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Abstract—In a large wireless sensor network (WSN) with
sleep-wake cycling nodes, we are interested in the local decision
problem faced by a node that has “custody” of a packet and
has to choose one among a set of next-hop relay nodes. Each
of the relays is associated with a “reward” that summarizes
the cost/benefit of forwarding the packet through that relay. We
seek a locally optimal solution to this problem, the idea being
that such a solution, if adopted by every node, could provide a
reasonable local heuristic for the end-to-end forwarding problem.
Towards this end, we propose a local forwarding problem where
the relays wake-up at random times, at which instants they reveal
the probability distributions of their rewards. To determine a
relay’s exact reward, the source has to further probe the relay,
incurring a probing cost. Thus, at each relay wake-up instant, the
forwarding node, given the reward value of an already probed
relay and the reward distribution of an unprobed relay, has to
decide whether to stop (and forward the packet to the probed
relay), continue waiting for further relays to wake-up, or probe
the unprobed relay. We formulate this local forwarding problem
as a Markov decision process (MDP) and obtain some interesting
structural results on the optimal policy. Our problem can be
considered as a new variant of the asset selling problem studied
in the operations research literature.

I. INTRODUCTION

Consider a wireless sensor network deployed for the detec-
tion of a rare event e.g., forest fire, intrusion in border areas,
etc. To conserve energy, the nodes in the network sleep-wake
cycle whereby they alternate between an ON state and a low
power OFF state. We are further interested in asynchronous
sleep-wake where the point processes of wake-up instants of
the nodes are mutually independent [1], [2].

In such networks, whenever an event is detected, an alarm
packet (containing the event location and a time stamp) is
generated and has to be forwarded, through multiple hops,
to a control center (sink) where appropriate action could be
taken. Since the network is sleep-wake cycling, a forwarding
node (i.e., a node with an alarm packet) has to wait for its
neighbors to wake-up before it can choose a neighbor for the
next hop. Thus, there is a delay incurred, due to the sleep-wake
process, at each hop enroute to the sink. We are interested
in minimizing the total average end-to-end delay subject to a
constraint on some global metric of interest such as the average
hop counts, or the average total transmission power (sum of the
transmission power used at each hop). Such a global problem
can be considered as a stochastic shortest path problem [3], for
which a distributed Bellman-Ford algorithm (e.g., the LOCAL-
OPT algorithm proposed by Kim et al. in [1]) can be used

to obtain the optimal solution. A major drawback with such
an approach is that a pre-configuration phase is required to
run such algorithms, which would involve exchange of several
control messages.

The focus of our research is, instead, towards designing sim-
ple forwarding rules using only the local information available
at a forwarding node. We have already made efforts in this
direction [2], [4] by proposing a local forwarding problem
where we minimize one-hop delay subject to a constraint on
the reward offered by the chosen relay, where the reward
associated with a relay is a function of the transmission power
and the progress, towards sink, made by the packet when
forwarded to that relay. Through simulations we found that,
in some region of operation, the end-to-end performance (i.e.,
total delay and total transmission power) obtained by applying
the solution to the local problem at each hop is comparable
with that obtained by the global solution (i.e., the LOCAL-
OPT proposed by Kim et al. [1]), giving us the confidence
that it is reasonable to solve the local forwarding problem.

However in our earlier work we assumed that the gain
of the channel between the forwarding node and a relay is
a deterministic function of the distance between the two,
whereas, in practice the channel is random and the forwarding
node has to send probe packets to learn the channel gain [5],
thus incurring an additional energy cost. In the current work
we have incorporated these features (namely, channel probing
and the associated energy cost) while choosing a relay for the
next hop, leading to an interesting variant of the asset selling
problem [6].

Outline and Contributions: In Section II we will formally
describe our system model, following which we will discuss
the related work. Sections III and IV are devoted towards char-
acterizing the structure of the policy RST-OPT (ReSTricted-
OPTimal) which is optimal within a restricted class of re-
lay selection policies. In Section V we will informally dis-
cuss the globally optimal policy, UnRST-OPT (UnREStricted-
OPTimal). Our main technical contributions are:
• We characterize the optimal policy, RST-OPT, in terms

of stopping sets. We prove that these stopping sets have
threshold structure (Theorem 1).

• We further prove that the stopping sets are identical across
the decision stages (Theorem 2 and 3). This can be
considered as a generalization of the one-step-look ahead
rule (see the Remark following Theorem 2).



• Through numerical work (Section VI) we find that the
performance of RST-OPT is close to that of the UnRST-
OPT, which is more computationally intensive and energy
comsuming than RST-OPT.

For most of the proofs we refer to our technical report [7].

II. SYSTEM MODEL: THE LOCAL FORWARDING PROBLEM

In this section we will describe the system model in the
context of geographical forwarding, also known as location
aware routing, [2], [8], [9]. In geographical forwarding it is
assumed that each node in the network knows its location (with
respect to some reference) as well as the location of the sink.

