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Approximate Mean Delay Analysis for a Signalized
Intersection with Indisciplined Traffic
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Abstract—Mixed vehicular traffic comprising small cars and
two-wheeled vehicles (called motorcycles in this paper) arrive at
a lane of a signalized road intersection. The traffic do not follow
lane-discipline, in that the arriving vehicles do not necessarily
queue up one behind the other. The motorcycles are small enough
to stand side-by-side with cars or other motorcycles, so as to fill
up the width of the lane. With such queue joining behaviour,
the waiting vehicles form batches, comprising motorcycles and
at most one car. During the green signal period the vehicles in the
head-of-the-line batch exit the intersection together. In this paper,
assuming a Poisson point process model for vehicle arrivals,
we have provided an approximate analysis of such a queueing
system. Our approach is to use an assembly queue model for the
batching process. The batches generated by the assembly queue
enter an interrupted M/SemiMarkov/1 (or M/SM/1) queue. By
analyzing the assembly queue we characterise the batch input
process for the interrupted M/SM/1 queue. We then develop
an extension of the Webster mean delay formula for obtaining
the approximate mean delay in the interrupted M/SM/1 queue.
Numerical results from the analysis are compared with simulation
results. The analysis is shown to be accurate in predicting the
increase in the system capacity due to the batching behaviour.

Index Terms—Mean traffic delay, signalized intersection, in-
disciplined traffic, ITS, interrupted queue.

I. INTRODUCTION

Due to their affordability, small two-wheeled vehicles (re-
ferred to as motorcycles, generically, in this paper) are pre-
dominant in road traffic in developing countries. As these
vehicles are small in size, they often stand side-by-side in
road lanes so as to occupy the whole width of the lane.
When a bigger vehicle, such as a car or bus stands in the
lane, incoming motorcycles occupy the empty spaces in-
between and besides the larger vehicles. Indeed, small two-
wheeled vehicles arriving into an intersection queue look for
unoccupied places in the queue, all the way upto the head of
the queue, and fill them up. This phenomenon is illustrated by
Figure 1.

Such behaviour of motorcycles (which violates strict lane
discipline) can cause drivers of outgoing vehicles to slow their
exit speed, out of caution against side-swiping other vehicles
that stand by their sides. However, such behaviour increases
the service capacity of the intersection, which is measured as
the number of vehicle exits per unit time.
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This work is an extended version of the material that appeared in [1]
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Fig. 1: Batch formation process: motorcycles arriving to a
signalized intersection form batches by occupying vacant
places between stationary vehicles and the boundaries of the
lane (see (a) and (b) which show two motorcycles arriving, and
taking up the empty spaces next to a standing car). In part (c),
two motorcycles, arriving to an empty intersection, stand right
at the STOP line (also called Head-Of-Line (HOL) in queueing
theory jargon); subsequently if the signal turns green before
any other motorcycles arrive, those two will depart as a batch
of just two motorcycles.

modelling such a traffic system is of considerable interest.
However, the batching phenomenon complicates the already
difficult problem of modelling the intersection queue that
is served by an intermittently available server. Classically,
researchers like Clayton [2] and Webster [3] have looked
into the relatively simplified problem of fixed-cycle traffic
light problem, assuming Poisson arrival point process and
deterministic service times. The strikingly simple empirical
formula by Webster estimates the mean delay for this problem
with great accuracy. Serfling [4] and Ohno [5] discuss the wide
use of Poisson point process as a suitable and mathematically
tractable model for vehicle arrival processes with light traffic
density. McNeil [6] is one of the first to show that the
problem of finding an exact expression for mean delay can
be solved by finding an exact expression for mean overflow
queue length (mean steady state queue length at the end
of a green time). An exact but computationally expensive
procedure to calculate the mean overflow queue length was
proposed by Darroch [7]. Miller [8], and Newell [9] suggest
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approximate formulas for calculating the mean overflow queue
length. More recently, in 2006, Leeuwaarden [10] has taken
an approach, similar to Darroch [7], to calculate queue length
distribution, that leads to a closed form solution of the pgf
(probability generating function) of the queue length of a
fixed-cycle-traffic-length (FCTL) queue for a general arrival
distribution, including Poisson. However, their approach needs
to be supplemented by a numerical approach of finding the
roots of the pgf, to calculate mean queue length. Oblakov
et.al [11] have averted the computationally expensive issue
of root-finding by expressing the mean queue length of a
FCTL queue as a contour integral, and thereby using residue
theorem to reduce computational burden. In the literature, the
knowledge of distribution of Q, the number of passenger car
units (PCU) in the queue at the beginning of a red time in
a FCTL queue, is required to calculate the mean delay of
a queue with lane-discipline, as suggested by Darroch [7],
Mcneil [6], Newell [9] etc. Gertsbakh [12] has used a Markov
chain analysis to obtain an approximate formula for Q.

An alternate approach is to consider a signalized intersection
as a queueing system with server interruptions. In the late
1980s, Sengupta [13] and Federgruen and Green [14] used
this approach to study the distribution of delay and mean delay
in interrupted queues utilizing elegant queueing theory tech-
niques. Sengupta [13], in particular, has obtained transform
expressions. Since exact computation from these expressions,
even of the mean delay, is difficult, reasonable approximations
have been developed. Our own research, has also taken the
interrupted queue approach.

The paper [15] has given an account of the recent spurt
in interest for modelling traffic intersections without lane
discipline in economically emergent nations with abundance
in vehicular traffic congestion. Ali et al [16] have also ad-
dressed the difficulty associated with indisciplined traffic, in
the context of measuring traffic parameters, in developing
countries like India. Kiran and Verma [17] have given a review
of the studies on various characteristics of lane indisciplined
traffic with mixed vehicle types in developing countries. Their
studies have reflected that the “gap-filling” (or “batching”, as
referred to in our research) rather than “car-following” is the
predominant behaviour unique to the indisciplined traffic, and
requires further investigation to understand traffic congestion
in indisciplined traffic.

Major contributions of this work: A shorter version
of this work was presented in [1]. The major contributions
of this paper are: 1) We discuss the phenomenon of vehi-
cle batching at a signalized single lane traffic intersection,
and use the theory of interrupted queues in order to model
such a signalized intersection with traffic indiscipline. 2) We
suggest a simplified approximate analysis of the system by
decomposing the signalized queue into an assembly queue, that
generates full batches, followed by a batch queue, where the
batches so formed are queued as they wait for a green signal.
3) We approximately model the resulting process of batch
types departing from the assembly queue as a Markov process
entering into the batch queue. 4) We propose a generalization
to the classical expected delay formula due to Webster [3] to
calculate mean delay for the interrupted M/SM/1 queue.

Motorcycle
Arrivals

Car-Motorcycle
Batches

λc

λm

Interrupted
Intersection QueueCar

Arrivals

Fig. 2: System model capturing the batching of motorcycles
with other vehicles, comprising an assembly queue followed
by an interrupted signalized queue

This paper extends the material in [1] in the following
ways: 1) We have provided proofs of the theorems in the
paper; these were omitted in [1]. 2) We have provided an
additional discussion on the structure of the mean delay in
an interrupted queue, as provided in Sengupta [13], and the
light it sheds on Webster’s formula, and the extension of this
formula to the interrupted M/SM/1 queue. 3) Moreover, we
have explained how maximum arrival rate capacity is enhanced
in indisciplined queues, and have provided an estimate for the
factor of enhancement.

