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Motivated by the need for impromptu or as-you-go deployment of wireless sensor networks in some situa-
tions, we study the problem of optimal sequential deployment of wireless sensors and relays along a line
(e.g., a forest trail) of unknown length. Starting from the sink node (e.g., a base station), a “deployment
agent” walks along the line, stops at equally spaced points (“potential” relay locations), placing relays at
some of these points, until he reaches a location at which the source node (i.e., the sensor) needs to be
placed, the objective being to create a multihop wireless relay network between the source and the sink. The
deployment agent decides whether to place a relay or not at each of the potential locations, depending upon
the link quality measurements to the previously placed relays.

In this paper, we seek to design efficient deployment algorithms for this class of problems, in order to
achieve the objective of 2-connectivity in the deployed network. We ensure multi-connectivity by allowing
each node to communicate with more than one neighbouring nodes. By proposing a network cost objective
which is additive over the deployed relays, we formulate the relay placement problem as a Markov decision
process. We provide structural results for the optimal policy, and evaluate the performance of the optimal
policy via numerical exploration. Computation of such an optimal deployment policy requires a statistical
model for radio propagation; we extract this model from the raw data collected via measurements in a forest-
like environment. To validate the results obtained from the numerical study, we provide an experimental
study of algorithms for 2-connected network deployment.

CCS Concepts: •Networks→Mobile ad hoc networks;

Additional Key Words and Phrases: Wireless sensor networks, Sequential relay placement, Measurement
based impromptu deployment, As-you-go relay placement, Two-connected network, Markov Decision Pro-
cess.

1. INTRODUCTION
Interconnection between wireless sensors or mobile devices and an infrastructure net-
work (wireline) via wireless relay nodes is an important requirement, since a direct
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Fig. 1. Two wireless relays (shown as filled dots) deployed to connect a source to a sink along a line by
a multihop path. The unfilled dots show the potential relay placement locations where measurements are
made but the deployment agent decided not to place relays. The potential links between the potential place-
ment locations are denoted by thin dashed lines, and the solid lines with arrow heads represents the actual
links used in the network. The distance between two successive potential locations is the step size δ.

one-hop link from the source node to the infrastructure “base-station” may not always
be feasible, either because of the distance between those two nodes or because of the
poor channel quality in that particular link. This limitation of single-hop communica-
tion gives rise to the necessity of multihop communication via relay nodes. The relay
nodes are battery operated and costly. Therefore, the resource constrained relays need
to be placed optimally in the sense of placing a small number of relays in an energy
conscious manner while achieving satisfactory packet transfer performance.

Ad hoc wireless networks, with static nodes, can be deployed by making exhaustive
measurements between all pairs of potential node placement locations; with reference
to Figure 1, this would require us to measure the qualities of all potential links (repre-
sented by all solid and dotted lines). Such an approach will provide the global optimal
solution to the optimal relay placement problem, but, on the negative side, will require
a large number of link quality measurements (of the order of the square of the number
of potential node placement locations). This type of “planned” deployment, therefore,
will take considerable time for carrying out a deployment.

In the light of the above difficulty in planned deployment, it is often desirable to
deploy the network in an impromptu (or “as-you-go”) fashion. One example is fast
network deployment in emergency situations by firemen and commandos (see [?], [?]
etc.). As-you-go deployment can be very useful for deployment over a large terrain
without a precise radio map, such as a long forest trail (see [?], [?]), or if the deployment
needs to be stealthy (e.g., to monitor poaching or fugitives in a forest).

Motivated by the above set of practical problems, we consider the problem of “as-you-
go” deployment of relay nodes along a line of unknown length, between a sink node and
a source node (see Figure 1). The transmit power required to establish a link (with a
certain minimum quality) between any two nodes is modeled by a random variable
capturing the effect of path-loss and shadowing. The placement decision at a point is
purely based on link quality measurements from the current location to the previously
placed relays (placement is done sequentially as the deployment agent walks along
the line). In this work, we retain many of the assumptions made in prior literature
(see [?] and its extended version [?]): (i) a single deployment agent walks along the
line, starting from the sink, (ii) there are potential relay placement points at multiples
of a fixed, given, distance δ (say, 10 meters) from the sink, (iii) based on link quality
measurements to the already placed relays, the agent must decide whether to place
a relay at a potential placement location or move on, (iv) a sensor has to be placed
at an a priori unknown location that is discovered as the agent walks along the line,
(experience does show that the source locations are often not precisely fixed a priori, for
example, in forest monitoring application) (v) assuming a light packet rate regime, the
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objective of the deployment is to minimise an expected additive cost over the deployed
nodes, where the cost of a deployed network is a linear combination of the sum power,
sum outage and the number of relays placed.

The most relevant prior work reported in [?] assumes that after the line network
is created, a relay is constrained to communicate only with its adjacent relays. But
this assumption is a severe drawback when we consider the possibility of node or link
failures in the deployed network (either due to physical damage of the nodes, or due
to battery exhaustion, or due to long-term variation of link qualities in the network
(such as seasonal variation of radio propagation characteristics)). Since the deploy-
ment algorithms reported in [?] do not consider these possibilities, any single node or
link failure can turn out to be fatal to the performance of the entire network, and can
even disconnect the source from the sink, causing complete network failure.

In order to alleviate these problems, in this paper we seek to design and verify mea-
surement based as-you-go deployment algorithms that place relays in such a way that
the network is K node-connected, with K > 1. The choice of K could be determined
by a statistical characterization of the long term variations in the links. The goal, in
this paper, is for the deployment agent to place nodes as he walks along a line, so as
to ensure K node disjoint paths (to be formalised later) from the sensor (source) to the
sink (destination). In this paper, we focus on the case where K = 2.

In the K = 2 case, while formulating the sequential decision problem for relay place-
ment, we need to define the cost of placing a relay at a potential location. We do this
by taking a linear combination of the costs of two links from the current location to
two preceding nodes, and provide a method for determining the combining coefficients.
Then the problem is formulated as a discounted cost or average cost Markov decision
process (MDP), and structural results for the optimal policy are obtained. The tech-
niques that we use easily extend to K > 2, albeit with the need to take more measure-
ments at each decision step, and with the increase in the computational complexity of
determining the optimal policy.

1.1. Related Work

Problems of “as-you-go” deployment of wireless networks are addressed by heuristic
or experimental techniques in existing literature. Howard et al., in [?], describe an
incremental deployment algorithm for a mobile sensor network. The proposed algo-
rithm deploys nodes one at a time in an unknown environment. The deployment loca-
tion is determined by using the information gathered by previously placed relays. In
a somewhat similar setting, Loukas et al., [?], addressed the problem with dynamic
localization of robots that can serve as wireless relays in emergency situations to con-
nect wireless devices and the infrastructure network. Souryal et al., in [?], came up
with a deployment algorithm based on an experimental study of RF link variation in
an indoor setting. The heuristic algorithm proposed in the paper exploits on-site mea-
surements that are made during the deployment process. In a survey article, Fisher
et al., [?], describe various localization techniques for assisting emergency responders.
Liu et al. ([?]) describe a breadcrumbs system (BCS) to aid fire-fighters inside build-
ings by communicating to the base station outside the building. [?] provide reliable
multiuser breadcrumb system which exploits efficient and automatic co-ordination.
Bao and Lee ([?]) consider the problem of multiple person walking in an unknown ter-
rain and collaboratively placing relays. The objective is to maximize the area covered
by them while staying connected. They propose a heuristic algorithm based on mea-
surements between the deployed relays. Gao et al., [?] propose an architecture for an
emergency response system relying on a self-configuring wireless mesh network for
public safety. In [?], Naudts et al., describe the concept and implementation of a moni-
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toring tool that helps an emergency team in deploying a network and also providing a
real time overview of the status of the network.

