of Algorithm 7 and Algorithm 8. The
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=1.7667

Optimal Cost 0.8312

Fig. 4. Demonstration of the convergence of OptExploreLimLearning
(Algorithm 7) as deployment progresses. λ(0) has not been included here.

simulations are provided for η = 4.7, σ = 7.7 dB, δ = 20 m,
A = 0, B = 5, c = 100.17, Prcv−min = −97 dBm,
S = {−18,−7,−4, 0, 5} dBm (see Section II for notation
and Section V-A for parameter values).

A. OptExploreLimLearning for Given ξout and ξrelay
Let us choose ξout = 100, ξrelay = 1. We assume that

the propagation environment in which we are deploying is
characterized by the parameters as in Section V-A (e.g., η =
4.7, σ = 7.7 dB). The optimal average cost per step, under
these parameter values, is 0.8312 (computed numerically).

On the other hand, for η = 4, σ = 7 dB, ξout = 100 and
ξrelay = 1, the optimal average cost per step is 0.4577, and it
is 1.7667 for η = 5.5, σ = 9 dB. These two cases correspond
to two different imperfect estimates of η and σ available to
the agent before deployment starts.

Suppose that the actual η = 4.7, σ = 7.7 dB, but at the
time of deployment we have an initial estimate that η = 4,
σ = 7 dB; thus, we start with λ(0) = 0.4577. After placing
the k-th relay, the actual average cost per step of the relay
network connecting the k-th relay to the sink is λ(k); this
quantity is a random variable whose realization depends on the
shadowing realizations over the links measured in the process
of deployment up to the k-th relay. We ran 10000 simulations
of Algorithm 7, starting with different seeds for the shadowing
random process, and estimating E(λ(k)) as the average of the
samples of λ(k) over these 10000 simulations. We also do the
same for λ(0) = 1.7667 (optimal cost for η = 5.5, σ = 9 dB).

The estimates of E(λ(k)), k ≥ 1 as a function of k, for
the two initial values of λ(0), are shown in Figure 4. Also
shown, in Figure 4, is the optimal value λ∗ = 0.8312 for the
true propagation parameters (i.e., η = 4.7, σ = 7.7 dB). From
Figure 4, we observe that E(λ(k)) approaches the optimal cost
0.8312 for the actual propagation parameters, as the number
of deployed relays increases, and gets to within 10% of the
optimal cost by the time that 4 or 5 relays are placed, starting
with two widely different initial guesses of the propagation
parameters. Thus, OptExploreLimLearning could be useful
even when the distance can be covered by only 4 to 5 relays.

Note that, each simulation yields one sample path of the
deployment process. We obtained the estimates of E(λ(k)) as
a function of k (by averaging over 10000 sample paths); the
convergence speed will vary across sample paths even though
λ(k) → 0.8312 almost surely as k →∞.

B. OptExploreLimAdaptiveLearning
In this section, we will discuss how OptExploreLimAdap-

tiveLearning (Algorithm 8) performs for deployment over a
finite distance under an unknown propagation environment.
We assume that the true propagation parameters are given
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Fig. 5. Demonstration of the convergence of OptExploreLimAdaptiveLearning as deployment progresses. In the legends, “OEL” refers to the values that are
obtained if OptExploreLim is used; these are the target values for OptExploreLimAdaptiveLearning. Note that, we have used line styles for ξout and ξrelay
updates, that are different from the line styles of other four plots. Also note that, outage probabilities are shown in percentage and not in decimal.

in Section V-A (e.g., η = 4.7, σ = 7.7 dB). If we know
the true propagation environment, then, under the choice
ξrelay = 1 and ξout = 100, the optimal average cost per step
will be 0.8312, and this can be achieved by OptExploreLim
(Algorithm 3). The corresponding mean outage per step will
be 0.0045

2.2859 = 0.001969 (i.e., 0.1969%) and the mean number
of relays per step will be 1

2.2859 .
Now, suppose that we wish to solve the constrained problem

in (4) with the targets q = 0.001969 (i.e., 0.1969%) and
N = 1

2.2859 , but we do not know the true propagation
environment. Hence, the deployment will use OptExploreLi-
mAdaptiveLearning with some choice of ξ(0)

out, ξ
(0)
relay and λ(0).

We seek to compare among the following three scenarios:
(i) η and σ are completely known (we use OptExploreLim
with ξrelay = 1 and ξout = 100 in this case), (ii) imperfect
estimates of η and σ are available prior to deployment, and
OptExploreLimAdaptiveLearning is used to learn the optimal
policy, and (iii) imperfect estimates of η and σ are available
prior to deployment, but a corresponding suboptimal policy is
used throughout the deployment without any update. For con-
venience in writing, we introduce the abbreviations OELAL
and OEL for OptExploreLimAdaptiveLearning and OptEx-
ploreLim, respectively. We also use the abbreviation FPWU for
“Fixed Policy without Update.” Now, we formally introduce
the following cases that we consider in our simulations:

(i) OEL: Here we know η = 4.7, σ = 7.7 dB, and use
OptExploreLim (Algorithm 3) with ξout = 100, ξrelay =
1, λ∗ = 0.8312. OEL will meet both the constraints with
equality, and will minimize the mean power per step.

(ii) OELAL Case 1: OELAL Case 1 is the case where the
true η and σ (which are unknown to the deployment
agent) are specified by Section V-A, but we use OptEx-
ploreLimAdaptiveLearning with ξ(0)

out = 75, ξ(0)
relay = 1.25

and λ(0) = 0.5007, in order to meet the constraints speci-
fied earlier in this subsection. Note that, under ξout = 75
and ξrelay = 1.25, the optimal mean cost per step is
0.5007 for η = 4, σ = 7 dB. Hence, we start with a wrong
choice of Lagrange multipliers, a wrong estimate of η and
σ, and an estimate of the optimal average cost per step
which corresponds to these wrong choices. The goal is to
see how fast the variables λ(k), ξ(k)

out and ξ(k)
relay converge

to the desired target 0.8312, 100 and 1, respectively. We
also study how close to the desired target values are the

quantities such as mean power per step, mean outage per
step and mean placement distance for the relay network
between k-th relay and the sink node.

(iii) OELAL Case 2: OELAL Case 2 is different from
OELAL Case 1 only in the aspect that λ(0) = 1.7679
is used in OELAL Case 2. Note that, under ξout = 75
and ξrelay = 1.25, the optimal mean cost per step is
1.7679 for η = 5.5, σ = 9 dB.

(iv) FPWU Case 1: In this case, the true η and σ are unknown
to the deployment agent. The deployment agent uses
ξout = 75, ξrelay = 1.25 and λ∗ = 0.5007 throughout
the deployment process under the algorithm specified
by (7). Clearly, he chooses a wrong set of Lagrange
multipliers ξout = 75, ξrelay = 1.25, and he has a
wrong estimate η = 4, σ = 7 dB. The optimal average
cost per step λ∗ = 0.5007 is computed for these wrong
choice of parameters, and the corresponding suboptimal
policy is used throughout the deployment process without
any update; this will be used to demonstrate the gain in
performance by updating the policy under OptExploreLi-
mAdaptiveLearning, w.r.t. the case where the suboptimal
policy is used without any online update.

(v) FPWU Case 2: It differs from FPWU Case 1 only in the
aspect that we use λ∗ = 1.7679 in FPWU Case 2. Recall
that, under ξout = 75 and ξrelay = 1.25, the optimal
mean cost per step is 1.7679 for η = 5.5, σ = 9 dB.

For simulation of OELAL, we chose the step sizes as
follows. We chose ak = 1

k0.55 , chose bk = 10000
k0.8 for the ξout

update and bk = 1
k0.8 for the ξrelay update (note that, both ξout

and ξrelay are updated in the same timescale). We simulated
10000 independent network deployments (i.e., 10000 sample
paths of the deployment process) with OptExploreLimAdap-
tiveLearning, and estimated (by averaging over 10000 deploy-
ments) the expectations of λ(k), ξ(k)

out, ξ
(k)
relay, mean power per

step Eπoelal
∑k
i=1 Γi

Eπoelal
∑k
i=1 Ui

, mean outage per step Eπoelal
∑k
i=1Q

(i,i−1)
out

Eπoelal
∑k
i=1 Ui

and mean placement distance Eπoelal
∑k
i=1 Ui

k , from the sink
node to the k-th placed node. In each simulated network
deployment, we placed 20000 nodes, i.e., k was allowed to
go up to 20000. Asymptotically the estimates are supposed to
converge to the values provided by OEL.

Observations from the Simulations: The results of the
simulations are summarized in Figure 5. We observe that, the
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estimates of the expectations of λ(20000), ξ(20000)
out , ξ(20000)

relay ,
mean power per step up to the 20000th node, mean outage
per step up to the 20000th node, and mean placement distance
(in steps) over 20000 deployed nodes are 0.8551, 104.0606,
1.0385, 0.2005, 0.2% (i.e., 0.002) and 2.2939 for the OELAL
Case 1, whereas those quantities are supposed to be equal to
0.8312, 100, 1, 0.1955, 0.1969% (i.e., 0.001969) and 2.2859,
respectively. We found similar results for OELAL Case 2 also.
Hence, the quantities converge very close to the desired values.
We have shown convergence only up to k = 50 deployments
in most cases, since the convergence rate of the algorithms in
the initial phase are most important in practice.

All the quantities except expectation of ξ(k)
out and ξ

(k)
relay

(which are updated in a slower timescale) converge reasonably
close to the desired values by the time the 50th relay is placed,
which will cover a distance of roughly 2− 3.5 km. distance.

FPWU Case 1 and FPWU Case 2 either violate some con-
straint or uses significantly higher per-step power compared
to OEL. But, by using the OptExploreLimAdaptiveLearning
algorithm, we can achieve per-step power expenditure close to
the optimal while (possibly) violating the constraints by small
amount; even in case the performance of OELAL is not very
close to the optimal performance, it will be significantly better
than the performance under FPWU cases (compare OELAL
Case 2 and FPWU Case 2 in Figure 5). �

The speed of convergence will depend on the choice of
the step sizes ak and bk; optimizing the rate of convergence
by choosing optimal step sizes is left for future endeavours
in this direction. Also, note that, the choice of ξ(0)

out, ξ
(0)
relay

and λ(0) will have a significant effect on the performance of
the network over a finite length; the more accurate are the
estimates of η and σ, and the better are the initial choice of
ξ

(0)
out, ξ

(0)
relay and λ(0), the better will be the convergence speed

of OptExploreLimAdaptiveLearning.

IX. PHYSICAL DEPLOYMENT EXPERIMENTS
For completeness, we briefly summarize experimental re-

sults that were reported in our conference paper [12]. We
performed an actual deployment experiment along a long
tree-lined road in our campus (not exactly a straight line,
which is the reality in a forest) with iWiSe motes equipped
with 9 dBi antennas. We chose ξout = 100, ξrelay = 1,
B = 5 steps, δ = 50 meters, and S = {−7,−4, 0, 5} dBm.
We used the packet error rate (PER) of a link as a substitute
for outage probability; this does not violate the assumptions
of our formulation. For η = 4, σ = 7 dB, ξout = 100,
ξrelay = 1, the optimal average cost per step is 1.0924
(computed numerically). Taking λ(0) = 1.0924, we performed
a real deployment experiment with OptExploreLimLearning.
The deployed network (along with power levels, outage prob-
abilities and link lengths) is shown in Figure 6. The sink is
denoted by the “house” symbol. The algorithm placed relays at
successive distances of 150 m, 50 m, 50 m, 100 m, and 150 m,
thereby covering 500 m until the source was placed. The two
short (50 m long) links are created due to significant path-loss
at the turn in the road. After deployment, we used the last
placed node as the source and sent periodic traffic (at various
rates) from the source to the sink. The end-to-end packet

150 200 250 300 350
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Fig. 6. Actual deployment along a long tree-lined road in the Indian
Institute of Science Campus using OptExploreLimLearning with iWiSe motes,
ξout = 100, ξrelay = 1: five nodes (including the source) are placed; link
lengths, transmit powers, and % outage probabilities are shown; the plot shows
variation of end-to-end loss probability with inter-packet duration, for periodic
traffic generated from the source. Picture and plot are taken from [12].

loss probability increases with arrival rate (Figure 6); this
happens due to carrier sense failures and collisions because of
simultaneous transmissions from different nodes. At very low
arrival rate, the loss probability is 0 (but the sum PER under
the lone packet model is not 0). This happens since there are
link level retransmissions and since the outage durations are
relatively short; in case a packet encounters an outage in a link,
the retransmission attempts succeed with high probability. The
results demonstrate that, even though the design was for the
lone packet model, the network can carry 4 packets/second
(packet size is 127 bytes) with Ploss ≤ 1%, which is sufficient
for many applications. Hence, network design with the lone
packet model assumption is reasonable for those applications.