Consider a forwarding node (henceforth referred to as the
source) at a distance v0 from the sink (see Fig. 1). The
communication region of the source is the set of all locations
where reliable exchange of control messages can take place
between the source and a receiver, if any, at these locations. In
Fig. 1 we have shown the communication region to be circular,
but in practice this region can be arbitrary. The set of nodes
within the communication region are referred to as neighbors.
Let v` represent the distance of a location ` (a location is
a point in <2) from the sink. Then define the progress of
the location ` as Z` := v0 − v`. The source is interested in
forwarding the packet only to a neighbor within the forwarding
region L where, L =

{
` ∈ communication region : Z` ≥ 0

}
.

The forwarding region is shown hatched in Fig. 1. We will
refer to the nodes in the forwarding region as relays.
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Fig. 1. The hatched area is the forwarding region L. For a location ` ∈ L,
the progress Z` is the difference between the source-sink distance, v0, and
the location-sink distance, v`.

Let H` represent the random gain of the channel between
the source and location ` ∈ L. We will assume that the
channel gains, {H` : ` ∈ L}, are independent and identically
distributed (i.i.d.). We will further assume that the channel
coherence time is such that during the local decision process
the channel gains in the forwarding area remain unchanged.
The rate at which packets arrive to be forwarded through a
region is low enough so that the channel gains change in
between each forwarding instance. Such low forwarding rates
would arise in sensor networks whose main purpose is to
detect infrequent events (fires, intrusions, gas leaks, etc.).

Given H`, the minimum power required to achieve an SNR
threshold of Γ at location ` is P` =

ΓN0d
β
`

|H`|2 , where d` is the
distance between the source and the location `, β is the path
loss attenuation factor, and N0 is the noise variance.
Reward Structure: Several metrics have been proposed in the
literature [10] to enable a forwarding node to evaluate its

neighbors before choosing one for the next hop. In the current
work we prefer to use a reward metric, which is a combination
of the progress, Z`, and the minimum power required, P`.
Formally, to each location ` ∈ L we associate a reward R` as

R` =
Za`

P
(1−a)
`

=
Za`

(ΓN0d
β
` )(1−a)

(|H`|2)(1−a), (1)

where a ∈ [0, 1] is used to tradeoff between Z` and P`. The
reward being inversely proportional to P` is clear, because it is
advantageous to use less power to get the packet across. R` is
made proportional to Z` to promote progress towards the sink
while choosing a relay for the next hop. Further motivation for
choosing the particular structure for the reward is available in
[7, Appendix VIII-A]. Finally, let F` represent the distribution
of R`. Thus, there is a collection of reward distributions F
indexed by ` ∈ L. From (1), note that, given a location ` it
is only possible to know the reward distribution F`. To know
the exact reward R`, the source has to send probe packets and
learn the channel gain H`.
Sleep-Wake Process: Since we focus on local forwarding,
we will assume that the source gets a packet to forward
(either from an upstream node or by detecting an event) at
time 0. There are N relays in the forwarding set L that
wake-up sequentially at the points of a renewal process,
W1 ≤ W2 ≤ · · · ≤ WN . Let Uk := Wk −Wk−1 (U1 := W1)
denote the inter-wake-up time (renewal lifetime) between the
k-th and the (k − 1)-th relay. Then U1, U2, · · · , UN , are
independent with their means, equal to τ . For example, Uk,
1 ≤ k ≤ N , could be exponentially distributed with mean τ ,
or could be constant (deterministic) with value τ .
Sequential Decision Problem: Let L1, L2, · · · , LN , denote
the relay locations which are assumed to be i.i.d. uniform over
the forwarding set L. Let A(·) denote the uniform distribution
over L so that, for k = 1, 2, · · · , N , the distribution of Lk
is A(·). The source (with a packet to forward at time 0) only
knows that there are N relays in its forwarding set L, but does
not know their locations, Lk, nor their channel gains, HLk .
When the k-th relay wakes up, we assume that its location
Lk and hence the reward distribution FLk is revealed to the
source. This can be accomplished by including the location
information Lk within a control packet (sent using low rate
robust modulation technique, and hence, assumed to be error
free) transmitted by the k-th relay upon wake-up. However, if
the source wishes to learn the channel gain HLk (and hence
the exact reward value RLk ), it has to send additional probe
packets (indeed several packets, in order to obtain a reliable
estimate of the channel gain) incurring an energy cost of δ
units. Thus, when the k-th relay wakes up (referred to as stage
k) the actions available to the source are:
• stop and forward the packet to a previously probed relay,

thereby accruing the reward of that relay. It is clear that it
is optimal to forward, among all the probed relays, to the
relay with the maximum reward. Thus, henceforth, the
action stop always implies that the best relay (among
those that have been probed) is chosen. With the stop
action the decision process terminates.



• continue to wait for the next relay to wake-up (the aver-
age waiting time is τ ) and reveal its reward distribution,
at which instant the decision process is regarded to have
entered stage k + 1.

• probe a relay from the set of all unprobed relays (pro-
vided there is at least one unprobed relay). The probed
relay’s reward value is revealed allowing the source to
update maximum reward among all the probed relays.
After probing, the decision process is still at stage k and
again the source has to decide upon an action.

In the model, for the sake of analysis, we neglect the time
taken to probe a relay and learn its channel gain. We also
neglect the time taken for the exchange of control packets.
This is reasonable for very low duty cycling networks where
the average inter-wake-up time is much larger than the time
taken for probing, or the exchange of control packets.