In the literature referred to thus far in this section, many heuristic algorithms were
proposed for relay placement and their performance was verified numerically or exper-
imentally, without any optimality guarantee. There has been little effort to formulate
the optimal relay placement problem rigorously, until the work by Mondal et al. ([?]).
The authors of [?] took the first step towards addressing the as-you-go deployment
problem on a line via an MDP formulation; they assumed a probability distribution for
the unknown location of the source along the line and derived optimal relay placement
policies under that. Sinha et al., in ([?]), extended this work by addressing the prob-
lem of impromptu relay placement along a random lattice path. Both of these papers
assumed a deterministic mapping between the wireless link length and link quality; a
conservative fade margin was used to account for spatial variation of link quality due
to shadowing. This shortcoming was addressed by the authors of [?] and [?], who took
a measurement based approach to decide the relay placement locations. The measured
link quality (in terms of link outage probability) in their work takes care of shadowing
in a wireless link, and the effect of fading is averaged out since a lot of data packets
are transmitted over multiple coherence times in order to measure the quality of a
link. This approach was later extended and implemented for creating a network along
a forest trail (see [?]).

1.2. Our Contribution
1-connected networks might not be useful for a practical setting where the network de-
ployment should be robust against node/ link failures (either due to physical damage
of the nodes, or due to battery exhaustion, or due to long-term variation of link quali-
ties in the network (such as seasonal variation of radio propagation characteristics)).
In this paper, we address the problem of creating a 2-connected network that is robust
to such failures. We view this paper as a significant extension of our previous papers
[?] and [?]. The key differences of our current paper with [?] and [?] are the following:

— Modeling of the wireless channel: The radio propagation model, statistical mod-
eling of the wireless channel, theory and experiments that yield the statistical
model are explained in Appendix B. We utilize Gudmundson’s model and concepts
from hypothesis testing to obtain the channel parameters, namely the path loss ex-
ponent and shadowing variance. Also, experiments reported in Appendix B provide
a way to fix the deployment step length used throughout the paper, and the number
of packets to be transmitted for link evaluation. The radio propagation modeling
with experimental validation was neither present in [?] nor in [?].

— Formulation with sum outage, and implications for the optimal policy: In
[?], we consider a fixed target outage for deployment algorithms. But, as explained
in Section 2.2.1, these algorithms often run into the trouble of “Deployment Fail-
ures”. In order to fix this, we include outage cost in our formulation and the value
iteration becomes much more complex computationally. Formulation with outage is
considered in [?] for 1 connected networks, but again, extending it to 2 connected
network brings additional complexity in value iteration and policy computation.

— Routing on a 2-connected network: Once the network is set up there is the issue
of routing over this network, an issue that did not exist with the 1-connected design
(for example in [?]. In the one connected network problem, every node communicates
with its immediate neighbor. In two connected network, the presence of redundant
links gives rise to multiple routes from the source to the sink. We formulate the net-
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work optimization problem involving the co-efficients c and c1 in Section 2.5, where
we argue that, in general, c and c1 are chosen to give relative importance to adding
additional links, thereby creating redundant paths. One approach for the choice of
c and c1 could be the relative frequency of using the direct neighbor link (i.e., c) or
the two-hop neighbor link (i.e., c1) when a packet arrives at a node. As an example
of such an approach, in Section 2.6, we provide a particular methodology for choos-
ing c and c1 in the case where routing over the resulting network is probabilistic.
It turns out that, under probabilistic routing, c and c1 can be parameterized by a
single parameter p.
The simulations and experimental work described in the current paper are much
more extensive because we study the effect of parameters c and c1 on deployment;
this aspect was absent in [?].

2. SYSTEM MODEL

Deployment is done by a single deployment agent along a line discretized in steps of
length δ (see Figure 1); we call each such point on the line a potential relay location.
The possibility of another person following the agent behind, who can learn from the
measurements and actions of the first person, and supplement the actions of the pre-
ceding individual is not considered in this paper.

After the network is deployed, the sink node is denoted by Node 0, the relay closest to
the sink is indexed as Node 1, and likewise the relays are enumerated by {1, 2, . . . , N},
where N is a random number depending on the stochastic evolution of the shadowing
encountered by the deployment agent. The source is called node (N + 1). The link
having transmitter node i and receiver node j is denoted by (i, j). Also we sometimes
denote a generic link by e. The length of any link is an integer multiple of step size δ.

We first develop a channel model and define the outage probability based on the
model. We then discuss the evolution of the deployment process and analyze differ-
ent distance models from sink to source. After that, different network topologies for
2 connected network is discussed. Given a specific deployment process and network
topology, we then formulated an objective function involving power cost outage cost
and relay placement cost that the deployment algorithm minimizes.

After the deployment of the network, since 2-connected network topology provides
the flexibility of redundant links and hence an opportunity of routing. Any routing
could be used over this network. For example, if RPL (Routing Protocol for Low-Power
and Lossy Networks, [?]) is used, then it would determine shortest path routes, based
on whatever link metric it is programmed for. Only one special approach to routing
over this network has been considered in this paper, that is probabilistic routing (Sec-
tion 2.6), where, as the packet progresses from the source to the sink, at an interme-
diate node the one-hop previous neighbor is chosen with probability p, and the other
downstream neighbor is chosen otherwise. With such a routing we suggest that co-
efficients c and c1 (involved in total network cost, see Section 2.5 for details) can be
taken to be the probabilities of the corresponding link being used; these probabilities
are derived in terms of the parameter p.

Finally we discuss a traffic model, namely the lone packet model, which is motivated
by many practical examples and argued that the deployment algorithm works under
such traffic model.
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2.1. Channel Model and Outage Probability
The received signal power of a packet (say k-th packet, where k ≥ 1) for a particular
link (i.e., a transmitter-receiver pair) of length r is given by:

Prcv,k = γa

(
r

r0

)−η
HkW (1)

where γ is the transmit power, a corresponds to the path-loss at the reference dis-
tance r0, η is the path-loss exponent, Hk denotes the realisation of the fading random
variable seen by the kth packet, and W denotes the shadowing. For a given link the
realization of W is fixed, whereas fading varies randomly over time. Thus, different
links of length r will have different, but fixed, realisations of the shadowing random
variable W , and, for each of them, their respective Hk sequences will model fading over
time. As shadowing captures the spatial variation of link qualities, different links in a
network observes different realizations of shadowing. The transmit power of a node is
assumed to take values from a finite set S, since practical radios can transmit only at
a finite set of power levels.

Shadowing models the spatial variation of the mean path loss around the loss given
by the basic power law model. The marginal distribution of the shadowing process
is usually modelled as a multiplicative, log normal random variable with a typical
standard deviation of 7−9 dB. Also, shadowing is spatially uncorrelated over distances
comparable to the sizes of the objects in propagation environment. Our measurements
in a forest-like region inside Indian Institute of Science campus supported the log-
normality of shadowing and gave a shadowing decorrelation distance of 6 meters (see
Appendix B). In this paper, i.i.d. shadowing across links is assumed; the assumption
is reasonable if the step size δ is chosen to be at least the shadowing decorrelation
distance.

A link is said to be in outage if the received power (RSSI) for a packet falls below a
given target Pth (e.g. Pth = −88 dBm for the popular TelosB mote to achieve 2% packet
error rate (PER), see [?] for experimental validation of this assertion). Outage occurs
because of random variation of packet RSSI values over time due to fading. Let us
consider a generic wireless link (e.g., a Tx-Rx pair) of length r, shadowing realization
W = w and the transmit power γ. The outage probability Qout(r, γ, w) depends on
fading statistics modelled as random variable H. Outage will correspond to the event
Prcv ≤ Pth. The outage probability of the link is defined as,

Qout(r, γ, w) = P (Prcv ≤ Pth) = P (γ.a.(
r

r0
)−η.w.Hk ≤ Pth)

If we assume Rayleigh fading, Hk is exponentially distributed with parameter 1.

Qout(r, γ, w) = 1− e−
Pth.(

r
r0

)η

γ.a.w (2)

Qout(r, γ, w) in a link can be measured by sending packets over multiple channel
coherence times and measuring the fraction of packets having RSSI below Pth.