X. CONCLUSION

We have developed several approaches for as-you-go de-
ployment of wireless relay networks using on-line measure-
ments, under a very light traffic assumption. Each problem
was formulated as an MDP and its optimal policy structure was
studied. We also studied a few learning algorithms that will
asymptotically converge to the corresponding optimal policies.
Numerical and experimental results have been provided to
illustrate the performance and trade-offs.

This work can be extended or modified in several ways: (i)
Networks that are robust to node failures and long term link
variations would either require each relay to have multiple
neighbours (i.e., the deployment would need to be multi-
connected), or the nodes can choose their transmit powers
adaptively as the environment changes. (ii) It would be of
interest to develop deployment algorithms for 2 and 3 dimen-
sional regions, where a team of agents cooperates to carry
out the deployment. (iii) We have assumed very light traffic
conditions in our design (what we call “lone packet” traffic),
but our experiments show that these designs can carry a useful
amount of positive traffic. It will be of interest, however, to
develop deployment algorithms that can provide theoretical
guarantees to achieve desired traffic rates.
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Supplementary Material

APPENDIX A
PURE AS-YOU-GO DEPLOYMENT

Proof of Lemma 1 Note that the function J (0)(·) := 0
satisfies all the assertions. Let us assume, as our induc-
tion hypothesis, that J (k)(·) satisfies all the assertions. Now
Qout(r, γ, w) is increasing in r and decreasing in w (by our
channel modeling assumptions in Section II-A), and the single
stage costs are linear (hence concave) increasing in ξrelay ,
ξout. Then from the value iteration, J (k+1)(r, w) is pointwise
minimum of functions which are increasing in r, ξout and
ξrelay, decreasing in w, and jointly concave in ξout and
ξrelay. Hence, the assertions hold for J (k+1)(r, w). Similarly,
we can show that the assertions hold for J (k+1)(0). Since
J (k)(·) ↑ J(·), the results follow.

Proof of Theorem 2 Consider the Bellman equation (6). We
will place a relay at state (r, w) iff the cost of placing a relay,
i.e., minγ∈S(γ+ξoutQout(r, γ, w))+ξrelay+J(0) is less than
or equal to the cost of not placing, i.e., θEW minγ∈S(γ +
ξoutQout(r + 1, γ,W )) + (1 − θ)EWJ(r + 1,W ). Hence,
it is obvious that we will place a relay at state (r, w) iff
minγ∈S(γ + ξoutQout(r, γ, w)) ≤ cth(r) where the threshold
cth(r) is given by:

cth(r) = θEW min
γ∈S

(γ + ξoutQout(r + 1, γ,W ))

+(1− θ)EW J(r + 1,W )− (ξrelay + J(0)) (14)

By Proposition 3.1.3 of [26], if there exists a stationary
policy {µ, µ, · · · } such that for each state, the action chosen
by the policy is the action that achieves the minimum in
the Bellman equation, then that stationary policy will be
an optimal policy, i.e., the minimizer in Bellman equation
gives the optimal action. Hence, if the decision is to place
a relay at state (r, w), then the power has to be chosen as

argminγ∈S

(
γ + ξoutQout(r, γ, w)

)
.

Since Qout(r, γ, w) and J(r, w) is increasing in r for each
γ,w, it is easy to see that cth(r) is increasing in r.

APPENDIX B
EXPLORE FORWARD DEPLOYMENT

Proof of Theorem 4 Let us recall the definition
of the functions µ(1) and µ(2). Now, λµ :=

ξrelay+
∑
w g(w)

(
µ(2)(w)+ξoutQout(µ

(1)(w),µ(2)(w),w
µ(1)(w)

)

)
∑
w g(w)µ(1)(w)

is the average cost of a specific stationary deterministic policy
µ (by the Renewal Reward Theorem, since the placement
process regenerates at each placement point). For each policy
(µ(1), µ(2)), the numerator is linear, increasing in ξout and
ξrelay and the denominator is independent of ξout and ξrelay.
Now, λ∗(ξout, ξrelay) = infµ λµ. Hence, the proof follows
immediately since the pointwise infimum of increasing linear
functions of ξout and ξrelay is increasing and jointly concave

in ξout and ξrelay, and since any increasing, concave function
is continuous.

Proof of Theorem 5: We will prove only the second
statement of the theorem since the proof of the first statement
is similar.

Consider any κ > 0.
Now, since the mean cost per step is a linear combination

of the mean power per step, mean outage per step and the
mean number of relays per step, we can write:

λ∗(ξout, ξrelay)

=
Γ
∗
(ξout, ξrelay) + ξoutQ

∗
out(ξout, ξrelay) + ξrelay

U
∗
(ξout, ξrelay)

≤
Γ
∗
(ξout + κ, ξrelay) + ξoutQ

∗
out(ξout + κ, ξrelay) + ξrelay

U
∗
(ξout + κ, ξrelay)

(15)

and

λ∗(ξout + κ, ξrelay)

=
Γ
∗
(ξout + κ, ξrelay) + (ξout + κ)Q

∗
out(ξout + κ, ξrelay) + ξrelay

U
∗
(ξout + κ, ξrelay)

≤
Γ
∗
(ξout, ξrelay) + (ξout + κ)Q

∗
out(ξout, ξrelay) + ξrelay

U
∗
(ξout, ξrelay)

(16)

where the inequality in (15) follows from the fact that
π∗(ξout, ξrelay) is an optimal policy for (ξout, ξrelay), and the
inequality in (16) follows from the fact that π∗(ξout+κ, ξrelay)
is an optimal policy for (ξout + κ, ξrelay).

Adding the inequalities (15) and (16) and cancelling
the common terms, we obtain that Q

∗
out(ξout+κ,ξrelay)

U
∗
(ξout+κ,ξrelay)

≤
Q
∗
out(ξout,ξrelay)

U
∗
(ξout,ξrelay)

. �

Proof of Theorem 6: From (8), we can write:∑
w

g(w)v∗(w) =
∑
w

g(w)

(
min
u,γ

{
γ + ξoutQout(u, γ, wu)

+ξrelay − λ∗u
})

+
∑

w′∈WB

g(w
′
)v∗(w

′
)

Cancelling
∑
w g(w)v∗(w) from both sides, we obtain the

desired result.
Proof of Theorem 7: Note that in (10), if the minimum

is achieved by more than one pair of (u, γ), then any one of
them can be considered to be the optimal action. Let us use
the convention that among all minimizers the pair (u, γ) with
minimum u will be considered as the optimal action, and if
there are more than one such minimizing pair with same values
of u, then the pair with smallest value of γ will be considered.
We recall that S = {P1, P2, · · · , PM}. Let us denote, under
policy µk+1, the probability that the optimal control is (u, γ)
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and the shadowing is w at the u-th location, by bk(u, γ, w).
Then,

bk(u, γ, w) = Πu−1
r=A+1P

(
min
γ
′∈S

(γ
′

+ ξoutQout(r, γ
′
,Wr))− λkr

> γ + ξoutQout(u, γ, w)− λku
)
× pW (w)

×ΠA+B
r=u+1P

(
min
γ
′∈S

(γ
′

+ ξoutQout(r, γ
′
,Wr))− λkr

≥ γ + ξoutQout(u, γ, w)− λku
)

×I
{
γ = argmin{P1, P2, · · · , PM} :

γ +Qout(u, γ, w)

= min
γ
′

(γ
′

+ ξoutQout(u, γ
′
, w))

}
(17)

Now, we can write,

∑
w

g(w)

(
µ

(2)
k (w) + ξoutQout(µ

(1)
k (w), µ

(2)
k (w), w

µ
(1)
k

(w)
)

)

=

A+B∑
u=A+1

M∑
j=1

∑
w∈W

bk−1(u, Pj , w)

(
Pj + ξoutQout(u, Pj , w)

)
(18)

and

∑
w

g(w)µ
(1)
k (w) =

A+B∑
u=A+1

M∑
j=1

∑
w∈W

bk−1(u, Pj , w)u

=

A+B∑
u=A+1

u

M∑
j=1

∑
w∈W

bk−1(u, Pj , w) (19)

Now, for each (u, γ, w), bk−1(u, γ, w) (in (17)) can be
computed in O(BM |W|) operations. Hence, total number of
operations required to compute bk−1(u, γ, w) for all u, γ, w
is O(B2M2|W|2). Now, only O(BM |W|) operations are
required in (18) and (19). Hence, the number of computations
required in each iteration is O(B2M2|W|2).

Note that, the policy improvement step is not explicitly
required in the policy iteration. This is because in the policy
evaluation step, λk is sufficient to compute bk(u, γ, w) for all
u, γ, w and thereby to compute λk+1. Hence, we need not
store the policy in each iteration. �

Proof of Lemma 2: Let us denote the HeuExploreLim pol-
icy by µh and any other stationary, deterministic policy by µ.
Let us denote the sequence of link costs incurred in the deploy-
ment process (for a semi-infinite line with given shadowing
over all possible links) under policy µh by cµh,1, cµh,2, · · ·
and the corresponding link lengths by uµh,1, uµh,2, · · · . Let us
denote, under policy µh, the shadowing observed at the i-th
location (where A + 1 ≤ i ≤ A + B) in the measurement
process for the placement of the l-th node, by wi,l. Now,
let us couple the deployment processes under policies µ and
µh in the following way. Suppose that, under policy µ, the
shadowing observed at the i-th location for the placement of
the l-th node is again wi,l (this is valid since shadowing is i.i.d
across links). Clearly, cµh,j

uµh,j
≤ cµ,j

uµ,j
. Hence, by the strong law
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Fig. 7. Pure as-you-go deployment; variation of cth(r) with r for ξout =
100 and various values of ξrelay .
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of large numbers, Eµh
(
Cµh
Uµh

)
≤ Eµ

(
Cµ
Uµ

)
, since

(
Cµh,j
Uµh,j

)
is

i.i.d. across j due to i.i.d. shadowing across links.

APPENDIX C
COMPARISON BETWEEN EXPLORE-FORWARD AND PURE

AS-YOU-GO APPROACHES
Proof of Theorem 8 Note that for the average cost problem

with pure as-you-go, there exists an optimal threshold policy
(similar to Theorem 2), since the optimal policy for problem
(5) achieves λ∗ayg average cost per step for θ sufficiently close
to 0. So, let one such optimal policy be given by the set of
thresholds {cth(r)}A+1≤r≤A+B−1.

Now, let us consider the average cost minimization problem
with explore-forward. Consider the policy where we first
measure wA+1, wA+2, · · · , wA+B and decide to place a relay
u steps away from the previous relay (where A + 1 ≤ u ≤
A+B−1) if minγ∈S(γ+ξoutQout(r, γ, wr)) > cth(r) for all
r ≤ (u−1) and minγ∈S(γ+ξoutQout(u, γ, wu)) ≤ cth(u). We
must place if we reach at a distance (A+B) from the previous
relay. But this is a particular policy for the problem where
we gather wA+1, wA+2, · · · , wA+B and then decide where to
place the relay, and clearly the average cost per step for this
policy is λ∗ayg which cannot be less than the optimal average
cost λ∗ef . �

A. Optimal Policy Structure for the Pure As-You-Go Approach

The variation of cth(r) (see Section III-E and Section III-G,
we have taken θ sufficiently close to 0) with r, for various
values of the relay cost ξrelay and the cost of outage ξout,
has been shown in Figure 7 and Figure 8. For a fixed ξout,
cth(r) decreases with ξrelay; i.e., as the cost of placing a relay
increases, we place relays less frequently. On the other hand,
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Fig. 9. Results for ξout = 100: mean cost per step, mean power per link, mean outage per link and mean placement distance (steps) vs. ξrelay for the four
algorithms: OptExploreLim, OptAsYouGo, HeuExploreLim, and HeuAsYouGo. Unit of ξrelay is actually mW, but in this figure it is shown in dBm. ξrelay ,
when expressed in dBm, is equal to 10 log10(ξrelay). In the Power plot, the HeuAsYouGo plot overlaps the OptAsYouGo plot, since the node power in the
HeuAsYouGo algorithm was taken to be the same as the mean node power with the OptAsYouGo algorithm.

for a fixed ξrelay , cth(r) increases with ξout. This happens
because if the cost of outage increases, we cannot tolerate
outage and place the relays close to each other. Note also
that, cth(r) increases in r as stated in Algorithm 1.

