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Abstract—A combined base station association and power con-
trol problem is studied for the uplink of multichannel multi cell
cellular networks, in which each channel is used by exactly
one cell (i.e., base station). A distributed association and power
update algorithm is proposed and shown to converge to a Nash
equilibrium of a noncooperative game. We consider network
models with discrete mobiles (yielding an atomic congestion
game), as well as a continuum of mobiles (yielding a population
game). We find that the equilibria need not be Pareto efficient,
nor need they be system optimal. To address the lack of system
optimality, we propose pricing mechanisms. It is shown thatthese
mechanisms can be implemented in a distributed fashion.

I. I NTRODUCTION

Wireless communication systems have experienced tremen-
dous growth over the last decade, and this growth continues
unabated worldwide. Efficient management of resources is
essential for the success of wireless cellular systems. In a
mobile cellular system, mobiles adapt to time varying radio
channels by adjusting base station (BS) associations and
by controlling transmitter powers. Doing so, they not only
maintain their quality of service (QoS) but also enhance their
transmitters’ battery lives. In addition, such controls reduce the
network interference, thus maximizing spatial spectrum reuse.
Distributed control is of special interest, since the alternative
of centrally orchestrated control involves added infrastructure,
the need for distribution of measurements, and hence system
complexity.

Distributed control algorithms for single channel multicell
networks have been extensively studied (Foschini & Mil-
janic [1], Yates [2], Hanly [3]). The monograph by Chiang
et al. [4] and references therein provide an excellent survey
of the area. Noncooperative games have been a natural tool
for analysis and design of distributed power control algo-
rithms. Scutari et al. [5] and Heikkinen [6] model distributed
power control problems as potential games, while Altman &
Altman [7] show that many of the cellular power control
algorithms can be modeled as submodular games. In contrast,
uplink resource allocation formultichannelmulticell networks
poses several challenges as observed in Yates [2] and Jiang
et al. [8].
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We address the resource allocation problem in the uplink
of a multichannel multicell network. Such a problem arises
when a CDMA operator chooses to lease and utilize multiple
frequency bands (channels) in order to reduce in-network
interference, or multiple operators who lease different bands
decide to cooperate. Many newer mobile devices are capable
of operating over multiple CDMA bands, and thus have the
option to choose from one of these distinct bands. We address
a simplified version of this multichannel multicell problem
where each BS operates on a separate frequency band, and
so, there is no intercell interference.

A preview of our results is as follows. We propose a
distributed algorithm for the combined base station association
and power control problem, and subsequently model the
problem as a player-specific congestion game. The equilibrium
states of such algorithms, which are Nash equilibria of the
corresponding games, may be far from system optimum. We
resort to pricing mechanisms to induce mobiles to behave in
a way that optimizes system cost. We also show that such a
mechanism can be employed in a distributed fashion. Towards
this end, we model the network as having a continuum
of (nonatomic) mobiles, each offering infinitesimal load, which
leads to a population game formulation. We then provide a
marginal pricing mechanism that motivates a pricing strategy
for the discrete mobiles case. Note that, unlike the case
of transportation networks, mobiles are not really priced in
cellular networks. The pricing is simply a part of the decision
making routine built into each mobile in order bring about a
distributedcontrol mechanism that drives the system towards
optimality.

The paper is organized as follows. In Section II we briefly
discuss concepts offinite noncooperative gamesand popula-
tion games. We study a network model with discrete mobiles
in Section III. We propose a combined association and power
control algorithm, model it as a noncooperative game, and
analyze its performance. We extend this analysis to a network
with a continuum of mobiles in Section IV. To address
the inefficiency of the proposed algorithms, we design toll
mechanisms in Section V. Finally, we conclude the paper with
some remarks in Section VII. In Appendix A, we provide
bounds on theprice of anarchy[9] for the case of a continuum
of mobiles. We omit a few of the proofs for lack of space; these
can be found in our technical report [10].

Optimal power allocation and BS association in uplinks
of multichannel multicell cellular networks have not been
explored before. Ours is an attempt at a detailed coverage
on what is possible in general, with more specific results in
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some special cases.

II. GAME PRELIMINARIES

A. Finite Noncooperative Games

A noncooperative strategic form game(M, (Ai, i ∈
M), (ci, i ∈ M)) consists of a set of playersM =
{1, . . . ,M}. Each playeri is accompanied by an action
set Ai and a cost functionci : ×M

i=1Ai → R. In this
work, we assume all action sets to be finite. An action
profile a = (ai, i = 1, . . . ,M) prescribes an actionai
for every player i ∈ M. For a = (ai, i = 1, . . . ,M),
denotea−i := (a1, . . . , ai−1, ai+1, . . . , aM ) and (bi, a−i) :=
(a1, . . . , ai−1, bi, ai+1, . . . , aM ).

Definition 2.1: Nash Equilibrium (NE): For an action pro-
file a, a mobile i’s best response, Bi(a) ⊆ Ai, is defined
asBi(a) := argminbi∈Ai

ci(bi, a−i). a is said to be a Nash
Equilibrium for the game ifai ∈ Bi(a) for all i ∈ M.

Definition 2.2: Potential Game: A game(M, (Ai, i ∈
M), (ci, i ∈ M)) is said to be an ordinal potential game if
there exists a functionV : ×M

i=1Ai → R, known as anordinal
potential function, that satisfies

ci(bi, a−i) < ci(a) ⇔ V (bi, a−i) < V (a)

for all i ∈ M, bi ∈ Ai, a ∈ ×M
i=1Ai. The game is called

generalized ordinal potential game if there exists a potential
functionV : ×M

i=1Ai → R satisfying

ci(bi, a−i) < ci(a) ⇒ V (bi, a−i) < V (a)

for all i ∈ M, bi ∈ Ai, a ∈ ×M
i=1Ai.

Clearly, generalized ordinal potential games subsume ordi-
nal potential games. Further, all minimizers of a potentialfunc-
tion V are Nash equilibria of the game. Thus all generalized
ordinal potential games(M, (Ai, i ∈ M), (ci, i ∈ M)) admit
at least one Nash equilibrium. Since the games are finite (finite
number of players and finite action sets), they also have the
finite improvement path (FIP) property, i.e., do not contain
improvement cycles (Monderer & Shapley [11, Lemma 2.3]).
Thus, in a finite generalized ordinal potential game, when
players update as per thebetter response strategy, round-robin
or randomupdate processes converge to a Nash equilibrium
in a finite number of steps. With the same strategies, anasyn-
chronousupdate process also converges (Neel [12, Chapter 5]).

Remark 2.1:The strategic form games that have the FIP
property also admit the finite best-response path (FBRP)
property, i.e., they do not contain best response cycles (Milch-
taich [13, Section 5]).1 Thus, if players update as per the
best responsestrategy, then also the above update processes
converge to a Nash equilibrium in a finite number of steps. The
reverse implication is not true in general - the FBRP property
need not imply the FIP property.

Definition 2.3: Congestion Game: A game(M, (Ai, i ∈
M), (ci, i ∈ M)) is said to be a player-specific weighted
singleton congestion game if

1A best response cycle is a finite best response patha
1, · · · , ak such that

a
1 = a

k, and for somej ∈ {1, · · · , k−1}, the deviating player in iteration
j strictly benefits [14].

1) there exists a setN such thatAi = N for all i ∈ M,
and

2) there exist constants(βi, i ∈ M) and nonincreasing
functionsfij , i ∈ M, j ∈ N such that

ci(a) = fiai

(

∑

l∈M:
al=ai

βl

)

for all a ∈ ×M
i=1Ai, i ∈ M.

In the above definition, we interpretN as a set of facilities and
βl as the load offered by playeri. Then,

∑

l∈M:
al=ai

βl denotes the
total load on facilityai, under an action profilea. The game is
a singletoncongestion game because each action picks exactly
one facility. It isweightedbecause players offer different loads,
and it is player-specificbecause the cost functionsci(·) are
player-specific.

Rosenthal [15] defined congestion games with unweighted
players and player-independent cost functions, but more gen-
eral action sets. The above generalization is due to Milch-
taich [13] who showed that singleton weighted congestion
games with player independent costs admit the FIP property
but singleton player specific unweighted congestion games
need not. Gairing et al. [16] studied these games in the
special case of affine cost functions. Harks et al. [17] showed
that a weighted congestion game admits a weighted potential
function if and only if either all the cost functions are affine
or they all are certain exponential functions. Mavronicolas
et al. [18] considered a subclass of these games where each
player-specific cost function is composed (by means of an
abelian group operation) of a player-specific constant and a
facility-specific nondecreasing function. Sbabou [19] consid-
ered another subclass for which all the Nash equilibria can be
obtained without invoking the potential function or the finite
best-reply property.

B. Population Games

A population game (Sandholm [20])(M, (Al, l ∈
L), (clj , l ∈ L, j ∈ Al)) consists ofL = {1, . . . , L} classes
of nonatomic populations of players.M = ∪l∈LMl, and
Ml := |Ml| denotes the total mass of the classl population.
By a nonatomic population, we mean that the mass of each
member of the population is infinitesimal. Players of classl
are associated with an action setAl. Actions of these (class
l) players lead to an action distributionml = (mlj , j ∈ Al),
where

∑

j∈Al
mlj = Ml. All the players within a class are

alike. Thus the action distributions completely specify the
play; we can characterize the states and dynamics of play
solely in terms of action distributions. Letm = (ml, l ∈ L)
denote the action distribution profile across the entire pop-
ulation, and letM∗ denote the set of all such profiles. A
populationl is also accompanied by continuous cost density
functionsclj : M∗ → R.