2.2. The Deployment Process
Starting from the sink node, the deployment agent, at each multiple of the basic “step-
length” δ (i.e., at each potential relay location), measures the link outage probabilities
(at all possible transmit power levels) to some of the previous relays. In Figure 2, the
deployment agent measures link outage probabilities from its current location to the
immediately previous 2 relays. The distances from the current location to the previ-
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) 

Fig. 2. From the current location (shown by the image of deployment agent), the agent measures outage
probabilities at all transmit power levels to the previously placed 2 relays shown by filled circle. The circles
(both filled and unfilled) represent potential locations which are δ distance apart. The unfilled circle rep-
resents potential placement locations where measurements have been made but relays are not placed. The
deployment agent stops at all potential locations in order to take outage measurements. The distances from
the current location to the previously placed 2 relays are r and r + r1 steps respectively, with r + r1 ≤ B,
where B is a constant. The shadowing in the corresponding links are w and w1. The wireless links are
shown using solid lines with arrow heads with transmit powers Γ(i,i−1) and Γ(i,i−2) and outage probabili-
ties Q(i,i−1)

out and Q(i,i−2)
out for i = {1, 2}.

ously placed 2 relays are r and r+ r1 steps respectively with corresponding shadowing
realization of w and w1. Given his current location with respect to the relays already
deployed, and given the measurements made from the current location to the previous
nodes, the deployment agent decides whether or not to place a relay at that point. If
the agent decides to place a relay, he also decided the power level to be used by the
relay. In this process, if r + r1 = B steps (B is a parameter that is set to a particular
value before deployment starts), he must place a node there. We assume that there is
a single sensor (the source) that has to be placed at one of these locations; in the de-
ployment process, if the deployment agent reaches the location where the source needs
to be placed, he places the source there, and the deployment process terminates.

The distance of the source location from the sink node is random, and its realization
is revealed to the deployment agent only after he discovers the source location in the
process of deployment. Uncertainty in the source location would be a practical reality
in applications where the need for placing a sensor at a location is realized only as the
terrain is explored. As the deployment is based on on-line measurements of (random)
channel qualities, the locations of the deployed relays and the number of relays placed
between source and sink, N , are random.

2.2.1. Including outage in network cost. In [?], deployment algorithms have been devel-
oped for minimizing sum power only given a fixed outage constraint. This approach
has a serious drawback. Suppose that the deployment agent has reached the B-th lo-
cation (where B-th location denote the location that is Bδ apart from the sink, and B
denotes the transmission range of the relay under consideration) and from there the
measured link quality to the two previous nodes is very poor. This can occur because
log normal shadowing W has support (0,∞); it can take an arbitrarily small value. In
this case, the power needed for that link to achieve the target outage may exceed the
maximum available power in the mote. We call this deployment failure. It is interest-
ing to compute the probability of such deployment failure in the 2-connected algorithm
that we have derived. With Rayleigh fading, log-normal shadowing, target outage prob-
ability of 1%, B = 5, and step size δ = 11 m, it turns out that the computed probability
of deployment failure is 2.69%. By simulating 10,000 deployments, we found that the
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Relay 1 Relay 2 Relay 3 Relay 4 Source
(N+1)

Sink
(0)

Fig. 3. The filled dots represent placed relays and they are separated by integer multiples of step size δ. The
sink and source nodes are shown as node 0 and N+1 respectively, with N = 4. The figure shows a topology
in which each relay, except the first, has a link to two (immediately) previous neighbors. There are 2 node
disjoint paths shown with solid and thin dashed lines.

deployment failure probability for ξrelay = 0.001, 0.01, and 0.1 are 0.72%, 1.24%, and
1.76% respectively. To address this issue, in this paper, we have included outage as one
of the objectives to minimize, and thus our algorithm is robust to deployment failure.

2.2.2. Choice of B. The upper limit B ensures that the deployment agent does not
move away too far from the previous relays without placing a node. The choice of B will
depend upon the statistical model parameters of the radio propagation environment
and on the constraints in the deployment process. B must be chosen such that the
outage probability Qout(B, γ,W ) is within a tolerable limit with high probability, with
the highest transmit power; otherwise the deployment algorithm might create a very
long link having high outage probability.

2.3. Models for the Distance from the Sink to the Source
One possible model for the distance of the sink from the source is that the source (i.e.,
the sensor) is at an unknown distance L × δ away, where L ≥ 1 is an integer valued
random variable with mean L and δ is the step length. It is well known that the geo-
metric distribution is the maximum entropy discrete probability mass function with a
given mean. Hence, one reasonable model is to take L to be geometrically distributed
with mean 1

θ ; i.e., Prob(L = k) = (1− θ)k−1θ, k ≥ 1. This means that if the line has not
ended at the current location of the deployment agent, (i.e., the deployment agent has
not reached the location where the source needs to be placed) it will end in the next
step with probability θ and continue with probability (1− θ). If the line ends, then the
source node has to be placed. Hence, given an estimate of the distance of the source
from the sink, and given the value of δ, we can obtain L. Then θ is obtained by setting
1
θ = L. By using the geometric distribution, we are leaving the length of the line as
uncertain as we can, given the prior knowledge of L. In the analysis part of this paper,
we assume δ = 1 for simplicity.

It is to be noted that the mean distance L̄ may not be known apriori. Also the length
may be very large, in terms of the number of steps (typically this will be the case
in forest deployment). Therefore an alternate model for L is to take the line to be of
infinite length, i.e., L = ∞. L = ∞ is a mathematical realization of a long network,
and permits us to get a tractable sequential decision formulation. Here the goal will
be to deploy a string of relays so that the average cost of the network per unit distance
is small. This model would also be useful in a situation where the line is long or when
there is no information about L. For multiple sources, if networks are to be deployed
along multiple trails in a forest and if the trails are close together then a 2-dimensional
approach would be better (though such an approach does not as yet exist). If, however,
the trails are not close together and the propagation along them is homogeneous then
the agent can successively deploy along them, assuming that it is one long trail.
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2.4. 2-Connected Topologies
In this work we design deployment algorithm for 2 connected networks. An application
of this design can be in forest monitoring, where the source to sink distance can be
several hundreds of meters. In order to ensure a reasonable end-to-end packet error
rate (PER), we need a network with a small number of hops (up to 5, say). Hence the
hop lengths will be relatively large, and with typical transmit power levels of the radios
used in these systems, it is unlikely that good links will exist between nodes that are
more than two hops apart. Thus, in practice, K = 2 would suffice and this motivates
us to design deployment algorithms only for K = 2.

Let us denote the set of potential locations by Vp := {0, 1, 2, · · · }, with the sink at
location 0. We assume that there is a given positive integer parameter B, such that
there is a potential link between a pair of potential node locations only if the two
locations are no more than B steps apart, i.e., the set of potential edges is Ep := {(i, j) :
j < i, i − j ≤ B, i ∈ Vp, j ∈ Vp}. The corresponding directed graph is denoted by
Gp = (Vp, Ep).

Given a deployment of N relays, indexed 1, 2, · · · , N, at the potential locations
{`1, `2, · · · , `N}, we denote V := {0, `1, `2, · · · , `N , L}. Let E ⊂ Ep denote the set of
edges (on V ) selected by the deployment algorithm. Consider the directed acyclic graph
G = (V,E). The deployment should be such that there are two node disjoint and edge
disjoint directed paths on this graph, connecting the sensor to the sink (see Figure 3).
After the deployment is over, the link whose transmitter is Node m (at location `m)
and receiver is Node n (at location `n) is called link (m,n). Let Γ(m,n) denote the power
used in the link (m,n). Due to random shadowing the links evaluated in the deploy-
ment process, Γ(m,n) is a random variable.

2.4.1. Two Neighbour (2N) Topologies. Consider a subgraph of G, in which for each j, 2 ≤
j ≤ N, we retain the links (j, i1) and (j, i2), such that 0 ≤ i2 < i1 < j, i.e., every node
has a link with two of the earlier placed nodes. It is easy to see, and will be proved in
Theorem 2.2, that each node j, 2 ≤ j ≤ N + 1, has two node disjoint and edge disjoint
directed paths to the sink. The special case in which, with j ≥ 2, it holds that i1 = j−1,
and i2 = j − 2 will be called Two Nearest Neighbour (2NN) Topologies. Figure 3 shows
a 2NN topology with N = 4. In this paper, we select the 2NN topology. One of the
motivations to choose 2NN topology over 2N topology is that in practical applications,
2N topology is rare. As explained earlier, in applications like forest monitoring, having
a 3 or 4 hop wireless link is rare and thus 2NN topology is a more practical choice.

Definition 2.1. In a directed graph, a pair of nodes (s, t) is said to be K edge con-
nected (resp., K relay connected) if the removal of any K − 1 arbitrary edges (resp.,
relays) ensures the existence of a directed (s, t) path.

THEOREM 2.2. In a 2N topology with number of relays N ≥ 1, the (source, sink)
pair is 2 edge-connected as well as 2 relay-connected.