Organization of the paper: In Section II, the system
model, comprising an assembly queue followed by an inter-
rupted signalized queue, is proposed and described. Section III
and Section IV describe the assembly queue model and
the batch queue model respectively. Section V develops an
approximate expression for the mean delay in the system, by
approximately decomposing the delay into a sum of delays
contributed by the assembly queue and the batch queue. In
Section VI the efficacy of the proposed model is verified by
numerically comparing simulation results to the approximate
formula developed in the previous sections. Finally Section VII
concludes the paper. The appendices A and B contain proofs
of certain results in the main body of the paper.

II. SYSTEM DESCRIPTION AND APPROXIMATE ANALYSIS
METHODOLOGY

In this section we first describe the system for which we
aim to develop an approximate analysis. Then we will outline
the methodology we use to develop the approximation.

A. System Description

We consider indisciplined traffic arriving to an isolated, sig-
nalized, single-lane traffic intersection. The system comprises:
1) An arrival process consisting of mixed vehicle types. The
arrival process into the system is decomposed into two distinct
processes: car arrivals and motorcycle arrivals, each assumed
to be Poisson point processes. 2) A traffic light controller
controlling the exit of the vehicles from the intersection using
fixed-duration alternating green and red lights.

Cars arrive individually, with rate λc and motorcycles arrive
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in pairs 1,with rate of arrival of the pair λm. Once vehicles
enter the intersection, they can overtake each other. The road
width is assumed to be such that only motorcycles can move
towards the head-of-the-line (HOL) position through small
lateral gaps available along the sides of vehicles ahead, thereby
aiming to complete any incomplete batch at the front. This
allows four possible batch types: one motorcycle pair batch,
two motorcycle pair batch, a motorcycle and a car batch, and a
single car batch, denoted by M2, M4, C2, and C0, respectively,
as illustrated in Figure 1. When the signal turns green the HOL
batch can begin to exit. It is assumed that an exiting batch
comes to a halt if the light turns red, and completes its exit at
the next green time.

B. Approximate Analysis Methodology

Exact analysis of mean delay even at the simplest M/G/1
interrupted queue is only approximately available. For the
above model, therefore, we seek to develop an approximate
analysis.

In this section, we outline the methodology that we employ
in the next sections to carry out an approximate analysis to
find mean delay of a vehicle in this system.

1) Separation into an Assembly Queue and an Interrupted
Batch Service Queue: Unlike disciplined queues, the mean
delay for a queue with batching requires the full description of
the batches. Our model adopts an approximate description by
breaking the system into two subsystems, an assembly queue
(see, [18]), succeeded by an interrupted batch service queue
(in the sequel called as the batch queue for brevity) illustrated
in Figure 2.

2) The Assembly Queue (See figure 2): The assembly queue
aims to capture the complicated process of batching in a sig-
nalized intersection. An arriving car or a motorcycle enters the
assembly queue via separate queues for motorcycles and cars.
The assembly queue “assembles”(in zero time) two motorcycle
pairs into a M4 batch, and a motorcycle pair and a car into
a C2 batch to send them into the following batch queue. No
batching is performed when only multiple cars are present
in the assembly queue. This model for batching is adequate
for a nonempty intersection. However, we need to address the
case when a single car or a single motorcycle pair arrives at
the assembly queue with the intersection being empty, thus
allowing a lone car or a lone motorcycle pair to leave the
assembly queue, resulting in a single car batch (C0) or a single
motorcycle pair batch (M2) (See figure 1(c)). This possibility
is captured approximately via certain probabilities that are
derived from the downstream interrupted queue analysis; these
probabilities are used in the transition structure of a Markov
model of the assembly queue. See Section III.

3) The Interrupted Batch Service Queue: The output of
the assembly queue are batches that enter the queue at the
traffic light, thereby leading to an interrupted queue with
batch arrivals. Furthermore, the analysis of the assembly queue

1This kind of side-by-side driving behaviour of motorcycles can commonly
be observed in long high-speed lanes. However, with added complexity, the
model can be extended to account for randomly sized grouped arrivals as well
as singleton arrivals

1′ 0 1 2 3
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λm(1− q0) λm + q1µ λm + q1µ λm + q1µ λm + q1µ

Fig. 3: State transition diagram for the assembly queue.

shows that the batch type arriving at the interrupted queue are
not independent but can be modelled by a Markov chain. We
approximate the instants of arrival of the batches into the in-
terrupted queue by a Poisson process. This results in the queue
at the traffic light becoming an interrupted M/SemiMarkov/1
queue (known as the M/SM/1 queue introduced by Neuts [19]).
Inspired by the Webster delay formula for the interrupted
M/D/1 queue, we propose and approximate formula for the
mean delay in the interrupted M/SM/1 queue [20]. This
analysis is detailed in Section V.

4) Verification by Simulation: We have proposed a model
of a signalized single lane (described in Section II-A), and our
main aim in this paper is to develop an accurate tractable anal-
ysis of this model, while providing insights into the queueing
phenomenon. Since our analysis makes several approximations
(as outlined earlier in this section), we verify its accuracy
by performing a stochastic simulation of the original system
described in Section II-A. Numerical results obtained from
the simulation of the original system are compared with the
numerical computations from our approximate analysis. The
variation of mean delay is compared against the saturation
level, which is taken as λτc/g, where, λ is the mean arrival
rate, τ is the mean service time, g is the green time duration,
and c is the total cycle time. Several of these comparisons
are done for separate sets of (αc, αm, g, c), where αc, αm are
the steady state probabilities of arriving cars and motorcycles.
We have also included the mean delay plots for disciplined
traffic, as well as the simulation results for both disciplined
and indisciplined traffic for comparison purpose.

III. ASSEMBLY QUEUE MODEL ANALYSIS

Recalling the description of the assembly queue, we propose
a transition rate diagram in Figure 3, which approximates the
assembly queue process by a continuous time Markov chain
(CTMC). The Markov description is approximate due to the
coupling between it and the downstream interrupted queue, as
explained in Section II-B.
q0: steady state probability that the batch queue is empty
q1: steady state probability that the batch queue has

exactly one batch
C: the random variable denoting the steady state com-

pletion time of a batch in the interrupted batch queue.
The completion time of a batch is the time taken from
the instant that the batch arrives at the HOL position
until it exits from the intersection
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µ: steady state rate of completion of batches in the batch
queue (i.e., µ = 1/E(C))

χ := {1′, 0, 1, 2, 3, · · · }, state space of the CTMC, which
denotes the number of vehicles (cars or motorcycle
pairs) present in the assembly queue in the steady
state. State 1′ denotes a pair of motorcycle, whereas
state 0, 1, · · · represents as many unmatched cars.

A. Explanation of the CTMC in Figure. 3

In state 1′: there is a lone motorcycle pair in the assembly
queue with the batch queue nonempty (otherwise the motor-
cycle pair would have left). The only possible transition is
1′ → 0 when either a car, or a motorcycle pair arrives, makes
a C2 or M4 batch, respectively, and leaves the assembly queue;
or the batch queue becomes empty. The corresponding rate is
approximated as λc + λm + q1µ.

In state 0: the assembly queue is empty (the batch queue
might not be). If a car comes to this empty assembly queue, it
joins the assembly queue only if the batch queue is nonempty,
giving a transition 0 → 1 with approximate transition rate
λc(1 − q0). If a motorcycle pair comes, it makes a 0 → 1′

transition (when the batch queue is nonempty), with approxi-
mate rate λm(1− q0).

In state k, k ≥ 1: a k → k + 1 transition occurs with
approximate rate λc if a car arrives, and a k → k − 1
transition occurs when either a motorcycle pair arrives to form
a C2 batch (that leaves the assembly queue with approximate
rate λm), or when the batch queue becomes empty (with
approximate rate q1µ) giving an approximate transition rate
λm + q1µ.