Definition 2.4: Nash Equilibrium (NE): An action distribu-
tion profile m is a pure strategy Nash equilibrium for the
game(M, (Ai, i ∈ M), (clj , l ∈ L, j ∈ (Al)) if and only if
for all l ∈ L and j ∈ Al, a positive massmlj > 0 implies
clj(m) ≤ clk(m) for all k ∈ Al.
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Remark 2.2:Definition 2.4 implies that, at a Nash equilib-
rium m, for a classl, if j andk are any two facilities inAl

such thatmlj > 0,mlk > 0, thenclj(m) = clk(m).
Definition 2.5: Potential Game: A population game

(M, (Al, l ∈ L), (clj , l ∈ L, j ∈ Al)) is said to be a potential
game if there exists aC1 functionV : M∗ → R, known as a
potential function, that satisfies

∂V (m)

∂mlj

= clj(m)

for all l ∈ L, j ∈ Al,m ∈ M∗.
It is well known that Nash equilibria are the profiles which

satisfy the Kuhn-Tucker first order conditions for a minimizer
of the potential function (Sandholm [20, Proposition 3.1]). Any
dynamics withpositive correlationand noncomplacency(for
e.g., the best response dynamics) approaches a Nash equilib-
rium [20].

We are interested innonatomic congestion games(Sand-
holm [20]) in which Al = N , ∀l ∈ L, for a given setN .
As before, we interpretN as a set of facilities. Moreover,
each classl has an associated offered load densityγl > 0.
An action distribution profilem leads to a congestion profile
(mj , j ∈ N ), wheremj =

∑

l∈L mljγl. The cost density
functionsclj depend onm only throughmj, and are increasing
in mj .

C. Pricing

Levying of tolls is a conventional way to enforce system
optimality in nonatomic networks. Beckman [21] and Dafer-
mos & Sparrow [22] studied optimal tolls in transportation
networks with a single class of users. Later Dafermos [23]
and Smith [24] extended the analysis to multiclass networks.
Roughgarden & Tardos [25] applied these ideas in computer
networks and analyzed tolls for optimal routing.

In the atomic (discrete) setting, Caragiannis et al. [26]
proposed tolls for two-terminal parallel-edge networks with
unweighted users and linear latency functions. Subsequently,
they considered the cases of heterogeneous users (with dif-
ferent sensitivities to taxes) and of asymmetric games where
each client has at most two permissible choices [27]. Fotakis
& Spirakis [28] studiedcost balancing tollsfor generic two-
terminal networks with unweighted users and arbitrary increas-
ing latency functions. Fotakis et al. [29] broadened this study
to incorporate heterogeneous users and single-source multiple-
sink networks. More recently, Jelinek et al. [30] analyzed
the scenario where tolls have to respect some given upper
bound restrictions on the links. They also focused on parallel-
edge networks and unweighted users (either homogeneous
or heterogeneous), and allowed arbitrary increasing latency
functions. We propose an alternative toll mechanism, and
demonstrate that the proposed tolls can be computed in a
distributed fashion.

III. D ISCRETEMOBILES

A. System Model

We now describe the model adopted in this work. We
consider the uplink of a cellular network consisting of several

BSs and mobiles.Each BS operates in a distinct frequency
band.Let N = {1, . . . , N} andM = {1, . . . ,M} denote the
set of BSs and the set of mobiles, respectively.

A mobile must be associated with one BS at any time,
and is free to choose the BS with which it associates. Let
hij denote the power gain from mobilei to BS j. Let the
receiver noise at all BSs have the average powerσ2. Let
pi denote the power transmitted by mobilei, and let ai
be the BS to which it is associated. Under an association
profile a = (ai, i = 1, . . . ,M), let Mj(a) be the set of
mobiles associated with BSj. Under an association profile
a and a power vectorp = (pi, i = 1, . . . ,M), the signal to
interference plus noise ratio (SINR) of mobilei at BSai is

hiai
pi

∑

l∈Mai
(a)\{i} hlal

pl + σ2

Mobile i has a target SINR requirementγi.
Remark 3.1:Assume a scenario where the channels are

close together relative to their centre frequencies. Then the
channel gains for various mobile-BS pairs can be taken to
be functions of distances between them. In particular, if all
the mobiles (respectively, the BSs) are collocated, then the
channel gains will depend on BSs’(respectively, the mobiles’)
indices (see Sections III-C2 and III-C3).

B. The MAPC Algorithm

Yates [2] and Hanly [3] proposed an algorithm for dis-
tributed association and power control in single channel cel-
lular networks. Convergence results for the algorithm are
based on the concept of astandard interference function. The
technique is based on a mobile reassociating itself with a
BS with which it needs to use the least power; this fails to
work in the case of a multichannel network and analogous
convergence results for this algorithm may not hold (see
Yates [2, Section VI]). Even in instances where the algorithm
converges, it may get stuck at an association profile that is not
Pareto efficient (see Definition 3.2).

We propose an alternative distributed algorithm for com-
bined BS association and power control in multichannel mul-
ticell cellular networks. We also show its convergence. We
make use of the following simple fact (see, for example,
Kumar et al. [31, Chapter 5]). Consider the subproblem of
power control with a fixed associationa. Defineβl =

γl

1+γl
, a

measure of the “load” offered by mobilel.
Proposition 3.1:For a fixed associationa,

(i) The power control subproblem of BSj is feasible iff
∑

l∈Mj(a)
βl < 1;

(ii) If the power control subproblem of BSj is feasible, there
exists a unique efficient2 power vectorp(a) given by

pi(a) =
σ2

hij

βi

1−∑l∈Mj(a)
βl

.

Throughout we assume that there exists at least one feasible
association and power vector. Proposition 3.1 motivates the
following algorithm.

2Efficiency is in the sense of minimizing the aggregate transmit power of
all the mobiles.
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Multichannel Association and Power Control (MAPC):
Mobiles switch associations in a round-robin fashion in ac-
cordance with the the optimal power consumptions (given by
Proposition 3.1(ii)) at the BSs with which these associate.
More precisely, a switching mobile associates with a BS where
it would require the least power. As the load at a BS changes,
it immediately broadcasts the new load, and the associated
mobiles update their powers to the optimal required powers
as per the new loads. Mathematically, define

ci(a) =
σ2

hiai

βi

[1−∑l∈Mj(a)
βl]+

, (1)

where[x]+ = max(x, 0). For t = 0, 1, 2, . . . , mobile i where
i = 1+(t mod M) updates its association and power att+1
if ai(t) /∈ argminj∈N ci((j, a(t)−i)). In this case,

ai(t+ 1) ∈ argmin
j∈N

ci((j, a(t)−i)), (2a)

and witha(t+ 1) = (ai(t+ 1), a(t)−i),

pl(t+ 1) = cl(a(t+ 1)),

∀l ∈ Mai(t)(a(t)) ∪Mai(t+1)(a(t+ 1)). (2b)

Remark 3.2:Observe that while only one mobile updates
its association at a time, all mobiles that perceive a changein
load at their BSs update their powers to optimal values based
on the new loads. If the power requirements of a mobile are
identical at two or more BSs, one of those is chosen at random.

Remark 3.3:Consider the special case where the mobiles
have a common target SINR requirement. In this case, even
if the algorithm starts with an infeasible association, selfish
moves of players eventually lead to a feasible one, and updates
remain feasible thereafter.

This algorithm is also distributed in nature as the one pro-
posed in [2]. BSj broadcasts its total congestion

∑

l∈Mj(a)
βl

on a common control channel so that even non-associated
mobiles receive this information. In addition, each mobilei
is told its scaled gainshij

σ2 by each BSj ∈ N .

C. A Congestion Game Formulation

To show the convergence properties of the proposed algo-
rithm, we model the system as a strategic form game. Let the
mobiles be the players and the action set for each player be
the possible associations, i.e,Ai = N for all i ∈ M. Define
the cost functions of the players to beci(a) for all i ∈ M. It
can be seen that above is a player-specific singleton weighted
congestion game, and belongs to the subclass of congestion
games with multiplicative player-specific constants described
in [18]. In the following we refer to it as the strategic form
game(M,N , (ci, i ∈ M)).

Before analyzing the general game, we consider the follow-
ing special cases.

1) Single Class Traffic:This is the case where all the mo-
biles have a common target SINR requirementγ; β := γ

1+γ
.

In this case,

ci(a) =
σ2

hiai

β

[1− |Mai
(a)|β]+

and we have a player specific unweighted singleton congestion
game.

2) Collocated Mobiles:In this case, all mobiles are situated
close together in a group. Thushij = hj for all i ∈ M, j ∈ N ,
and

ci(a) =
σ2

hai

βi

[1−∑l∈Mai
(a) βl]+

.

This yields a player independent weighted singleton conges-
tion game.

3) Collocated BSs:Here all BSs are assumed to be situated
close together. Thushij = hi for all i ∈ M, j ∈ N , and

ci(a) =
σ2

hi

βi

[1−∑l∈Mai
(a) βl]+

.

Now, we get a player specific weighted singleton congestion
game.

The following result ensures that MAPC converges in each
of these special cases.

Proposition 3.2:The finite strategic form game
(M,N , (ci, i ∈ M)) is a generalized ordinal potential
game and thus admits the FIP property in each of the
following cases.

1) βi = β for all i ∈ M,
2) hij = hj for all i ∈ M, j ∈ N ,
3) hij = hi for all i ∈ M, j ∈ N .

