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Abstract—The need for impromptu wireless networks arises
in emergency situations where the team responding to the
emergency, needs to deploy sensors (such as motion sensors, or
even imaging sensors) and a wireless interconnection network,
without any prior planning or knowledge of the terrain. In this
paper, we consider a simple model for the sequential deployment
of wireless relays as a person steps along a “corridor” of unknown
length, so as to create a multihop network for interconnecting a
sensor to be placed at the end of the corridor with a control truck
standing near the entry to the corridor. Assuming low traffic
and simple link-by-link scheduling, we consider the problem of
minimising an end-to-end cost metric (e.g., delay or power from
the sensor to the control centre) subject to a constraint on the
number of relays. Two kinds of constraints are considered: the
expected number of relays is bounded, or the actual number of
relays is bounded. In each case, the problem is formulated as
a Markov decision process. The problem of deciding whether
or not to place a relay at each step is shown to be equivalent
to a certain stochastic shortest path problem embedded at relay
placement points. Numerical results are provided to illustrate the
performance trade-offs.

I. INTRODUCTION

Emergency teams (such as fire-fighters or commandos) often
need to enter large buildings in extremely dangerous situations.
Their operation could be facilitated and their own safety could
be improved if these teams had at their disposal a sensor
network that could be placed in the building as they move
through it (see Fig. 1).

Such a network could alert them about the situation in
various parts of the building (the spread of the fire, the
availability of escape routes, the movement of terrorists, and
hostages, etc.), and could also serve to facilitate communica-
tion between team members and between the team members
and the situation management vehicles outside the building. It
is impossible to have a pre-planned network in this kind of
situation, and the building plans may not be readily available.
So a rapidly deployable wireless network (in an unknown
terrain) is necessary to handle the situation where the wireless
nodes are placed in a spontaneous fashion. We refer to such
networks as impromptu wireless networks.

While the concept of an impromptu wireless network for
first-responders has been around at least since 2001 ([1], [2],
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Fig. 1. Depiction of an emergency team conducting an impromptu deploy-
ment of a wireless sensor network in a building.

Fig. 2. Problem studied in this paper: Impromptu placement of wireless
relays along a corridor at the end of which a sensor needs to be placed.

[3], [4]), the literature comprises mainly system architectures,
ad hoc algorithms, and deployment experiences. In our work,
we take the first steps towards rigorously formulating and
addressing the problem of optimal deployment of impromptu
wireless sensor networks. The particular situation we consider
is depicted in Fig. 2 where the problem is of optimal sequential
relay placement (OSRP), as the deployment operative walks
along a corridor of unknown length, in order to provide a
multi-hop wireless path for a sensor to be placed at the end of
the corridor. In this paper, the traffic generated by the sensor
is assumed to be so light that each packet exits the network
before the next packet is generated, thus obviating the need
to consider link scheduling in the problem. The corridor is
modeled as being of random length, with known distribution.
Hence, the number of relays that are deployed is a random
variable, N . The objective is to minimize the average end-to-
end packet delay subject to a constraint on (i) EN, called the
OSRP-EN problem, and (ii) on N , the OSRP-N problem.

We formally describe the system model and both the formu-
lations in Section II. Sections III and IV are devoted towards
obtaining the optimal placement policies for OSRP-EN and
OSRP-N, respectively, where a decision can be made at each
step as the operative walks along the corridor. Analysis of the
problems reveals that both the problems can be considered as
stochastic shortest path problems, with decisions needing to be
made only at relay placement points. This alternate approach
is provided in Section V. Numerical results are presented in
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Section VI and finally we end by presenting future directions
in Section VII. Due to space constraints we do not provide
any proofs here. Formal proofs are available in the Master’s
thesis of the first author [5].