A decision rule or a policy is a mapping, at each stage, from
all histories of the decision process to the set of actions. Let
Π represent the class of all policies. For a policy π ∈ Π the
delay incurred, Dπ , is the time until a relay is chosen (which
is one of the Wk). Let Rπ represent the reward of the chosen
relay and Mπ be the total number of relays that were probed
during the decision process. Recalling that δ is the cost of
probing, δMπ represents the total cost of probing if policy π
is used. We would like to think of (Rπ−δMπ) as the effective
reward obtained using policy π.

The problem we are interested in is the following:
minπ∈Π EDπ subject to

(
ERπ − δEMπ

)
≥ γ, where γ > 0

is a constraint on the effective reward. We introduce a “La-
grange” multiplier η > 0 and focus our attention towards
solving the following unconstrained problem:

min
π∈Π

(
EDπ − ηERπ + ηδEMπ

)
. (2)

We will call Π the unrestricted class of policies since Π
contains policies that are allowed, for each stage k, to keep all
the relays until stage k awake. Formally, if bk = max{RLi :
i ≤ k, relay i has been probed} and Fk = {FLi : i ≤
k, relay i is unprobed}, then the decision at stage k is based
on (bk,Fk). Thus, the set of all possible states at stage k
is large. Hence, for analytical tractability, we first consider
(in Sections III and IV) solving the problem in (2) over a
restricted class of policies Π ⊆ Π where a policy in Π is
restricted to take decisions keeping only two relays awake, one
the best among all probed relays and one among the unprobed
ones, i.e., the decision at stage k is based on (bk, Gk) where
Gk ∈ Fk.

A. Related Work

The work reported in this paper is a major extension of our
earlier work ([2], [4]). The difference is that in [2] we assume
that when a relay wakes up its exact reward value is revealed.
This is reasonable if the reward is simply the geographical
progress (towards the sink) made by a relay, which was the
case in [2]. In [4] we studied a variant where the number of

relays N is not known to the source. However, in [4], as well,
the exact reward value is revealed by a relay upon wake-up.

There has been other work in the context of geographical
forwarding and anycast routing, where the problem of choos-
ing one among several neighboring nodes has been studied [9].
The authors in [9] study the greedy policy of always choosing
a neighbor that makes the maximum progress towards the
sink. Thus, they do not study the tradeoff between the relay
selection delay and the progress (or other reward metric),
which is the major contribution of our work. For a sleep-
wake cycling network, Kim et al. in [1] have developed a
distributed Bellman-Ford algorithm (referred to as LOCAL-
OPT) to minimize the average end-to-end delay. However
a pre-configuration phase, involving lot of control message
exchanges, is required to run the LOCAL-OPT algorithm. In
all of the above work, the metric that signifies the quality of
a relay is always exactly revealed, and hence does not involve
a probing action. The action to probe generally occurs in the
problem of channel selection [11]. We will discuss about the
work in [11], in detail, in Section V.

Finally (but very importantly) our work can be considered
as a variant of the asset selling problem which is a major
class within the optimal stopping problems [12], [13] (the
other classes being the secretary problem, the bandit problem,
etc.,). The basic asset selling problem [6], comprises offers
that arrive sequentially over time. The offers are i.i.d. As
the offers arrive, the seller has to decide whether to take an
offer or wait for future offers. The seller has to pay a cost
to observe the next offer. Previous offers cannot be recalled.
The decision process ends with the seller choosing an offer.
Over the years, several variants of the basic problem have
been studied, e.g., problems with uncertain recall, problems
with unknown reward distribution, etc. In most of the variants,
when an offer arrives, its value is exactly revealed to the seller,
while in our case only the offer (i.e., reward) distribution is
made available and the source, if it wishes, has to probe to
known the exact offer value.

Close to our work is that of Stadje [14] where only some
initial information about an offer (e.g., the average size of
the offer) is revealed to the decision maker upon its arrival.
In addition to the actions, stop and continue, the decision
maker can also choose to obtain more information about the
offer by incurring a cost. Recalling previous offers is not
allowed. A similar problem is studied by Thejaswi et al. in
[5], where initially a coarse estimate of the channel gain is
made available to the transmitter. The transmitter can choose
to probe the channel, the second time, to get a finer estimate.
In both of these works ([14], [5]), the optimal policies is
characterized by a threshold rule. However, the horizon length
of these problems is infinite, because of which the thresholds
are stage independent. In general, for a finite horizon problem
the optimal policy would be stage dependent. However, for
our problem (despite being a finite horizon one) we are able
to show that certain optimal stopping sets are identical at every
stage. This is due to the fact that we allow the best probed
relay to stay awake.



III. RESTRICTED CLASS Π: AN MDP FORMULATION

In this section we will formulate our local forwarding
problem as a Markov decision process [13], which will require
us to first discuss the one-step cost and the state transition.

A. One-Step Costs and State Transition

Recall that for any policy in the restricted class Π, the
decision at stage k should be based on (bk, Gk) where bk is
the best reward so far and Gk ∈ Fk is the reward distribution
of an unprobed relay that is retained until stage k.