Proof: In each case, we show that the game
(M,N , (ci, i ∈ M)) is better response equivalent (Neel [12,
Chapter 5]) to a generalized ordinal potential game (by demon-
strating a potential function for the latter). This impliesthat, in
each case,(M,N , (ci, i ∈ M)) itself is a generalized ordinal
potential game. It is also finite which implies that the FIP
property holds.
1) Let us first observe that, in MAPC algorithm, mobiles
do not switch to a BS if the new aggregate load of the BS
exceeds (or equals)1. Therefore, in any improvement path,
if a BS’s aggregate load becomes permissible (i.e.,< 1), it
continues to be below1. After finitely many steps we get a
partition of the set of BSs in two sets such that BSs in the
first set have permissible loads while those in the second set
do not, and mobiles do not switch across these sets (the latter
set may be empty). Hence, to investigate the FIP property,
we focus on the set of BSs with permissible load and on the
mobiles associated with them. Alternatively, we assume that,
after finitely many steps, all the BSs have permissible loads.
Now note that the strategic form game(M,N , (ci, i ∈ M))
is better response equivalent to(M,N , (− 1

ci
, i ∈ M)). Also

note that

− 1

ci(a)
= −hiai

σ2

[1− |Mai
(a)|β]+

β
.

The functionV1 : NM → R given by

V1(a) = − 1

σ2β

∏

l∈M
hlal

∏

k∈N





|Mk(a)|
∏

t=1

[1− tβ]+




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satisfies

V1(j, a−i)− V1(a) = −
(

1

ci(j, a−i)
− 1

ci(a)

)

∏

l∈M\{i}
hlal

×
∏

k∈N





|Mk(a)\{i}|
∏

t=1

[1− tβ]+





for all i ∈ M, j ∈ N , a ∈ NM. Notice that all the product
terms in the right hand side are strictly positive because all the
BSs have permissible load. Thus the game(M,N , (− 1

ci
, i ∈

M)) is a generalized ordinal potential game with a potential
functionV1.3

2) The strategic form game(M,N , (ci, i ∈ M)) is better
response equivalent to(M,N , (−βi

ci
, i ∈ M)). Also note that

− βi

ci(a)
= −

hai
[1−∑l∈Mai

(a) βl]
+

σ2
.

For the functionV2 : NM → R given by

V2(a) = −
∑

i∈M

hai
βi

([

1−∑l∈Mai
(a) βl

]

+ (1− βi)
)

σ2
,

V2(j, a−i)− V2(a) =

− 2βi

(

hj [1−
∑

l∈Mj(a)
βl − βi]

σ2
−

hai
[1−∑l∈Mai

(a) βl]

σ2

)

for all i ∈ M, j ∈ N , a ∈ NM. Therefore

− βi

ci(j, a−i)
< − βi

ci(a)
⇒ V2(j, a−i) < V2(a).

So V2 is a potential function for the game(M,N , (−βi

ci
, i ∈

M)), and so the latter is a generalized ordinal potential game.
3) The strategic form game(M,N , (ci, i ∈ M)) is better
response equivalent to(M,N , (− βi

hici
, i ∈ M)). Also note

that

− βi

hici(a)
= −

[1−∑l∈Mai
(a) βl]

+

σ2
.

The functionV3 : NM → R defined as

V3(a) = −
∑

i∈M

βi[1−
∑

l∈Mai
(a) βl]

σ2

satisfies

V3(j, a−i)− V3(a)

= −2βi

(

[1−∑l∈Mj(a)
βl − βi]

σ2
−

[1−∑l∈Mai
(a) βl]

σ2

)

for all i ∈ M, j ∈ N , a ∈ NM. Therefore

− βi

hici(j, a−i)
< − βi

hici(a)
⇒ V3(j, a−i) < V3(a).

So the game(M,N , (− βi

hici
, i ∈ M)) is an generalized

ordinal potential game withV3 as a potential function.

3This potential function is similar to those proposed in [16]for linear cost
functions, and in [18] for cost functions composed of player-specific constants
and facility-specific functions.

Now, we focus on the general case. Gairing et al. [16]
show (via a counter-example with3 players) that player-
specific weighted singleton congestion games with affine cost
functions are not necessarily generalized ordinal potential
games, and so, need not possess the FIP property. This negative
result applies to our game also, and convergence proofs based
on potential functions cannot be used. However, it follows
from [13] that the strategic form game(M,N , (ci, i ∈ M))
admits (i) FIP property if|N | = 2, (ii) FBRP property if
|M| = 2.

Georgiou et al. [32] establish that player-specific weighted
singleton congestion games with3 players and linear cost
functions possess FBRP property. Mavronicolas et al. [18]
broaden this result to generic cost functions with player-
specific constants.4 Specifically, they show in an exhaustive
manner that such games do not possess anybest response
cycles.5 Their result and proof technique extend to the game
(M,N , (ci, i ∈ M)) even though the cost functionsci are not
linear. Thus, the game(M,N , (ci, i ∈ M)) can be shown to
possess the FBRP property if|M| = 3.

In the case of more than3 players, convergence of the best
response dynamics in weighted singleton congestion games
with linear cost functions is an open problem [32], [34].
Georgiou et al. [32] conjecture that such games always admit
at least one NE. Though functionsci are not linear, the game
(M,N , (ci, i ∈ M)) is best response equivalent to another
game in which costs are composed of multiplicative player-
specific constants and affine nondecreasing functions. Also,
simulations run on numerous instances of the game suggest
that players’ updates as per the best response strategy always
converge in a finite number of steps. We therefore conjecture
that

Conjecture 3.1:The finite strategic form game
(M,N , (ci, i ∈ M)) admits the FBRP property and
thus possesses at least one pure strategy Nash equilibrium.

The FBRP property ensures thatMAPC converges in a
finite number of steps (see Remark 2.1). However, the round-
robin update process requires some coordination to ensure that
the designated mobile updates its association in a slot. Letus
consider the following variants ofMAPC .

1) Random update process:At each t, one mobile is ran-
domly chosen to update its association, while ensuring
that all the mobiles have strictly positive probabilities
of being chosen. In a framework with no synchronizing
agent and with an arbitrarily fine time-scale, it is unlikely
that two mobiles update simultaneously. Random update
process is a natural candidate in this setup.

2) Asynchronous update process:At eacht, each mobilei
updates its association with probabilityǫi ∈ (0, 1). There
is thus a strictly positive probability that any subset of

4On the other hand, they also demonstrated a best response cycle in a
game with3 players and costs composed of additive player-specific constants
and facility-specific nondecreasing functions. More recently, Gairing and
Klimm [33] demonstrated lack of a NE in a4 player singleton weighted
congestion game with concave cost functions that differ by player-specific
additive constants only.

5There does not seem to be any reason why this technique cannotbe
extended to more than3 players; though the number of possibilities in the
exhaustive search may become enormous.
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mobiles may update their associations simultaneously. As
before, all mobiles update their powers based on the new
loads. This algorithm does not require any coordination
among mobiles (to ensure one by one updates), and is
thus fully distributed.

The FBRP property of the game(M,N , (ci, i ∈ M))
implies that these two algorithms also converge to a NE in
finite number of steps with probability1 (see Section II-A).

D. System Optimality

A system optimal power allocation should bring about the
lowest interference environment. This motivates the following
definition of system optimality.

Definition 3.1: For an association profilea, define a system
performance measureC(a) =

∑M
i=1 ci(a) with ci(a) defined

in (1). We define an association profileao to be system
optimal if it minimizesC(a) over all possible associations
a ∈ ×M

i=1Ai.
Let us now recall the following notion of Pareto effi-

ciency [31, Chapter 5].
Definition 3.2: An association profilea is said to be Pareto

dominated by another association profilea′ if ci(a
′) ≤ ci(a)

for all i ∈ M with ci(a
′) < ci(a) for somei. An association

profile a is said to be Pareto efficient if it is not Pareto
dominated by any other association profile in×M

i=1Ai.
Clearly any association profile that is system optimal is

also Pareto efficient. Thus, if there is a unique Pareto effi-
cient association profile, it is also the unique system optimal
one. However, unlike the case of single channel networks,
joint association and power control problems in multichannel
networks do not in general admit a unique Pareto efficient
association profile. In particular, when|M| > |N |, there
cannot be unique Pareto efficient association profile.6 To see
this, defineΘi for any mobilei as the set of best match BSs
as follows

Θi := argmin
j∈N

σ2γi
hij

The system optimal association profileao is clearly Pareto
efficient. Next, two cases are possible.

1) For all i, aoi ∈ Θi. Since |M| > |N |, there exist two
mobilesi and l such thataoi = aol .

2) There exists a mobilei such thataoi /∈ Θi.

Consider a mobilei as in Case 1, or as in Case 2. Leta′

be another profile which is system optimal subject toi being
associated with any of its best match BSs and no other mobile
being associated with that BS. It can be easily checked that
a′ is also Pareto efficient.

As the following example illustrates,MAPC may settle at
a Pareto inefficient association profile, and hence may not be
system optimal.

Example 3.1:Consider a network with two BSs, two mo-
biles, and a common SINR requirementγ. The two BSs

6However, different Pareto efficient association profiles may be identical
up to a permutation, e.g., if two mobiles are indifferent with respect to their
SINR requirements and channel gains to all the BSs.

operate in disjoint bands. Assume

h12 < h11 <
h12

(1− γ)

and h21 < h22 <
h21

(1− γ)
.