This CTMC is a birth-death chain, implying that the con-
dition for stability of the assembly queue (positive recurrence
of the chain) is λc < λm + q1µ. As a matter of fact, less than
1
3 of the vehicles are cars ([21]); if the rest of the vehicles
are motorcycles, we have λm > λc. Under steady state, the
balance equations for the chain yields, as per Figure. 3:

(λc + λm + q1µ)ν1′ = λm(1− q0)ν0

λc(1− q0)ν0 = (λm + q1µ)ν1

λcνx = (λm + q1µ)νx+1, x ≥ 1

Solving these equations and then using
∑
x∈χ νx = 1, we

get the following expressions for the stationary probabilities
νx x ∈ χ:

Lemma 3.1. The stationary probability νx for x ∈ χ is given
by

νx =



[
1 +

(
λc+λm+q1µ
λm−λc+q1µ

)(
λm+q1µ−λcq0
λm(1−q0)

)]−1

, x = 1′

λc+λm+q1µ
λm(1−q0) ν1′ , x = 0
λc(1−q0)
λm+q1µ

ν0, x = 1(
λc

q1µ+λm

)x−1

ν1, x ≥ 1

(1)

B. Analysis of the departure process from the assembly queue

The approximate CTMC modelling the assembly queue
facilitates in finding approximate expression for batch depar-

tures from assembly queues as well. This, however, requires
introducing further notation:

Denote V := {M2,M4, C0, C2}. Then for i ∈ V, and x, y,∈
χ:
λi: departure rate of type i batches from the assembly

queue
fij : the conditional probability (called following proba-

bility ) that an exiting batch of type i will be followed
by a batch of type j

ax: rate of transition conditioned on the state of the
assembly queue being at x

pi(x) :probability with which a transition from state x
produces an exiting batch of type i

pi(x, y) :probability that a transition from state x ends up
at state y by a departure of a type i batch

φj(y): the conditional probability that the next exiting batch
is of type j when the assembly queue is at state y

With a little effort, the quantities described in the notation
can be found from the state transition diagram in Figure. 3,
(see [22]). Using these quantities, it follows, for i, j ∈ V ,

λi =
∑
x∈χ

νxaxpi(x) (2)

fij =

∑
x,y∈χ νxaxpi(x, y)φj(y)

λi
(3)

Equation (2) is justified by observing that a batch of type i
departs state x of the assembly queue with rate νxaxpi(x).
Equation (3) is deduced by noting that with rate νxaxpi(x, y),
a type i batch departs from state x leaving the assembly queue
at state y, and with probability φj(y), a type j batch exits
succeeding the exit of a type i batch.

IV. ANALYSIS OF THE INTERRUPTED BATCH QUEUE
MODEL

Batches of vehicles leave the assembly queue to join the
interrupted batch service queue. This queue has a first-in-first-
out service discipline. Batches entering this interrupted queue
each have a type i, i ∈ V . In order to analyse the interrupted
batch queue we require the “batch following” probabilities
(i.e., the steady state fraction of batches of type j that follow
a batch of type i). These are provided by the analysis of
the assembly queue through equations Eq. (2) and Eq. (3).
It is, however, clear from the transition diagram in Figure 3
that these quantities are in turn dependent on the stationary
probabilities q0 and q1, and also on the effective service
rate µ of the batch queue. A natural approach to addressing
this situation is to resort to setting up a fixed-point iteration,
where we begin by assuming the unknown quantities at the
interrupted batch queue, use these to characterise the output
process of the assembly queue, thereby being able to analyse
the interrupted batch queue so as to obtain the next iterate of
the assumed stationary quantities for this queue.

A. Queueing model for interrupted batch queue

Arrival process model: The arrival process into the batch
queue is modelled as a Poisson process of rate

∑
i∈V λi. The

arrival process is described by the following quantities
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Xk : The type of the kth arriving batch, k ≥ 0, Xk ∈ V
fij : = P (Xk+1 = j|Xk = i), the transition probabilities

of the chain {Xk}k≥0 for vehicle types i, j ∈ V

The batch type sequence, {Xk}k≥0 is modelled to constitute
a discrete time Markov Chain (DTMC) on V with fij’s as the
transition probabilities.

The batch arrival process into the batch queue, however,
is not Poisson as the inter-batch departure times are not
independent. At saturation, when the stationary probability
of finding a lone car in the assembly queue is almost 0, the
only batches are of type M4. In that case, the assembly queue
CTMC represented in Figure 3 has only two states: 1′ and 0. At
that situation, once an M4 batch departs, the time it takes for
the next departure of an M4 batch is TM4

, which is equal to the
time it takes for two successive pairs of motorcycles to come.
Since the inter arrival time between motorcycles is distributed
as exp(λm), the successive inter departure times of M4

batches are i.i.d and are distributed as second order Erlang,
i.e., the probability density function is given by fTM4

(t) =
λ2
mte
−λmt. If αc > 0, the distribution of inter-batch-departure

times become more complicated. However, it turns out, the
Poisson model provides a mathematically tractable model and
yields a reasonable approximation, as demonstrated by the
numerical results we present in section VI.

Interrupted queue service model of the intersection:
An incoming batch is said to enter service if the preceding
batch leaves the lane when the lane has the green signal. The
amount of time a batch takes to leave the intersection is its
completion time (as defined in Section III). If the signal turns
red in the middle of a batch crossing the intersection, the batch
pauses at its position and resumes moving at the beginning of
the following green time. This type of resuming method is
called preemptive resuming. 2. When the ith batch is followed
by the jth batch, only after the ith batch starts moving and
leaves a minimum distance from the tail of the last vehicle
in batch i to the tail of first vehicle in batch j, the jth batch
begins moving. In our service model, we call this distance the
minimum lagging headway [23] required for batch j when
it is preceded by batch i, before batch j starts moving. For
batches with parity in lengths of peripheral and central vehicles
inside the batch, this quantity is equal for all the vehicles
in the batch. The following notation compactly describes the
quantities required for the vehicle batch service:

dij : Lagging headway of a batch of type j that is pre-
ceded by a batch of type i

li : The length of a batch of type i
vs : Saturation speed (i.e., the uniform speed at which

batches depart the intersection during a green time)
of the vehicles in the lane

2In an alternative resuming method, called non-preemptive resuming, when
interrupted by red light, the batch retreats some length so that the front end
of the batch aligns with the STOP line, and resumes moving at the beginning
of the following green time. To avoid confusion, the front ends of the two
vehicles in the batch are assumed to be aligned.

The following gives a precise description of the distribution,
assuming that the vehicle type is j:

s =


tij =

dij
vs
, If the queue is nonempty and the

vehicle is preceded by a vehicle of type i
ti = li

vs
, If the vehicle arrives in an empty queue

The discussion in the last two paragraphs suggests an
interrupted M/SM/1 model for the batch queue, with SM
standing for Semi-Markov. This differs from the standard
M/G/1 model due to the fact that the sequence of service
times in an M/G/1 queue forms an independent and identically
distributed (i.i.d.) sequence, contrasting an M/SM/1 queue,
where the service time sequence forms a Markov chain.

Outline of the analysis approach: 1) We find out the
quantities q0, q1, µ of the batch queue in terms of fij , λi
of the assembly queue in order to execute the fixed point
iteration as described earlier. However, we find these quantities
approximately using the analysis of an interrupted M/G/1
queue in Sengupta [13], as it is not clear if Sengupta’s
approach can be extended to find an analysis for an interrupted
M/SM/1 queue. 2) In Section V-B2, an approximation formula
to calculate mean delay in an interrupted M/SM/1 queue is
derived. This formula, however, requires us to first execute
the fixed point iteration as discussed earlier.