II. SYSTEM MODEL

In the situation shown in Fig. 2, let the interval [0, L]
represent the corridor, with the corridor entrance being located
at 0. The control truck’s location is at −x. L is unknown (to
the crew deploying the network), which can be attributed to the
building plans being unavailable, smoke filled corridors (in the
case of fire fighting), etc. The person deploying the network
enters the corridor (at 0), and is assumed to take equal size
steps as he walks. At each step he has to decide whether or not
place a relay node. Finally at the end of the corridor a sensor
has to be placed, which is then expected to send measurements
to the truck (or base-station (BS)) via the multihop network
created by the relays.

In this work, we assume the “lone-packet” traffic model,
i.e., there can be only one packet traversing the network. In
practice, this could model low rate telemetry information being
generated by the sensor, at the rate of a packet every few
seconds. The network deployment objective is to minimize
the total delay of a packet or the total power consumed by a
packet. Due to the lone-packet model, it suffices to consider
a one-hop mean delay function fd(r) or an average power
function fp(r) between two neighbouring relays separated by
distance r, with the end-to-end mean delay or power being
the sum of these quantities over the successive hops from the
sensor to the BS. We generalize our study by considering,
instead of fd(·) or fp(·), a general one-hop cost function fc(·)
satisfying the following conditions, (1) fc(0) > 0, (2) fc(r) is
strictly convex and strictly increasing in r, and (3) for any r
and δ > 0 the difference, fc(r+δ)−fc(r), is strictly increasing
in r.

Condition (1) is a natural requirement since any transmis-
sion requires at least a minimum power or incurs at least
a minimum delay even if two relays are very close to each
other. Condition (2) is a natural property found in the above
mentioned cost functions. Condition (3) is essential for the
proofs of Theorem 1 and Theorem 2.

Now, suppose N relays are placed at locations 0 ≤ `1 <
· · · < `N < L. Let r = (r1, · · · , rN+1) denote the vector of
consecutive hop lengths, from left to right, i.e., r1 = x + `1,
rN+1 = L − `N and for i = 2, 3, · · · , N , ri = `i − `i−1.
Then the total cost, C(r), is the sum of one-hop costs, i.e.,
C(r) =

∑N+1
i=1 fc(ri).

A. Deployment Policy π and Problem Formulation

The deployment operative moves in steps of length δ > 0,
and L is an integral multiple of δ, with L being unknown.
In the present work we assume that L is a geometric random
variable with the probability of the corridor ending at a step
being p, i.e., P(L = kδ) = (1− p)k−1

p, for k = 1, 2, · · · .
A deployment policy π is a mapping, from the current state,

that allows the operative to decide, at the k-th step, whether to

place or not place a relay node, where, in general, randomiza-
tion over these two actions is allowed. Let Π represent the set
of all policies. For a given policy π ∈ Π, let Eπ[·] represent
the expectation operator conditioned on using policy π. Let C
denote the total cost incurred using policy π and N the total
number of relays used. Based on the nature of the constraint on
the number relays, we have considered two different problem
formulations.

OSRP-EN: Optimal Sequential Relay Placement - Expected
Number of Relays Constraint

min
π∈Π

EπC

Subject to: EπN ≤ ρavg. (1)

Having an average relay constraint is justified when (practi-
cally) a large number of relays are available for deployment.
Thus, OSRP-EN would be a useful formulation when a
truck carrying a large number of relays has to deploy them
successively along several stretches of road (or several trails
in a forest). However, in situations such as deployment along
a building corridor in an emergency situation, carrying a
large number of relays is not practical, which motivates us
to further consider OSRP-N where we introduce an absolute
relay constraint.

OSRP-N: Optimal Sequential Relay Placement - (Absolute)
Number of Relays Constraint

min
π∈Π

EπC

Subject to: N ≤ ρabs. (2)

III. OSRP-EN

Recall OSPR-EN from (1). We will introduce a “Lagrange”
multiplier, λ > 0, to obtain the following unconstrained
problem,

min
π∈Π

EπC + λ EπN. (3)

We also refer to λ as the relay price. It can be shown that a
Markov deterministic policy is optimal for the unconstrained
problem in (3). In general, there can be multiple such optimal
policies. From such Markov deterministic policies we can gen-
erate mixing policies by first picking a deterministic optimal
policy with some probability and then using that policy for the
entire deployment. All such mixing policies are also optimal
for (3). The following lemma relates the main problem in (1)
and the unconstrained problem in (3).