The unique Pareto efficient association is(a1 = 1, a2 = 2)

with power allocation( σ2

h11
γ, σ2

h22
γ). However, if we start with

initial association(a1 = 2, a2 = 1), MAPC will not move
forward, because a unilateral switch requires larger powerto
meet the target SINR. Neither mobile will switch to the BS
with which it has a better channel. Hence,( σ2

h12
γ, σ2

h21
γ) is a

steady state power vector at which the algorithm settles; thus
(a1 = 2, a2 = 1) is Pareto inefficient.

In the following we consider special cases, and investigate
whether the proposed algorithm leads to a system optimal
association profile.

1) Collocated Mobiles and Single Class Traffic:Even in
this special case,MAPC may settle at a Pareto inefficient NE
as shown in the following example.

Example 3.2:Consider a2-cell network with4 collocated
mobiles andβi = β, i = 1, 2, 3, 4. Assume thath1 and h2

satisfy

h1(1− 3β) = h2(1− 2β),

h1(1− 2β) > h2(1− β).

The following facts are easily verified. Both the inequalities
can be met simultaneously. The association(a1 = a2 = a3 =
1, a4 = 2) is a NE from which the algorithm does not move.
This association is Pareto dominated by(a3 = a4 = 1, a1 =
a2 = 2) which is another NE. ThusMAPC may settle at a
Pareto inefficient NE.

Consider now a variant ofMAPC in which mobilei = 1+(t
mod M) updates its association att+ 1 if7

ai(t) /∈ argmin
j∈N



ci(j, a(t)−i),
∑

l∈Mj(j,a(t)−i)

βl



 .

In this case,

ai(t+ 1) ∈ argmin
j∈N



ci(j, a(t)−i),
∑

l∈Mj(j,a(t)−i)

βl



 .

In words, a mobile selects a least loaded BS (after taking
its own load into account) among the ones which require
transmission with the least power. We name this variant
MAPC∗.

Proposition 3.3:Consider the case whereβi = β and
hij = hj for all i ∈ M, j ∈ N . If the strategic form game
(M,N , (ci, i ∈ M)) contains no best response cycles, then
MAPC∗ converges in a finite number of steps.

Proof: See [10].
The FBRP property (Conjecture 3.1) ensures thatMAPC∗

converges in a finite number of steps. We now show that
MAPC∗ converges to a Pareto efficient NE in the special case
of collocated mobiles and single class traffic.

7The minimization is with respect to the lexicographical ordering.



7

Proposition 3.4:For the noncooperative game
(M,N , (ci, i ∈ M)), when hij = hj and βi = β for
all i ∈ M, j ∈ N , the steady states ofMAPC∗ are the Pareto
efficient NEs of the game.

Proof: Propositions 3.2 and 3.3 imply that MAPC∗ con-
verges in a finite number of steps in this special case. For
any association profilea, let mj(a) be the number of mobiles
associated with BSj. Let a be a NE, anda′ be another profile
dominatinga. We show that the proposed variant of MAPC
does not settle ata.

We first argue that congestion vectorsm(a) =
(mN (a), · · · ,mN(a)) andm(a′) cannot be identical. Indeed
if this is the case,a′ is obtained by permuting the mobiles’
associations ina in some way. But then their payoffs undergo
the same permutation, which makes it impossible for all of
them to gain.

We definegj = σ2

hj
and f(m) = β

[1−mβ]+ . Then a mobile
associated with BSj incurs a costgjf(mj(a)). Further,a
being a NE,

gjf(mj(a)) ≤ gkf(mk(a) + 1)

for all j, k ∈ N . In particular,

mj(a) ≤ mk(a) + 1 if gk ≤ gj , (3a)

and mj(a) < mk(a) + 1 if gk < gj . (3b)

Next, we define

c̄ := max
j∈N :mj(a)>0

gjf(mj(a)),

andN1 := argmax
j∈N :mj(a)>0

gjf(mj(a))

Undera′ none of the mobiles incurs a cost more thanc̄. In
particular, those associated with a BSj ∈ N1 undera′ must
have cost less than̄c. This impliesmj(a

′) ≤ mj(a) for all
j ∈ N1. Now suppose thatmj(a

′) = mj(a) for all j ∈ N1,
andmk(a

′) > mk(a) for a k ∈ N \ N1. Then,

gkf(mk(a
′)) ≥ gkf(mk(a) + 1) ≥ gjf(mj(a))

for any j ∈ N1. The last inequality holds becausea is an NE.
Thus we have that

gkf(mk(a
′)) ≥ c̄,

and hence there are more mobiles incurring costs greater
than or equal tōc under a′ than undera. This contradicts
the hypothesis thata′ Pareto dominatesa. Thus there must
be BSsj ∈ N1, k ∈ N \ N1 with mj(a

′) < mj(a) and
mk(a

′) > mk(a) which is same asmk(a
′) ≥ mk(a) + 1.

Again, a being an NE,

gkf(mk(a
′)) ≥ c̄.

But the hypothesis thata′ Pareto dominatesa implies that

gkf(mk(a
′)) ≤ c̄.

Thusk must belong to the set

N2 := {k ∈ N \ N1 : gkf(mk(a) + 1) = c̄}
Moreover,mk(a

′) = mk(a) + 1.

Now, we claim that there exist BSsj ∈ N1 and k ∈ N2

such thatgj < gk. Assume this claim holds. Then,

gkf(mk(a) + 1) = c̄ = gjf(mj(a))

implies thatmj(a) > mk(a) + 1. Thus, under the proposed
algorithm, one of the mobiles associated with BSj moves to
BS k, i.e., the algorithm does not settle ata.

We prove the claim via contradiction. Supposegj ≥ gk for
all j ∈ N1, k ∈ N2. Obtaininga′ from a may involve three
types of load transfers.

1) One mobile moves from a BSj ∈ N1 to a BSk ∈ N2

such thatgj = gk. By the definition ofN2, such moves
only permute the overall cost profile, and by themselves
cannot lead toa′.

2) One mobile moves from a BSj ∈ N1 to a BSk ∈ N2

such thatgj > gk. Then, the cost reduces formj(a)− 1
mobiles that are still with BSj, but increases tōc for
mk(a) > mj(a)−1 mobiles (see (3a)). Such moves also
cannot lead to the association profilea′.

3) n > 1 mobiles move from a BSj ∈ N1 to BSs
k1, . . . , kn ∈ N2 (they have to move to different BSs,
again by the definition ofN2). Now, the cost reduces for
mj(a)− n mobiles, but increases tōc for

n
∑

l=1

mkl
(a) ≥ n(mj(a) − 1) > mj(a) − n (see (3b))

mobiles. Such moves also cannot lead to the association
profile a′.

Thus there must be BSsj ∈ N1 andk ∈ N2 such thatgj < gk
as claimed. This completes the proof of the proposition.

However, the obtained Pareto efficient association profile
need not be system optimal. This is demonstrated by Exam-
ple 4.2 for the case of a continuum of mobiles.

2) Collocated BSs and Single Class Traffic:Next, we
consider the case where the mobiles have identical target SINR
requirements and the BSs are collocated, so thathij = hi for
all i ∈ M, j ∈ N . For any association profilea, define its
supportSa to be the set{j ∈ N : al = j for somel ∈ M}.
We say thata hasfull support if Sa = N .

Lemma 3.1:In the game(M,N , (ci, i ∈ M)), whenβi =
β andhij = hi for all i ∈ M, j ∈ N , any association profile
with full support is Pareto efficient.

Proof: See [10].
Proposition 3.5:All the Nash equilibria in the game

(M,N , (ci, i ∈ M)), when βi = β and hij = hi for all
i ∈ M, j ∈ N , are Pareto efficient.

Proof: Let a∗ be a Nash equilibrium. The following are
the two possible scenarios.

1) a∗ does not have full support:We must have|M| ≤ |N |.
Indeed, if|M| > |N | anda∗ does not have full support,
then there must be mobilesi and l with a∗i = a∗l and
a BS j with Mj(a

∗) = ∅. Clearly, mobilei benefits by
moving to BSj. This contradicts the fact thata∗ is a NE.
Next, i 6= l implies a∗i 6= a∗l for the same reason as
explained above. Since all BSs have the same channel
gain to a mobile,a∗ is Pareto efficient.
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2) a∗ has full support:Lemma 3.1 implies thata∗ is Pareto
efficient

However, a NE need not be system optimal if the mobiles
are not collocated as shown in the following example.

Example 3.3:Consider a 2-cell network with 5 mobiles.
The 2 BSs are collocated. Further,hij = ih andβi = β, i =
1, 2, 3, 4, 5 where 1

4 < β < 1
3 . Any profile in which two

mobiles associate with one BS, and the remaining three with
another is a NE. On the other hand,(a1 = a2 = 1, a3 = a4 =
a5 = 2) and (a1 = a2 = 2, a3 = a4 = a5 = 1) are the only
socially optimal NEs.

3) Collocated BSs and Symmetrically Placed Mobiles:
Now, we consider the case wherehij = h for all i ∈ M, j ∈
N . Mobiles may have different target SINR requirements. In
this case also MAPC may settle at a Pareto inefficient NE as
shown in the following example.