In the following subsection we will concentrate on finding
approximate expressions of the quantities q0, q1, µ of the batch
service queue which will be approximated as an interrupted
M/G/1 queue as discussed above. To facilitate the analysis, we
use the following notation:
λ =

∑
i∈V λi :batch arrival rate into the M/G/1 queue

τ : mean service time of the M/G/1 queue
g, r, c :deterministic on (green) and off (red) times of lengths

g and r and the green-red cycle length c (= g + r).

B. Approximate analysis of q0, µ, q1

Analysis of q0: Our approximate analysis for q0 is carried
out by adapting the work of Sengupta [13] to our case. This
yields the following result

Lemma 4.1. For an interrupted M/G/1 queue, the stationary
probability of the queue being empty, is given by

q0 =
g

c
− λτ +

u0

λc
(1− e−rλ) (4)

where u0 is the stationary probability that the queue is empty
at the beginning of an off-time.

Proof. The proof for this result requires introducing some of
the definitions and notation used in Sengupta [13] and thus is
postponed to the Appendix A. �

It should be mentioned that the statement in Lemma. 4.1
is exact as far as an interrupted M/G/1 model is concerned.
However, the lemma requires to know the variable u0 in order
to evaluate q0. It can be easily shown from the discussion
in Sengupta [13] that u0 = (1 − λτ)w0 where w0 denotes
the steady state arrival point probability for the system size
being 0 for a special G/G/1 queue, described in the proof
of Lemma. 4.1 in Appendix A. Sengupta [13] has defined
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this special G/G/1 queue with inter-arrival time distribution
as the distribution of green time durations;in our case, this
definition of inter-arrival time distribution reduces the G/G/1
queue to a D/G/1 queue. Unfortunately, obtaining w0 for a
D/G/1 queue is intractable, in general. We approximate this
quantity by calculating the corresponding quantity ŵ0 for a
D/M/1 queue with mean service time as ρ(1) = λτr/(1−λτ).
The expression for ŵ0 is well known [24] to be ŵ0 = 1− r0

where r0 is the unique solution of the equation z = e
− g(1−z)

ρ(1)

in (0, 1).
Analysis of µ(or, equivalently, EC): Our analysis for

determining µ is motivated by the technique of analysis of
completion time introduced by Federgruen and Green [14].
The following notation will be required to perform the analy-
sis:
R′: the random variable denoting the residual red time

seen by an arriving batch
p0: steady state probability of a batch arriving within a

red time and finding the system empty
p1: probability of batch service interruption by a red time
S : random variable denoting service time of a vehicle

batch
Assuming that the service time of a batch (≈ 5 seconds to
10 seconds) is much smaller than the green time duration (≈
20 seconds to 50 seconds), we can then see that the completion
time of a batch can take three distinct values. If the batch
arrives in a red time and finds the interrupted queue empty,
then its completion time begins at its arrival time, and it
gets served as the first customer in the next green time. The
resulting completion time is S + R′, where we need to use
the conditional distribution of R′ given that the arriving batch
finds the system in the red time and also empty. If either the
batch arrives in a red time and finds the system nonempty,
or it arrives in a green time, then it reaches the HOL position
during a green time. Now there are two sub-cases. If the batch
completes service within the green time in which it reaches
the HOL position then its completion time is its service time.
On the other hand, if the service of such a batch is interrupted
by a red time, then it will complete service at the beginning
of the next green time (where we use the assumption made at
the beginning of this paragraph).

Thus the completion time C is characterized in the follow-
ing way

C =

 S + r, w.p. p1

S +R′, w.p. p0

S, w.p. (1− p1 − p0)
(5)

Let r′0 denote the expectation of R′ conditioned on the batch
arriving in a red time and finding the system empty. The
quantities p0, p1, r

′
0 can now be found from the following

expressions.

Lemma 4.2. p0 =
u0(1− e−rλ)

λc
, p1 =

1− u0

λc
, r′0 =

r

1− e−λr −
1

λ
and EC = τ +

r

λc

(
1− u0(1− e−rλ)

rλ

)
,

where u0 was defined in Lemma 4.1 and its determination
was discussed in the paragraph following Lemma 4.1.

Parameters Traffic model
V {C,M}

{lC , lM}(m) {6, 2}
{dCC , dCM , {8, 3,

dMC , dMM}(m) 7, 2.5}
Exit Velocity, vs 4.5m/s

TABLE I: Traffic model

Proof. See Appendix B. �

Analysis of q1: Finding an exact expression for q1 for an
interrupted M/G/1 queue is in general intractable. However, if
the identically distributed dependent sequence of completion
times is approximated by a sequence of i.i.d. completion times,
where the distribution of the completion times is retained, an
approximate expression can be found by utilizing standard
results for an uninterrupted M/G/1 queue:

Lemma 4.3. q1 ≈ q0
1−C∗(λ)
C∗(λ) where C∗(λ) =

B̃(λ)
λc

[
e−rλ(1 + rλu0) + λc− 1

]
is the Laplace-Stieltjes

Transform (LST) of the distribution of C and B̃(·) is the LST
of the steady state service distribution of a batch.

Proof. Assuming that all the moments of C exists, C∗(s) =∑
k≥0

(−s)k
k! E(Ck). Using the characterization of C in Eq. (5),

a straightforward calculation results in the expression for
C∗(λ). Assuming the independence of the completion time
sequence, it is then a routine task to find the expression for
q1 as given in Lemma 4.1(See [24]). �

To obtain B̃(λ), we compute the service distribution of the
M/G/1 queue by first sampling a vehicle from the stationary
distribution {πi}i∈V of the vehicle-type Markov chain, and
then obtaining the distribution of service times from the
preceding probabilities, pij , i.e. the probability that a vehicle
of type i is preceeded by a vehicle of type j (and can be
computed from the following probabilities πipij = πjfji).
This yields the following service time distribution.:

s =
∑
i∈V

πi
∑
j∈V

pij1{s=tji} (6)

It follows that the LST B̃(s) is given by∑
i∈V πi

∑
j∈V fije

−stij .
Discussion of numerical results: The plots in Figure 4

validate the analysis done in Section IV. The analysis is
compared to the simulation results obtained by simulating a
disciplined queue with traffic parameters in Table I. From
Figure 4 we observe that the approximate analysis provides
intermediate numerical results whose variation with the sat-
uration level is qualitatively the same as yielded by the
approximation. The values of q0 and the mean completion
time are captured very accurately, whereas there are errors in
the values of q1 yielded by the approximation, specially in the
middle range of saturation values. This match of qualitative
trends, and the reasonably good numerical match helps to
verify our modelling process, as we can conclude that the
good match of the final results in not just by coincidence; our
approximations have captured internal system behaviour quite
well.
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Fig. 4: g = 20s, c = 60s with parameters in Table I

V. ANALYSIS OF MEAN DELAY IN BATCH QUEUE

Following our approach of decoupling the indisciplined
queue into an assembly queue followed by an intersection
queue (which we call the batching queue), the mean delay
of a vehicle (a car or a motorcycle batch) that enters the
signalized indisciplined queue, is approximately decomposed
as dintersection ≈ dassembly + dbatch where dassembly and dbatch are
the expected delays of a vehicle in the assembly queue and
the of the resulting batch in the batching queue, respectively.