B. Comparison Among Various Deployment Algorithms
Next, assuming a system model as described in Section II

and assuming the parameter values as in Section V-A, we
computed the mean cost per step, mean power per node,
mean outage per link and mean placement distance (between
successive relays) for four deployment algorithms presented
so far7. Some of the results are shown in Figure 9. In order
to make a fair comparison, we used the mean power per
node for OptAsYouGo as the fixed node transmit power for
HeuAsYouGo, and the mean outage per link of OptAsYouGo
as the pre-fixed target outage for HeuAsYouGo. The following
observations are from the plots in Figure 9.

1) Mean Placement Distance (see the top left panel of Fig-
ure 9): Pure as-you-go algorithms (OptAsYouGo, HeuAsY-
ouGo) place relays sooner than the algorithms that explore
forward (OptExploreLim, HeuExploreLim) before placing a
relay (see Figure 9). This is as expected, since pure as-you-
go algorithms do not have the advantage of exploring over

7Note that, these computations were done on MATLAB; they did not
involve any field deployment. Field experimentations were done only to
validate the assumptions (such as independent shadowing assumption) and
to compute the values of the parameters such as η and σ.

several locations and then picking the best. A pure as-you-
go approach tends to be cautious, and therefore tries to avoid
a high outage by placing relays frequently. As ξrelay (cost
of a relay) increases, relays will be placed less frequently
(according to Theorem 5).

2) Mean Outage per Link (see the top right panel of
Figure 9): As ξrelay increases, the mean outage per link
increases because we will place fewer relays with higher
inter-relay distances. Pure as-you-go algorithms have link
outage probability comparable to explore-forward algorithms,
but they place relays too frequently. We observe that the
per-link outage of HeuAsYouGo is different from that of
OptAsYouGo. This happens because whenever we place a
node using HeuAsYouGo, the exact outage target is never met
with equality. Also, the per-link outage may decrease with
ξrelay for HeuAsYouGo. As ξrelay increases, the node power
and the target outage (chosen from OptAsYouGo) increases in
such a way that the per-link outage for HeuAsYouGo behaves
in this fashion.

We have also observed that, as ξout, the penalty for outage,
increases, the mean outage per link decreases. But that result
has not been shown here.

3) Mean Power per Link (see the bottom left panel of
Figure 9): Increasing ξrelay will place relays less frequently,
hence the transmit power increases. OptAsYouGo has smaller
placement distance compared to OptExploreLim and HeuEx-
ploreLim, and hence it uses less power at each hop; we note,
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however, that OptAsYouGo places more relays, and, hence,
could still end up using more power per step.

In the power plot, the HeuAsYouGo plot overlaps the
OptAsYouGo plot, since the node power in the HeuAsYouGo
algorithm was taken to be the same as the mean node power
with the OptAsYouGo algorithm.

We have also seen that increasing ξout (the cost per unit
outage) will lower outage and hence the per-node transmit
power increases.

4) Network Cost Per Step (see the bottom right panel of
Figure 9): The network cost per step is the optimal average
cost per step; see (3). Cost increases with ξrelay (see Figure 9)
and ξout. OptAsYouGo has a larger cost than OptExploreLim
and HeuExploreLim, owing to shorter links. The average cost
per step of HeuExploreLim is very close to OptExploreLim and
cost of HeuAsYouGo is close to OptAsYouGo, even though the
heuristic policies are not optimal. However, we observed that
this does not always happen. For example, for ξrelay = 0.1
and ξout = 1000, we found that the average cost per step
for OptAsYouGo and HeuAsYouGo are 1.3485 and 1.9581
respectively, and the average cost per step for OptExploreLim
and HeuExploreLim are 0.9810 and 1.0537 respectively.

Discussion:
(i) HeuExploreLim and HeuAsYouGo appear to be attractive

at the first sight because they are intuitive, easy to
implement, and they do not require any channel model for
given ξout and ξrelay. But, they are suboptimal, and we do
not have any performance guarantee (e.g., the optimality
gap w.r.t. the optimal algorithms OptExploreLim and
OptAsYouGo). Hence, if we know the radio propagation
model (e.g., η and σ) exactly, and if ξout and ξrelay are
given, it is better to compute the optimal policies and
then deploy according to them.

(ii) Note that, the mean number of measurements made per
step for the pure as-you-go approach is 1, whereas it is
B

E(U) under the explore-forward approach, where E(U)
is the mean distance between successive relays. From the
numerical results presented in this section, we find that,
under the explore-forward approach, the mean number
of measurements required will be at most 3, and can
be even less than 2 depending on the situation. For
applications that do not require rapid deployment, such as
deployment in a large forest for monitoring purpose, this
many measurements is affordable. Hence, for the learning
algorithms, we consider only explore-forward approach.

(iii) More importantly, in practice the propagation environ-
ment will not be known, and, in order to solve the
problem defined in (4), we need to choose ξ∗out and ξ∗relay
while deploying (as explained in Theorem 1), if possible.
But we cannot choose this pair if we do not have a
prior knowledge of the propagation environment. Poor
choice of ξout and ξrelay might lead to violation of the
constraints in the constrained problem defined in (4), or
might result in a higher mean power per step compared
to the optimal mean power per step under the constraints.
Hence, we need to adapt ξout and ξrelay as deployment
progresses. The adaptive algorithms use the structure of

the optimal policy OptExploreLim.

APPENDIX D
OPTEXPLORELIMLEARNING: LEARNING WITH

EXPLORE-FORWARD, FOR GIVEN ξout AND ξrelay

Proof of Theorem 9:
Let us denote the shadowing random variable in the link

between the potential locations located at distances iδ and jδ
from the sink node by Wi,j . The sample space Ω associated
with the deployment process is the collection of all ω (each
ω corresponds to a fixed realization {wi,j : i ≥ 0, j ≥
0, i > j,A + 1 ≤ i − j ≤ A + B} of all possible
shadowing random variables that might be encountered in the
measurement process for deployment up to infinity). Let F be
the Borel σ-algebra on Ω. Let Sk =

∑k
i=1 Ui be the distance

(in steps) of the k-th relay from the sink (S0 := 0), and

Fk := σ

(
λ(0);Wi,j : i ≥ 0, j ≥ 0, i > j,A + 1 ≤ i − j ≤

A+B, i ≤ Sk−1+A+B, j ≤ Sk−1+A+B

)
. The sequence of

σ-algebras Fk is increasing in k, and Fk captures the history
of the deployment process up to the deployment of the k-th
relay.

Note that, we can rewrite the update equation in Algorithm 6
as follows:

λ(k+1) = λ(k) + ak+1

(
f(λ(k)) +Nk+1

)
where

f(λ) = EW min
u,γ

(
γ + ξoutQout(u, γ,Wu) + ξrelay − λu

)
and

Nk+1 = min
u,γ

(
γ + ξoutQout(u, γ,Wu) + ξrelay − λ(k)u

)
−

EW min
u,γ

(
γ + ξoutQout(u, γ,Wu) + ξrelay − λ(k)u

)
Note that, (γ + ξoutQout(u, γ,Wu) + ξrelay − λu) is

a linearly decreasing function in λ. Hence, minu,γ(γ +
ξoutQout(u, γ,Wu) + ξrelay − λu) is a concave, strictly de-
creasing function in λ. The function f(λ) is a nonnegative
linear combination of concave, strictly decreasing functions
of λ. Hence, f(λ) is strictly decreasing, concave function of
λ for λ ∈ [0,∞). Hence, f(λ) is continuous in λ. Now,
f(0) > 0 and limλ→∞ f(λ) = −∞. Hence, f(λ) = 0 will
have a unique positive solution.

Also, if we increase λ by an amount ∆, then we will have
(A+ 1)∆ ≤ |f(λ+ ∆)− f(λ)| ≤ (A+B)∆. Hence, f(·) is
Lipschitz continuous with Lipschitz constant (A+B).

Let us invoke four conditions from Chapter 2 of [31] as
follows:

(i) f(·) is a Lipschitz continuous function.
(ii)

∑∞
k=1 ak =∞,

∑∞
k=1 a

2
k <∞.

(iii) {Nk}k≥1 is a Martingale difference sequence w.r.t the
sigma field Fk and E(|Nk+1|2|Fk) ≤ K(1 + |λ(k)|2) for
some K > 0.
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(iv) supk≥1 |λ(k)| <∞ almost surely.

By Theorem 2 (in Chapter 2) of [31], if the four conditions
are satisfied, then λ(k) will almost surely converge to the
unique zero of f(·). But, that unique zero is the optimal
average cost per step λ∗ which satisfies f(λ∗) = 0 (by
Theorem 6). Hence, the problem reduces to checking the
conditions (i)-(iv).

Since f(λ) is Lipschitz continuous with Lipschitz constant
(A + B), condition (i) is satisfied. Condition (ii) is satisfied
by the choice of ak.

By definition of Nk, we have EW (Nk+1|Fk) =
EW (Nk+1|λ(k)) = 0 (since shadowing is i.i.d. across links, the
shadowing values encountered in the process of measurement
for placing a new node are independent of the shadowing
values encountered in the measurement process for deploy-
ing the previous nodes) which implies that {Nk+1}k≥1 is
a Martingale difference sequence w.r.t. Fk. Now, since the
conditional second moment is greater than conditional variance
almost surely, we have (almost surely):

E(|Nk+1|2|Fk) ≤ E
((

min
u,γ

(γ + ξoutQout(u, γ,Wu)

+ξrelay − λ(k)u)

)2

|Fk
)

Now, we know that γ ≤ PM , A + 1 ≤ u ≤ A + B,
outage probability is always in [0, 1], and ξout and ξrelay
are fixed. Hence, E(|Nk+1|2|Fk) can be upper bounded by
K(1 + |λ(k)|2) for some K > 0. Hence, condition (iii) is also
satisfied. Condition (iv) is satisfied by the following lemma.

Lemma 3: For the iterates {λ(k)}k≥1 in (11),
supk≥1 |λ(k)| <∞ almost surely.

Proof: Let us define K0 to be the smallest integer such
that ak(A + B) < 1 for all k ≥ K0 (K0 exists since
ak ↓ 0). For any starting value λ(0), it is easy to find a positive
real number d (depending on the value of λ(0)) such that
λ(k) ∈ [−d, d] for all k ≤ K0; this is easy to see because the
node transmit power, node outage probability and placement
distance for each node are bounded quantities.

Without loss of generality, we can take d > PM + ξout +
ξrelay where PM is the maximum transmit power level of a
node. We already have that λ(k) ∈ [−d, d] for all k ≤ K0. Now
we will show that λ(k) ∈ [−d, d] for all k ≥ K0. To this end,
let us assume, as our induction hypothesis, that λ(k) ∈ [−d, d]
for some k ≥ K0. If we can show that λ(k+1) ∈ [−d, d], we
will be done with the proof.

From the update equation (11), we can write that (using
(A+B) ≥ uk+1 ≥ 1 and 0 ≤ ak+1uk+1 < 1):

λ(k+1) ≤ λ(k) + ak+1(PM + ξout + ξrelay − λ(k)uk+1)

= (1− ak+1uk+1)λ(k) + ak+1(PM + ξout + ξrelay)

≤ (1− ak+1uk+1)λ(k) + ak+1uk+1(PM + ξout + ξrelay)

≤ max{λ(k), PM + ξout + ξrelay}
≤ d

On the other hand:

λ(k+1) ≥ λ(k) + ak+1(0− λ(k)uk+1)

= (1− ak+1uk+1)λ(k)

≥ −(1− ak+1uk+1)d

≥ −d

Hence, λ(k+1) ∈ [−d, d] and the lemma is proved.
Now, since conditions (i)-(iv) are satisfied, by Theorem 2,

Chapter 2 of [31], λ(k) → λ∗ almost surely. �
Proof of Corollary 1: Suppose that, we choose ak =
1∑k
i=1 ui

in Algorithm 6. Then,
∑∞
k=1 ak ≥

∑∞
k=1

1
k(A+B) =

∞ almost surely and
∑∞
k=1 a

2
k ≤

∑∞
k=1

1
k2(A+1)2 < ∞

almost surely.
Now, with this step size,

λ1 = λ(0) + a1(γ1 + ξoutQ
(1,0)
out + ξrelay − λ(0)u1)

= λ(0) +
1

u1
(γ1 + ξoutQ

(1,0)
out + ξrelay − λ(0)u1)

=
γ1 + ξoutQ

(1,0)
out + ξrelay

u1

and, in general,

λ(k+1) = λ(k) + ak+1(γk+1 + ξoutQ
(k+1,k)
out + ξrelay − λ(k)uk+1)

= λ(k) +
(γk+1 + ξoutQ

(k+1,k)
out + ξrelay − λ(k)uk+1)∑k+1

i=1 ui

=
λ(k)

∑k
i=1 ui + (γk+1 + ξoutQ

(k+1,k)
out + ξrelay)∑k+1

i=1 ui

=

∑k+1
i=1 (γi + ξoutQ

(i,i−1)
out + ξrelay)∑k+1

i=1 ui

Hence, in (11) of Algorithm 6, we can replace λ(k) =∑k
i=1(γi+ξoutQ

(i,i−1)
out +ξrelay)∑k

i=1 ui
, and this proves the theorem.