If the source’s decision is to stop, then the source enters a
terminating state ψ incurring a cost of −ηbk (recall from (2)
that η is the Lagrange multiplier).

If the action is to continue then the source will first incur
a waiting cost of Uk+1 (average cost is τ ). When the (k+ 1)-
th relay wakes-up (whose reward distribution is FLk+1

), first
the source has to choose between Gk and FLk+1

, then put the
other one to sleep so that the state at stage k + 1 will again
be of the form (bk+1, Gk+1). Since the action at stage k was
to continue, the set of probed relays at stage k + 1 remain
unchanged so that bk+1 = bk.

Finally the source could, at stage k, probe the distribution
Gk incurring a cost of ηδ. After probing, the decision process
is still considered to be at stage k where now the state is b′k =
max{bk, Rk} (where Rk is a sample from the distribution
Gk). The source has to now further decide whether to stop
(incurring a cost of −ηb′k and enter ψ) or continue (cost is
Uk+1 and the next state is (b′k, FLk+1

)). Note that for a policy
π, the sum of all the one-step costs, starting from stage 1, will
equal the total cost1 in (2).

B. Cost-to-go Functions and the Bellman Equation

Let Jk(·), k = 1, 2, · · · , N , represent the optimal cost-to-
go function at stage k. Thus, Jk(b) and Jk(b, F`) denote the
cost-to-go, depending on whether there is or is not an unprobed
relay. For the last stage, N , we have, JN (b) = −ηb, and

JN (b, F`) = min
{
− ηb, ηδ + E`

[
JN (max{b, R`})

]}
= min

{
− ηb, ηδ − ηE`

[
max{b, R`}

]}
(3)

where E` denotes expectation w.r.t. the distribution F`. The
first term in the min-expression above is the cost of stopping
and the second term is the average cost of probing and then
stopping (the action continue is not available at the last stage
N ). Next, for stage k = 1, 2, · · · , N − 1, denoting by EA the
expectation over the distribution, A(·), of the index, Lk+1, of
the next relay to wake up, we have

Jk(b) = min
{
− ηb, τ + EA

[
Jk+1(b, FLk+1

)
]}
, (4)

Jk(b, F`) = min
{
− ηb, ηδ + E`

[
Jk(max{b, R`})

]
,

τ + EA
[

min{Jk+1(b, F`), Jk+1(b, FLk+1
)}
]}
. (5)

1Since every policy has to invariably wait for the first relay to wake-up,
at which instant the decision process begins, U1 is not accounted for in the
total cost by any policy π.

The last term in the min-expression of (4) and (5) is the
average cost of continuing. When the state at stage k, 1 ≤ k ≤
N − 1, is (b, F`) and, if the source decides to continue, then
the reward distribution of the next relay is FLk+1

. Now, given
the distributions F` and FLk+1

, if the source is asked to retain
one of them, it is always optimal to go with the distribution
that fetches a lower cost-to-go from stage k+ 1 onwards, i.e.,
it is optimal to retain F` if Jk+1(b, F`) ≤ Jk+1(b, FLk+1

),
otherwise retain FLk+1

2. Later in this section (Lemma 1-(ii))
we will show that if F` is stochastically greater than Fu then
Jk+1(b, F`) ≤ Jk+1(b, Fu).

First, for simplicity let us introduce the following notations.
For k = 1, 2, · · · , N − 1, let cck(·) represent the cost of
continuing, i.e.,

cck(b) = τ + EA
[
Jk+1(b, FLk+1

)
]

(6)

cck(b, F`) =

τ + EA
[

min{Jk+1(b, F`), Jk+1(b, FLk+1
)}
]

(7)

and, for k = 1, 2, · · · , N , the cost of probing, cpk(·), is

cpk(b, F`) = ηδ + E`
[
Jk(max{b, R`})

]
. (8)

Using the above notations, the cost-to-go functions can be
written as, for k = 1, 2, · · · , N − 1,

Jk(b) = min
{
− ηb, cck(b)

}
(9)

Jk(b, F`) = min
{
− ηb, cpk(b, F`), cck(b, F`)

}
. (10)

Definition 1 (Stochastic Ordering): Given two distributions
F` and Fu we say that F` is stochastically greater than
Fu, denoted as F` ≥st Fu, if F`(x) ≤ Fu(x) for all x.
Alternatively, one could use the following definition [15]:
F` ≥st Fu if and only if for every non-decreasing function
f : < → <, E`[f(R`)] ≥ Eu[f(Ru)] where the distributions
of R` and Ru are F` and Fu, respectively. �

We end this section by listing out the various ordering
properties of the cost-to-go function in the following lemma.

Lemma 1: For 1 ≤ k ≤ N (for part (iii), 1 ≤ k ≤ N − 1),

(i) Jk(b) and Jk(b, F`) are decreasing in b.
(ii) If F` ≥st Fu then Jk(b, F`) ≤ Jk(b, Fu).

(iii) Jk(b) ≤ Jk+1(b) and Jk(b, F`) ≤ Jk+1(b, F`).

Proof: Part (i) and (iii) follow easily by straightforward
induction. To prove part (ii) we need to use part (i) and the
definition of stochastic ordering (Definition 1). Formal proof
is available in [7, Appendix VIII-B].