A. Finding dassembly

The following notation will be used to derive an approxi-
mate expression dassembly:
NC0 : Random variable denoting the number of cars

(alone) in the assembly queue
NM2

: Random variable denoting the number of motor-
cycle pairs in the assembly queue

ENC0 : Mean number of lone cars in the assembly queue
ENM2 : Mean number of motorcycle pairs in the assembly

queue
EWC0

: Mean delay experienced by a lone car in the
assembly queue

EWM2
: Mean delay experienced by a motorcycle pair in
the assembly queue

Observe that each of a pair of motorcycles has mean arrival
rate 2λm. Hence, an incoming vehicle (a motorcycle or car)
will see, w.p. 2λm

λc+2λm
a motorcycle pair in the assembly queue,

or will see, w.p. λc
λc+2λm

a car in the assembly queue. Since

the arrivals are Poisson, by PASTA [24] principle, the mean
delay found by an vehicle arriving into the assembly queue
is the mean delay in the assembly queue. Consequently, the
expected delay of a vehicle in the assembly queue is found as

dassembly =
2λm

λc + 2λm
EWM2

+
λc

λc + 2λm
EWC0

(7)

Moreover, Little’s law gives EWC0 = ENC0/λc, EWM2 =
ENM2

/λm. Furthermore, it follows from the CTMC in Sec-
tion III, ENC0

=
∑
x≥1 xνx, and ENM2

= ν1′ . Thus
evaluating dassembly from Eq 7 requires evaluating νx x ∈ χ
as defined in Section III. As explained in Section IV, due to
the explicit dependence of νx, x ∈ χ on the batching queue
occupancy probabilities q0, q1, which in turn are implicitly
dependent upon νx, x ∈ χ, a fixed point iteration is called for
that utilizes the analysis in Sections III and IV.

B. Finding dbatch

As explained in Section IV, since the arrival process into
the batching queue is not, in general, a renewal process,
dbatch can only be approximately analyzed. For an interrupted
M/G/1 queue an elegant mean delay analysis is provide by
Sengupta [13]. Since this analysis provides useful insight we
first provide an outline of a heuristic derivation, in order to
understand the difficulty in extending it to the interrupted
M/SM/1 queue. Then we provide a simple adaptation of
Webster’s mean delay formula, and demonstrate its efficacy
by comparison with simulation experiments.

1) Outline of a heuristic derivation of a mean delay formula
in Sengupta [13]: We approximate the batch arrival process
into the batching queue to be Poisson as discussed earlier in
Section IV. Figure. 5 depicts the residual work-in-system in
front of the kth arrival into the batching queue, plus the work
brought in by the arrival. Here Ak, Uk denote the arrival and
departure times, respectively, of the kth batch, and Wk =
Uk −Ak denotes its total sojourn time.

The following is an explanation of the diagram. When the
kth arrival joins the queue, the total amount of work to be
done (until this arrival exits) becomes Vk (including the work
brought in by the new arrival). The signal is in the red state
as the work is not decreasing. When the signal turns green,
the work begins to decrease as vehicles exit the intersection.
Since this is a first-in-first-out system (at the batch level), the
work seen by the kth arrival cannot increase. Another red
time is shown, yielding a total red time of Rk. Eventually,
at Uk the value decreases to zero indicating that the kth

arrival departs. Due to first-in-first-out service, the sojourn
time experienced by the kth batch is the sum of the total
work seen by it on arrival and the total red-time it encounters,

i.e., Wk = Vk + Rk. It follows that limn→∞ 1
n

n∑
k=1

Wk =

limn→∞ 1
n

n∑
k=1

Vk + limn→∞ 1
n

n∑
k=1

Rk, where the limits are

assumed to exist with probability 1. Assuming that the batch
average mean sojourn time exists, and the time average of the
V (t) process also exists, writing EW as the mean sojourn
time and EV as the time average work in the system, almost
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Rk

Wk

Waiting time for k-th vehicle
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Work seen by
k-th vehicle

Total red time seen
by k-th vehicle

Fig. 5: The work-in-system process during the sojourn of
vehicle k.

surely, EW = lim
n→∞

1

n

n∑
k=1

Wk,EV = lim
t→∞

∫ t

0

V (u)du =

lim
n→∞

1

n

n∑
k=1

Vk. The second equality follows from “Poisson

arrivals see time averages (PASTA)” (see, for example, [24]),
since we have a Poisson arrival process. As a result, with

ER = limn→∞ 1
n

n∑
k=1

Rk almost surely, mean sojourn time

of an arriving batch is obtained from EW = EV + ER.
This relation can be used to derive an approximation, whose
heuristic derivation is shown in [20]. The term ER is split
into the mean red time seen on arrival plus the mean delay
due to interruptions by red periods. The first part is exactly
r
c × r

2 , the probability an arrival finds the system in a red
period, times the mean residual red time; here, since the red
periods are deterministic the mean residual red time is just
r
2 . The second part is approximated as r

g × EV , since EV
g is

roughly the number of times the work seen by the kth arrival
is interrupted by red periods.

EW ≈EV +
r

g
EV +

r2

2c

This expression is the same as the one obtained from Sen-
gupta’s exact analysis [13, Eq. (7)]. In order to use this
formula, however, we require an expression for EV . While
such an expression is available for the interrupted M/G/1 queue
from Sengupta [13], no such expression is available for the
interrupted M/SM/1 queue. We, therefore, proceed as follows:
1) The above analysis suggests an interpretation of the well-
known Webster mean delay formula as the sum of the mean
delay due to interruptions and the mean delay in a queue with
inflated service times. We have justified such an interpretation
in [20]. 2) Using this interpretation we propose an extension
of the Webster formula to the M/SM/1 queue.

2) Webster’s approximate formula and its extension to
interrupted M/SM/1 model:

Understanding Webster’s Formula: Webster [3] provided
the following formula to approximate the mean delay in an
interrupted M/D/1 queue with vehicle arrival rate λ, green
time g, red time r, cycle time c = r + g, and mean vehicle
service time τ ,

d ≈ r2

2c(1− λτ)
+
c

g

λτ2

2(g/c− λτ)
− 0.65(

c

λ2
)

1
3 (λcτ/g)2+5g/c

(8)

To find a version of this formula that can be used to approx-
imately describe the mean delay in an interrupted M/SM/1
queue, it is essential to know how the underlying queue affects
the three terms in which the mean delay is decomposed. A
detailed numerical study in [20] verified this formula against
the exact analysis of Sengupta [13], which finally gives a
formula for mean delay, similar to the one found heuristically
in Section V-B1. In light of this formula, we interpret the terms
of Webster’s formula as follows:

1) We interpret the first term to approximate mean residual
red time seen by a batch at arrival. Newell [9] interpreted the
first term as a fluid arrival delay approximation term. 2) We
interpret the second term to approximate the mean delay of a
batch excluding the residual red time seen at arrival. Newell [9]
interpreted this term to approximate the mean overflow queue
length. 3) The third term is an empirical correction term
accounting for the mismatch between the actual delay and
the delay contributed by the first two terms. It was found by
Webster by fitting a curve through Monte-Carlo simulations.