Example 3.4:Consider a 2-cell network with 6 mobiles.
The BSs are collocated and the mobiles are symmetrically
located around them. Assumeβ1 = β2 = 0.3, β3 = 0.4, β4 =
β5 = 0.5 andβ6 = 0.6. It can be seen that(a1 = a6 = 1, a2 =
a5 = 2, a3 = a4 = 3) is a feasible association profile, so we
have a feasible problem at hand. But(a1 = a2 = 1, a3 = a6 =
2, a4 = a5 = 3) is a NE which is infeasible and also Pareto
inefficient because it is dominated by(a1 = a2 = 1, a3 =
2, a4 = a5 = a6 = 3).

4) Collocated Mobiles, Symmetrically Placed BSs, and Sin-
gle Class Traffic: In the special case when all the mobiles
are collocated and all the BSs are symmetrically placed with
respect to the collocated mobiles, we have the following result.

Proposition 3.6:All the NEs in the game(M,N , (ci, i ∈
M)), with βi = β and hij = h for all i ∈ M, j ∈ N , are
system optimal.

Proof: The mobiles as well as BSs are indistinguishable
in this game. At a NE, letmj be the number of mobiles
associated with BSj. We first prove that at any NE, the vector
of mobiles’ costs is unique up to permutations. To prove this,
it suffices to prove that the vectorm = (mj , j ∈ N ) for a NE
is unique up to permutations. Asm yields a NE, the following
must hold for allj, k ∈ N :

σ2

h

β

1−mjβ
≤ σ2

h

β

1−mkβ − β

or mj ≤ mk + 1. (4)

Definen = ⌊M
N
⌋ and l = M − nN . From (4) we see thatm

given bymj = n+ 1, j = 1, . . . , l,mj = n, j = l + 1, . . . , N
characterizes one of the NEs; other NEs are permutations of
this vector, andm is unique up to permutations. We now show
thatm is a system optimal congestion vector, and the system
optimality of all other NEs follows. To do this observe that

C(a) =
σ2

h

∑

i∈M

β

1−mai
β

=
σ2

h

∑

j∈N

mjβ

1−mjβ

is a Schur-convexfunction in (m1, . . . ,mN ) because x
1−x

is
a convex function. This implies that the minimum value is
attained at a vector which is as close to uniform as possible,

i.e., a vector that ismajorizedby any other vector (Marshall
& Olkin [35]).8 All such vectors are permutations ofm (Al-
ternatively, if there exist BSsj andk such thatmj ≥ mk+2,
moving a mobile from BSj to BSk results in a strictly lower
cost). This concludes the proof.

IV. CONTINUUM OF MOBILES

In this section, we consider a nonatomic version of the
system in Section III-A. Such a model is of interest for
two reasons. First, for many of the fixed QoS traffic classes
(e.g., voice), the target SINR requirements in CDMA cellular
systems are very small. In a typical IS 95 CDMA system with
system bandwidth 1.25 MHz, chip rate 1.2288 Mcps, data rate
9.6 Kbps, and targetEb

N0
= 6 dB, the target SINR turns out to

be -15 dB, i.e.,132 (Kumar et al. [31, Chapter 5]). If we assume
that at any time the number of mobiles associated with a BS
is large, it is reasonable to say that an incoming mobile or
an outgoing mobile has a negligible effect on the congestion.
Secondly, we have seen that our proposed algorithm may end
up with inefficient associations. There is extensive work ontoll
mechanisms that induce system optimality in networks with
a continuum of mobiles. The analysis of toll-mechanisms (or
pricing) on a multichannel multicell network with a continuum
of mobiles can be expected to shed light on the existence and
properties of pricing mechanisms for networks with discrete
mobiles.

A. System Model

Let M = ∪L
l=1Ml be an infinite set ofL = {1, . . . , L}

classes of nonatomic mobiles. By nonatomic mobiles, we
mean that the effect of a single mobile at a BS is infinitesimal.
The population of classl mobiles has “mass”Ml. All the
mobiles in a class are collocated and require equal minimum
SINR. In particular, all such mobiles have the same power
gains to any of the BSs (gains from a mobile to different BSs
can be different). AssumeN to be the finite set of BSs. As
before,σ denotes the common standard deviation of receiver
noise at all BSs. Letγl be the common minimum required
SINR density for classl mobiles, andhlj be the power gain
between a classl mobile and BSj. An association profilea
is a measurable functiona : M → N . Any associationa
leads to a congestion profilem(a) = (mlj(a), l ∈ L, j ∈ N ),
mlj(a) being the mass of classl mobiles associated with BS
j. Let M∗ denote the set of all such congestion profiles.

Under an association profilea and a power density allo-
cation p : M → R+, the SINR density forx ∈ Ml, l ∈ L
is

hla(x)p(x)
∑L

l=1

∫

Ml
1a(x, z)hla(z)p(z)dz + σ2

,

where 1a(x, z) =

{

1, if a(x) = a(z)
0, otherwise

Our definition of a “class” makes all the mobiles in a class
alike, and so, congestion profiles are sufficient to characterize

8The conditionhij = hi for all j ∈ N is used to deduce that NE profiles
are majorized by any non NE profile; the conditionhij = hj for all i ∈ M
is used to deduce Schur-convexity ofC(a).



9

the system. In the sequel, we just usemlj for mlj(a) for
convenience. The dependence ona is understood.

Consider again the subproblem of power control with a fixed
congestion profilem. The following result is analogous to
Proposition 3.1, and is shown in [10, Appendix A].

Proposition 4.1: 1) The power control subproblem of BS
j is feasible iff

∑

l∈L mljγl < 1.
2) If the power control subproblem of BSj is feasible, there

exists a unique efficient9 power densityp given by

p(x) =
σ2

hlj

γl
1−∑l∈L mljγl

,

∀x ∈ Ml such thata(x) = j, l ∈ L, wherea is the
underlying association profile.

An evolutionary dynamics can be proposed to address the
combined association and power control problem. To this end,
we define functionsclj : M∗ → R+, whereclj(m) denotes
the minimum power density for classl mobiles associated with
BS j under congestion profilem, as

clj(m) =
γlσ

2

hlj [1−
∑

l∈L mljγl]+
.

For notational convenience, define

glj =
γlσ

2

hlj

,

mj =
L
∑

l=1

γlmlj , ∀j ∈ N

and c(z) =

{

1
1−z

, if z < 1

∞, if z ≥ 1.

We then have

clj(m) = gljc(mj). (5)

Again we assume that the system is feasible, i.e., there exists
a feasible assignment, as done in Section III-B. This boils
down to assuming

∑

l∈L γlMl < N in the case of nonatomic
mobiles. Now, structures of the cost functions allow us to
restrict attention to the region wheremj < 1, ∀j ∈ N ; if
mj ≥ 1 for a j ∈ N , all the mobiles associated withj incur
infinite cost.

B. A Congestion Game Formulation

We model the problem as a nonatomic congestion game.
The continuum of mobiles constitute the population, andN
denotes the common action set for players of all the classes.
Classl players are accompanied by cost functionsclj(m), j ∈
N . In the following, we refer to it as the game(M,N , (clj , l ∈
L, j ∈ N )).

Proposition 4.2:The nonatomic game(M,N , (clj , l ∈
L, j ∈ N )) is a potential game. Furthermore, it admits at
least one NE, and the set of NEs coincides with the set of
minimizers of the potential function.

9Efficiency is in the sense that the aggregate transmit power across the
continuum of mobiles is minimized.

Proof: In the region{m : mj < 1, ∀j ∈ N}, the function
V : M∗ → R ∪ {+∞} defined as

V (m) :=
∑

j∈N

(

∑

l∈L
γlmlj log glj +

∫ mj

0

log c(x)dx

)

, (6)

is aC1 function with

∂V (m)

∂mlj

= γl log glj + γl log c(mj) = γl log clj(m)

for all l ∈ L, j ∈ N ,m ∈ M∗. Thus the nonatomic game
(M,N , (γl log clj , l ∈ L, j ∈ N )) is a potential game with
V (m) as a potential function (see Definition 2.5). Note that
the strategic form game(M,N , (clj , l ∈ L, j ∈ N )) is better
response equivalent to(M,N , (γl log clj , l ∈ L, j ∈ N )).
Thus the former is also a potential game with the same
potential functionV (m).

Now consider the following optimization problem

Minimize V (m)

subject to
∑

j∈N
mlj = Ml, l ∈ L (7a)

mlj ≥ 0, l ∈ L, j ∈ N . (7b)

All the conditions are self-explanatory. Observe that

∂2V (m)

∂mikmlj

=

{

γiγlc(mj) if k = j,
0 otherwise.

Thus, with an appropriate ordering of the components ofm,
the Hessian ofV (m) is given by

∇2V (m) =











c(m1)D 0 . . . 0
0 c(m2)D . . . 0
...

...
. . .

...
0 0 . . . c(mN )D











,

where

D := ΓΓT , (8a)

andΓ := [γ1, · · · , γL]T . (8b)

Clearly, D, and hence∇2V (m) is a positive semi-definite
matrix. Thus,V (m) is a convex function ofm. Since we
are minimizing a convex objective function subject to linear
constraints, there exists at least one minimizer, and all minima
are global minima. Also, Kuhn-Tucker first order conditions
are necessary and sufficient [36, Section 5.5.3]. Combining
this with the fact that NEs are the profiles which satisfy the
Kuhn-Tucker first order conditions for a minimizer of the
potential function (see Section II-B), we see that the set ofNEs
coincides with the set of minimizers of the potential function.

Remark 4.1:The assertion in the above proposition does
not hold for general population games. While all local min-
imizers of potential function are equilibria, not all equilibria
minimize potential (even locally) in general [20, Section 3].
This is unlike finite player potential games where only equi-
libria are the local minimizers of potential functions.