2Formally one has to introduce an intermediate state of the
form (b, F`, FLk+1

) at stage k + 1 where the only actions
available are, choose F` or FLk+1

. Then Jk+1(b, F`, FLk+1
) =

min{Jk+1(b, F`), Jk+1(b, FLk+1
)}, which, for simplicity, we are directly

using in (5).



IV. RESTRICTED CLASS Π: STRUCTURAL RESULTS

We begin by defining, at stage 1 ≤ k ≤ N − 1, the optimal
stopping set Sk as

Sk :=
{
b : −ηb ≤ cck(b)

}
, (11)

Similarly, for a given distribution F` we define the optimal
stopping set S`k as, for 1 ≤ k ≤ N − 1,

S`k :=
{
b : −ηb ≤ min{cpk(b, F`), cck(b, F`)}

}
. (12)

From (9) it follows that the optimal stopping set Sk is the set of
states b (states of this form are obtained after probing at stage
k) where it is better to stop than to continue. Similarly from
(10), the set S`k has to be interpreted as, for a given distribution
F`, the set of b such that at state (b, F`) it is better to stop
than to probe or continue.

From the definition of these sets, and using Lemma 1 one
can prove the following set inclusion properties.

Lemma 2: (i) For 1 ≤ k ≤ N − 2 and any F` we have
Sk ⊆ Sk+1 and S`k ⊆ S`k+1.

(ii) For 1 ≤ k ≤ N − 1 and any F` we have S`k ⊆ Sk.
(iii) For 1 ≤ k ≤ N − 1, if F` ≥st Fu then S`k ⊆ Suk .

Proof: See [7, Proof of Lemma 4]
Our first main result is to show that the stopping sets can be

characterized by thresholds (Theorem 1). Next we prove that
the stopping sets are identical across the stages, i.e., Sk =
Sk+1 and S`k = S`k+1 (Theorem 2 & 3).

A. Stopping Sets: Threshold Structure

To prove the threshold structure of the stopping sets the
following key lemma is required, where we show that the
increments in the various costs are bounded by the increment
in the cost of stopping.

Lemma 3: For 1 ≤ k ≤ N − 1 and for b2 > b1 we have
(i) cck(b1)− cck(b2) ≤ η(b2 − b1),

and for any distribution F` we have,
(ii) cpk(b1, F`)− cpk(b2, F`) ≤ η(b2 − b1)

(iii) cck(b1, F`)− cck(b2, F`) ≤ η(b2 − b1).
Proof: See [7, Appendix VIII-C].

Theorem 1: For 1 ≤ k ≤ N − 1 and for b2 > b1,
(i) If b1 ∈ Sk then b2 ∈ Sk.

(ii) For any F`, if b1 ∈ S`k then b2 ∈ S`k.
Proof: Part (i): Using Lemma 3-(i) we can write,

−ηb2 ≤ −ηb1 − cck(b1) + cck(b2).

Since b1 ∈ Sk, from (11) we know that −ηb1 ≤ cck(b1), using
which in the above expression, we obtain −ηb2 ≤ cck(b2)
implying that b2 ∈ Sk. Part (ii) similarly follows using
Lemma 3-(ii) and 3-(iii).

Discussion: Thus, the stopping set Sk can be characterized
in terms of a lower bound xk as illustrated in Fig. 2(a).
Similarly for distributions F` and Fu, there are (possibly
different) thresholds x`k and xuk (Fig. 2(b) and 2(c)). Using
Lemma 2-(ii) and 2-(iii), for F` ≥st Fu we can write,
xk ≤ xuk ≤ x`k. These thresholds are for a given stage k.
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Fig. 2. Illustration of the threshold property. S, P and C in the figure
represents the actions stop, probe and continue, respectively. (a) Sk is
characterized by the threshold xk . (b) and (c) depicts the stopping sets
corresponding to the distributions F` and Fu, respectively, where F` ≥st Fu.

From Lemma 2-(i), we know that the thresholds xk and x`k
are decreasing with k. The main result in the next section
(Theorem 2 and 3) is to show that these thresholds are, in
fact, equal (i.e., xk = xk+1 and x`k = x`k+1).

B. Stopping Sets: Stage Independence Property

In Lemma 2-(i) we have already shown that Sk ⊆ Sk+1,
and S`k ⊆ S`k+1. In this section we will prove the inclusion in
the other direction, leading to the result that the stopping sets
are identical across the stages. Towards this end we will define
the optimal stopping/probing set Q`k as, for 1 ≤ k ≤ N − 1,

Q`k :=
{
b : min{−ηb, cpk(b, F`)} ≤ cck(b, F`)

}
. (13)

From (10) it follows that Q`k is, for a given distribution F`,
the set of b such that at state (b, F`) it is better to either
stop or probe than to continue. From the definition of the
sets S`k and Q`k (in (12) and (13), respectively) it immediately
follows that S`k ⊆ Q`k. Also from Lemma 2-(ii) we know that
S`k ⊆ Sk. However it is not immediately clear how the sets
Q`k and Sk are ordered. Under the assumption that F = {F` :
` ∈ L} is totally stochastically ordered (to be defined next),
we show that Sk ⊆ Q`k (Lemma 5), which plays a key role
while proving our main theorems.