Moreover, observe that the second term is an expression
for mean delay of an uninterrupted M/D/1 queue with mean
service time enhanced by a factor of c/g. These observations
motivate us to propose a heuristic extension of Webster’s
formula to an interrupted M/SM/1 queue by replacing the
second term of Webster’s formula by the mean delay formula
of an uninterrupted M/SM/1 queue with service time enhanced
by a factor of c/g.
Obtaining Mean Delay in an uninterrupted M/SM/1
model:Consider the M/SM/1 batch queue model elaborated in
Section IV-A without interruptions. In order to find the mean
delay for this queue, define the following:
Dk, k ≥ 0 : kth departure instant.
Qk, k ≥ 0 : Batch queue length embedded at Dk+, i.e. just

after the kth departure.
It then follows that the process {Qk, Xk} forms a two dimen-
sional discrete time Markov chain on N×V with the transition
probabilities given by

P (Qk+1 = y,Xk+1 = j|Qk = q,Xk = i) =fija
(y−q+1)
ij , q > 0

=fijb
(y−q+1)
ij , q = 0

where a
(l)
ij =

(λtij)
le(−λtij)

l! , b(l)ij = (λl(i))le(−λl
(i))

l! , and
l(i) = li

vs
. The form of the transition probabilities for

{Qk, Xk} can be appreciated recalling that {Xk} is a DTMC
on V and the batch arrival process is (approximately) Poisson.
The corresponding transition probability matrix is given by

P =


Bo B1 B2 ... ...
A0 A1 A2 ... ...
0 A0 A1 ... ...
0 0 A0 ... ...
... ... ... ... ...

 where {Bl}ij = fijb
(l)
ij ,

and {Al}ij = fija
(l)
ij . We now proceed in the following steps

to find the mean delay: 1) The “M/G/1 type” matrix Markov
chain is solved for stationary distribution using standard tech-
niques incorporated in Matlab toolset (see [25]). 2) With the
help of the stationary distribution of the process {Xk}, the
stationary probability vector for the queue length right after



9

Car Motorcycle

γ

β

1− γ 1-β

αc =
β

γ+β
αm = γ

γ+β

Fig. 6: Car-Motorcycle Markov Chain

departure instants is found and then used to find the mean
queue length after departure epochs, q̄′. 3) Since the departures
occur in singletons, a standard level crossing argument is used,
along with the PASTA property to conclude that the mean
queue length is q̄ = q̄′. 4) Finally, Little’s law is applied to
find the mean waiting time in the queue as w̄ = q̄

λ−τ where λ
is the batch arrival rate into the queue and τ is the mean service
time of a batch. It is essential to mention that the mean service
time is expanded by c/g to take care of service interruptions,
as required by the earlier interpretation of Webster’s formula.

Thus, for a given λ, the Webster’s approximate formula,
extended for the interrupted M/SM/1 model becomes,

d =
c(1− g

c )2

2(1− g
cx)

+ w̄ − 0.65(
c

λ2
)

1
3x2+5 gc (9)

where x , λτc/g, which is called the degree of saturation.
Validation of the approximate delay formula for the

interrupted M/SM/1 queue: In order to validate our extension
of Webster’s delay formula to the interrupted M/SM/1 queue,
we simulate an M/SM/1 queue and compare the mean delay
obtained from the simulation with that obtained from the
approximate formula. The arrival process is Poisson; the
arrivals are either motorcycles or cars, and these queue up in
a disciplined manner. The arrival types form a Markov chain
with transition structure shown in Figure 6.

Figure 7 compares the approximate formula for mean delay
provided by our extension of Webster’s formula for mean
delay to the M/SM/1 case and the simulation results for
disciplined M/SM/1 traffic with preemptive resuming (recall
the interrupted queue model of the intersection in Section IV).
The mean delay variation is plotted against the degree of
saturation x = λτc/g, where λ is the total arrival rate of
motorcycles and cars, τ is the mean service time (obtained
from the arrival type Markov chain in Fig 6, and traffic model
in Table I), and c, g are the total cycle time and green time
duration, respectively. Different plots are given for different
sets of value of the motorcycle-to-car transition probability
γ. The values of the headways used are given in Table. I.
The percentages of the motorcycles and cars used are 80%
and 20% respectively. The plots show that the approximation
by the extended Webster’s formula gives quite good estimate
of the mean delay, with the approximation becoming tighter
with increasing g. Also, Newell [9] showed that the original
Webster’s approximation approximation works better for lower
values of arrival rates, which is why our extended Webster’s
model better approximates an M/SM/1 queue in this regime.
Observe that, with g fixed, as the motorcycle-to-car transition
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(b) γ = 0.8

Fig. 7: Webster’s extension for M/SM/1 vs Preemptive Simu-
lation

probability γ increases, the mean delay decreases; this is ex-
pected since 1/γ is the mean size of a sequence of consecutive
cars in the vehicle stream, so that an increase in γ populates
the vehicle stream with longer sequence of motorcycles, which
reduces mean delay because of smaller mean service time of
motorcycles.

VI. NUMERICAL VALIDATION OF THE ANALYSIS
APPROACH FOR INDISCIPLINED TRAFFIC

We simulate the model described in Section II, and compare
the mean delay so obtained with the mean delay obtained
from our analysis approach via splitting the system into an
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j
i C0 M2 C2 M4

C0 8 3 9.5 3.5
M2 7 2.5 8.5 3
C2 8 3.5 9.5 3.5
M4 7 2.5 8.5 3

TABLE II: dij(in meters), indisciplined queue
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(a) g = 20s, c = 60s, αc = 0.001, αm = 0.999
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(c) g = 20s, c = 60s, αc = 0.333, αm = 0.667
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(d) g = 50s, c = 60s, αc = 0.333, αm = 0.667

Fig. 8: Comparison of mean delays from simulation and
approximate analysis for batch intersection queue for different
fractions of cars and motorcycles

assembly queue and an interrupted M/SM/1 queue. We have
simulated the arrivals of unbatched cars and motorcycle pairs
by independent Poisson arrival processes, with rates αmλ, and
αcλ, where λ is the total traffic arrival rate, and αm, αc are
the fraction of motorcycle pairs and cars, respectively, in the
arriving traffic. The variation of mean delay is plotted with
respect to the degree of saturation (as defined in Section V),

for an indisciplined signalized intersection queue keeping
g, c, αc, αm and the traffic parameters fixed. Additionally, plots
of mean delays of a disciplined queue with traffic model in
Table I, as well as the mean delay estimate produced by
our proposed Webster’s extension are plotted; these additional
plots act as benchmarks. The following probabilities for the
disciplined case are obtained from γ, β (from Fig 6), which
are taken to be αm, αc respectively. For indisciplined queue
with batches traffic parameters from Table II are used. As
a practical choice, the lengths of the batches are taken as
lC0

= lC2
= lC and lM2

= lM4
= lM , where lM and lC

denote the lengths of an unbatched car and an unbatched
motorcycle pair respectively. The effect of reduction of exit
speed is realized by increasing the headways of the batches,
as in Table II, and the saturation speed vs is taken to be
4.5 m/s, chosen to be the same3 for all the vehicles, both
within and outside a batch. For the purpose of simulating
heterogeneous traffic, we have used the two sets of vehicle
probabilities (αc, αm), (0.001, 0.999) and (0.333, 0.667).

We simulated an isolated signalized intersection with fixed
cycle time length, with no arterial system interfering with
its arrival process. For both the disciplined and indisciplined
cases, given a fixed pair (αc, αm), for each arrival rate λ, a
sample process of the traffic intersection was generated and the
process was allowed to run for a simulation time of 5× 105s.
For fixed values of λ, c, g, and the lagging headway, dij values
used in the experiments,(different values for disciplined and
indisciplined cases) this simulation time was observed to be
large enough to allow an average of 248500 arrivals, which
was large enough for the queue to achieve steady state. We
wrote the code for the simulation in C and ran the experiment
on a laptop computer with Windows 8.1 operating system with
4 GB RAM, 2.4 GHz Intel Core-i5 processor.