APPENDIX E
OPTEXPLORELIMADAPTIVELEARNING WITH CONSTRAINT
ON OUTAGE PROBABILITY AND RELAY PLACEMENT RATE

A. Proof of Theorem 10

Proof of the first statement: Let us assume that
π∗(ξ∗out, ξ

∗
relay) satisfies both constraints in (4) with equal-

ity for some ξ∗out > 0, ξ∗relay > 0, i.e., π∗(ξ∗out, ξ
∗
relay)

is an optimal policy for problem (4). Now, let us as-
sume that there exists ξ′out ≥ 0, ξ′relay ≥ 0 satisfy-
ing (i) (λ∗(ξ′out, ξ

′
relay), ξ′out, ξ

′
relay) ∈ K(q,N), and (ii)

Q
∗
out(ξ

′
out,ξ

′
relay)

U
∗
(ξ′out,ξ

′
relay)

< q. We will show that this leads to a
contradiction.

Let us consider the problem of minimizing the mean out-
age per step subject to a constraint

Γ
∗
(ξ∗out,ξ

∗
relay)

U
∗
(ξ∗out,ξ

∗
relay)

on the

mean power per step and a constraint 1
U
∗
(ξ∗out,ξ

∗
relay)

= N

on the mean number of relays per step. Clearly, by Theo-
rem 1, π∗(ξ∗out, ξ

∗
relay) is an optimal policy for this problem

since it satisfies both constraints with equality. Note that,
π∗(ξ∗out, ξ

∗
relay) has a mean outage per step q. But, we also see
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that the policy π∗(ξ′out, ξ
′
relay) has the same mean power per

step and a smaller mean number of relays per step compared
to π∗(ξ∗out, ξ

∗
relay) (since (λ∗(ξ′out, ξ

′
relay), ξ′out, ξ

′
relay) ∈

K(q,N)), and has a strictly smaller mean outage per step
compared to π∗(ξ∗out, ξ

∗
relay). This leads to a contradiction

since π∗(ξ∗out, ξ
∗
relay) is an optimal policy for the problem of

minimizing the mean outage per step subject to a constraint
Γ
∗
(ξ∗out,ξ

∗
relay)

U
∗
(ξ∗out,ξ

∗
relay)

on the mean power per step and a constraint
1

U
∗
(ξ∗out,ξ

∗
relay)

= N on the mean number of relays per step.

Similarly, we can show a contradiction if, instead of assum-
ing

Q
∗
out(ξ

′
out,ξ

′
relay)

U(ξ′out,ξ
′
relay)

< q, we had assumed 1
U(ξ′out,ξ

′
relay)

< N .

Hence, the first statement is proved.
Proof of the second statement: This statement follows from

the fact that for any ξrelay ≥ 0, π∗(0, ξrelay) always places at
a distance (A + B) and uses the smallest power P1, thereby
incurring a mean outage per step equal to EWQout(A+B,P1,W )

A+B .
�

B. Proof of Theorem 11

Denote by g(r, γ), r ∈ {A + 1, A + 2, · · · , A + B}, γ ∈ S
the joint distribution of (Uk,Γk) when λ in (9) is replaced
by λ∗(ξout, ξrelay), i.e., when deployment is done using the
OptExploreLim algorithm (Algorithm 3).

Let us assume that g(r, γ) is continuous in both ξout and
ξrelay (we will prove this assertion in Lemma 4 at the end
of the proof of the theorem). By Lemma 4, the mean place-
ment distance U

∗
(ξout, ξrelay) =

∑A+B
r=A+1

∑
γ∈S rg(r, γ) is

continuous in ξout and ξrelay . Similarly, the mean power per
link Γ

∗
(ξout, ξrelay) =

∑A+B
r=A+1

∑
γ∈S γg(r, γ) is continuous

in ξout and ξrelay.
Let us denote by λ∗(ξout, ξrelay) the optimal average cost

per step for the problem in (3), for given ξout and ξrelay. By
Renewal-Reward Theorem,

λ∗(ξout, ξrelay) =
Γ
∗
(ξout, ξrelay) + ξoutQ

∗
out(ξout, ξrelay) + ξrelay

U
∗
(ξout, ξrelay)

Since λ∗(ξout, ξrelay) is continuous in ξout and ξrelay (by
Theorem 4), we conclude that Q

∗
out(ξout, ξrelay) is continuous

in ξout and ξrelay. Hence, Γ
∗
(ξout,ξrelay)

U
∗
(ξout,ξrelay)

, Q
∗
out(ξout,ξrelay)

U
∗
(ξout,ξrelay)

and
1

U
∗
(ξout,ξrelay)

are continuous in ξout and ξrelay. Hence, the
theorem is proved. �

Lemma 4: Under Assumption 2, g(r, γ) is continuous in
ξout and ξrelay.

Proof: Let us fix any r ∈ {A + 1, · · · , A + B} and any
γ ∈ S. We will show that g(r, γ) is continuous in ξout. The
continuity of g(r, γ) w.r.t. ξrelay will follow the same line of
arguments.

Consider any sequence {ξn}n≥1 such that ξn → ξout. Let us
denote the joint probability distribution of placement distance
and node transmit power by gn(r, γ), if the cost per unit outage
is ξn and if OptExploreLim is used in the deployment process.
We will show that gn(r, γ)→ g(r, γ) as n→∞.

Let us define the sets Eγ′ =

{
w : γ+ ξoutQout(r, γ, wr) <

γ′ + ξoutQout(r, γ
′, wr)

}
and Eu,γ′ =

{
w : γ +

ξoutQout(r, γ, wr) + ξrelay − λ∗(ξout, ξrelay)r < γ′ +

ξoutQout(u, γ
′, wu) + ξrelay − λ∗(ξout, ξrelay)u

}
.

In state w, the OptExploreLim algorithm (Algorithm 3) will
place the next relay at distance r and decide power level γ if
w ∈ Eγ′ for all γ′ 6= γ, γ′ ∈ S and if w ∈ Eu,γ′ for all
u 6= r, γ′ ∈ S.

Let us define E = ∩γ′ 6=γEγ′ ∩u 6=r,γ′∈S Eu,γ′ .
Note that, g(r, γ) = P(E) = E(IE), where I denotes

the indicator function, and the expectation is over the joint
distribution of the shadowing vector W (shadowing random
variables from B locations).

Now, for any γ′ 6= γ, we have P
(
γ +

ξoutQout(r, γ,Wr) = γ′ + ξoutQout(r, γ
′,Wr)

)
= 0. Also,

P
(
γ + ξoutQout(r, γ,Wr) + ξrelay − λ∗(ξout, ξrelay)r =

γ′ + ξoutQout(u, γ
′,Wu) + ξrelay − λ∗(ξout, ξrelay)u

)
= 0

if γ′ ∈ S, u 6= r. These two assertions follow from
Assumption 2 and the fact that Qout(r, γ, w) is continuous
in w. Hence, we discard these zero probability events in our
analysis and safely assume that:

• For γ′ 6= γ, the complement Eγ′ has the same expression
as Eγ′ except that the < sign is replaced by > sign.

• For γ′ ∈ S, u 6= r, Eu,γ′ has the same expression as Eu,γ′
except that the < sign is replaced by > sign.

Now, consider any sequence {ξn}n≥1 such that ξn → ξout.
Let E(n)

γ′ , E(n)
u,γ′ and E(n) be the sets obtained where we replace

ξout by ξn in the expressions of the sets Eγ′ , Eu,γ′ and E
respectively. Clearly, we can make similar claims for E(n)

γ′ ,
E(n)
u,γ′ for any n ≥ 1.
Recall that, g(r, γ) = P(E) = E(IE). Clearly, if we can

show that E(IE(n))→ E(IE), the lemma will be proved.
Claim 1: IE(n)

u,γ′
→ IEu,γ′ almost surely as n → ∞, for

u 6= r, γ′ ∈ S . Also, IE(n)

γ′
→ IEγ′ almost surely as n → ∞,

for γ′ 6= γ.
Proof: Suppose that, for some value of w, IEu,γ′ (w) = 1,

i.e., γ + ξoutQout(r, γ, wr) + ξrelay − λ∗(ξout, ξrelay)r <
γ′ + ξoutQout(u, γ

′, wu) + ξrelay − λ∗(ξout, ξrelay)u. Now,
by Theorem 4, λ∗(ξout, ξrelay) is continuous in ξout and
ξrelay. Hence, there exists an integer n0 sufficiently large
such that for all n > n0, we have γ + ξnQout(r, γ, wr) +
ξrelay − λ∗(ξn, ξrelay)r < γ′ + ξnQout(u, γ

′, wu) + ξrelay −
λ∗(ξn, ξrelay)u, i.e., IE(n)

u,γ′
(w) = 1 for all n > n0. Hence,

IE(n)

u,γ′
(w) → IEu,γ′ (w) if IEu,γ′ (w) = 1. Similar argument

works when IEu,γ′ (w) = 0. Hence, the first part of the claim
is proved.

The second part of the claim is proved in a similar way.
Note that, IE(n) =

∏
γ′ 6=γ IE(n)

γ′

∏
u6=r,γ′∈S IE(n)

u,γ′
. By

Claim 1, IE(n) → IE almost surely. Since indicator functions
always take values in the set {0, 1}, we have E(IE(n))→ E(IE)
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λ(k) = λ(k−1) + ak min
u,γ

(
γ + ξ

(k−1)
out Qout(u, γ, wu) + ξ

(k−1)
relay − λ

(k−1)u

)

ξ
(k)
out = ξ

(k−1)
out + bk lim

β↓0

Λ[0,A2]

(
ξ
(k−1)
out + β(Qout(uk, γk, wuk )− quk)

)
− ξ(k−1)

out

β
+ o(bk)

= ξ
(k−1)
out + ak

(
bk

ak

(
lim
β↓0

Λ[0,A2]

(
ξ
(k−1)
out + β(Qout(uk, γk, wuk )− quk)

)
− ξ(k−1)

out

β
+
o(bk)

bk

))

ξ
(k)
relay = ξ

(k−1)
relay + bk lim

β↓0

Λ[0,A3]

(
ξ
(k−1)
relay + β(1−Nuk)

)
− ξ(k−1)

relay

β
+ o(bk)

= ξ
(k−1)
relay + ak

(
bk

ak

(
lim
β↓0

Λ[0,A3]

(
ξ
(k−1)
relay + β(1−Nuk)

)
− ξ(k−1)

relay

β
+
o(bk)

bk

))
(20)

by Dominated Convergence Theorem.
Hence, the lemma is proved.

C. Proof of Theorem 12

Let us denote the shadowing random variable in the link
between the potential locations located at distances iδ and jδ
from the sink node by Wi,j . The sample space Ω associated
with the deployment process is the collection of all ω (each
ω corresponds to a fixed realization {wi,j : i ≥ 0, j ≥
0, i > j,A + 1 ≤ i − j ≤ A + B} of all possible
shadowing random variables that might be encountered in the
measurement process for deployment up to infinity). Let F be
the Borel σ-algebra on Ω. Let Sk =

∑k
i=1 Ui be the distance

(in steps) of the k-th relay from the sink (S0 := 0), and

Fk := σ

(
(λ(0), ξ

(0)
out, ξ

(0)
relay);Wi,j : i ≥ 0, j ≥ 0, i > j,A +

1 ≤ i−j ≤ A+B, i ≤ Sk−1+A+B, j ≤ Sk−1+A+B

)
. The

sequence of σ-algebras Fk is increasing in k, and Fk captures
the history of the deployment process up to the deployment
of the k-th relay.

Let us recall the outline of the proof of Theorem 12 in
Section VII-B.

1) Almost sure boundedness of the λ(k) iterates:
Lemma 5: The iterates {λ(k)}k≥1 in (13) are bounded

almost surely.
Proof: Let us define K0 to be the smallest integer such

that ak(A+B) < 1 for all k ≥ K0 (K0 exists since ak ↓ 0).
For any starting value λ(0), it is easy to find a positive real
number d (depending on the value of λ(0)) such that λ(k) ∈
[−d, d] for all k ≤ K0; this is easy to see because ξ

(k)
out ∈

[0, A2], ξ(k)
relay ∈ [0, A3] for all k, and the node transmit power,

node outage probability and placement distance for each node
are bounded quantities.