PROOF. See Appendix A.

Corollary. The results hold for a 2NN Topology which is a special case of the 2N
topology.

2.5. Network Cost Structure
In this section, we develop the network cost to evaluate the performance of any policy.
Let us denote the number of relays placed upto distance xδ by Nx, and N0 := 0. Since
the decision to place a relay is based on the measurements to the already placed relays
and the path loss over a link is a random variable (owing to shadowing), {Nx, x ≥ 1} is
a random process and the nodes are enumerated as {0, 1, 2, . . . , Nx}. In 2NN topology,
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when a node i is placed, the deployment agent prescribes the transmit power this node
should use, i.e., Γ(i,i−1) and Γ(i,i−2). The outage probabilities over link (i, i − 1) and
(i, i− 2) are Q(i,i−1)

out and Q(i,i−2)
out (Figure (2)). Given two weighting coefficients c and c1,

the network cost up to distance xδ is a linear combination of three cost measures:

(1) The number of relays Nx.

(2) The weighted sum power over all links,
(
c
∑Nx
i=1 Γ(i,i−1) + c1

∑Nx
i=2 Γ(i,i−2)

)
. This is

the measure of energy required for network operation. The motivation for this is
described later in Section 2.7.3.

(3) The weighted sum outage over all links,
(
c
∑Nx
i=1Q

(i,i−1)
out + c1

∑Nx
i=2Q

(i,i−2)
out

)
. The

motivation for this measure is that, for small values of Qout, the sum outage is
approximately equal to the probability that a packet sent from distance xδ to the
source encounters an outage along the path from the point x back to the sink (since
we assume “lone packet model”, there is no contention).

Note that when deciding on the placement of node i, the coefficient c multiplies the
cost metric of the link to node i − 1, whereas the coefficient c1 multiplies the cost of
the link to node i − 2 (if i ≥ 2). If c = 1 and c1 = 0, the deployment objective does not
care about the quality of (i, i− 2) link, and the problem degenerates into one in which
routing is to the immediate previous relay. In such as situation, the relays might be
placed too far apart for the (i, i− 2) links to be usable in the deployed network. On the
other hand, if c1 is positive the deployment objective seeks node placement so that the
(i, i − 2) links are usable, and there is a reasonable compromise between the outage
and power cost on these links. We provide a numerical and experimental study of the
effect of the choice of these coefficients in Sections 3.7 and 4. In Section 2.6, we suggest
how values of c and c1 can be obtained if probabilistic routing is used on the deployed
network.

Now, these three costs are combined linearly into one single cost measure with ex-
pectation (for policy π)

min
π∈Π

Eπ
(
c

Nx∑
i=1

Γ(i,i−1) + c1

Nx∑
i=2

Γ(i,i−2) + ξout(c

Nx∑
i=1

Q
(i,i−1)
out + c1

Nx∑
i=2

Q
(i,i−2)
out ) + ξrelayNx

)
(3)

The multipliers ξrelay ≥ 0 and ξout ≥ 0 can be interpreted as Lagrange multipliers
for a constrained optimization problem (See Section 2.7). ξrelay ≥ 0 and ξout ≥ 0 are
viewed as an emphasis we give to outage and relay placement rate in our deployment
policy. For example, if we want low outage; then we need to choose a high value of ξout.
We now provide a choice of c and c1 via probabilistic routing.

2.6. An approach for choosing c and c1
We will provide a numerical study of the effect of choosing various values of c and c1
in Section 3.7. Here we motivate a particular choice of c and c1 is probabilistic routing
is used on the deployed network, i.e., during network operation a relay forwards a
packet to the one hop previous neighbour with probability p, and the two hop previous
neighbour with probability 1− p.

With probabilistic routing, in order to develop expressions for c and c1 in terms of
p, we consider an infinitely long network with a 2NN topology, and trace the path of
a packet from the source to the sink. In this setup, consider the kth relay from the
source, and define ηk to be the probability that the packet traverses this node. It can
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then be shown (Lemma (A.1) in Appendix A) that limk→∞ ηk = 1
2−p . Thus, for large k,

the probability that the link to the immediate neighbour towards the sink is used is
p

2−p , whereas the probability that the other link is used is 1−p
2−p . Based on this analysis

we take c = p
2−p and c1 = 1−p

2−p .

2.7. Formulation as a Sequential Decision Process
A sequential decision process is a process where at each step or iteration, based on
past observation and current state, the decision maker chooses an action from the ac-
tion set available to him. In the current setup, at each step from source to sink, based
on the wireless channel condition, the decision maker decides whether to place a re-
lay at that location and if he chooses to place a relay, he also decides the power level
to be used by the agent. So, the deployment process is a sequential decision process.
We now write the objective function that our algorithm minimizes. First, we mention
the unconstrained problem, where total cost (consists of power cost, outage cost and
relay cost) per step is minimized. We also show that, this is equivalent of solving a con-
straint optimization problem where total cost per step is minimized with a constraint
on average outage cost and average relay cost.

2.7.1. The Unconstrained Problem. Motivated by the cost structure of (3), we seek to
solve the following problem:

inf
π∈Π

lim sup
x→∞

Eπ
(
c
∑Nx
i=1 Γ(i,i−1) + c1

∑Nx
i=2 Γ(i,i−2) + ξout(c

∑Nx
i=1Q

(i,i−1)
out + c1

∑Nx
i=2 Q

(i,i−2)
out ) + ξrelayNx

)
x

(4)

where Π is the set of stationary, deterministic policies. We formulate (4) as a long term
average cost Markov decision process.

2.7.2. Connection to a Constrained Problem. We see that (4) is the relaxed version of the
following constrained problem, where we seek to minimize the mean power per step
subject to constraints on the mean number of relays per step and the mean outage per
step:

inf
π∈Π

lim sup
x→∞

Eπ(c
∑Nx
i=1 Γ(i,i−1) + c1

∑Nx
i=2 Γ(i,i−2))

x

s.t. lim sup
x→∞

Eπ(c
∑Nx
i=1Q

(i,i−1)
out + c1

∑Nx
i=2Q

(i,i−2)
out )

x
≤ q

and lim sup
x→∞

EπNx
x
≤ N (5)

The following result tells us a way to choose the ξout and ξrelay (see [?], Theorem 4.3):

THEOREM 2.3. If there exists a pair ξ∗out ≥ 0, ξ∗relay ≥ 0 and a policy π∗ for the
constrained problem (5) such that π∗ is an optimal policy of the unconstrained problem
(4) given (ξ∗out, ξ

∗
relay), and, the constraints in (5) are met with equality under π∗, then

π∗ will be an optimal policy for (5) also.

The proof is provided in Appendix A.

2.7.3. A Motivation for Sum Power Objective. If all the nodes have wake-on radios, the
nodes normally stay in sleep mode. A node in sleeping mode draws a very small current
from the battery (see [?]). When a node has a packet, it sends a wake-up tone to the
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intended receiver and the receiver wakes up. The sender transmits the packet and the
receiver sends an ACK packet in reply. Clearly, the energy spent in transmission and
reception of data packets governs the lifetime of a node, because ACK size is negligible
compared to the packet size.

Let tp denote the transmission duration of a packet over a link, and node i

(1 ≤ i ≤ Nx) uses powers Γ(i,i−1) and Γ(i,i−2) during transmission to its immedi-
ate two neighbors. It is assumed that Pr is the power expended in the electronics
at any receiving node for any packet. If the packet generation rate at the source,
τ , is very small (so that there is no collision in the network), the lifetime of the k-
th node (2 ≤ k ≤ Nx) is Tk := E

τ(cΓ(k,k−1)+c1Γ(k,k−2)+Pr)tp
seconds (the total energy

of a fresh battery is E). For k = 1, the term Γ(k,k−2) is absent. Hence, the battery
replacement rate in the network from the sink up to distance x steps is given by∑Nx
k=1

1
Tk

=
∑Nx
k=1

τcΓ(k,k−1)tp
E +

∑Nx
k=2

τc1Γ(k,k−2)tp
E +

∑Nx
k=1

τPrtp
E . We can absorb the term∑Nx

k=1
τPrtp
E into ξrelay. Hence, the battery depletion rate between the sink and the point

x is proportional to c
∑Nx
k=1 Γ(k,k−1) + c1

∑Nx
k=2 Γ(k,k−2). Note that, this is the total trans-

mit power to send a packet from node Nx to the sink node, since there is no collision
among packets transmitted from various nodes. This is justified due to the lone packet
model which we will describe in Section 2.8.