To find the mean delay for the assembly queue+interrupted
M/SM/1 batching queue using our approximate analysis, we
first carried out a fixed point analysis to find out the arrival
rates of the batches from the assembly queue into the batching
queue, the following probabilities associated to the batch de-
parture process from the assembly queue, the mean completion
times of the batches, and the steady state probabilities q0, q1 of
the batching queue. Using these estimates associated with the
batch departure process from the assembly queue, the mean
delay of the batching queue was estimated using Webster’s
extended formula in Eq. (9) for an interrupted M/SM/1 queue.
Similarly, Webster’s extended formula was used, with different
traffic model parameters from Table I, to calculate mean delay
estimate for disciplined queues. These calculations were done
in on a laptop computer with Windows 8.1 operating system
with 4 GB RAM, 2.4 GHz Intel Core-i5 processor.

The plots reveal that the phenomenon of batching in an
indisciplined queue improves the capability of the system to
handle higher arrival rate or discharge. Observe that with
99.9% motorcycles, the indisciplined behaviour elevates the
capacity of the system, i.e., the maximum number of vehicles
arrivals per second for which the queue remains stable, by over

3However, the model is flexible enough to incorporate unequal saturation
speeds
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60%, while with 33.3% motorcycles the capacity is elevated
by over 10%. Although the batches exit with reduced speed,
as reflected in their higher headways, the effect of multiple
vehicles exiting together results in an overall decrease in
mean delay. However, it remains to see to what extent the
batches can reduce their exit speed until the “gain” in maximal
arrival rate becomes 1. Our model also allows an analysis with
parametric vs, (again see [22]) which might be able to shed
light into this question. The next paragraph shows how our
model can heuristically explain the observed gain in maximum
arrival rate capacity for indisciplined queues.

Heuristic explanation of enhancement of the capacity
of an interrupted queue due to batching: We heuristically ex-
plain how the indisciplined behaviour of batching and batched
service increases the arrival rate handling capacity of the
system, and reduces the mean delay, by analysing the situation
near arrival rate saturation. Near saturation, a valid assumption
is q0 ≈ q1 ≈ 0. The assumption is justified by Figure 4, for our
analysis approach is near exact in this regime. In this regime,
there cannot be any isolated car or motorcycle pair, resulting
in the only batches C2,M4 as defined in Section III. In this
regime arrival rate of a car-motorcycle pair is λC2

≈ λc. It
then follows that the rate of arrival of the rest of the motorcycle
pairs that do not batch with cars is approximately λm − λc.
Since two motorcycle pairs form an M4 batch, the arrival rate
of an M4 batch becomes λM4 ≈ (λm − λc)/2. Consequently,
the total input rate to the batch queue can be approximated
by (λm + λc)/2 = λin/2 where λin is the net arrival rate
into the system. Invoking the assumption q0 ≈ q1 ≈ 0,
from Equation (3) we can approximately get the 4 batch
following probabilities as fC2C2 ≈ αc

(
αm + 3

2

)
, fC2M4

≈
(αm−αc)(1+αm)

2 , fM4C2 ≈ αc(1 + αm), fM4M4 ≈ α2
m. The

corresponding stationary distribution of the batches are ob-
tained as πC2

≈ λC2

λC2
+λM4

= 2αc, πM4
≈ 1−πC2

= αm−αc,
where αm = λm/(λm + λc), αc = λc/(λm + λc). The mean
service time of the batches can be aproximately calculated as

τbatch =
∑

i,j∈{C2,M4}
πifijtij

≈αc(αm − αc)(1 + αm)tC2M4 + α2
c(3 + 2αm)tC2C2

+(αm − αc)αc(1 + αm)tM4C2 + (αm − αc)α2
mtM4M4

Now, the degree of saturation for the intersection queue with
the C2,M4 batches as its input arriving vehicle batch types is
xbatch = λbatchτbatch

c
g . But, at saturation flow, xbatch = 1⇒

λin = 2g/(cτbatch). For the unbatched queue, the degree of
saturation is x = λinτc/g which becomes 1 at saturation, i.e.,
the queue becomes saturated when λin = g/(cτ) where τ is
the mean service time of the unbatched vehicles i.e.

τ = αc(fCCtCC + fCM tCM ) + αm(fMCtMC + fMM tMM )

This gives us an approximate expression for the “gain” of ve-
hicle arrival rate for an indisciplined queue around saturation,

λ
(batch)
in,sat

λ
(nobatch)
in,sat

≈ 2τ

τbatch
(10)

this serves as an estimate of the maximum “degree of satu-
ration” that can be handled by the batching queue. Using the

traffic headways in Tables I, II, and the vehicle-type Markov
chain in Fig 6, the calculated value of the above estimate are
found to be ≈ 1.166 for (αc = 0.333, αm = 0.667), and
≈ 1.67 for (αc = 0.001, αm = 0.999), respectively, which
can be verified to be pretty exact from the plots in Fig 8. We
can also observe from Eq (10), that for the “gain” in capacity
to become 1, at saturation, τbatch ≈ 2τ , from which an
estimate of the maximum reduction of exit speed of the batches
can be found as a function of αm, αc, {fij , tij}i,j∈{C,M}.

VII. CONCLUSION

In this paper we have considered heterogeneous traffic
consisting of smaller motorcycles and larger cars arriving into
a single lane, isolated signalized intersection queue with fixed
duration green and red cycles. The smaller motorcycles fill
the side-ways gaps next to waiting cars or other motorcycles,
resulting in the formation of “batches”. We model the batch
formation process via an assembly queue and model the
service of the batches by an interrupted queue. We decompose
the mean delay of the system, approximately, as the sum of
mean delays in the two proposed queues. A by-product of our
analysis is a generalization of the approximate mean delay
formula of Webster to the interrupted M/SemiMarkov/1 queue.

By comparison with a detailed simulation of the original
system, we find that our analysis approach, which involves
several approximations, provides an accurate estimate of the
mean delay. One obvious consequence of batching behaviour
is that the intersection capacity increases, provided the satu-
ration speed remains unchanged due to batch formation. Our
model permits us to estimate the increase in capacity. Further,
since the saturation speed is a parameter in the analysis,
our analysis permits sensitivity analysis with respect to this
parameter. Thus, our analytical approach can be applied to the
traffic engineering of intersections with indisciplined traffic, in
a manner similar to Webster’s mean delay model.

APPENDIX A
PROOF OF LEMMA 4.1

We begin with a review of the queueing model in Sengupta’s
work [13]. The model considers a queue whose arrivals
and service processes are defined by an alternating renewal
process. The states of the alternating renewal process are 1
(ON) and 2 (OFF). The distribution of time spent in state i (i
= 1,2) is Fi(t). Arrivals into state i constitutes a Poisson point
process with rate λi. The service time distribution is given by
Bi(t). The service times of successive customers are assumed
to be independent. Sengupta splits the process {X(t), t ≥ 0},
the amount of work in the system at time t, into two stationary
processes {Y (t), t ≥ 0}, {Z(t), t ≥ 0}. Y (t) is constructed
from process X(t) by deleting all times when environment is
in state 2, and Z(t) by deleting all times when environment
is in state 1.

We require the following notation from Sengupta [13] for
our proof.
G(t) distribution of work brought in at renewal epochs

of Y (t). (i.e work accumulated during the previ-
ous OFF period)
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∼
ρ(s) LST of busy period of a special M/G/1 queue with

arrival rate λ1, and service time distribution B1(t)
whose amount of work at time 0 has distribution
G(t).

f
(k)
i (t)(b(k)

i (t)) kth moment of Fi(t) (Bi(t))
B1(s) stationary LST of B1(t)
R1(s) stationary LST of the process Y (t)
R2(s) stationary LST of the process Z(t)
R(s) stationary LST of the process X(t)

A special GI/GI/1 queue is defined, with inter-arrival duration
F1(t) and LST of service time distribution is

∼
ρ(s).