Lemma 1: Given a ρavg , there exists a λρavg and a policy
π∗λρavg , possibly mixing, such that Eπ∗λρavgN = ρavg . Such a
policy is optimal for the main problem in (1). �

With Lemma 1 in mind, in the remainder of this section we
develop optimal Markov deterministic policies for (3). It can
be seen that for each ρavg the λρavg and πλρavg as required
by Lemma 1 can be obtained, thus solving (1).

We formulate the unconstrained problem (3) as a Markov
decision process (MDP) [6]. Each step within the corridor
constitutes a decision instant (or stage) where, provided the
current step is not the end of the corridor, the deployment
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person (henceforth referred to as the DM (decision maker))
has to decide whether to place or not place a relay node.
The decision at the k-th step should be based on the distance
between the k-th step and the location of the previous relay.
Let this distance be denoted as r. Then r is referred to as the
state of the system. Note that r is either of the form iδ (for
i = 1, 2, · · · , k, corresponding to the case where the previous
relay is i steps behind) or x + kδ (x + kδ is the distance
of the k-th step to the control center and hence corresponds
to the case where still no relay is placed along the corridor).
The decision process ends once the DM reaches the end of
the corridor (i.e., location L). Without further details about
the MDP framework we straight away proceed to the Bellman
equation, the solution of which yields the optimal policy.

A. Bellman Equation

Let J(r) represent the optimal cost-to-go when the state
at stage k is r (since the corridor length is geometric the
cost-to-go does not depend on the stage index k). Then the
average cost of, placing a relay at the k-th step and proceeding
optimally from the next step onwards, is

cp(r) = λ+ fc(r) + pfc(δ) + (1− p)J(δ). (4)

In the above expression, λ + fc(r), represents the immediate
cost of placing a relay at k. λ is the relay price while fc(r) is
the cost of the link established between the relay placed at k
and the previous relay which is r units behind the k-th step.
After placing a relay at k the state at step k + 1 is δ (recall
that state is the distance from the previous relay). Now, when
the DM proceeds to k + 1 the corridor could end at k + 1
(with probability p) in which case the DM has to install the
sensor node at k + 1 and the cost of this last link is fc(δ).
With probability (1 − p) the corridor does not end at k + 1
in which case J(δ) represents the optimal value obtained if
optimal action is taken from k + 1 onwards. Thus the term,
pfc(δ)+(1−p)J(δ), in (4) represents the average future cost.

Similarly the cost of not placing a relay at the k-th step,
cnp(r), can be written as

cnp(r) = pfc(r + δ) + (1− p)J(r + δ). (5)

There is no immediate cost incurred for not placing a relay at
k. Thus cnp(r) entirely is the average future cost. When the
DM proceeds to k + 1 without placing a relay at k then the
state at k + 1 is r + δ. Thus, if the corridor ends at k + 1
(with probability p) then the DM places the sensor node at
k + 1 incurring a cost of fc(r + δ) (which is the cost of the
last link). Otherwise (i.e., if the corridor does not end at k+1,
the probability of which is 1− p) the optimal cost-to-go from
k + 1 is J(r + δ).

Now the optimal cost-to-go, J(r), can be expressed as a
min of both the costs, i.e.,

J(r) = min{cp(r), cnp(r)}. (6)

From the above expression it is clear that, at any step k, if the
previous relay is r units away from the k-th step, it is optimal
to place a relay at k if and only if cp(r) ≤ cnp(r).