Furthermore, NEs have the following property (see [37,
Proposition 3.3]).
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Proposition 4.3:The congestion at a BS is constant across
all the NEs of the game(M,N , (clj , l ∈ L, j ∈ N )).
Consequently, the cost density for a class is also constant
across all the NEs.

Remark 4.2:At NEs, the congestions (at BSs) by class,
mlj , are not unique because the objective function (6) is not
strictly convex with respect to this set of variables.

C. System Optimality

Analogous to the definition in Section III-D, we define the
system performance measure

C(m) :=
∑

j∈N

L
∑

l=1

mljgljc(mj). (9)

A congestion profilem∗ ∈ M∗ is said to be system optimal
if it minimizes C(m) over all possible profilesm ∈ M∗.

In contrast with the discrete mobiles case where equilibria
need not be Pareto efficient (see Example 3.1), we have the
following result for the nonatomic case.

Proposition 4.4:All NEs of the nonatomic game
(M,N , (clj , l ∈ L, j ∈ N )) are Pareto efficient.

Proof: Let m be a NE congestion profile. Under a NE,
the cost densities for the mobiles of the same class are equal,
irrespective of their associations (see Remark 2.2). Thus,it is
sufficient to prove that there does not exist another congestion
profile m′ such that for every classl, and for all BSsj, k,
with mlj > 0,m′

lk > 0,

clk(m
′) ≤ clj(m), (10)

and strict inequality holds for some suchl, j andk. Assume
that such anm′ exists. Then,

glkc(m
′
k) < gljc(mj) ≤ glkc(mk)

where the last inequality follows becausem is a NE andmlj >
0. This yieldsm′

k < mk. This further implies that there is a
BS s such thatm′

s > ms, and a classt such thatm′
ts > mts.

By the strictly increasing property ofc, we have

gtsc(m
′
s) > gtsc(ms) ≥ gtrc(mr)

for a BS r such thatmtr > 0. Such a BS of course exists
and the latter inequality follows becausem is a NE. The two
inequalities implycts(m′) > ctr(m), and so the tuplet, r, s
violates (10). Thus the assumption thatm′ Pareto dominates
m is incorrect. This completes the proof.

We show that the NEs are system optimal if all the mobiles
are collocated, and all the BSs are symmetrically placed
around them.

Proposition 4.5:All NEs in the nonatomic game
(M,N , (clj , l ∈ L, j ∈ N )), with hlj = h for all
l ∈ L, j ∈ N , are system optimal.

Proof: In the case of collocated base stations

C(m) =
σ2

h

∑

j∈N

L
∑

l=1

γlmljc(mj)

=
σ2

h

∑

j∈N
mjc(mj)

For the reason described earlier, we restrict attention to the
region wheremj < 1, ∀j ∈ N . In this region,

d

dmj

mjc(mj) =
1

(1−mj)2
,

and somjc(mj) is a convex function ofmj . ThusC(m) is a
Schur-convex function of(mj , 1 ≤ j ≤ N), and is minimized
at anym∗ with

m∗
j =

1

N

∑

l∈L
γlMl

for all j ∈ N . When hlj = h for all l ∈ L, j ∈ N , any
congestion profile with equal congestion at all the BSs is a
NE. Thus, the system optimal profilem∗ is a NE. Since all
the NEs incur equal cost (see Proposition 4.3), all NEs are
system optimal.

However, NEs need not be system optimal if BSs are not
collocated, or mobile are not collocated. We illustrate these
facts through the following examples.

Example 4.1:Consider an infinite setM of nonatomic
mobiles belonging to two classes; class 1 and class 2 mobiles
have massesM1 and 3M1 respectively. Assume common
minimum SINR density requirementγ, and let3M1γ < 1.
Let there be two collocated BSs. Let the power gain between
a classl mobile and a BS behl, h1 < h2

3 . A congestion profile
is a NE if and only if it assigns equal load to both the BSs.
Thus, the total cost incurred at NE

C∗ =
γM1σ

2

h1(1− 2γM1)
+

3γM1σ
2

h2(1− 2γM1)
.

Next, consider a profile in which class 1 mobiles associate
with BS 1 and class 2 mobiles associate with BS 2. The cost
incurred now is

C =
γM1σ

2

h1(1− γM1)
+

3γM1σ
2

h2(1 − 3γM1)
.

It can be easily checked thatC < C∗ if

M1 <
1

γ

h2/3− h1

h2 − h1
.

Example 4.2:Consider an infinite setM of nonatomic
mobiles all belonging to same class;M := |M|. Assume com-
mon minimum SINR density requirementγ, and letMγ < 1.
Let there be two BSs withhj the gain to BSj, j = 1, 2. An
NE congestion profile(α∗M, (1− α∗)M) is given as

1) if h1

h2
≤ (1 −Mγ), α∗ = 0,

2) if h2

h1
≤ (1 −Mγ), α∗ = 1,

3) otherwise,α∗ satisfies

γσ2

h1(1− α∗γM)
=

γσ2

h2(1− (1 − α∗)γM)

i.e.,
1− α∗γM

1− (1− α∗)γM
=

h2

h1
. (11)

On the other hand, a congestion profile(αoM, (1 − αoM)
will be system optimal if and only ifαo solves the following
optimization problem:

Minimize
αγMσ2

h1(1− αγM)
+

(1− α)γMσ2

h2(1 − (1− α)γM)
(12)

subject to 0 ≤ α ≤ 1.



11

This is a convex optimization problem, and it is straightfor-
ward to show that

1) if
√

h1

h2
≤ (1−Mγ), αo = 0,

2) if
√

h2

h1
≤ (1−Mγ), αo = 1,

3) otherwise,αo satisfies

1− αoγM

1− (1− αo)γM
=

√

h2

h1
(13)

Hence, ifmin{h1

h2
, h2

h1
} > 1 −Mγ, thenmin{

√

h1

h2
,
√

h2

h1
} >

1−Mγ, andα∗ andαo must satisfy (11) and (13) respectively.
In such a case, the NE will be system optimal if and only if
h1 = h2.

V. PRICING FOR SYSTEM OPTIMALITY

A. Continuum of Mobiles

In this section, we show that there is a toll mechanism that
can induce system optimal associations and power allocations
in a cellular network with multiple classes of mobiles. We also
show that the mechanism can be employed in a distributed
fashion.

Define

c′(z) :=

{

d
dz
c(z) = 1

(1−z)2 , if z < 1

∞, if z ≥ 1

Consider a congestion profilem = (mlj , l ∈ L, j ∈ N ). We
propose that a classl mobile joining BSj be levied a toll

tlj(m) = γl

L
∑

i=1

mijgijc
′(mj). (14)

Now, define c̄lj(·) = clj(·) + tlj(·), ∀l ∈ L, j ∈ N , and
consider the nonatomic game(M,N , (c̄lj , l ∈ L, j ∈ N )).
Players may incur different power costs (clj(·)) in different
NEs of this game. Therefore, one has to distinguish between
the following two cases (see Fotakis & Spirakis [38]).

1) A toll mechanism is said toweakly enforcesystem
optimality if some NE of the game with tolls is an optimal
profile.

2) It is said tostrongly enforcesystem optimality if all the
NEs of the game with tolls are optimal profiles.

We show that tollstlj(·) weakly enforce system optimality in
all cases and strongly enforce it in a special setting.

Proposition 5.1:The nonatomic game(M,N , (c̄lj , l ∈
L, j ∈ N )) is a potential game. Furthermore, a congestion
profile m is system optimal only if it is a NE of this game.

Proof: See [10].
If all the mobiles are collocated, the proposed tolls strongly

enforce system optimality.
Proposition 5.2:All NEs in the nonatomic game

(M,N , (c̄lj , l ∈ L, j ∈ N )), with hlj = hj for all
l ∈ L, j ∈ N , are system optimal.

Proof: It suffices to show thatC(m) is a convex function
if hlj = hj for all l ∈ L, j ∈ N . Then, any congestion profile
satisfying Karush-Kuhn-Tucker conditions (i.e., any NE) is
system optimal.

If hlj = hj for all l ∈ L, j ∈ N ,

C(m) =
∑

j∈N

mjc(mj)σ
2

hj

.

Using the observationc(x) + xc′(x) = c′(x), it is easy to see
that

∂2C(m)

∂mikmlj

=

{

γiγlc
′′(mj)σ

2

hj
if k = j,

0 otherwise,

and

∇2C(m) =















c′′(m1)σ
2

h1
D 0 . . . 0

0 c′′(m2)σ
2

h2
D . . . 0

...
...

. . .
...

0 0 . . . c′′(mN )σ2

hN
D















,

with D given by (8a)-(8b). It is now obvious that∇2C(m)
is a positive semi-definite matrix, and soC(m) is a convex
function ofm.

However, the tollstlj(m) may fail to strongly enforce a
system optimal congestion profile even if all the BSs collo-
cated, the mobiles require a constant SINR densityγ, but they
are not collocated. To see this, consider the congestion profile
m∗ with

m∗
lj =

Ml

N
∀l ∈ L, j ∈ N .

It can be easily checked that, for alll ∈ L,

c̄lj(m
∗) =

γσ2

hl

c

(

γM

N

)

+

L
∑

i=1

γ2σ2

hi

Mi

N
c′
(

γM

N

)

,

which is independent ofj ∈ N . Thusm∗ is a NE of the game
(M,N , (c̄lj , l ∈ L, j ∈ N )). But m∗ may not be system
optimal (see Example 4.1).