Without loss of generality, we can take d > PM +A2 +A3

where PM is the maximum transmit power level of a node.
We already have that λ(k) ∈ [−d, d] for all k ≤ K0. Now we
will show that λ(k) ∈ [−d, d] for all k ≥ K0. To this end, let
us assume, as our induction hypothesis, that λ(k) ∈ [−d, d] for
some k ≥ K0. If we can show that λ(k+1) ∈ [−d, d], we will
be done with the proof.

From the update equation (13), we can write that (using
(A+B) ≥ uk+1 ≥ 1 and 0 ≤ ak+1uk+1 < 1):

λ(k+1) ≤ λ(k) + ak+1(PM +A2 +A3 − λ(k)uk+1)

= (1− ak+1uk+1)λ(k) + ak+1(PM +A2 +A3)

≤ (1− ak+1uk+1)λ(k) + ak+1uk+1(PM +A2 +A3)

≤ max{λ(k), PM +A2 +A3}
≤ d

On the other hand:

λ(k+1) ≥ λ(k) + ak+1(0− λ(k)uk+1)

= (1− ak+1uk+1)λ(k)

≥ −(1− ak+1uk+1)d

≥ −d

Hence, λ(k+1) ∈ [−d, d] and the lemma is proved.

2) Analyzing the Faster Time-Scale Iteration of λ(k): Let
us denote by λ∗(ξout, ξrelay) the optimal average cost per step
for the problem in (3), for given ξout and ξrelay.

Lemma 6: For Algorithm 8, we have (λ(k), ξ
(k)
out, ξ

(k)
relay)→

{(λ∗(ξout, ξrelay), ξout, ξrelay) : (ξout, ξrelay) ∈ [0, A2] ×
[0, A3]} and limk→∞ |λ(k) − λ∗(ξ

(k)
out, ξ

(k)
relay)| = 0 almost

surely.
Proof: We follow the proof of Lemma 1, Chapter 6 of

[31].
Using the first order Taylor series expansion of the function

Λ[0,A2](·), and using the fact that Λ[0,A2](ξ
(k−1)
out ) = ξ

(k−1)
out

(since ξ
(k−1)
out ∈ [0, A2]), the update equation (13) can be

rewritten as (20).
Consider the update equation for ξrelay in (20). Note that:

lim
β↓0

Λ[0,A3]

(
ξ
(k−1)
relay + β(1−Nuk)

)
− ξ(k−1)

relay

β

= (1−Nuk)I{0 < ξ
(k−1)
relay < A3}

+ (1−Nuk)+I{ξ(k−1)
relay = 0}

− (1−Nuk)−I{ξ(k−1)
relay = A3}
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ξ
(k)
out = ΛG

(
ξ
(k−1)
out + bk

(
Qout(Uk,Γk,WUk )− qUk

))
= ΛG

(
ξ
(k−1)
out + bk

(
Q
∗
out(ξ

(k−1)
out , ξ

(k−1)
relay )− qU∗(ξ(k−1)

out , ξ
(k−1)
relay )︸ ︷︷ ︸

:=f1(ξ
(k−1)
out ,ξ

(k−1)
relay

)

+Qout(λ
(k−1), ξ

(k−1)
out , ξ

(k−1)
relay )− qU(λ(k−1), ξ

(k−1)
out , ξ

(k−1)
relay )− f1(ξ

(k−1)
out , ξ

(k−1)
relay )︸ ︷︷ ︸

:=g1(λ(k−1),ξ
(k−1)
out ,ξ

(k−1)
relay

)

+Qout(Uk,Γk,WUk )− qUk −
(
Qout(λ

(k−1), ξ
(k−1)
out , ξ

(k−1)
relay )− qU(λ(k−1), ξ

(k−1)
out , ξ

(k−1)
relay )

)
︸ ︷︷ ︸

:=M
(k)
1

))

= ΛG

(
ξ
(k−1)
out + bk

(
f1(ξ

(k−1)
out , ξ

(k−1)
relay ) + g1(λ(k−1), ξ

(k−1)
out , ξ

(k−1)
relay ) +M

(k)
1

))
ξ
(k)
relay = ΛG

(
ξ
(k−1)
out + bk

(
1−NUk

))
= ΛG

(
ξ
(k−1)
relay + bk

(
1−NU∗(ξ(k−1)

out , ξ
(k−1)
relay )︸ ︷︷ ︸

:=f2(ξ
(k−1)
out ,ξ

(k−1)
relay

)

+ 1−NU(λ(k−1), ξ
(k−1)
out , ξ

(k−1)
relay )− f2(ξ

(k−1)
out , ξ

(k−1)
relay )︸ ︷︷ ︸

:=g2(λ(k−1),ξ
(k−1)
out ,ξ

(k−1)
relay

)

+ 1−NUk −
(

1−NU(λ(k−1), ξ
(k−1)
out , ξ

(k−1)
relay )

)
︸ ︷︷ ︸

:=M
(k)
2

))

= ΛG

(
ξ
(k−1)
relay + bk

(
f2(ξ

(k−1)
relay , ξ

(k−1)
relay ) + g2(λ(k−1), ξ

(k−1)
relay , ξ

(k−1)
relay ) +M

(k)
2

))
(21)

where x+ = max{x, 0} and x− = −min{x, 0}. A similar
expression holds for the ξ(k)

out update. Since Qout(·, ·, ·) and uk
are bounded quantities, and since limk→0

bk
ak

= 0, we have:

lim
k→∞

(
bk

ak

(
lim
β↓0

(
Λ[0,A2]

(
ξ
(k−1)
out + β(Qout(uk, γk, wuk )− quk)

)
−ξ(k−1)

out

)
/β +

o(bk)

bk

))
= 0

and

lim
k→∞

(
bk

ak

(
lim
β↓0

Λ[0,A3]

(
ξ
(k−1)
relay + β(1−Nuk)

)
− ξ(k−1)

relay

β

+
o(bk)

bk

))
= 0

Now, note that, the function f(λ, ξout, ξrelay) =

EW minu,γ

(
γ + ξoutQout(u, γ,Wu) + ξrelay − λu

)
is Lip-

schitz continuous in all arguments, and the o.d.e. λ̇(t) =
f(λ(t), ξout, ξrelay) has a unique globally asymptotically sta-
ble equilibrium λ∗(ξout, ξrelay) for any ξout ≥ 0, ξrelay ≥ 0
(see the proof of Theorem 9). The quantity λ∗(ξout, ξrelay) is
Lipschitz continuous in ξout and ξrelay . Also by Lemma 5 and
the projection operation in the slower timescale, the iterates
are bounded almost surely.

Hence, by a similar argument as in the proof of Lemma 1,
Chapter 6 of [31], and by using Theorem 6 and Theorem 9,
(λ(k), ξ

(k)
out, ξ

(k)
relay) converges to the internally chain transitive

invariant sets of the o.d.e. λ̇(t) = f(λ(t), ξout(t), ξrelay(t)),
ξ̇out(t) = 0, ξ̇relay(t) = 0. Hence, (λ(k), ξ

(k)
out, ξ

(k)
relay) →

{(λ∗(ξout, ξrelay), ξout, ξrelay) : (ξout, ξrelay) ∈ [0, A2] ×
[0, A3]} and limk→∞ |λ(k)−λ∗(ξ(k)

out, ξ
(k)
relay)| = 0. Hence, the

lemma is proved.
Remark: Lemma 6 tells us that the faster time-scale iterate

λ(k) closely tracks λ∗(ξ
(k)
out, ξ

(k)
relay). But it is important to

note that this lemma does not guarantee the convergence of
the slower timescale iterates to a single point in the two-
dimensional Euclidean plane.

3) The slower timescale iteration: Let us recall the notation
Qout(λ, ξout, ξrelay), U(λ, ξout, ξrelay), Q

∗
out(ξout, ξrelay)

and U
∗
(ξout, ξrelay) as defined in Section IV-B. Let us also

recall the update equation (13) in Algorithm 8. We will
analyze the slower timescale update equations as a projected
stochastic approximation (see Equation 5.3.1 of [33]).

Let us denote by G the compact subset [0, A2]× [0, A3] of
the Euclidean space. Clearly, the set G can be defined by the
following set of constraints on the variables ξout and ξrelay:

− ξout ≤ 0, ξout ≤ A2,−ξrelay ≤ 0, ξrelay ≤ A3 (22)

We rewrite the slower timescale update equations in
(13) as (21). Note that, the functions f1(ξout, ξrelay),
f2(ξout, ξrelay), g1(λ, ξout, ξrelay), and g2(λ, ξout, ξrelay)

have been defined in (21). The quantities M
(k)
1 and M

(k)
2

are two zero mean Martingale difference noise sequences
w.r.t. Fk−1; this can be seen as follows. Since shadowing
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is i.i.d. across links, the shadowing values encountered
in the process of measurement for placing the k-th node
are independent of the history of the process up to the

placement of node (k − 1). Hence, EW
(
M

(k)
1 |Fk−1

)
=

EW
(
M

(k)
1 |(λ(k−1), ξ

(k−1)
out , ξ

(k−1)
relay )

)
=

0 and EW
(
M

(k)
2 |Fk−1

)
=

EW
(
M

(k)
2 |(λ(k−1), ξ

(k−1)
out , ξ

(k−1)
relay )

)
= 0.

The update is done as follows. We compute ξ̃
(k)
relay =

ξ
(k−1)
relay +bk

(
f2(ξ

(k−1)
relay , ξ

(k−1)
relay )+g2(λ(k−1), ξ

(k−1)
relay , ξ

(k−1)
relay )+

M
(k)
2

)
and compute ξ

(k)
relay = Λ[0,A3](ξ̃

(k)
relay). We compute

ξ
(k)
out in a similar fashion. Hence, projection onto the set G is

nothing but coordinatewise projection.
Note that, (21) is in the same form as the standard projected

stochastic approximation (Equation 5.3.1 of [33]). In order to
show that the iterates in (21) converge to the right set, we will
make use of Theorem 5.3.1 from [33]. To use this theorem, we
need to check whether (21) satisfies five conditions from [33],
i.e., A5.1.3, A5.1.4, A5.1.5, A5.3.1. and A5.3.2. This is done
in the next subsection. �

4) Checking the five conditions from [33]: Before check-
ing the five conditions, we will present a lemma that will be
useful for checking one condition.

Lemma 7: Suppose that Assumption 2 holds. Under
the decision rule given by (9), the mean power per
step Γ(λ,ξout,ξrelay)

U(λ,ξout,ξrelay)
, mean number of relays per step

1
U(λ,ξout,ξrelay)

and mean outage per step Qout(λ,ξout,ξrelay)

U(λ,ξout,ξrelay)

are continuous in λ, ξout and ξrelay.
Proof: The proof is similar to that of Theorem 11.

Now, we will check that conditions A5.1.3, A5.1.4, A5.1.5,
A5.3.1. and A5.3.2 from [33] are satisfied.

Checking Condition A5.1.3: This condition requires that
f1(·, ·) and f2(·, ·) are continuous functions. This condition
is satisfied as a consequence of Theorem 11. �

Checking Condition A5.1.4: This condition is satisfied since
bk > 0, bk → 0 as k →∞ and

∑∞
k=1 bk =∞. �

Checking Condition A5.1.5: This condition requires
that limk→∞ g1(λ(k−1), ξ

(k−1)
out , ξ

(k−1)
relay ) = 0 and

limk→∞ g2(λ(k−1), ξ
(k−1)
out , ξ

(k−1)
relay ) = 0 almost surely,

and that the sequences g1(λ(k−1), ξ
(k−1)
out , ξ

(k−1)
relay ) and

g2(λ(k−1), ξ
(k−1)
out , ξ

(k−1)
relay ) are bounded almost surely.

By Lemma 5, we can find an interval [−d, d] such that
(λ(k), ξ

(k)
out, ξ

(k)
relay) lies inside the compact set [−d, d] ×

[0, A2]× [0, A3] for all k ≥ 1 almost surely.
Note that, Qout(λ, ξout, ξrelay) is continuous in each argu-

ment (by Lemma 7). Hence, Qout(λ, ξout, ξrelay) is uniformly
continuous over the compact set [−d, d]× [0, A2]× [0, A3] and
similarly U(λ, ξout, ξrelay) is uniformly continuous over the
compact set [−d, d]× [0, A2]× [0, A3].

Now, by Lemma 6, the Euclidean distance between
(λ(k), ξ

(k)
out, ξ

(k)
relay) and (λ∗(ξ

(k)
out, ξ

(k)
relay), ξ

(k)
out, ξ

(k)
relay) con-

verges to 0 almost surely as k →∞. Hence, by uniform con-
tinuity, we conclude that limk→∞ |Qout(λ(k), ξ

(k)
out, ξ

(k)
relay) −

Qout(λ
∗(ξ

(k)
out, ξ

(k)
relay), ξ

(k)
out, ξ

(k)
relay)| =

0 and limk→∞ |U(λ(k), ξ
(k)
out, ξ

(k)
relay) −

U(λ∗(ξ
(k)
out, ξ

(k)
relay), ξ

(k)
out, ξ

(k)
relay)| = 0 almost surely.