B. Threshold Structure of the Optimal Policy

For a given relay price λ, we characterize the optimal policy
in terms of an optimal placement set,

Sλ = {r : cp(r) ≤ cnp(r)}. (7)

Denote the minimum element in Sλ as r∗λ, i.e., r∗λ = minSλ.
For any r < r∗λ it is optimal to not place a relay. However,
still for any r ≥ r∗λ it is not immediately clear if it is optimal
to place a relay or not. It may be possible to have gaps (i.e.,
sets of the form {r1, r1 + δ, · · · , r2} where r∗λ < r1 ≤ r2)
where it is optimal to not place. In the following theorem we
prove that such gaps are not possible and hence r∗λ completely
characterizes the placement set Sλ.

Theorem 1: Sλ = {r∗λ, r∗λ + δ, · · · }. Thus, at any step k, it
is optimal to place a relay if and only if r ≥ r∗λ, where r is
the distance of the k-th step from the previous relay location.

�
Remarks: The optimal policy can be implemented as follows.
At step 0 if the distance to the control centre x < r∗λ then move
a distance of r∗λ− x units before placing the first relay (if the
corridor ends before covering this length then terminate the
decision process by placing the sensor node at the step where
the corridor ends). If x ≥ r∗λ then place the first relay at the
entrance (i.e., at step 0). Until the corridor ends, keep placing
subsequent relays by proceeding a distance of r∗λ units from
the previous relay.

The following result corresponds to the intuition that if
relays are more expensive then we place them farther apart.

Lemma 2: r∗λ is non-decreasing in λ. �

IV. OSRP-N

We again use the MDP framework to solve the absolute
relay constraint problem in (2). However, here we do not
consider an unconstrained problem as in (3). Instead, at step
k, along with r (distance from previous relay) we use n, the
number of remaining relays, to decide whether to place or not
place a relay. Thus, at any step k the state is of the form (n, r)
with the initial state (i.e., state at step 0) being (bρabsc, x).

Note that this approach cannot be applied to solve OSRP-
EN, since a policy satisfying the constraint can use any number
of relays (more or less than ρavg depending on the particular
realization of L), only ensuring that the average EπN is less
than ρavg . Thus, in OSRP-EN, one cannot begin at step 0 with
any fixed number of given relays (e.g., bρabsc in this case).

Let us proceed to write the Bellman equation. Let Jn(r)
represent the optimal-cost-to-go at any step k when the state
is (n, r). When n = 0 (i.e., no relays remaining) the DM has
no options but to walk until the end of the corridor and install
the sensor node so that J0(r) = EL′ [fc(r + L′)] where L′

is the remaining corridor length conditioned on the fact that
the corridor has not ended until the k-th step. Because of the
memoryless property of L, the distribution of L′ is same as
that of L. Next, for n ≥ 1

Jn(r) = min{cp(n, r), cnp(n, r)}, (8)
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where as before cp(n, r) and cnp(n, r) are the cost of placing
and not placing a relay, respectively, when the state at any
step k is (n, r). The expressions for these costs are,

cp(n, r) = fc(r) + pfc(δ) + (1− p)Jn−1(δ), (9)

cnp(n, r) = pfc(r + δ) + (1− p)Jn(r + δ). (10)

Again, as in (7), we characterize the optimal policy in terms
of the optimal placement sets, for n ≥ 1,

Sn = {r : cp(n, r) ≤ cnp(n, r)}. (11)

We have a theorem analogous to Theorem 1,
Theorem 2: For each n > 0, define r∗n = minSn. Then

Sn = {r∗n, r∗n + δ, · · · }. �
Remarks: Thus the optimal policy for OSRP-N is characterized
by a sequence of thresholds {r∗n : n ≥ 1}, which can be used
as follows. At step 0 if x < r∗bρabsc (bρabsc is the smallest
integer ≤ ρabs) then move a distance of r∗bρabsc − x to place
the first relay (if the corridor ends at any step before this, place
the sensor and terminate the decision process). If x ≥ r∗bρabsc
then place a relay at 0. After placing a relay suppose n ≥ 1
is the number of relays left, then proceed a distance of r∗n
(provided the corridor does not end in between) to place the
next relay. When n = 0 the only option is to proceed until the
corridor ends at which location the sensor is placed.