2.8. Traffic Model
In order to make the problem formulation tractable, we assume that the traffic is so
light that there is only one packet in the network at a time. We call this the “lone packet
model”. As the traffic is very low, the transmit power over a link only depends on losses
in the propagation environment, since there are no simultaneous transmissions and
hence no interference. This permits us to write the total communication cost over the
relays deployed as a linear combination of certain link costs (Section 2.5). Since the
deployment takes account the stochastic fading and shadowing in wireless links and
their effects on the number of deployed nodes and the powers they use, the assumption
of “lone packet model” does not trivialize the deployment problem.

Very light traffic is a practical assumption for ad-hoc networks that carry occasional
alarm packets. In [?], the authors designed passive infra-red (PIR) sensor platforms
that can detect intrusion of a human or an animal and can classify whether a par-
ticular intrusion is a human or an animal. The data rate for this system is very low.
Also, in [?], the authors use a duty cycle of 1.1% for a multi-hop sensor network for
wildlife monitoring application. Lone packet is also realistic for industrial telemetry
application ([?]), where successive measurements are done at large time intervals. In
machine-to-machine communication, an infrequent data model is quite common also
(see [?]). Table 1 and Table 3 of [?] illustrate sensors with very low sampling rate and
small sized sampled data packets; it also shows data rate requirement as small as few
bytes per second for habitat monitoring applications.

Although the designed network is formally designed to operate under the lone packet
model, in practice, it will be able to carry some amount of positive traffic from the
source to the sink while achieving acceptable quality of service. The experimental ver-
ification of this claim is found in [?], where a 1-connected network, deployed over a
500m long trail, in an as-you-go manner, under the assumption of the lone packet
model, was able to carry 127 byte packets at a rate of 4 packets per second with end-
to-end packet loss probability less than 1%.

The assumption of “lone packet model” is also valid when interference-free commu-
nication is achieved using multi-channel access (see [?], [?], [?], [?] for recent efforts
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to realize multi-channel access in 802.15.4 networks). It can be shown that under a
certain CSMA MAC, in order to provide the desired QoS under positive traffic, it is
necessary to achieve the target QoS under lone packet model (see [?] for proof). Our
future research interest will be to provide a methodology for as-you-go deployment of
relays in order to carry a given positive traffic intensity, with desired quality of service.

3. OPTIMAL DEPLOYMENT OF A 2-CONNECTED NETWORK; FORMULATION AS AN MDP
3.1. Markov Decision Process (MDP) Formulation
Here we seek to solve Problem (4). Let us recall the deployment procedure as described
in Section 2.2. When the agent is r steps away from the previous node and the distance
between the previous relay and the relay next to it is r1 (see Figure (2)), (1 ≤ r +
r1 ≤ B),(B being a constant) he measures the outage probabilities from his current
location to the mentioned two relays, where w,w1 are the realizations of shadowing
in the links. The agent uses the knowledge of r, r1 and the outage probabilities to
decide whether to place a node there, and the corresponding transmit power γ and
γ1 to be used. We formulate the problem as a Markov Decision Process with state
space {1, 2, · · · , B− 1}×{1, 2, · · · , B− 1}×W ×W. Although the samples of shadowing
might come from a continuous random variable, we assume that the cardinality ofW is
finite by discretizing the range. Thus the state space is finite. At state (r, r1, w, w1), 1 ≤
r + r1 ≤ B,w ∈ W, w1 ∈ W, the action is either to place a relay and select some
transmit powers γ, γ1 ∈ S, or not to place. When r + r1 = B, the only feasible action is
to place and select transmit powers γ, γ1 ∈ S. When a relay is placed, a network cost of
cγ+ c1γ1 + ξout(cQout(r, γ, w) + c1Qout(r+ r1, γ1, w1)) + ξrelay is incurred (see Section 2.5
for details). When the source is placed, the process terminates. The randomness in the
system comes from the geometric distribution of the length of the line and the random
shadowing in different links.

3.2. Formulation for L ∼ Geometric(θ)

We will first minimize the expected total cost for L ∼ Geometric(θ). This formulation
for L ∼ Geometric(θ) is a precursor for analysis of the problem with L =∞ ([?], Chap-
ter 4).

Recall the definition of Γ(m,n) from Section 2.4. Consider the situation where the
deployment agent placed N number of relays between the source and the sink, where
the 0-th node and the (N + 1)-st nodes are represented by sink and source respectively.
The problem we seek to solve is:

inf
π∈Π

Eπ
(
c

N+1∑
i=1

Γ(i,i−1) + c1

N+1∑
i=2

Γ(i,i−2) + ξout(c

N+1∑
i=1

Q
(i,i−1)
out + c1

N+1∑
i=2

Q
(i,i−2)
out ) + ξrelayN

)
(6)

where Π is the set of all stationary, deterministic, Markov policies.
Any deterministic Markov policy π is a sequence {µk}k≥1 of mappings from the state

space to the action space. A deterministic Markov policy is called “stationary” if µk = µ
for all k ≥ 1.

The assumption P of Chapter 3 in [?] is satisfied in our problem, since the single-
stage costs are nonnegative (power, outage and relay costs are all nonnegative). Hence,
by [?, Proposition 1.1.1], we can restrict ourselves to the class of stationary determin-
istic Markov policies.

3.3. Bellman Equation
Let us define J(r, r1, γ, γ1) and J(0) to be the optimal cost-to-go starting from state
(r, r1, γ, γ1) and 0 respectively. “Cost-to-go” from a state means the total expected cost
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incurred in the process of deployment of the remaining partial network from that state.
State 0 represents the start or initial state, where the sink node is placed. As an ex-
ample, the cost-to-go from the start state will be the total cost of the network. We also
define J(0; r) to be the optimal cost-to-go if a relay has been placed at the current step
and the distance from the previous relay is r steps. Note that here we have an infinite
horizon total cost MDP with a finite state space and finite action space. The optimal
value function J(·) satisfies the Bellman equation ([?]) which is given by,

J(r, r1, w, w1) = min{cp, cnp}; 1 ≤ r + r1 ≤ (B − 1)

J(r,B − r, w,w1) = cp(r,B − r, w,w1) (7)

where cp and cnp denote the cost of placing and not placing a relay respectively. cp and
cnp are given by,

cp(r, r1, w, w1) = min
γ,γ1∈S

(
cγ + c1γ1 + ξout(cQout(r, γ, w) + c1Qout(r + r1, γ1, w1))

)
+ ξrelay + J(0; r) (8)

cnp(r, r1, w, w1) = θEW,W1 min
γ,γ1∈S

(
cγ + c1γ1 + ξout(cQout(r + 1, γ,W )

+ c1Qout(r + r1 + 1, γ1,W1))

)
+ (1− θ)EW,W1

J(r + 1, r1,W,W1) (9)

J(0; r) = θEW,W1
minγ,γ1∈S

(
cγ + c1γ1 + ξout(cQout(1, γ,W ) + c1Qout(r + 1, γ1,W1))

)
+(1− θ)EW,W1

J(1, r,W,W1) (10)

The equations can be explained as follows. Consider that the current state is
(r, r1, w, w1) and the line has not ended. We can either place a relay and set the power

levels as γ and γ1 or we may move on. If a relay is placed, a cost of minγ,γ1∈S

(
cγ+c1γ1+

ξout(cQout(r, γ, w) + c1Qout(r + r1, γ1, w1)) + ξrelay

)
is incurred at the current step, and

the cost-to-go from the location is J(0; r). If the relay is not placed and if the line does
not end at the next step, the cost-to-go from there will be EW,W1J(r + 1, r1,W,W1). If

the line ends (with probability θ), a cost of θEW,W1
minγ,γ1∈S

(
cγ+ c1γ1 + ξout(cQout(r+

1, γ,W ) + c1Qout(r + r1 + 1, γ1,W1))

)
is incurred.