Hence, limk→∞ g1(λ(k−1), ξ
(k−1)
out , ξ

(k−1)
relay ) = 0 and

limk→∞ g2(λ(k−1), ξ
(k−1)
out , ξ

(k−1)
relay ) = 0 almost surely.

Also, g1(λ(k), ξ
(k)
out, ξ

(k)
relay) and g2(λ(k), ξ

(k)
out, ξ

(k)
relay) are

uniformly bounded across k ≥ 1, since the outage probabilities
and placement distances are bounded quantities.

Checking Condition A5.3.1: This condition requires that
G = [0, A2] × [0, A3] is the closure of its interior, which is
true in our problem. It also requires that the L.H.S. of each
constraint inequality in (22) is continuously differentiable,
which is also true in our problem.

Note that, the L.H.S. of each constraint inequality in (22)
is a function of ξout and ξrelay . Condition A5.3.1 of [33]
needs that for each point on the boundary of G, the gradients
of the functions (in the L.H.S. of (22)) corresponding to the
active constraints are linearly independent. Note that on each
point of the boundary of G, at most two constraints can be
simultaneously active (see (22)). If there are exactly two active
constraints, one will be for ξout and the other one will be
for ξrelay. Clearly, the gradients (with respect to the tuple
(ξout, ξrelay)) of the active constraint(s) at any boundary point
of G are orthogonal, and hence linearly independent. �

Checking Condition A5.3.2: Let m(t) := sup{n ≥
1 :

∑n
i=1 bi ≤ t}. We have to show that, there ex-

ists a T > 0 such that for any ε > 0, we have

limn→∞ P
(

supj≥n maxt≤T |
∑m(jT+t)−1
i=m(jT ) biM

(i)
1 | > ε

)
=

0 and limn→∞ P
(

supj≥n maxt≤T |
∑m(jT+t)−1
i=m(jT ) biM

(i)
2 | >

ε

)
= 0. We will prove the first result, for any T >

0 and any ε > 0. Let us define the event Ej :=

{maxt≤T |
∑m(jT+t)−1
i=m(jT ) biM

(i)
1 | > ε}. Hence,

lim
n→∞

P
(

sup
j≥n

max
t≤T
|
m(jT+t)−1∑
i=m(jT )

biM
(i)
1 | > ε

)

= lim
n→∞

P
(
∪j≥n Ej

)
= P

(
∩n≥1 ∪j≥nEj

)
= P

(
lim sup
n→∞

En

)
where the second equality follows from the continuity of

probability.

Now, P(En) ≤
E|

∑m(nT+T )−1

i=m(nT )
biM

(i)
1 |

2

ε2 (by Doob’s inequal-
ity for Martingales). Since, |M (i)

1 | ≤ C for some C > 0
(since outage probability and placement distance are two
bounded quantities; see the expression for M (i)

1 in (21)) and
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ξ
(k)
out = ΛG

(
ξ

(k−1)
out + bkU

∗
(ξ

(k−1)
out , ξ

(k−1)
relay )

(
f1(ξ

(k−1)
out , ξ

(k−1)
relay ) + g1(λ(k−1), ξ

(k−1)
out , ξ

(k−1)
relay ) +M

(k)
1

)
U
∗
(ξ

(k−1)
out , ξ

(k−1)
relay )

)

ξ
(k)
relay = ΛG

(
ξ

(k−1)
relay + bkU

∗
(ξ

(k−1)
out , ξ

(k−1)
relay )

(
f2(ξ

(k−1)
out , ξ

(k−1)
relay ) + g2(λ(k−1), ξ

(k−1)
out , ξ

(k−1)
relay ) +M

(k)
2

)
U
∗
(ξ

(k−1)
out , ξ

(k−1)
relay )

)
(23)

since E(M
(i)
1 M

(j)
1 ) = 0 for i 6= j, the above quantity can

be upper-bounded by P(En) ≤
C2 ∑m(nT+T )−1

i=m(nT )
b2i

ε2 . Hence,∑∞
n=1 P(En) ≤ C2 ∑∞

i=1 b
2
i

ε2 < ∞. Hence, by Borel-Cantelli

lemma, P
(

lim supn→∞En

)
= 0, which completes checking

Condition A5.3.2 of [33]. �

5) Finishing the Proof of Theorem 12: Now, we will
invoke Theorem 5.3.1 from [33] to complete the proof.

Let us rewrite (21) as (23). Note that, A + 1 ≤
U
∗
(ξ

(k−1)
out , ξ

(k−1)
relay ) ≤ A + B. Hence, if we use step size

bkU
∗
(ξ

(k−1)
out , ξ

(k−1)
relay ) and use the modified functions like

f1(ξ
(k−1)
out ,ξ

(k−1)
relay )

U
∗
(ξ

(k−1)
out ,ξ

(k−1)
relay )

as in (23), the conditions checked in the

previous subsection will still hold. This is evident from the
fact that, once we know ξ

(k−1)
out and ξ(k−1)

relay , U
∗
(ξ

(k−1)
out , ξ

(k−1)
relay )

becomes a deterministic quantity, and that the randomness in
the computation of the new iterates ξ(k)

out and ξ
(k)
relay comes

from the random shadowing in the links measured in the
process of deploying the k-th node. Hence, M

(k)
1

U
∗
(ξ

(k−1)
out ,ξ

(k−1)
relay )

and M
(k)
2

U
∗
(ξ

(k−1)
out ,ξ

(k−1)
relay )

are also Martingale difference sequences.

It is easy to check conditions A5.1.3, A5.1.5 and A5.3.2 for
(23), and the condition in A5.1.4 is satisfied almost surely.

Hence, from now on, let us consider the slower timescale
iteration (23).

For the function h(ξout, ξrelay) :=(
f1(ξout,ξrelay)

U
∗
(ξout,ξrelay)

,
f2(ξout,ξrelay)

U
∗
(ξout,ξrelay)

)
=

(
Q
∗
out(ξout,ξrelay)

U
∗
(ξout,ξrelay)

−

q, 1
U
∗
(ξout,ξrelay)

−N
)

, let us define the map:

ΛG(h(ξout, ξrelay))

= lim
0<β→0

ΛG

(
(ξout, ξrelay) + βh(ξout, ξrelay))

)
− (ξout, ξrelay)

β

(24)

We want to show that the iterates (ξ
(k)
out, ξ

(k)
relay)

will converge almost surely to the set of sta-
tionary points of the o.d.e. (ξ̇out(t), ξ̇relay(t)) =

ΛG

(
f1(ξout(t),ξrelay(t))

U
∗
(ξout(t),ξrelay(t))

,
f2(ξout(t),ξrelay(t))

U
∗
(ξout(t),ξrelay(t))

)
. This will

follow from Theorem 5.3.1 from [33], if we can show that(
− f1(ξout,ξrelay)

U
∗
(ξout,ξrelay)

,− f2(ξout,ξrelay)

U
∗
(ξout,ξrelay)

)
is the gradient of a

continuously differentiable function.
Let us denote, by Γπ , Uπ and Qout,π , the mean power per

link, mean placement distance per link and mean outage per
link respectively, under any given stationary deployment policy
π. Let us define the function

G(ξout, ξrelay) := inf
π

(
Γπ

Uπ
+ ξout(

Qout,π

Uπ
− q) + ξrelay(

1

Uπ
−N)

)
(25)

Lemma 8: G(ξout, ξrelay) is continuously differentiable

and its gradient is
(
f1(ξout,ξrelay)

U
∗
(ξout,ξrelay)

,
f2(ξout,ξrelay)

U
∗
(ξout,ξrelay)

)
.

Proof: The proof of Lemma 8 will be provided later in
this section.

Now,
(
− f1(ξout,ξrelay)

U
∗
(ξout,ξrelay)

,− f2(ξout,ξrelay)

U
∗
(ξout,ξrelay)

)
is the gradient

of a continuously differentiable function −G(ξout, ξrelay).
Hence, by Theorem 5.3.1 from [33], the iterates
(ξ

(k)
out, ξ

(k)
relay) will almost surely converge to the set

of stationary points of the o.d.e. (ξ̇out(t), ξ̇relay(t)) =

ΛG

(
f1(ξout(t),ξrelay(t))

U
∗
(ξout(t),ξrelay(t))

,
f2(ξout(t),ξrelay(t))

U
∗
(ξout(t),ξrelay(t))

)
.

Lemma 9: If (ξout, ξrelay) ∈ [0, A2] × [0, A3] is

a zero of ΛG

(
f1(ξout,ξrelay)

U
∗
(ξout,ξrelay)

,
f2(ξout,ξrelay)

U
∗
(ξout,ξrelay)

)
, then

(λ∗(ξout, ξrelay), ξout, ξrelay) ∈ K(q,N), provided that
A2 and A3 are chosen properly.

Proof: The proof of Lemma 9 will be provided later
in this section. One way of choosing A2 and A3 has been
described before the proof of this lemma.

We have already shown that (ξ
(k)
out, ξ

(k)
relay)

converges to the set of (ξout, ξrelay) pairs for which

ΛG

(
f1(ξout,ξrelay)

U
∗
(ξout,ξrelay)

,
f2(ξout,ξrelay)

U
∗
(ξout,ξrelay)

)
= (0, 0). Hence, by

Lemma 6 and Lemma 9, (λ(k), ξ
(k)
out, ξ

(k)
relay) → K(q,N)

almost surely, which completes the proof of Theorem 12.
Now we will prove Lemma 8 and Lemma 9. Before we

prove Lemma 9, we will explain how A2 and A3 have to be
chosen.

Proof of Lemma 8 Suppose that, for a given (ξout, ξrelay),
the partial derivative ∂G

∂ξout
exists. We will first show

that this partial derivative is equal to f1(ξout,ξrelay)

U
∗
(ξout,ξrelay)

=

Q
∗
out(ξout,ξrelay)

U
∗
(ξout,ξrelay)

−q. Note that, the right partial derivative w.r.t.
ξout (if it exists) is:

∂G

∂ξout+
= lim

0<∆→0

G(ξout + ∆, ξrelay)−G(ξout, ξrelay)

∆
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Now, the optimal policy π∗(ξout, ξrelay) for the uncon-
strained problem in (3) will also minimize the expression for
G(ξout, ξrelay) in (25). But, the policy π∗(ξout, ξrelay) will be
suboptimal for the pair (ξout + ∆, ξrelay). Hence, we have:

G(ξout + ∆, ξrelay)

= inf
π

(
Γπ

Uπ
+ (ξout + ∆)(

Qout,π

Uπ
− q) + ξrelay(

1

Uπ
−N)

)
≤

(
Γ
∗
(ξout, ξrelay)

U
∗
(ξout, ξrelay)

+ (ξout + ∆)(
Q
∗
(ξout, ξrelay)

U
∗
(ξout, ξrelay)

− q)

+ξrelay(
1

U
∗
(ξout, ξrelay)

−N)

)
= G(ξout, ξrelay) + ∆

(
Q
∗
out(ξout, ξrelay)

U
∗
(ξout, ξrelay)

− q
)

which implies that,

∂G

∂ξout+
≤
(
Q
∗
out(ξout, ξrelay)

U
∗
(ξout, ξrelay)

− q
)

In a similar manner, by using the fact that π∗(ξout, ξrelay)
is suboptimal for the pair (ξout−∆, ξrelay), we can claim that

∂G

∂ξout−
≥
(
Q
∗
out(ξout, ξrelay)

U
∗
(ξout, ξrelay)

− q
)

Since we have assumed that ∂G
∂ξout

exists, we must have
∂G

∂ξout+
= ∂G

∂ξout− , which proves that the partial derivative w.r.t.

ξout will be equal to (
Q
∗
out(ξout,ξrelay)

U
∗
(ξout,ξrelay)

− q).

We now turn to the existence of ∂G
∂ξout

. Note that, since
G(ξout, ξrelay) is the minimum of a family of affine functions
of ξout and ξrelay, G(ξout, ξrelay) is concave and hence
coordinatewise concave. Hence, for any given ξrelay , there
are only at most countably many values of ξout where
∂G
∂ξout

does not exist. To see this, let us define the function
H(ξout, ξrelay) to be the supremum of the subgradients of
G(ξout, ξrelay) with respect to ξout (keeping ξrelay fixed),
at a point (ξout, ξrelay). Since G(ξout, ξrelay) is concave,
H(ξout, ξrelay) will be decreasing in ξout. But any monotone
real-valued function has an at most countable number of
discontinuities (see [34], Theorem 4.30). Hence, for a given
ξrelay, the function H(ξout, ξrelay) is discontinuous for an at
most countable number of values of ξout, and consequently
∂G
∂ξout

exists everywhere except for an at most countable set
of values of ξout.