Remark 5.1:1) c̄lj = clj + tlj can be interpreted as the
marginal cost due to additional association of classl mobiles to
BS j. The termclj is the power density incurred by these new
mobiles, andtlj is the increase in power consumption densities
of the mobiles already associated with BSj, integrated over all
such mobiles. Economists call them “private cost” and “social
cost”, respectively. Selfish mobiles do not care for the social
cost, while the social optimality criterion accounts for this
marginal externality [39].

2) The cost functions for various classes have a certain
structure in the settings of interest to us. Mobile classes that
consider a BS pay tolls proportional to their required SINR
densities. In particular, tolls are uniform across all the mobile
classes that have equal SINR requirements. This is special to
our setting; usually one does not see uniform tolls in the case
of multiclass networks (see Dafermos [23], Smith [24]).

This toll mechanism can be implemented in a distributed
fashion. All the BSs broadcast the tolls (normalized by SINR
densities) along with their aggregate congestions as before.10

All mobiles need to know their scaled gainshlj

σ2 to each BS
j ∈ N . A mobile then makes a choice taking both power
density and toll into account.

10Normalized tolls
tlj

γl
are uniform across all mobile classes that consider

a BS. A mobile can recover the exact toll from the normalized value.
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B. Discrete Mobiles

Pricing mechanisms for networks with discrete mobiles
are relatively difficult to design and analyze (Fotakis & Spi-
rakis [38]). Again, we propose a toll mechanism that weakly
enforces system optimality in all cases and strongly enforces
it in a special setting. The mechanism is motivated by the toll
mechanism for the nonatomic case (Theorem 5.1).

Consider the network model of Section III-A and an asso-
ciation profilea′. Let mobilei evaluate BSj for association.
Definea = (j, a′−i). Analogous to the nonatomic case, define
“private” and “social” costs as

ci(a) =
σ2

hij

βi

[1−∑k∈Mj(a)
βk]+

,

andti(a) =
∑

l∈Mj(a)\{i}

σ2

hlj

(

βl

[1−∑k∈Mj(a)
βk]+

− βl

[1 −∑k∈Mj(a)\{i} βk]+

)

, (15)

respectively.11 Clearly, ci(a) is the required power of mobile
i if it joins BS j, while ti(a) is the aggregate increase in
power consumption of all other mobiles associated with BSj.
We propose a toll mechanism with tollsti : NM → R given
by (15). This yields a new game(M,N , (c̄i, i ∈ M)) with
cost functions for an association profilea given by

c̄i(a) = ci(a) + ti(a)

=
∑

l∈Mai
(a)

σ2

hlai

βl

[1 −∑k∈Mai
(a) βk]+

−

∑

l∈Mai
(a)\{i}

σ2

hlai

βl

[1−∑k∈Mai
(a)\{i} βk]+

. (16)

Proposition 5.3:The finite strategic form game
(M,N , (c̄i, i ∈ M)) is an ordinal potential game and
thus admits the FBRP property.

Proof: See [10].
It is shown in [10] that the potential functionV (a)

equals the system performance measureC(a) defined in
Section III-D. Hence an association profileao that optimizes
system performance is also a (global) minimizer ofV (a), and
therefore a NE of the potential game with tolls.So, we see that
tolls ti(a) weakly enforce a system optimal association profile.
In general, tolls do not strongly enforce a system optimal
association profile. For instance reconsider Example 3.1. The
association profile(a1 = 2, a2 = 1) is inefficient, but an NE
for the game(M,N , (c̄i, i ∈ M)).

In the following we consider special cases, and investigate
the effect of the proposed tolls.

1) Collocated Mobiles with Single Class Traffic:Let us
consider the special case when all the mobiles are collocated
and have identical minimum SINR requirements. In other

11In (15), when both terms within parentheses are∞, the expression is
taken to be∞; we may think of drivingβ to the true values from below,
and the first term always dominates the second. Same remark holds for other
such expressions also.

words, hij = hj and βi = β for all i ∈ M, j ∈ N . The
potential function for this special case can be written as

V (a) =
∑

j∈N

σ2

hj

|Mj(a)|β
[1− |Mj(a)|β]+

Definegj = σ2

hj
, f(m) = mβ

[1−mβ]+ andmj(a) = |Mj(a)| for
all j ∈ N . Thenm(a) = (mj(a), j ∈ N ) denotes the con-
gestion profile undera. Since mobiles are indistinguishable,
any two association profiles that lead to identical congestion
profiles are essentially indifferent from the point of view of
analysis. Thus we talk solely in terms of congestion profiles.
Abusing notation (the argument ofV (·) was earlier defined to
be the association profilea), we write

V (m) =
∑

j∈N
gjf(mj).

Since (M,N , (c̄i, i ∈ M)) is a finite potential game, an
association profilem∗ will be a NE if and only if

gjf(m
∗
j ) + gkf(m

∗
k) ≤ gjf(m

∗
j − 1) + gkf(m

∗
k + 1) (17)

for all k 6= j, j, k ∈ N . The following proposition shows
that tolls tj(a) strongly enforce a system optimal association
profile in case of collocated mobiles with single class traffic.

Proposition 5.4:All the NEs in the game(M,N , (c̄i, i ∈
M)), with hij = hj and βi = β for all i ∈ M, j ∈ N ,
are system optimal. In other words, the tolls strongly enforce
system optimality.

Proof: Let mo be a system optimal congestion profile,
andm∗ any other profile such thatV (m∗) > V (mo). Partition
the setN asN = N0 ∪ N+ ∪N− such that

j ∈ N0 ⇐⇒ m∗
j = mo

j

j ∈ N+ ⇐⇒ m∗
j ≥ mo

j + 1

j ∈ N− ⇐⇒ m∗
j ≤ mo

j − 1

Start with the congestion profilem∗, and move mobiles
from BSsN+ to BSsN− one mobile at a time, so that we
end up with the congestion profilemo. In this process we get
a succession of congestion profiles, each of which satisfies

mj = m∗
j ∀ j ∈ N0

mj ≤ m∗
j ∀ j ∈ N+

mj ≥ m∗
j ∀ j ∈ N−

There must exist a pair of successive congestion profiles
m′ andm′′ such thatV (m′) > V (m′′), with m′′ possibly
the ultimate congestion profilemo. Let m′′ be obtained from
m′ by the transfer of a mobile from BSj ∈ N+ to a BS
k ∈ N−. We then have

gjf(m
′
j) + gkf(m

′
k) > gjf(m

′
j − 1) + gkf(m

′
k + 1)

which is same as

gj(f(m
′
j)− f(m′

j − 1)) > gk(f(m
′
k + 1)− f(m′

k)). (18)

Recall thatf is a convex function andm′
j ≤ m∗

j ,m
′
k ≥ m∗

k.
Using these in (18), we get

gj(f(m
∗
j )− f(m∗

j − 1)) > gk(f(m
∗
k + 1)− f(m∗

k)),
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i.e.,

gjf(m
∗
j ) + gkf(m

∗
k) > gjf(m

∗
j − 1) + gkf(m

∗
k + 1)

which implies thatm∗ is not a NE (see (17)). This completes
the proof.

2) Collocated Mobiles and Symmetrically Placed BSs:
Now we consider another special case when all the mobiles
are collocated and all the BSs are symmetrically placed with
respect to the collocated mobiles. In this casehij = h for all
i ∈ M, j ∈ N . We have the following result.

Proposition 5.5:With hij = h for all i ∈ M, j ∈ N , the
NEs in the game(M,N , (c̄i, i ∈ M)) coincide with those in
(M,N , (ci, i ∈ M)).

Proof: See [10].
Thus tolls may not strongly enforce a system optimal associ-
ation profile in this case (see Example 3.4).

3) Collocated BSs with Single Class Traffic:Even in this
special case tollstj(a) may fail to strongly enforce a sys-
tem optimal association profile. For an illustration reconsider
Example 3.3. The association profile(a1 = a3 = 1, a2 =
a4 = a5 = 2) is not system optimal, but an NE for the game
(M,N , (c̄i, i ∈ M)).

Remark 5.2:1) While tolls at a BS are equal for all
the mobiles not associated with it and having equal SINR
requirements, they are mobile dependent for all associated
ones (see (15)). This is unlike in nonatomic case where we
saw uniform tolls at a BS for all the mobiles with equal SINR
requirements.

2) The modified algorithm (the one accounting for tolls) can
be implemented in distributed fashion. All the BSs broadcast
quantitiestoj(a) given by

toj(a) =
∑

l∈Mj(a)

σ2

hlj

βl

[1−∑k∈Mj(a)
βk]+

along with their aggregate congestions
∑

k∈Mj(a)
βk. All the

mobiles need to know the scaled gainshij

σ2 of their own
channels to all the BSsj ∈ N . Mobiles use these broadcast
information to calculate their powers and tolls, and choosea
BS taking both into account.

Discussion:The proposed pricing technique can be used
to induce a system optimal routing in atomic weighted network
congestion games with arbitrary nondecreasing edge latency
functions [40].12 In this setting, the joint BS association and
power control problems can be viewed as network congestion
games over two-terminal parallel-edge networks: the edgesare
identified with BSs, and latencies are identified with minimum
power requirements. It turns out that the proposed tolls weakly
enforce a system optimal routing profile in general network
congestion games. They strongly enforce a system optimal
routing profile if

1) the network is two-terminal series parallel,
2) the mobiles are unweighted (i.e, have identical weights),

and
3) the latency functions are standard.13

12Here, the system cost is weighted sum of the latencies of all the mobiles.
13A latency functionc(·) is calledstandardif mc(m) is convex [39], e.g.,

c(m) = 1

1−m
.
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These gaps depict infinite
transmit powers at the 
iterations corresponding
to infeasible associations.