Assumption 1 (Total Stochastic Ordering Property of F):
From here on, we will assume that F is totally stochastically
ordered meaning, any two distributions from F are always
stochastically ordered. Formally, if F`, Fu ∈ F then either
F` ≥st Fu or Fu ≥st F`. We further assume the existance of
a minimal distribution Fm ∈ F such that for every F` ∈ F
we have F` ≥st Fm. �
Note that such a restriction on F is not very stringent, in
the sense that the set of distributions arising in our local
forwarding problem in Section II,

{
F` : ` ∈ L

}
, is totally

stochastically ordered.
Before proceeding to our main theorems, we need the

following results:
Lemma 4: Suppose Sk ⊆ Q`k for some k = 1, 2, · · · , N−1,

and some F`, then for every b ∈ Sk we have Jk(b, F`) =
JN (b, F`).

Proof: See [7, Proof of Lemma 6]
Lemma 5: For 1 ≤ k ≤ N − 1 and for any F` ∈ F we

have Sk ⊆ Q`k.



Proof Outline: For a formal proof see [7, Appendix VIII-
D]. We only provide an outline here.

Step 1: First we show that if there exists an Fu such that,
for 1 ≤ k ≤ N − 1, Sk ⊆ Quk (thus satisfying the hypothesis
in Lemma 4), and if F` ≥st Fu then Sk ⊆ Q`k. Lemma 4 and
the total stochastic ordering of F are required for this part.

Step 2: Next we show that the minimal distribution Fm
satisfies, for every 1 ≤ k ≤ N − 1, Sk ⊆ Qmk . The proof is
completed by recalling that F` ≥st Fm for every F` ∈ F and
then using in Step 1, Fm in the place of Fu.
The following are the main theorems of this section:

Theorem 2: For 1 ≤ k ≤ N − 2, Sk = Sk+1.
Proof: From Lemma 2-(i) we already know that Sk ⊆

Sk+1. Here, we will show that Sk ⊇ Sk+1. Fix a b ∈ Sk+1 ⊆
Sk+2. From Lemma 5 we know that Sk+1 ⊆ Q`k+1 and
Sk+2 ⊆ Q`k+2, for every F`. Then, applying Lemma 4 we
can write, Jk+1(b, F`) = Jk+2(b, F`) = JN (b, F`). Thus,

cck+1(b) = τ + EA
[
Jk+2(b, FLk+2

)
]

= τ + EA
[
Jk+1(b, FLk+1

)
]

= cck(b)

Now, since b ∈ Sk+1 we have −ηb ≤ cck+1(b) = cck(b)
which implies that b ∈ Sk.

Remark: It is worth pointing out the parallels and the
differences of the above result with that in [13, Section 4.4,
pp-165], where it is shown that the one-step-look ahead rule
is optimal, but for the case where the rewards are exactly
revealed. There, as in our Lemma 4, the key idea is to show
that the cost-to-go functions, at every stage k, are identical
for every state within the stopping set. For our case, to apply
Lemma 4, it was further essential for us to prove Lemma 5
showing that for every F`, Sk ⊆ Q`k. Now, for δ = 0, Lemma 5
trivially holds since at (b, F`) it is always optimal to probe
(so that Q`k = <+). Further, δ = 0 can be thought of as the
case where the rewards are exactly revealed. Thus, Theorem 2
can be considered as a generalization of the result in [13,
Section 4.4] for the case, δ > 0. �

Theorem 3: For 1 ≤ k ≤ N−2 and for any F`, S`k = S`k+1.
Proof: Similar to the proof of Theorem 2, see [7, Ap-

pendix VIII-E].

C. Optimal Probing Sets

Similar to the stopping set S`k, one can define an optimal
probing set P`k as, the set of all b such that at (b, F`) it is
better to probe than to stop or continue, i.e.,

P`k :=
{
b : cpk(b, F`) ≤ min{−ηb, cck(b, F`)}

}
. (14)

In our numerical work we observed that, similar to the
stopping set, the probing set was characterized by an upper
bound y`k as illustrated in Fig. 2(b) (where y`k = x`k) and
2(c). At the time of this writing we have not proved such a
result. However, we strongly believe that it is true and make
the following conjecture,

Conjecture 1: For 1 ≤ k ≤ N − 1, for any F`, if b2 ∈ P`k
then for any b1 < b2 we have b1 ∈ P`k. �

The above conjecture, along with Lemma 5 (where we have
shown that, for any F`, Sk ⊆ Q`k), is the reason for the
illustration in Fig. 2(b) (where y`k = x`k) to not contain a region
where it is optimal to continue. Unlike x`k, the thresholds y`k
are stage dependent. In fact, from our numerical work, we
observe that y`k are increasing with k.

D. Policy Implementation

To summarize, due to Theorem 1, the stopping sets Sk and
S`k (F` ∈ F and k = 1, 2, · · · , N − 1) are characterized by
lower bounds xk and x`k. In Theorem 2 and 3 we proved that
these thresholds are equal for every k. Hence it is sufficient to
compute only xN−1 and x`N−1, thus simplifying the overall
computation of the optimal policy. Further, if Conjecture 1 is
true, then the upper bounds y`k are sufficient to characterize
the probing sets P`k.