Unless the first relay is placed, there is only one downstream neighbour with respect
to the current location and hence, the typical state in this situation is denoted by (r, w)
and the “cost-to-go” from this state is denoted by J(r, w).
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J(r, w) = min

{
min
γ∈S

(γ + ξoutQout(r, γ, w)) + ξrelay + J(0; r), (11)

θEW min
γ∈S

(γ + ξoutQout(r + 1, γ,W )) + (1− θ)EWJ(r + 1,W )

}
, r < B − 1

J(B − 1, w) = min
γ∈S

(ξrelay + γ + ξoutQout(B, γ,w)) + J(0;B − 1)

J(0) = θEW min
γ∈S

(γ + ξoutQout(1, γ,W )) + (1− θ)EWJ(1,W ) (12)

J(0) denotes the total cost (cost to go from start state) of the discounted cost problem.

3.4. Value Iteration
The value iteration for (6) can be obtained as follows. Replace all J(·) in (7) to (12) by
J (k+1)(·) on the left hand side and by J (k) on the right hand side. Define J (0) = 0 for
all states. From standard MDP theory, J (k)(·) ↑ J(·) as k →∞ for all states. In order to
carry out the value iteration efficiently, we define,

V (r, r1) = EW,W1J(r, r1,W,W1) =
∑
w∈W

∑
w1∈W

pW (w)pW1(w1)J(r, r1, w, w1)

where, pW (w) and pW1
(w1) are probability mass function of the discretized shadow-

ing random variable, and the product is due to the fact that the links have inde-
pendent shadowing. Also for each stage, V k(r, r1) = EW,W1

Jk(r, r1,W,W1). In the cost
update equations, (Equation 7 to 12), we multiply both sides by pW (w)pW1

(w1) and
sum over realizations of w and w1. Since the sequence of Jk(r, r1, w, w1) converges to
J(r, r1, w, w1), V k(r, r1) also converges to some V (r, r1). Hence we need not have to it-
erate the value iteration over (r, r1, w, w1). It is sufficient to iterate over r and r1 only,
which is computationally efficient.

3.5. Policy Structure
THEOREM 3.1. At state (r, r1, w, w1) (1 ≤ r + r1 ≤ B − 1), the optimal decision is

to place a relay iff minγ,γ1∈S(cγ + c1γ1 + ξout(cQout(r, γ, w) + c1Qout(r + r1, γ1, w1))) ≤
cth(r, r1) where cth(r, r1) is a threshold obtained from solving the value iteration. In
this case if the decision is to place a relay, the optimal powers to be selected are given
by arg minγ,γ1∈S(cγ + c1γ1 + ξout(cQout(r, γ, w) + c1Qout(r + r1, γ1, w1)). At state (r,B −
r, w,w1), the optimal action is to place and select the powers arg minγ,γ1∈S(cγ + c1γ1 +
ξout(cQout(r, γ, w) + c1Qout(B, γ1, w1))).

PROOF. By Proposition 3.1.3 of [?], if we have a stationary policy such that for each
state, the action chosen by the policy is the minimizer in the Bellman equation, then
that stationary policy will be an optimal policy. When the state is (r, r1, w, w1) with
r+ r1 ≤ B− 1, it is optimal to place the relay if cp ≤ cnp. From the definitions of cp and
cnp in Section 3.3, the policy structure follows.

3.6. Formulation via Average Cost MDP: Sum Power and Sum Outage Objective
We can now proceed to solve (4). For any (ξrelay, ξout), let the optimal value function of
the problem (6) be denoted by J(ξrelay,ξout,θ)(0). By Proposition 4.1.7 of [?], the optimal
policy for (4) is the same as that of (6) when θ is sufficiently close to 0 since problem
(6) can be considered as infinite horizon discounted cost problem with discount factor
(1 − θ) and the state and action spaces are finite. Also, the optimal per-step cost λ∗ of
problem (4) is equal to limθ→0 θJ(ξrelay,ξout,θ)(0) (by Section 4.1.1 of Bertsekas [?]). As
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Table I. Components of network cost, and average net-
work cost with c = 1/7, c1 = 3/7, for various values
of relay cost ξrelay and ξout. λ∗ denotes average cost
per step. Power is expressed in mW , and distance is
measured in steps.

ξrelay ξout u (γ) (Qout) λ∗

0.001 1 1.1 0.0235 0.0192 0.0397
0.001 10 1.0 0.0530 0.0047 0.1010
0.01 1 1.1 0.0231 0.0195 0.0478
0.01 10 1.1 0.0760 0.0043 0.1170
0.1 1 2.0 0.0721 0.0912 0.1321
0.1 10 1.3 0.0661 0.0051 0.167

Table II. Components of network cost, and average net-
work cost with c = 1/3, c1 = 1/3, for various values
of relay cost ξrelay and ξout. λ∗ denotes average cost
per step. Power is expressed in mW , and distance is
measured in steps.

ξrelay ξout u (γ) (Qout) λ∗

0.001 1 1.2 0.0225 0.0189 0.0344
0.001 10 1.1 0.0520 0.0045 0.0871
0.01 1 1.2 0.0213 0.0192 0.0417
0.01 10 1.2 0.0560 0.0041 0.0886
0.1 1 2.2 0.0702 0.0910 0.1172
0.1 10 1.6 0.0639 0.0049 0.1316

θ ↓ 0, a sequence of optimal policies are obtained, and a limit point of them will be
average cost optimal policy.

3.7. Computational Examples (Deployment for minimum average cost per step)
To verify the performance of the optimal algorithm, we need a statistical modeling
of the wireless channel. We obtain the channel model via extensive experiments re-
ported in Appendix B. Motivated by the experimental results, we take the path loss
factor η = 4.7, the shadowing random variable, W , to be log-normally distributed
(10 log10W ∼ N (0, σ2)) with σ = 7.7 dB, δ = 11 meters, a = 100.17 and B = 5 (i.e.,
the maximum length of a link is 5 steps, i.e., 55 meters; recall Section 2.1 for the chan-
nel model). The set of transmit power levels is {−25,−15,−10,−5, 0} dBm. Since we
assume deployment with TelosB motes ([?]), Pth = −88dBm (see [?] for experimental
verification of this data). ξout and ξrelay are varied and optimal mean power cost per re-
lay, γ, mean placement distance (in steps of δ) u, mean outage incurred per relay (Qout)
and the optimal average cost per step, λ∗, are computed for different combinations of c
and c1. We take θ = 0.00025. We observed that θJ(ξrelay,ξout,θ)(0) does not change signif-
icantly if we reduce θ further. So we used θ = 0.00025 because smaller θ takes longer
time for value iteration to converge. The results are tabulated in Tables I, II, III and
IV.

Discussion of the Numerical Results:

(1) As one would expect, the relays are placed farther apart as the relay cost ξrelay
increases, and consequently the mean power per node increases.

(2) When ξout is high, we impose more importance on the outage in the link and thus
the mean outage per node, Qout, decreases with an increase in ξout.

(3) Optimal average cost per step, λ∗, increases if ξrelay and ξout are increased. This
comes from the definition of λ∗.

Effect of c and c1:
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Table III. Components of network cost, and average net-
work cost with c = 3/5, c1 = 1/5, for various values of
relay cost ξrelay and ξout. λ∗ denotes average cost per
step. Power is expressed in mW , and distance is mea-
sured in steps.

ξrelay ξout u (γ) (Qout) λ∗

0.001 1 1.2 0.0212 0.0185 0.0339
0.001 10 1.2 0.0517 0.0042 0.0789
0.01 1 1.3 0.0216 0.0189 0.0388
0.01 10 1.3 0.0548 0.0041 0.0814
0.1 1 2.4 0.0702 0.0876 0.1074
0.1 10 1.6 0.0637 0.0048 0.1323

Table IV. Components of network cost, and average net-
work cost: c = 1, c1 = 0, for various values of relay
cost ξrelay and ξout. λ∗ denotes average cost per step.
Power is expressed in mW , and distance is measured
in steps.

ξrelay ξout u (γ) (Qout) λ∗

0.001 1 1.3 0.0210 0.0182 0.0287
0.001 10 1.3 0.0512 0.0041 0.0693
0.01 1 1.3 0.0216 0.0187 0.0379
0.01 10 1.4 0.0497 0.0041 0.0709
0.1 1 2.6 0.0701 0.0835 0.0962
0.1 10 1.7 0.0632 0.0048 0.1187

(1) Evidently, a relatively larger value of c1 helps to promote a network in which each
deployed node i, i ≥ 2, has a good link to the node i − 2. Comparing across the
multiple cases with different c and c1, we observe that with relatively higher values
of c1, the relays are closer (see Tables I, II,III and IV for comparison) in order to
enable workable links to two previously placed nodes.