∼
V (s) LST of work in the special GI/G/1 queue.
∼
W (s) LST of customer arrival stationary distribution of

the special GI/G/1 queue.
∼
U(s) LST of steady-state distribution of, Z(t) observed

at instants just after the renewal epochs.
We also recall the following results derived in Sengupta [13]

∼
R1(s) =

1− λ1b
(1)
1

1− λ1[(1−
∼
B1(s))/s]

.
∼
V (s− λ1(1−

∼
B1(s))) (11)

∼
R2(s) =

∼
U(s)(1−

∼
F2(λ2(1−

∼
B2(s))))

f
(1)
2 λ2(1−

∼
B2(s))

(12)

R̃(s) =c1R̃1(s) + c2R̃2(s) (13)

where,c1 =
f
(1)
1

f
(1)
1 +f

(1)
2

; c2 = 1− c1.
With the notation all set, we find that the steady state

probability that the interrupted queue is empty is q0 =
P(X(t) = 0) = lims→∞ R̃(s). Using Equation (11), Equa-
tion (12) and Equation (13), and noting that λ1 = λ2 = λ,
f

(1)
1 = g, f

(1)
2 = r and b(1)

1 = b
(1)
2 = τ it follows that

q0 =
g

c
(1− λτ)v0 +

r

c
· 1− e−λr

rλ
u0 (14)

where v0 := lims→∞ Ṽ (s), u0 := lims→∞ Ũ(s). To find
v0, we look at the special G/G/1 queue considered by
Sengupta [13]. Let the work be denoted by Wr in steady
state, which allows one to write Wr =

∑Nr
j=0 Sj where Nr

is the number of Poisson arrivals of rate λ2 in a red time and
Sj is the work brought by the jth arrival. Observe that Sj’s
are i.i.d∼ B2(·) and are independent of Nr. Consequently,
G(t) =

∫∞
0

∑∞
k=0 e

−λ2u (λ2u)k

k! B
(n)
2 (t)dF2(u), where B(n)

2 (·)
denotes the n-fold convolution of B2(·) with itself. Denote by
BG(t) the service distribution of the special G/G/1 queue. It
follows that v0 = p0 where p0 is the steady state probability
that the system size of the special G/G/1 queue is 0. Using,
Little’s law [24], v0 = p0 = 1 − λ1

µG
, where 1/µG is the

mean service time of the special G/G/1 queue. Finding µG
requires finding the mean busy period of an M/G/1 queue
with non-zero amount of work at time 0. Let b̂ denotes this
mean busy period of this special M/G/1 queue. Let Ḡ denotes
the mean amount of work brought at time 0 to the queue.
Then, evidently, the busy period of the queue starts when
the server starts serving this work. In the meantime, arrivals
come during the removal of this work in the queue and

they bring additional work into the queue. Once the server
removes the initial work it has to finish off the additional
work brought by the arrivals during the removal of the initial
work. Had there been no initial work in the system, this
later work would constitute the busy period of the queue
which, by a branching process argument, can be shown to
be b = b

(1)
1 /(1 − λ1b

(1)
1 ) leading to an expression of mean

busy period: b̂ = Ḡ + λ1Ḡb = Ḡ/(1 − λ1b
(1)
1 ). Furthermore,

the description of G(t) implies Ḡ = λ2b
(1)
2 f

(1)
2 . Thus,

v0 =1− 1

f
(1)
1

λ2b
(1)
2 f

(1)
2

1− λ1b
(1)
1

= 1− 1

g

λτr

1− λτ (15)

Using Equation (15) in Equation (14) and using the relation
c = r + g, the final result follows.

APPENDIX B
PROOF OF LEMMA 4.2

Consider the alternating process described by the alternating
red and green times. The beginning of the kth red time is
denoted by Tk, for k = 0, 1, 2, · · · , and marks the beginning
of the kth red-green cycle. The cycle time is deterministic and
is fixed to c(= r + g). Ik ∈ {0, 1} is an indicator random
variable taking value 1 if a batch arrives in (Tk, Tk + r]
and finds an empty system; evidently, in a cycle, the num-
ber of batches that can arrive in a red time to find the
system empty can either be 0, or 1. Let V (t) denote the
residual work in the interrupted queue at time t, and let
Vk := V (Tk). Let A(t) be the total number of arrivals in
[0, t), and Ar,0(t) be the number of arrivals in [0, t) that
arrive in an empty system in red time. Then, the fraction
of batches that arrive at an empty system in a red time is

p0 = limt→∞
Ar,0(t)
A(t) = limt→∞

∑A(t)
k=1 Ik
A(t) =

limt→∞

∑A(t)
k=1

Ik
t

limt→∞
A(t)
t

.
Since the batch arrivals constitute a Poisson point process with
arrival rate λ, using elementary renewal theorem [26] it follows
that limt→∞A(t)/t

a.s.
= λ. Furthermore, V (t) is a Markov re-

generative process with stopping times {Tk, k = 0, 1, 2, · · · }
and hence {(Vk, Tk), k = 0, 1, 2, · · · } is a Markov renewal
sequence [27]. Now, note that an arrival in a red time finds
the queue empty only if the red time begins with zero residual
work in the system. In such a case, the first arrival in such a red
time will find the queue empty. Thus, a Markov regenerative

analysis [27] argument allows us to write limt→∞
∑A(t)
k=1 Ik
t

a.s.
=

EVk (Ik)

EX =
u0·P(a customer arrives in (0, r))

c =
u0(1−e−rλ)

c .
Here u0 is the stationary probability that the system is empty
at the beginning of a red time. Hence, combining terms
in the previous limit expression, p0 = limt→∞

Ar,0(t)
A(t)

a.s.
=

u0(1−e−rλ)
λc . Let ζ denote the arrival instant of the first batch to

arrive in a red-green cycle with ζ measured from the beginning
of the red time to the instant of arrival of the batch. The
residual red time seen by the arrival will then be just (r−ζ)+.
Then the residual red time seen by the first batch arriving
in the red time, given that a batch does arrive is given by
r′0 = E(r − ζ|r > ζ) =

∫ r
0

(r−u)λe−λudu

1−e−rλ = r
1−e−rλ − 1

λ .
To find p1, let D(t) be the number of departures in (0, t],

and Di(t) be the number of departures in (0, t] that are inter-
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rupted. Then p1 = limt→∞
Di(t)
D(t) =

limt→∞
Di(t)

t

limt→∞
D(t)
t

. Now, for a

stable queueing system limt→∞A(t)/t = limt→∞D(t)/t
a.s.
=

λ. For the limit in the numerator we again use a Markov
regenerative analysis. Observe that a departure is interrupted
at Tk if V (Tk−) 6= 0. Again considering the red-green
cycles, if the red time at the beginning of the cycle starts
with non-zero work in the system, it implies that the service
of a batch has been interrupted. Due to the assumption of
service time being smaller than the green time, this batch
will depart in the green time in that cycle, thus yielding a
“reward” of 1. It follows, using Markov regenerative analysis,
that p1 = 1

λ limt→∞
Di(t)
t

a.s.
= 1

λ ·
(1−u0)·1

c . Finally, using
the description of the completion time in Eq (5), the desired
expression for EC is obtained.
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