The source, after computing these thresholds, operates in
the following manner: It initially sets b = −∞. At stage k =
1, 2, · · · , N − 1, with the state being (b, F`), (1) if b > x`N−1

then stop and forward the packet to the probed relay, (2) if b <
y`k then probe the unprobed relay and update the best reward
to b′ = max{b, R`}. If b′ > xN−1 stop, otherwise continue
to wait for the next relay, (3) otherwise, continue to wait for
the next relay to wake-up, at which instant choose, between F`
and FLk+1

, whichever is stochastically greater while putting
the other unprobed relay to sleep.

If the decision process enters the last stage N then the
source simply compares the “cost of stopping, −ηb,” with the
“cost of probing and then stopping, cpN (b, F`),” and chooses
the action whichever has minimum cost.

V. UNRESTRICTED CLASS Π: AN INFORMAL DISCUSSION

In this section we will consider the complete class Π. Here
we will only informally discuss the possible structure of the
optimal policy within Π. Formal analysis is still in progress
at the time of this writing.

Recall that a policy within Π, at stage k, is in general al-
lowed to take decisions based on the entire history. Formally, at
stage k, let bk = max{RLi : i ≤ k, relay i has been probed}
and Fk = {FLi : i ≤ k, relay i is unprobed}, then the
decision at stage k is based on (bk,Fk). Thus the set of all
possible states (State Space SSk) at stage k is

SSk =
{

(b,G) : b ∈ <+,G = {G1, G2, · · · , Gj},

0 ≤ j ≤ k,Gi ∈ F , 1 ≤ i ≤ j
}
. (15)

Again the actions available are stop, probe and continue.
Further, if the action is to probe then one has to decide which
relay to probe, among the several ones awake at stage k.

A. Discussion on the Last Stage N

Consider the scenario where the decision process enters the
last stage N . Given the best reward value b, among the relays
that have been probed, and the set G of reward distributions



of the unprobed relays, the source has to decide whether to
stop or probe a relay (note that there is no continue action
available at the last stage). This decision problem is similar
to the one studied by Chaporkar and Proutiere in [11] in
the context of channel selection, which we briefly describe
now. Given a set of channels with different channel gain
distributions, a transmitter has to choose a channel for its
transmissions. The transmitter can probe a channel to know
its channel gain. Probing all the channels will enable the
transmitter to select the best channel but at the cost of reduced
effective transmission time within the coherence period. On
the other hand, probing only a few channels may deprive the
transmitter of the opportunity to transmit on a better channel.
The transmitter is interested in maximizing its throughput
within the coherence period, which is analogous to the cost
(combination of delay and effective reward, see (2)) in our
case, which we are trying to minimize.

The authors in [11], for their channel probing problem,
prove that the one-step-look-ahead (OSLA) rule is optimal.
Thus, given the channel gain of the best channel (among
the channels probed so far) and a collection of channel gain
distributions of the unprobed channels, it is optimal to stop
and transmit on the best channel if and only if the throughput
obtained by doing so is greater than the average throughput
obtained by probing any unprobed channel and then stopping
(i.e., transmitting on the new-best channel). Further they
prove that if the set of channel gain distributions is totally
stochastically ordered (see Assumption 1), then it is optimal
to probe the channel whose distribution is stochastically largest
among all the unprobed channels. Applying the result of [11]
to our model we can conclude that OSLA is optimal once the
decision process enters the last stage N . Thus given a state,
(b,G), at stage N it is optimal to stop if the cost of stopping is
less than the cost of probing any distribution from G and then
stopping. Otherwise it is optimal to probe the stochastically
largest distribution from G.

B. Discussion on Stages k = N − 1, N − 2, · · · , 1
For the other stages k = N−1, N−2, · · · , 1, one can begin

by defining the stopping sets Sk, SGk and stopping/probing set
QGk analogous to the ones in (11), (12) and (13). Note that this
time we need to define SGk and QGk for a set of distributions G
unlike in the earlier case where we had defined these sets only
for a given distribution F`. We conjecture that it is possible to
show the results analogous to the ones in Section IV, namely
Theorem 2 and 3 where we prove that the stopping sets are
identical for every stage k. Formal analysis is still in progress
at the time of writing this paper. However, in the numerical
results section while performing value iteration we observed
that our conjecture is true, at least for the example considered.

Finally, from the discussion in the previous sub-section we
know that, at stage N , suppose it is optimal to probe when the
state is (b,G) then it is best to probe the stochastically largest
distribution from G. We also conjecture that such a result will
hold for every stage k, which is true for the numerical example
considered in Section VI.

VI. NUMERICAL RESULTS

The optimal policy within the restricted class (Sections III
and IV) is allowed to keep only one unprobed relay awake in
addition to the best probed relay, while within the unrestricted
class (Section V), the optimal policy can keep all the unprobed
relays awake. We will refer to the former policy as RST-
OPT (to be read as, ReSTricted-OPTimal) and the latter as
UnRST-OPT (for UnReSTricted-OPTimal). In this section we
will compare the performance of RST-OPT against UnRST-
OPT. First we will briefly describe the relay selection example
considered for the numerical work.