Fig. 1. Aggregate transmit powers over all the mobiles versus number of
iterations.

VI. SIMULATION

We now demonstrate the proposed joint BS association
and power control algorithms via simulation. To illustrate, we
consider a cellular network with 30 mobiles and 3 BSs (thus
leading to330 possible association profiles). The BSs use mu-
tually noninterfering channels (see Figure 2). The mobilesare
scattered independently and uniformly. We take the channel
gains to be equal to the path losses which are assumed to
follow the inverse square law. More precisely, for any mobile
i and BSj that are a distancedij apart,

hij = (max{1, dij})−2
.

The receiver noise at any BS has the average power 0.1 mW.
The target SINRsγis are independently and uniformly sam-
pled from the interval[0.05, 0.1] for all i. Thusβi < 0.1 and
∑

βi < 3, which is necessary for feasibility of the joint BS
association and power control problem at hand.

We start with an arbitrary association and consider the
randomupdate process, wherein at each iteration a randomly
chosen mobile updates, with all mobiles equally likely to
be chosen. We have implemented MAPC (proposed in Sec-
tion III-B) and also its variant with tolls as described in
Section V-B. We plot the aggregate power over all the mobiles
in Figure 1. The initial BS association is infeasible and so are
a few subsequent ones, resulting in infinite transmit powersin
the first few iterations. But the proposed algorithms quickly
lead to feasible associations and power allocations. This is
evident from Figure 1 where we observe finite aggregate trans-
mit powers after first few iterations. The proposed algorithms
also quickly converge to equilibrium BS associations (NEs
in the respective games). Notice that we have simulated the
most general case for which MAPC’s convergence has not
been formally established. The demonstrated convergence of
MAPC corroborates Conjecture 3.1. While the equilibrium
associations of these algorithms need not be system optimal,
they are seen to substantially reduce the aggregate power
compared to an arbitrary association. Also recall that aggregate
transmit power acts as a potential function for the game in
Section V-B (Proposition 5.3). Therefore, the aggregate power
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Fig. 2. A cellular network with 30 mobiles and 3 BSs. The steady state
associations under the two algorithms are also shown.

for MAPC with tolls decreases after each iteration and settles
at a local minimum (see Figure 1).

Finally, we show the steady state associations for both the
algorithms in Figure 2. We observe that a few mobiles (6
mobiles in Figure 2) may associate with different BSs under
the two algorithms.

VII. C ONCLUSION

We studied the combined association and power control
problem in multichannel multicell cellular networks in which
a different channel is used by each cell, and so, there is no
intercell interference. We studied the cases of discrete mobiles
and a continuum of mobiles. We proposed several distributed
mechanisms motivated by the techniques of game theory. We
studied the inefficiency of the distributed algorithm in thecase
of a continuum of mobiles. It is an open question whether such
inefficiency can be quantified in the case of discrete mobiles.
To mitigate the inefficiency, we proposed toll mechanisms in
both the settings.

APPENDIX A
PRICE OFANARCHY: CONTINUUM OF MOBILES

Recall that a NE is not necessarily a system optimal
congestion profile (see Example 4.2).Price of anarchy[9] (or,
Coordination ratio[41]) characterizes the inefficiency caused
by the selfish behavior of players; it is the ratio of the
cost of the worst NE and the optimal cost. We observed in
Proposition 4.3 that, in the nonatomic case, mobiles incur the
same cost at all the NEs. We can then define price of anarchy
as follows.

Definition A.1: Letm be a NE, andmo be a system optimal
congestion profile. Then theprice of anarchyis

PoA =
C(m)

C(mo)
.

We restrict our analysis to a single class population. We
assume that all the mobiles have identical minimum required
SINR densityγ and identical power gainhj to BS j, j ∈ N .

A. Two BSs

First we consider a case with2 BSs as in Example 4.2.
Let h1 > h2.14 Also, let (α∗M, (1− α∗)M) and(αoM, (1−
αo)M) be the congestion profiles under a NE and a system
optimal association, respectively. Recall from Example 4.2 that

1) if γM ≤ 1−
√

h2

h1
, thenα∗ = αo = 1

2) if 1−
√

h2

h1
< γM ≤ 1− h2

h1
, thenα∗ = 1, and from (13)

αo =

√
h1 −

√
h2 + γM

√
h2

(
√
h1 +

√
h2)γM

3) if γM > 1− h2

h1
, then from (11)

α∗ =
h1 − h2 + γMh2

(h1 + h2)γM
,

andαo is as above.

C(m) and C(mo) are obtained via substitutingα = α∗

and α = αo, respectively, in the objective function (12).
Straightforward calculations give that

PoA(M) =























1 if M ≤ 1−
√
λ

γ
,

λ(2−γM)γM

(1−γM)(2
√
λ−(1−γM)(1+λ))

if 1−
√
λ

γ
≤ M ≤ 1−λ

γ
,

γM(1+λ)

2
√
λ−(1−γM)(1+λ)

if M ≥ 1−λ
γ

where λ := h2

h1
< 1. Further calculations also yield that

PoA(M) is continuous atM = (1−λ)
γ

, and

dPoA(M)

dM

{

≥ 0 if M < 1−λ
γ

,

≤ 0 if M > 1−λ
γ

Thus, the price of anarchy is maximized whenM = 1−λ
γ

.
Moreover, the maximum price of anarchy is

1− λ2

2
√
λ− λ(1 + λ)

.

Viewing this now as a function ofλ ∈ (0, 1], we see that the
maximum price of anarchy decreases withλ. We also observe
that PoA → ∞ asλ → 0, i.e., arbitrarily high PoAs can be
realized in2 BS networks.

B. N BSs

Again, without any loss of generality, we assume thath1 ≥
h2 ≥ · · · ≥ hN . We also assume that the population’s mass is
∆j when it spills over BSj under NE. Clearly,∆2 ≤ ∆3 ≤
· · · ≤ ∆N . In the case of2 BSs we proved that price of
anarchy is maximized when the population spills over BS2
under NE. In the case ofN > 2 BSs also, simulations suggest
that the price of anarchy is maximized at one of the spill over
points {∆j , j = 2, . . . , N}. We have however not been able
to prove this observation. We illustrate this observation in [10,
Figure 1].

14If h1 = h2 equal fraction of population join each of the BSs under the
NE and the system optimal association, and the price of anarchy is 1.
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However, we prove that the price of anarchy decreases with
mass forM ≥ ∆N . We defineeN :=

∑

k≤N
1
hk

and e∗N :=
∑

k≤N
1√
hk

. It can be easily checked that, forM ≥ ∆N ,

PoA(M) =
eNMγ

eNMγ − (eNN − e∗2

N )

= 1 +
eNN − e∗

2

N

eNMγ − (eNN − e∗2

N )

from which the claim follows (see [10, Appendix B] for
details). Thus, to obtain a bound on the price of anarchy, we
only focus onM ≤ ∆N . For M ≤ ∆N , the load on BSj

mj ≤
1

γ

(

1− hN

hj

)

under NE. We use this observation in the next section.

C. A Bound on the Price of Anarchy

Now, we derive a sharp bound on the price of anarchy
for single class networks with arbitrary number of BSs,
and gainshj ∈ [hmin, hmax] for all the BSs. We follow
Roughgarden [39, Chapter3].

In the BS association game, a generic cost function is of
the form

ch(m) :=
σ2

h

γ

1− γM
,

and
C := {ch(·) : h ∈ [hmin, hmax]}

is the class of all feasible cost functions. Observe that the
functionsch(·) and the classC both are standard.15 We define

c̄h(m) :=
d(mch(m)

dm
.

We also assume that the load on a BS with gainhj does not
exceed

θh :=
1

γ

(

1− hmin

h

)

under NE. Thus, we redefineanarchy valuefor a cost function
ch(·) as16

α(ch) := sup
m≤θh

[λµ+ (1 − λ)]−1

where λ ∈ (0, 1) satisfies c̄h(λm) = ch(m) and µ :=
ch(λm)
ch(m) ≤ 1. Both λ and µ are functions ofm; we do not

show this dependence explicitly. Straightforward calculations
yield that

λ =
1−√

1−mγ

mγ
,

µ =
√

1−mγ,

andα(ch) = sup
m≤θh

1

2

[

1− 1

1 +
√
1−mγ

]−1

=
1

2

(

1 +

√

h

hmin

)

.

15A cost functionc(·) is calledstandardif mc(m) is convex. A classC is
standardif it contains a nonzero function and if eachc(·) ∈ C is standard [39].

16The original definition [39, Definition 3.3.2] considers supremum over
m ∈ (0,∞).

The anarchy valuefor classC is (see [39, Definition 3.3.3])

α(C) = sup
ch∈C

α(ch) =
1

2

(

1 +

√

hmax

hmin

)

It can be easily checked that [39, Theorem 3.3.8] remains
valid with our new definition of anarchy value. Thus, price of
anarchy is bounded byα(C). For any0 < ǫ ≤ α(C)−1, a price
of anarchy≥ α(C) − ǫ is realized in a network in which(i)
there is one BS with gainhmax, (ii) there are several BSs with
gain hmin (minimum number depending onǫ), and (iii) the
population has massθhmax

(see the proof of [39, Lemma 3.4.3]
for details).
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