V. STOCHASTIC SHORTEST PATH VIEW

The remarks following Theorem 1 and 2 suggest that the
relay placement points could be thought of as the decision
epochs where the DM has to decide how many steps to proceed
before placing the next relay. This alternate formulation can be
viewed as a stochastic shortest path problem where the current
location at which the DM has placed a relay constitutes a node.
From this current node several “paths” are available to the DM,
each corresponding to the number of steps the DM chooses
to move before placing the next relay (which is the action
set available to the DM in this formulation). Suppose the DM
chooses to move i steps before placing the next relay, then with
probability (1− p)i (which is the probability that the corridor
does not end within the next i steps) the DM reaches the next
node (i.e., the step which is i steps ahead of the current one)
where a relay has to be placed. With the remaining probability,
1− (1− p)i, the DM reaches the corridor end (referred to as
the terminating node) where the sensor has to be placed. The
objective is to find the average shortest path from the corridor
entrance (referred to as the source node) to the terminating
node.

Formally, considering OSRP-EN first, let Jλ represent the
optimal cost-to-go from any step k where a relay is placed.
Then, ci, the average cost of choosing path i (corresponding
to the action of moving i steps before placing the next relay)
can be written as

ci = (1− p)i(λ+ fc(iδ) + Jλ) +

i∑
j=1

(1− p)j−1
pfc(jδ).

The first term in the above expression, (λ + fc(iδ) + Jλ),
is the cost incurred if the corridor does not end in the next
i steps the probability of which is (1 − p)i. Each of the
remaining terms in the summation contains the cost incurred
if the corridor ends in j ≤ i steps. The DM can also
choose to not place a relay in which case the average cost is,
c∞ =

∑∞
j=1 (1− p)j−1

pfc(jδ). Finally, the Bellman equation
can be written as,

Jλ = min{ci : i = 1, 2, · · · ,=∞} (12)

and the optimal policy is given by

i∗λ = argmin{ci : i = 1, 2, · · · ,=∞}. (13)

Thus i∗λ represents the optimal number of steps that the DM
should move from the current relay location, before placing
the next one. The following is the key result obtained through
this line of analysis.

Theorem 3: The optimal policy, i∗λ, can be alternatively
characterized using the increments of the cost function fc as

i∗λ = min{i ≥ 1 : fc((i+ 1)δ)− fc(iδ) > p(λ+ Jλ)}.

�
However, the optimal policy at the corridor entrance (de-

noted as i∗λ(x)) could be different from i∗λ since the previous
relay (i.e., the control centre) is already x units away. We have
shown the following relation between i∗λ(x) and i∗λ,

i∗λ(x) =

{
0 if bxδ c ≥ i

∗
λ

i∗λ − bxδ c otherwise (14)

where bxδ c represents the distance, in number of steps, from
the control centre to the entrance. Thus, if the initial distance
is already greater than i∗λ then place a relay at the entrance
before proceeding futher. Otherwise, move i∗λ − bxδ c number
of steps before placing the first relay. Subsequent relays are
placed i∗λ steps apart.

Finally, we have performed similar analysis for OSRP-N as
well. Here, one needs to begin by defining Jn as the optimal
cost-to-go when the DM, after placing a relay, has n more
relays remaining with him. Let i∗n represent the corresponding
optimal policy. Then, similar to Theorem 3 we have,

Theorem 4: For n ≥ 1,

i∗n = min{i ≥ 1 : fc((i+ 1)δ)− fc(iδ) > pJn−1}.