For a given ξrelay, let ξ′out be one such value where ∂G
∂ξout

does not exist. Then, there exists a sequence {ζn}n≥1 ↓ 0
such that ∂G

∂ξout
exists at each ξout = ξ′out + ζn. This follows

from the fact that for any ζ > 0, we can find one ξout ∈
(ξ′out, ξ

′
out + ζ) where ∂G

∂ξout
exists, otherwise the number of

points where ∂G
∂ξout

does not exist will become uncountable.
Similarly, there exists a sequence {κn}n≥1 ↓ 0 such that ∂G

∂ξout
exists at each ξout = ξ′out − κn.

Note that, by concavity, limn→∞
∂G
∂ξout

|ξ′out−κn ≥
∂G

∂ξout− |ξ′out ≥ ∂G
∂ξout+

|ξ′out ≥ limn→∞
∂G
∂ξout

|ξ′out+ζn .

The last term in this chain of inequalities is equal to
limn→∞(

Q
∗
out(ξ

′
out+ζn,ξrelay)

U
∗
(ξ′out+ζn,ξrelay)

− q) = (
Q
∗
out(ξ

′
out,ξrelay)

U
∗
(ξ′out,ξrelay)

− q)

by the arguments in the beginning of this proof and by the
continuity results in Theorem 11. Same arguments hold for the
first term in the chain of inequalities. Hence, ∂G

∂ξout− |ξ′out =
∂G

∂ξout+
|ξ′out = ∂G

∂ξout
|ξ′out = (

Q
∗
out(ξ

′
out,ξrelay)

U
∗
(ξ′out,ξrelay)

− q).

In a similar way, we can show that ∂G
∂ξrelay

=

( 1
U
∗
(ξout,ξrelay)

−N).
Now we see that both of the partial derivatives of G exist

at all points and the partial derivatives are continuous in both
ξout and ξrelay (by Theorem 11). Hence, by Theorem 12.11
of [35], G(·, ·) is differentiable. Hence, the lemma is proved.
�

Choice of A2 and A3: Let us consider the scenario

where ΛG

(
f1(ξout,ξrelay)

U
∗
(ξout,ξrelay)

,
f2(ξout,ξrelay)

U
∗
(ξout,ξrelay)

)
has a zero

(ξ′out, ξ
′
relay) (on the boundary of G) such that

(λ∗(ξ′out, ξ
′
relay), ξ′out, ξ

′
relay) 6∈ K(q,N). In this case,

if (λ(k), ξ
(k)
out, ξ

(k)
relay) → (λ∗(ξ′out, ξ

′
relay), ξ′out, ξ

′
relay)

(depending on the sample path of the iterates in
the OptExploreLimAdaptiveLearning algorithm), then
we cannot expect the desired performance from the
OptExploreLimAdaptiveLearning algorithm. To alleviate this
problem, we need to choose A2 and A3 in a proper way. One
method of choosing A2 and A3 is given below.

We will first explain how A2 has to be chosen. Note that,
for any given link of length u and shadowing realization
w, argminγ∈S(γ + ξoutQout(u, γ, w)) = PM if we choose
ξout sufficiently large. We use this fact in the choice of
A2. The number A2 has to be chosen so large that under
ξout = A2 and for all A + 1 ≤ u ≤ A + B, we will have
P(argminγ∈S(γ + A2Qout(u, γ,W )) = PM ) > 1 − κ for
some small enough κ > 0. Such a choice of A2 ensures
that (i) the mean power per link (under policy π∗(A2, ξrelay)),
Γ
∗
(A2, ξrelay) ≥ (1 − κ)PM + κP1 (which is close enough

to PM ), which, further, ensures that (ii) Γ
∗
(A2,ξrelay)

1/N
is

greater than or equal to the optimal mean power per step
for problem (4). The second claim is easy to see, since
Γ
∗
(A2, ξrelay) ≥ (1 − κ)PM + κP1 ≥ Γ

∗
(ξ∗out, ξ

∗
relay),

and since U
∗
(ξ∗out, ξ

∗
relay) ≥ 1

N
(recall Assumption 1 about

the existence of ξ∗out and ξ∗relay). Note that, the choice of
κ depends on (q,N) and the radio propagation parameters,
and, hence, must be made carefully so that the condition is
satisfied. In the proof of Lemma 9, we will see that this
condition ensures that for any stationary point of the form
ξout = A2, ξrelay ∈ (0, A3), we have Q

∗
out(A2,ξrelay)

U
∗
(A2,ξrelay)

= q and
1

U
∗
(A2,ξrelay)

= N , and, consequently, the point (A2, ξrelay)

will be in K(q,N).
The choice of A2 must satisfy another condition. We need

to choose A2 so large that Q
∗
out(A2,0)

U
∗
(A2,0)

≤ q. Note that, if (q,N)

is a feasible constraint pair, then a constraint q on the mean
outage per step alone (if we drop the constraint on the relay
placement rate) is also feasible. Let us consider the problem of
minimizing the mean power per step subject to a constraint q
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on the mean outage per step. Then, we will choose ξrelay = 0.
The mean outage per step under policy π∗(ξout, 0) will still
decrease as ξout increases (by Theorem 5). Hence, we can
choose an A2 which satisfies this condition. This condition
will be used in showing that if (A2, 0) is a stationary point of
the o.d.e., then (λ∗(A2, 0), A2, 0) ∈ K(q,N).
A2 has to be chosen (according to the two criteria mentioned

above) via prior computation, using the prior knowledge of the
propagation environment; if we know the range of values of
radio propagation parameters (e.g., η and σ), we can compute
what value of A2 will satisfy the criteria under all possible
radio propagation parameters.

Once A2 is chosen, we need to choose A3. The number
A3 has to be chosen so large that for any ξout ∈ [0, A2], we
will have U

∗
(ξout, A3) > 1

N
(provided that 1

N
< A + B).

This is possible and obvious from the structure of OptEx-
ploreLim (Algorithm 3); by choosing ξrelay large enough, we
can achieve a mean placement distance equal to (A + B),
provided that ξout ∈ [0, A2]. For example, if we choose
A3 = 100(A+B)(PM +A2), then:

λ∗(ξout, A3)

=
Γ
∗
(ξout, A3) + ξoutQ

∗
out(ξout, A3) +A3

U
∗
(ξout, A3)

≥ A3

A+B
= 100(PM +A2)

and π∗(ξout, A3) will always place at a distance of (A+B).
This choice of A3 ensures that the policy π∗(ξout, A3) satisfies
the constraint on the relay placement rate with strict inequality,
and hence no point of the form (ξout, A3) is a stationary point
of the o.d.e.

The numbers A2 and A3 have to be chosen so large that
there exists at least one (ξ′out, ξ

′
relay) ∈ [0, A2]× [0, A3] such

that (λ∗(ξ′out, ξ
′
relay), ξ′out, ξ

′
relay) ∈ K(q,N). �

Proof of Lemma 9: Suppose that (ξout, ξrelay) ∈ [0, A2]×

[0, A3] is a zero of ΛG

(
f1(ξout,ξrelay)

U
∗
(ξout,ξrelay)

,
f2(ξout,ξrelay)

U
∗
(ξout,ξrelay)

)
.

Note that, ΛG

(
f1(ξout,ξrelay)

U
∗
(ξout,ξrelay)

,
f2(ξout,ξrelay)

U
∗
(ξout,ξrelay)

)
is equal

to (
f1(ξout,ξrelay)

U
∗
(ξout,ξrelay)

,
f2(ξout,ξrelay)

U
∗
(ξout,ξrelay)

)
if (ξout, ξrelay) lies in

the interior of [0, A2] × [0, A3]. Thus, for any stationary
point (ξout, ξrelay) ∈ (0, A2) × (0, A3), the optimal policy
π∗(ξout, ξrelay) meets both constraints in (4) with R.H.S.=0.
For such a stationary point, (λ∗(ξout, ξrelay), ξout, ξrelay) ∈
K(q,N) (by Theorem 1).

A point (ξout, ξrelay) on the boundary has ξout = 0 or
ξout = A2 or ξrelay = 0 or ξrelay = A3.

Let us recall Assumption 1 and the definition of

ΛG

(
f1(ξout,ξrelay)

U
∗
(ξout,ξrelay)

,
f2(ξout,ξrelay)

U
∗
(ξout,ξrelay)

)
(equation (24)). The first

component of this vector-valued function at ξout = 0 is equal
to f1(0,ξrelay)

U
∗
(0,ξrelay)

if f1(0, ξrelay) ≥ 0, and 0 otherwise. We can
make similar observations at ξout = A2, ξrelay = 0 and
ξrelay = A3.

If ξrelay = A3, then by the choice of A3 as suggested in

the OptExploreLimAdaptiveLearning algorithm (Algorithm 8),
we will have f2(ξout, A3) < 0 (since U

∗
(ξout, A3) > 1

N
).

This implies that no point on ξrelay = A3 can be a zero

of ΛG

(
f1(ξout,ξrelay)

U
∗
(ξout,ξrelay)

,
f2(ξout,ξrelay)

U
∗
(ξout,ξrelay)

)
, since the second com-

ponent of this function will be f2(ξout,A3)

U
∗
(ξout,A3)

which is strictly
negative.

Suppose that that there is a zero of

ΛG

(
f1(ξout,ξrelay)

U
∗
(ξout,ξrelay)

,
f2(ξout,ξrelay)

U
∗
(ξout,ξrelay)

)
of the

form ξout = A2, ξrelay ∈ (0, A3). Then

ΛG

(
f1(ξout,ξrelay)

U
∗
(ξout,ξrelay)

,
f2(ξout,ξrelay)

U
∗
(ξout,ξrelay)

)
will be zero if and

only if f1(A2, ξrelay) ≥ 0 and f2(A2, ξrelay) = 0.
If f1(A2, ξrelay) = 0 and f2(A2, ξrelay) = 0, then
(λ∗(A2, ξrelay), A2, ξrelay) will belong to K(q,N) (by
Theorem 1), since the corresponding optimal policy
π∗(A2, ξrelay) will satisfy both constraints in (4) with
equality. Now, we will show that, if A2 is chosen
appropriately as explained before, the case f1(A2, ξrelay) > 0
and f2(A2, ξrelay) = 0 will never arise. Suppose
that f1(A2, ξrelay) > 0 and f2(A2, ξrelay) = 0 for
some ξrelay ∈ (0, A3). Consider a new problem of
minimizing the mean outage per step, subject to a constraint
Γ
∗
(A2,ξrelay)

U
∗
(A2,ξrelay)

on the mean power per step and a constraint
1

U
∗
(A2,ξrelay)

= N on the mean number of relays per
step. By Theorem 1, π∗(A2, ξrelay) is the optimal policy
for this new problem, since it satisfies both constraints
with equality. But the policy π∗(ξ∗out, ξ

∗
relay) has the

following properties: (i) 1
U
∗
(A2,ξrelay)

= N ≥ 1
U
∗
(ξ∗out,ξ

∗
relay)

(see Assumption 1 in Section VII), i.e., π∗(ξ∗out, ξ
∗
relay)

has a smaller relay placement rate compared to
π∗(A2, ξrelay) (since π∗(ξ∗out, ξ

∗
relay) satisfies the

constraint N on the mean number of relays per step),
(ii) Γ

∗
(A2,ξrelay)

U
∗
(A2,ξrelay)

≥ (1−κ)PM+κP1
1
N

≥ Γ
∗
(ξ∗out,ξ

∗
relay)

U
∗
(ξ∗out,ξ

∗
relay)

,

i.e., π∗(ξ∗out, ξ
∗
relay) has a smaller mean power per step

compared to π∗(A2, ξrelay) (by the choice of A2, see
the previous discussion on the choice of A2), and (iii)
Q
∗
out(A2,ξrelay)

U
∗
(A2,ξrelay)

> q ≥ Q
∗
out(ξ

∗
out,ξ

∗
relay)

U
∗
(ξ∗out,ξ

∗
relay)

, i.e., π∗(ξ∗out, ξ
∗
relay)

has a strictly smaller mean outage per step compared to
π∗(A2, ξrelay) (since π∗(ξ∗out, ξ

∗
relay) satisfies the constraint

q on the mean outage per step and since f1(A2, ξrelay) > 0.
This leads to a contradiction since it violates the optimality
of the policy π∗(A2, ξrelay) for the new problem. Hence,

ΛG

(
f1(ξout,ξrelay)

U
∗
(ξout,ξrelay)

,
f2(ξout,ξrelay)

U
∗
(ξout,ξrelay)

)
cannot have a zero of the

form ξout = A2, ξrelay ∈ (0, A3) such that f1(A2, ξrelay) > 0
and f2(A2, ξrelay) = 0.