Recall the local forwarding problem described in Section II.
The source and sink are seperated by a distance of v0 = 10
unit (see Fig. 1). The radius of the communication region is
set to 1 unit. There are N = 5 relays within the forwarding
region L. These are uniformly located within L. To enable us
to perform value iteration (i.e., recursively solve the Bellman
equation to obtain optimal value and the optimal policy), we
discretize the forwarding region L by considering a grid of 20
equally spaced points within L and then rounding the location
of each relay to the respective closest point. Recall the reward
expression from (1). We have fixed, ΓN0 = 1, β = 2 and
a = 0.5. The distribution of |H`|2 is truncated exponential
with mean 1. Finally we normalize the reward to take values
within the interval [0, 1] and then quantize it to one of the 100
equally spaced points within [0, 1]. The inter-wake-up times
{Uk} are exponential with mean τ = 0.2.

In Fig. 3(a) we plot the average total cost (see (2)), incurred
by RST-OPT and UnRST-OPT, as a function of the Lagrange
multiplier η for two different values of the probing cost δ
(namely δ = 0.1 and δ = 0.01). The total cost is decreasing
with η. First, observe that the total cost incurred, by either
policy, for δ = 0.01 is smaller than for δ = 0.1. This
is because, when the probing cost is smaller, each of the
policy will end up probing more relays, thus accruing a larger
reward and yielding a lower cost. Next, since UnRST-OPT is
optimal over a larger class of policies, we know that, for a
given δ, UnRST-OPT should incur a smaller cost than RST-
OPT. However, interestingly from the plot we observe that
the difference between the two costs is small. Also, from the
figure, note that the cost difference for δ = 0.01 is smaller
than that for δ = 0.1. This is because, as the probing cost
is decreased, the two policies will start behaving identically
by probing most of the relays until they stop. Finally, when
there is no cost for probing, i.e., for δ = 0, we expect the two
policies to be identical.

In Fig. 3(b), 3(c), and 3(d) we plot the individual compo-
nents (namely delay, reward and probing cost, respectively) of
the total cost, as a function of η. All the curves in these figures
are increasing with η, except for δ = 0.1 where the average
reward and probing cost of RST-OPT shows a small decrease
when η varies from 40 to 60. As η decreases we observe,
from Fig. 3(b), that all the average delay curves converge to
0.2 (recall that τ = 0.2 is the average time until the first
relay wakes up). This is because, for small values of η, the
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Fig. 3. (a) Average total cost vs. Lagrange multiplier η. (b), (c) and (d): Individual components of the total cost in Fig. 3(a) as functions of η. (b) Avg.
Delay (c) Avg. Reward and (d) Avg. Probing Cost.

source values the delay more (recall (2)) and hence always
forwards to the relay that wakes up first, irrespective of its
reward. For the same reason the average probing cost curves
in Fig. 3(d) converge to their respective δ value which is the
cost for probing a single relay. Similarly the average reward
in Fig. 3(c) converges to the average reward of the first relay.

Finally on the computational complexity of both the poli-
cies. To obtain the policy UnRST-OPT we had to recursively
solve the Bellman equations for every stage k and every
possible state at stage k, starting from the last stage N .
The total number of all possible states at stage k, i.e., the
cardinality of the state space SSk in (15), grows exponentially
with the cardinality of F (assuming that F is discrete like in
our numerical example). It also grows exponentially with the
stage index k. While in contrast for computing RST-OPT, since
within the restricted class, at any time, only one unprobed
relay is kept awake, the state space size grows linearly with
the cardinality of F . Further, the size of the state space does
not grow with k. From our analysis in Section IV we know
that the stopping sets are threshold based and moreover the
thresholds (xk and {x`k : F` ∈ F}) are stage independent, so
that these thresholds have to be computed only once (namely
for stage N−1), further reducing the complexity of RST-OPT.

RST-OPT can also be regarded as energy efficient in the
sense that it keeps only one unprobed relay (in addition to the
best probed one) awake while instructing the other unprobed
ones to switch to a low power OFF state (i.e., sleep state).
In contrast, UnRST-OPT operates by keeping all the relays,
that have woken up thus far, awake. The close to optimal
performance of RST-OPT, its computational simplicity and
energy efficiency is motivating us to apply RST-OPT at each
hop enroute to the sink in a large sensor network and study its
end-to-end performance, which is a part of our ongoing work.

VII. CONCLUSION

We considered the sequential decision problem of choosing
a relay node for the next hop, by a forwarding node, in
the presence of random sleep-wake cycling. In the model,
we have incorporated the energy cost of probing a relay to
learn its channel gain. We have analysed a restricted class
of policies where any policy is allowed to keep at most
one unprobed relay awake, in addition to the best probed
relay. The optimal policy for the restricted class (RST-OPT)
was characterized in terms of, the stopping sets and the

stopping/probing sets. First, we showed that the stopping sets
are threshold in nature. Further, we proved that the thresholds,
characterizing the stopping sets, are stage independent, thus
simplifying the computation of RST-OPT in comparison with
the global optimal, UnRST-OPT (whose decisions at any stage
is based on the entire history). Numerical work confirmed that
the performance of RST-OPT is close to that of UnRST-OPT.
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