�
Analogous to (14), we also have

i∗n(x) =

{
0 if bxδ c ≥ i

∗
n

i∗n − bxδ c otherwise. (15)

VI. NUMERICAL RESULTS

For our numerical work we consider total power minimi-
sation, and work with a cost function of the form, fc(r) =
Pm + γrη , where Pm > 0 is the minimum power required
for any transmission, γ > 0 is a constant (containing the
noise variance and an SNR threshold) and η is the pathloss
attenuation factor usually in the range 2 to 5 [7]. Thus fc(r)
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Fig. 3. Results for OSRP-EN problem, (a) Thresholds, r∗λ and i∗λ, as
functions of λ, (b) Average power vs. λ, (c) Average No. of relays used
vs. λ, and (d) Performance trade-off curve showing the variation between
power and number of relays used. Also depicted is the power incurred by the
optimal policy for an average relay constraint of ρavg .

represents the power required for a transmission between two
relays, separated by a distance r, to be successful. We have
fixed Pm = 0.1, γ = 10−2 and η = 2. The distance to the
control centre is x = 20 mts and the step size δ is 0.5 mts.
The corridor length L is geometric with p = 0.002 being the
probability that the corridor will end at the next step. Thus the
average corridor length is 250 mts (equivalently, 500 steps).

The results corresponding to OSRP-EN are shown in Fig. 3.
We have independently solved the primary formulation in
Section III and the shortest path formulation in Section V to
obtain the thresholds r∗λ and i∗λ, respectively. These thresholds,
as functions of λ, is shown in Fig. 3(a). As expected we
observe that r∗λ (which is in meters) is δ times i∗λ (which is
measured in number of steps). The thresholds are increasing
with λ since at higher values of λ, valuing the number of
relays used more, we tend to place fewer of them separated
by larger distance. For the same reason we see that the average
total power, in Fig. 3(b), is increasing in λ while the average
number of relays used, in Fig. 3(c), is decreasing. Finally
in Fig. 3(d) we have shown the trade-off between average
power and average number of relays used. In Fig. 3(d) we
have also depicted the minimum power obtained (which is
approximately around 70) for an average relay constraint of
ρavg = 10. Although not visible on the scale of Fig. 3(a), the
plot is piecewise flat. Recalling Lemma 1, the optimal policy
can be obtained from Fig. 3(c) as follows. Given ρavg , if there
is a λρavg such that Eπ∗λρavgN = ρavg then the corresponding
r∗λρavg , obtained from Fig. 3(a), is optimal. On the other hand,
if the value ρavg falls within a jump, then an optimal policy
is obtained by mixing between the two deterministic policies
corresponding to the neighboring flat parts of the plot.

Similarly, for OSRP-N we have obtained the thresholds r∗n
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Fig. 4. Results for OSRP-N problem, (a) Thresholds, r∗n and i∗n, as function
of n (number of remaining relays), and (b) Total power incurred by the optimal
policy as a function of ρabs (absolute relay constraint).

and i∗n independently from, Section IV and the shortest path
formulation in Section V. In Fig. 4(a) we have plotted these
thresholds as functions of n (number of remaining relays).
Again as expected r∗n is δ times i∗n. Interestingly we observe
that for n = 1 the threshold r∗1 = 250 mts (equivalently, i∗1 =
500 steps) which is simply the average length of the corridor.
Thus, when only one relay is left, the deployment person has to
move a distance of 250 mts from the previous relay location
(provided the corridor does not end) before placing the last
relay and then move until the corridor ends to place the sensor.

The thresholds are decreasing with n implying that with
more relays remaining one has to place the subsequent relays
close to each other. In Fig. 4(b) we have plotted the average
total power as a function of ρabs which is the number of relays
the deployment person begins with from the corridor entrance.
The total power decreases with ρabs so that, beginning with a
larger number of relays one can expect to obtain a deployment
with better performance.

VII. FUTURE DIRECTIONS

In our ongoing and future work we propose to extend
the impromptu relay placement problem from a straight line
corridor to placement over a two dimensional lattice and other
more general regions. We will also go beyond the lone-packet
traffic model, consider radio link scheduling, and also the
impromptu deployment of mesh networks (as shown in Fig. 1).
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