(2) A further comparison across the two cases is made with respect to the mean power
cost per link. With relatively higher values of c1 (Table I, II), we see that there is
an increase in mean power cost. In order to make the two hop link workable more
power is needed, thus raising the average power cost.

4. EXPERIMENTAL RESULTS
A total of 22 TelosB motes ([?]) were deployed in the forest-like Jubilee Garden of the
Indian Institute of Science. 11 motes were placed on each side of a trail (see Figure 4).
The distance between successive motes along the trail edge (i.e., step size δ) is 11m.
Each relay broadcasts 2000 packets, at each power level, while the others are quiet
and take measurements to assess their link qualities from the transmitting node. In
this manner one by one, each relay gets a turn to broadcast 2000 packets. For each
transmit power level, the average received power and link outage at every other node
are measured. Thus we obtained the mean RSSI (averaged over fading) for various
potential links (having different lengths) at various power levels.

We apply the optimal policy for infinite horizon problem to the collected data. Given
the field data, we have all measurements that can be possibly made during an actual
deployment. Thus, we can use the measurements to determine the actual network that
will be deployed if an agent was to walk along the trail starting from sink at location 1
(Figure 4) and the source at location 11 (110 meters). We call this “virtual” deployment
of relay nodes.

From the radio propagation modeling experiment presented in Appendix B, we found
that shadowing, W could be modeled as a log-normal random variable with standard
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Fig. 4. A segment of the trail in the Jubilee Gardens in the Indian Institute of Science campus. Motes were
mounted on trees along each side of the trail at a height of about 2 meters. The right panel shows a depiction
of the deployment of 22 motes along a stretch of the trail. Several network deployments were made with this
setup. All the nodes in each such network were among nodes 1, 2, · · · , 11 on one side of the trail (say, the
“left” side) or nodes 1, 2, · · · , 11 on the right side of the trail (say, the “right” side). Thus, radio propagation
was always “through” the foliage.

Table V. Results from experimental data: Network realization for the
right side of the trail under consideration for different values of c and
c1 with ξrelay = 0.1 and ξout = 10.

Placement Total Ou- Total Po- Total
c c1 Locations tage Cost wer Cost Cost

(Location no.) (in mW) (in mW) (in mW)
1 0 2,3,5,7,9 0.0184 0.577 1.261

3/5 1/5 2,3,5,6,7,9 0.0185 0.579 1.264
1/3 1/3 2,4,5,6,7,9,10 0.0186 0.581 1.467
1/7 3/7 2,3,4,5,7,9,10 0.0189 0.583 1.472

Table VI. Results from experimental data: Network realization for the
left side of the trail under consideration for different values of c and c1
with ξrelay = 0.1 and ξout = 10.

Placement Total Ou- Total Po- Total
c c1 Locations tage Cost wer Cost Cost

(Location no.) (in mW) (in mW) (in mW)
1 0 2,3,5,7,9,10 0.0138 0.417 1.155

3/5 1/5 2,3,5,6,7,9,10 0.0139 0.418 1.257
1/3 1/3 2,3,5,7,8,9,10 0.0140 0.419 1.259
1/7 3/7 2,3,4,5,7,8,9,10 0.0141 0.421 1.362

deviation of 7.7 dB, the path-loss exponent, η, is 4.7, and the spatial de-correlation
distance of W as 6m. We take the step size δ = 11m and B is taken to be 5. The set of
possible power transmit levels is S = {−25,−15,−10,−5, 0} (in dBm). The experiments
via which the statistical parameters of the channel is obtained do not require any
deployment algorithm. In Appendix B, we see that the relays are placed at regular
intervals to obtain the channel parameters. Channel modeling experiment can be done
along a small part of the trail and then the deployment can use the obtained channel
parameters to deploy over a very long trail.

We take relay cost ξrelay = 0.1. The choice is motivated by the fact that for lower val-
ues of ξrelay such as 0.01, and 0.001, the relays are placed very often and the algorithm
places relays in almost all potential locations. From Tables I to IV, we can see that
the mean outage per relay is very high for ξout = 1 and ξrelay = 0.1; thus leading to a
network with very high end-to-end outage. On the other hand, ξout = 10 gives a very
small and thus practical end-to-end outage. Hence we choose (ξrelay, ξout) = (0.1, 10)
for experimental purposes.
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Table VII. Comparison of optimal cost per step (λ∗,
in mW) obtained from simulations based on the-
oretical policy computation and experiments per-
formed in the Jubilee gardens (Fig 4). Network re-
alization for the right side of the trail under con-
sideration for different values of c and c1 with
ξrelay = 0.1 and ξout = 10.

c c1 λ∗ λ∗

(Theoretical) (Experimental)
1 0 0.1187 0.1261

3/5 1/5 0.1323 0.1264
1/3 1/3 0.1316 0.1467
1/7 3/7 0.1670 0.1472

In Tables V, VI we report the virtual deployment results obtained with different val-
ues of c and c1. In Table V, we see that with a higher value of c1 (last 2 rows of Tables V,
VI) the number of nodes placed is higher over a 110m trail whereas with a relatively
low value of c1 (first 2 rows of Tables V, VI), the agent places less number of relays.
In order to make the two hop link workable, the relays are placed more often when c1
is higher. The “Total Power Cost” columns show the sum of the weighted transmitter
powers over all the deployed nodes. We notice that, with an increase of c1, the number
of deployed relays is increased as well as the total power. This is expected because the
inter-relay distances are less for deployment with higher c1. That, in essence, is the
additional operational cost we pay for the increase in path redundancy.

We now compare the experimental average cost per step with the simulated average
cost per step to show that the experimental results are consistent with theoretical
findings. We observe that under different c and c1, both the cost components are close.
The results are tabulated in Table VII.

5. CONCLUSION AND FUTURE WORK
We have provided an approach for measurement-based as-you-go deployment of a 2-
connected wireless relay network along a line, to connect a sensor with a sink, so
as to carry very light traffic. The deployment problem was formulated as a Markov
decision process and policy structures were obtained. Computational and experimental
experience was reported to illustrate the performance of such networks; we found that
at an expense of a small increase in network cost, path redundancy can be incorporated
in the deployed network, thus rendering the network robust to link failures.

We propose to take care of the following issues as a part of our future work. (i) The
computation of the optimal deployment policy involves solving an MDP; the network
propagation parameters (e.g., η, σ etc.) are required to obtain the transition structure
of this MDP. But, in practice these parameters might not be accurately known to the
deployment agent. Hence, we need to design a learning algorithm for the impromptu
deployment of 2-connected network (in [?], a learning algorithm is developed for the
one connected problem). (ii) Also developing a model for long-term variation in the
wireless propagation environment (e.g., seasonal variations in the foliage in a forest
setting) could be used in the deployment algorithm itself, thereby providing robustness
to long term variations in the propagation characteristics of the deployment environ-
ment. (iii) Innovative ways to use the redundant downlink neighbors, perhaps using
physical layer techniques would also be of interest. (iv) The network was designed
to carry lone packet traffic; while the networks so obtained do permit the carrying of
some positive traffic rate without violating QoS, a design technique with given positive
traffic carrying capability is also of interest.
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APPENDIX
A. SYSTEM MODEL
Proof of Theorem 2.2:
Two edge connectivity is immediate, as the minimum (source, sink) edge cut is of size
two. The max-flow-min-cut theorem provides the conclusion that the (source, sink) pair
is two edge-connected.

We turn to establishing 2 relay-connectivity between the source and the sink. For
N ≥ 1, a relay i ∈ V and its corresponding edges are removed from the directed acyclic
graph G. Take any one of the paths that pass through node i and, on this path, let node
j be the node previous to node i, i.e., i < j. We will argue that there exists a path from
j to the sink that bypasses i.

If j has a downstream neighbor i′ such that i′ < i, we are done. Suppose i′ > i, and
thus i < i′ < j. We can argue similarly for the node i′ instead of the node j and end
up with a node i′′ such that i < i′′ < i′. Proceeding in this manner, we either end up
with a path bypassing i or with the node i∗ such that i∗ = i+ 1. Since i∗ has 2 previous
(downstream) neighbors, it is guaranteed that there exists a path that bypasses i.
Hence the (source,sink) pair is 2 relay-connected.