Now consider any stationary point of the form ξout ∈
(0, A2), ξrelay = 0. Then we must have f1(ξout, 0) = 0 and
f2(ξout, 0) ≤ 0. Now, consider a new problem of minimizing
the mean power per step subject to a constraint q on the mean
outage per step (with no constraint on the relay placement
rate); an optimal policy for this problem is π∗(ξout, 0) (by
Theorem 1, since π∗(ξout, 0) satisfies the outage constraint
with equality). Since (4) has one more constraint, it will have
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a larger mean power per step, i.e., Γ
∗
(ξout,0)

U
∗
(ξout,0)

≤ Γ
∗
(ξ∗out,ξ

∗
relay)

U
∗
(ξ∗out,ξ

∗
relay)

(recall Assumption 1 about the existence of ξ∗out and ξ∗relay).
If they are equal, then (ξout, 0) will be an optimal pair for (4)
and (λ∗(ξout, 0), ξout, 0) will be in K(q,N). If Γ

∗
(ξout,0)

U
∗
(ξout,0)

<

Γ
∗
(ξ∗out,ξ

∗
relay)

U
∗
(ξ∗out,ξ

∗
relay)

, then the optimality of π∗(ξ∗out, ξ
∗
relay) for the

problem (4) will be violated, since π∗(A2, 0) will produce a
strictly smaller mean power per step while meeting the outage
constraint with equality (since f1(ξout, 0) = 0) and the relay
placement rate constraint (since f2(ξout, 0) ≤ 0).

We can take care of stationary points of the form ξrelay ∈
(0, A3), ξout = 0 in a similar way.

If (0, 0) is a stationary point, then π∗(0, 0) satisfies both
constraints. Also, π∗(0, 0) places at distance (A + B) steps
and uses the minimum power level for all links. Then π∗(0, 0)
is optimal for our original problem (3).

At (A2, 0), we will have a stationary point if and only if
f1(A2, 0) ≥ 0 and f2(A2, 0) ≤ 0. If f1(A2, 0) ≥ 0 and
f2(A2, 0) = 0, then we can make similar claims as in the
ξout = A2 and ξrelay ∈ (0, A3) case. If f1(A2, 0) = 0 and
f2(A2, 0) < 0, then we can make similar claims as in the
ξout ∈ (0, A2) and ξrelay = 0 case. By the choice of A2,
π∗(A2, 0) satisfies the outage constraint q. Hence, the case
f1(A2, 0) > 0 will not arise.

Hence, the lemma is proved. �

D. Proof of Theorem 13

We will only prove that lim supx→∞
Eπoelal

∑Nx
i=1 Γi

x ≤ γ∗

almost surely.
Let us denote the shadowing random variable in the link

between the potential locations located at distances iδ and jδ
from the sink node by Wi,j . The sample space Ω associated
with the deployment process is the collection of all ω (each
ω corresponds to a fixed realization {wi,j : i ≥ 0, j ≥
0, i > j,A + 1 ≤ i − j ≤ A + B} of all possible
shadowing random variables that might be encountered in the
measurement process for deployment up to infinity). Let F be
the Borel σ-algebra on Ω. Let Sk =

∑k
i=1 Ui be the distance

(in steps) of the k-th relay from the sink (S0 := 0), and

Fk := σ

(
(λ(0), ξ

(0)
out, ξ

(0)
relay);Wi,j : i ≥ 0, j ≥ 0, i > j,A +

1 ≤ i−j ≤ A+B, i ≤ Sk−1+A+B, j ≤ Sk−1+A+B

)
. The

sequence of σ-algebras Fk is increasing in k, and Fk captures
the history of the deployment process up to the deployment
of the k-th relay.

Let us fix an ε > 0.
Let us recall (from Section VII-B) the definition of the set

K̂(q,N) := K(q,N)∩([0, (PM+A2+A3)]×[0, A2]×[0, A3]).
Now, by Lemma 7 (see Appendix E, Section C4),

the quantities Γ(λ, ξout, ξrelay), Qout(λ, ξout, ξrelay) and
U(λ, ξout, ξrelay) (recall the notation from Section IV-B)
are continuous in (λ, ξout, ξrelay). Hence, the ratios
Γ(λ,ξout,ξrelay)

U(λ,ξout,ξrelay)
, Qout(λ,ξout,ξrelay)

U(λ,ξout,ξrelay)
and 1

U(λ,ξout,ξrelay)

are uniformly continuous over the compact set
[0, 2(PM + A2 + A3)] × [0, A2] × [0, A3]. Hence, for

any given ε > 0, we can find a δε > 0 such that if
(λ, ξout, ξrelay) belongs to a δε-neighbourhood of K̂(q,N),
then (λ, ξout, ξrelay) also belongs to the set K̂ε(q,N) where:

K̂ε(q,N) =

{
(λ, ξout, ξrelay) :

Γ(λ, ξout, ξrelay)

U(λ, ξout, ξrelay)
∈ [γ∗ − ε, γ∗ + ε]

Qout(λ, ξout, ξrelay)

U(λ, ξout, ξrelay)
≤ q + ε,

1

U(λ, ξout, ξrelay)
≤ N + ε,

0 ≤ λ ≤ 2(PM +A2 +A3),

0 ≤ ξout ≤ A2, 0 ≤ ξrelay ≤ A3

}

But, by Theorem 12, (λ(k), ξ
(k)
out, ξ

(k)
relay)→ K̂(q,N) almost

surely. Hence, there exists an integer-valued random variable T
such that (i) (λ(k), ξ

(k)
out, ξ

(k)
relay) belongs to a δε neighbourhood

of K̂(q,N) for all k ≥ T , and (ii) P(T < ∞) = 1.
In other words, for a sample path ω (for ω lying in a
set of probability 1), there exists T (ω) < ∞ such that
(λ(k), ξ

(k)
out, ξ

(k)
relay) belongs to a δε neighbourhood of K̂(q,N)

for all k ≥ T (ω). Hence, for a sample path ω (for ω lying
in a set of probability 1), there exists T (ω) < ∞ such that
(λ(k), ξ

(k)
out, ξ

(k)
relay) ∈ K̂ε(q,N) for all k ≥ T (ω).

Using the boundedness of Γi in the first equality, we obtain:

lim sup
x→∞

Eπoelal
∑Nx
i=1 Γi

x

= lim sup
x→∞

Eπoelal
∑Nx+1
i=1 Γi

x

≤ lim sup
x→∞

Eπoelal

(
I(T < Nx + 1)

∑T
i=1 Γi

)
x

+ lim sup
x→∞

Eπoelal

(
I(T < Nx + 1)

∑Nx+1
i=T+1 Γi

)
x

+ lim sup
x→∞

Eπoelal

(
I(T ≥ Nx + 1)

∑Nx+1
i=1 Γi

)
x

≤ Eπoelal lim sup
x→∞

I(T < Nx + 1)
∑T
i=1 Γi

x

+ lim sup
x→∞

Eπoelal

(
I(T < Nx + 1)

∑Nx+1
i=T+1 Γi

)
x

+Eπoelal lim sup
x→∞

I(T ≥ Nx + 1)
∑Nx+1
i=1 Γi

x

= lim sup
x→∞

Eπoelal

(
I(T < Nx + 1)

∑Nx+1
i=T+1 Γi

)
x

= lim sup
x→∞

(Eπoelal

(
I(T < Nx + 1)

∑Nx+1
i=T+1 Γi

)
Eπoelal

∑Nx+1
i=T+1 Ui

×Eπoelal
(∑Nx+1

i=T+1 Ui

x

))
(26)

Here the second inequality follows from Fatou’s
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lemma. The second equality follows from the
facts that 0 ≤ lim supx→∞

∑T
i=1 ΓiI(T<Nx+1)

x ≤
lim supx→∞

∑T
i=1 Γi
x ≤ lim supx→∞

PMT
x = 0 almost

surely and 0 ≤ lim supx→∞

∑Nx+1
i=1 ΓiI(T≥Nx+1)

x ≤
PM
A+1 lim supx→∞ I(T ≥ Nx + 1) = 0 almost surely
(since P(T <∞) = 1 and limx→∞Nx =∞ almost surely).

Now,

lim sup
x→∞

Eπoelal

(∑Nx+1
i=T+1 Ui

x

)
≤ lim sup

x→∞
Eπoelal

∑Nx+1
i=1 Ui

x

≤ Eπoelal lim sup
x→∞

∑Nx+1
i=1 Ui

x
= 1

Here the second inequality follows from Fatou’s lemma, and
the equality follows from the fact that limx→∞

∑Nx+1
i=1 Ui
x = 1

almost surely.
Hence, from (26),

lim sup
x→∞

Eπoelal
∑Nx
i=1 Γi

x

≤ lim sup
x→∞

Eπoelal

(
I(T < Nx + 1)

∑Nx+1
i=T+1 Γi

)
Eπoelal

∑Nx+1
i=T+1 Ui

= lim sup
x→∞

Eπoelal
∑Nx+1
i=T+1 Γi

Eπoelal
∑Nx+1
i=T+1 Ui

(27)

Let us denote by Eπoelal,t(·) the conditional expectation
under policy πoelal given that T = t. Now,

Eπoelal
Nx+1∑
i=T+1

Γi

= Eπoelal
∞∑

i=T+1

ΓiI(i ≤ Nx + 1)

=

∞∑
t=1

Pπoelal (T = t)

×Eπoelal
( ∞∑
i=t+1

ΓiI(i ≤ Nx + 1)

∣∣∣∣T = t

)

=

∞∑
t=1

Pπoelal (T = t)

×Eπoelal
( ∞∑
i=t+1

ΓiI(Nx ≥ i− 1)

∣∣∣∣T = t

)

=

∞∑
t=1

Pπoelal (T = t)Eπoelal,t
( ∞∑
i=t+1

ΓiI(Nx ≥ i− 1)

)

=

∞∑
t=1

Pπoelal (T = t)
∞∑

i=t+1

Eπoelal,t
(

ΓiI(Nx ≥ i− 1)

)

=
∞∑
t=1

Pπoelal (T = t)

×
∞∑

i=t+1

Eπoelal,t
(
Eπoelal,t

(
ΓiI(Nx ≥ i− 1)

∣∣∣∣Fi−1

))

=

∞∑
t=1

Pπoelal (T = t)

×
∞∑

i=t+1

Eπoelal,t
(
I(Nx ≥ i− 1)Eπoelal,t

(
Γi

∣∣∣∣Fi−1

))

≤ (γ∗ + ε)

∞∑
t=1

Pπoelal (T = t)×

∞∑
i=t+1

Eπoelal,t
(
I(Nx ≥ i− 1)Eπoelal,t

(
Ui

∣∣∣∣Fi−1

))
(28)

where the fifth equality follows from the Monotone Con-
vergence Theorem, and the last equality follows from the fact
that the random variable I(Nx ≥ i−1) = I(

∑i−1
k=1 Uk ≤ x) is

measurable with respect to Fi−1. The last inequality follows

from that fact that
Eπoelal,t

(
Γi

∣∣∣∣Fi−1

)
Eπoelal,t

(
Ui

∣∣∣∣Fi−1

) ≤ γ∗ + ε almost surely

for i > t, given that T = t (since (λ(i−1), ξ
(i−1)
out , ξ

(i−1)
relay ) ∈

K̂ε(q,N) for all i− 1 ≥ T ).
On the other hand, we can show that:

Eπoelal
Nx+1∑
i=T+1

Ui

=

∞∑
t=1

Pπoelal (T = t)×

∞∑
i=t+1

Eπoelal,t
(
I(Nx ≥ i− 1)Eπoelal,t

(
Ui

∣∣∣∣Fi−1

))
(29)

From (27), (28) and (29), we obtain that
lim supx→∞

Eπoelal
∑Nx
i=1 Γi

x ≤ γ∗ + ε. Since ε > 0 is

arbitrary, we have lim supx→∞
Eπoelal

∑Nx
i=1 Γi

x ≤ γ∗. But γ∗

is the optimal mean power per step for problem (4). Hence,
lim supx→∞

Eπoelal
∑Nx
i=1 Γi

x = γ∗.
In a similar manner, we can show that

lim supx→∞
Eπoelal

∑Nx
i=1Q

(i,i−1)
out

x ≤ q and
lim supx→∞

EπoelalNx
x ≤ N . �
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