Proof of Theorem 2.3:
By the hypotheses about π∗, for all π ∈ Π,

lim sup
x→∞

Eπ∗

(
c
∑Nx
i=1 Γ(i,i−1) + c1

∑Nx
i=2 Γ(i,i−2) + ξ∗out(c

∑Nx
i=1Q

(i,i−1)
out + c1

∑Nx
i=2Q

(i,i−2)
out ) + ξ∗relayNx

)
x

≤ lim sup
x→∞

Eπ
(
c
∑Nx
i=1 Γ(i,i−1) + c1

∑Nx
i=2 Γ(i,i−2) + ξ∗out(c

∑Nx
i=1Q

(i,i−1)
out + c1

∑Nx
i=2Q

(i,i−2)
out ) + ξ∗relayNx

)
x

⇒ lim sup
x→∞

Eπ∗

(
c
∑Nx
i=1 Γ(i,i−1) + c1

∑Nx
i=2 Γ(i,i−2)

)
x

≤ lim sup
x→∞

Eπ
(
c
∑Nx
i=1 Γ(i,i−1) + c1

∑Nx
i=2 Γ(i,i−2)

)
x

+ξ∗out

(
lim sup
x→∞

Eπ
(
c
∑Nx
i=1 Q

(i,i−1)
out + c1

∑Nx
i=2 Q

(i,i−2)
out

)
x

− q̄
)

+ ξ∗relay

(
lim sup
x→∞

EπNx
x
− N̄

)
Now we restrict ourselves to π such that,

lim sup
x→∞

Eπ(c
∑Nx
i=1Q

(i,i−1)
out + c1

∑Nx
i=2Q

(i,i−2)
out )

x
≤ q

lim sup
x→∞

EπNx
x
≤ N

It follows that,

lim sup
x→∞

Eπ∗

(
c
∑Nx
i=1 Γ(i,i−1) + c1

∑Nx
i=2 Γ(i,i−2)

)
x

≤ lim sup
x→∞

Eπ
(
c
∑Nx
i=1 Γ(i,i−1) + c1

∑Nx
i=2 Γ(i,i−2)

)
x

Thus we conclude that π∗ is optimal for constrained problem as well.

LEMMA A.1. For probabilistic routing in an infinite node 2NN network,
limk→∞ ηk = 1

2−p .
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PROOF. Once the network is deployed, let us reverse the point of view and consider
the source as being at the origin. In Figure 3, the sink node is enumerated as 0. The
deployed relay nodes are denoted by 1, 2, . . . and for a long network the source will be
at infinity. The routing will be from source to sink. When we say, “reverse the point of
view”, we mean to alter the enumeration of source and sink. In the reverse view, the
source (which was at location infinity earlier) will be at location 0. The node immedi-
ately next (left) to the source will be enumerated by 1 and so on.

Consider a packet being launched from the source, and let ηk denote the probability
that the packet “hits” the kth node (indexed from the source). It follows that

ηk = pηk−1 + (1− p)ηk−2 (13)

Clearly, η0 = 1, η1 = p. We take z-transform on both sides of (13). After rearranging,
taking the inverse z-transform and taking the limit k →∞, limk→∞ ηk = 1

2−p .

B. RADIO PROPAGATION MODELING
All our experiments were conducted on a trail in the forest-like Jubilee Gardens in the
Indian Institute of Science campus (see Figure 4(a)). Our experiments were conducted
by placing the wireless devices on the edge of the trail so that the line-of-sight between
the nodes passed through the foliage.

B.1. Modeling of Path-Loss and Shadowing
We kept the transmitter fixed and placed 9 receivers along the trail at distances
50, 53, 56, . . . , 74 meters respectively from the transmitter, and measured the mean
received power (averaged over fading) at all receiving nodes. We repeated this with
varying the transmitter location 25 times, thereby obtaining 25 realizations of the net-
work with 9 links of length 50, 53, 56, · · · , 74 meters in each realization (we chose the
link lengths at least 50 meters because in reality the step size will be at least tens of
meters). Under a given network realization, for the i-th link of length ri meters and
shadowing realization νi dB, the mean received power in dBm (averaged over fading;
see Section 2 for channel model):

φi = φ0 − 10η log

(
ri
r0

)
+ νi , 1 ≤ i ≤ 9 (14)

where φ0 is the mean received power (in dBm) at distance r0.

B.1.1. Estimation of η, σ and the Shadowing Decorrelation Distance. According to Gudmund-
son’s model [?], covariance between shadowing in two different links with one end
fixed and the other ends on the same line at a distance d from each other can be
modeled by RX(ri, rj) = σ2 exp(−d/D) where σ denotes standard deviation (in dB)
of shadowing random variables, and D is a constant. Let θ := [φ0 η D σ2]. Define
νki to be the shadowing random variable for the link from the transmitter to node i
for the k-th realization of the network, where 1 ≤ i ≤ 9 and 1 ≤ k ≤ 25. Assum-
ing that νk := [νk1 νk2 . . . ν

k
M ]′ is jointly Gaussian with covariance matrix denoted by

C(θ) (elements of this matrix are determined by Gudmundson’s model), and νk is i.i.d.
across k, we calculate the maximum likelihood estimate θ̂MLE : D̂MLE = 2.6 meters,
σ̂MLE = 7.7 dB, η̂MLE = 4.7. The correlation coefficient of shadowing between two
links is less than 0.1 beyond 2.3D distance, which implies that beyond 5.98 meters the
shadowing can be safely assumed to be independent. Hence, we need δ ≥ 6 m.

B.1.2. Binary Hypothesis Based Approach to find the Shadowing Decorrelation Distance. The
sample correlation coefficient ρ̂(r) between shadowing of all pairs of links whose trans-
mitter is common and the receivers are r distance apart from each other is computed
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as a function of r. We want to decide whether the shadowing losses over two links with
a common receiver but whose transmitters are separated by distance r are correlated.
Define the null Hypotheses H0 : ρ = 0 and the alternate Hypotheses H1 : ρ 6= 0. For
a target false alarm probability α = 0.05 (called the significance level of the test), it
turns out that we need ρ̂(r) ≤ 0.34, which requires r ≥ 3 meters. Hence, under the
jointly lognormal shadowing assumption, shadowing is independent beyond 3 meters.

If we take the step size δ to be 6m, it satisfies the condition of Appendix B.1.1 and
B.1.2 for independent shadowing across links. Motivated by the virtual deployment
experiment reported in Section 4, we take δ = 11m during numerical work (Sec-
tion 3.7). In practical scenarios, the step size will typically be 20− 50m which is much
greater than the shadowing decorrelation distance, thus ensuring independent shad-
owing across links.

B.1.3. Testing Normality of Shadowing Random Variable via Non-Parametric Tests. We picked
25 links from 25 independent network realizations, and calculated their shadowing
gains νi, 1 ≤ i ≤ 25 from (14). Then we applied Kolmogorov-Smirnov One Sample test
(see [?]): define the null hypothesisH0 to be the event that the samples are coming from
N (0, σ̂2

MLE) distribution, and H1 to be the event that they do not. The test accepted H0

with level of significance 0.05. Hence, lognormal shadowing is a good model in our
setting.

B.2. Number of packets to be transmitted for link evaluation
In the experiments, in order to measure the outage probability of a link, at a given
transmit power a certain number of packets are sent and their RSSI values recorded.
To arrive at the required number of packets we conducted the following experiment.
Over several links in the field, 5000 packets were sent at intervals of 50 ms, and their
RSSI values were recorded. We then characterize the coherence time of the fading
process by modeling it as a two state process. We say that the channel is in “Bad” state
when the packet RSSI falls below the mean RSSI (over packets) of the link by 20 dB,
otherwise the link is in “Good” state. From the per-packet RSSI values in the 5000
packet experiment, we observed that the mean number of packet duration over which
a channel remains in “Good” state is 56, i.e., 2.8 seconds, and that the mean duration
of the “Bad” state is 100 ms. Hence, we conclude that sending 2000 packets (100 seconds
duration, approximately 33 Good-Bad cycles) is sufficient for the fading to be averaged
out.
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