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Abstract—A combined base station association and power con- We address the resource allocation problem in the uplink
trol problem is studied for the uplink of multichannel multi cell  of a multichannel multicell networkSuch a problem arises
cellular networks, in which each channel is used by exactly \yhan 3 CDMA operator chooses to lease and utilize multiple
one cell (i.e., base station). A distributed association ahpower . .
update algorithm is proposed and shown to converge to a Nash frequency bands (channels) in order to reduge in-network
equilibrium of a noncooperative game. We consider network interference, or multiple operators who lease differentdsa
models with discrete mobiles (yielding an atomic congestio decide to cooperate. Many newer mobile devices are capable
game), as well as a continuum of mobiles (yielding a populath  of operating over multiple CDMA bands, and thus have the
game). We find that the equilibria need not be Pareto efficient ¢ iqn 1o choose from one of these distinct bands. We address
nor need they be system optimal. To address the lack of system : o . . . .
optimality, we propose pricing mechanisms. It is shown thathese a simplified version of this multichannel multicell problem
mechanisms can be implemented in a distributed fashion. where each BS operates on a separate frequency band, and

so, there is no intercell interference.
A preview of our results is as follows. We propose a
|. INTRODUCTION distributed algorithm for the combined base station asgioci

and power control problem, and subsequently model the

Wireless communication systems have e_xperienced "e_mﬁpdblem as a player-specific congestion game. The equifibri
dous growth over the last decade, and this growth continuggses of such algorithms, which are Nash equilibria of the
unabat_ed worldwide. Efficient management of resources dSrresponding games, may be far from system optimum. We
essential for the success of wireless cellular systems. &t 1o pricing mechanisms to induce mobiles to behave in
mobile cellular system, mobiles adapt to time varying radig 4y that optimizes system cost. We also show that such a
channels by adjusting base station (BS) associations afd:nanism can be employed in a distributed fashion. Towards
by _con_trollm_g tran_sm|tter powers. Doing so, they not_onlyhiS end, we model the network as having a continuum
maintain their quality of service (Q0S) but also enhancer they¢ (nonatomic) mobiles, each offering infinitesimal loadyigh
transmitters’ battery lives. In addition, such controlduee the |o44s to a population game formulation. We then provide a

network interference, thus maximizing spatial spectruosee marginal pricing mechanism that motivates a pricing sgyte
Distributed control is of special interest, since the alééve ¢, ihe discrete mobiles case. Note that. unlike the case
of centrally orchestrated control involves added infuastnre, ¢ transportation networks, mobiles are not really priced i

the need for distribution of measurements, and hence systeg)jar networks. The pricing is simply a part of the dewisi

complexity. _ _ making routine built into each mobile in order bring about a
Distributed control algorithms for single channel multice yjsiripytedcontrol mechanism that drives the system towards
networks have been extensively studied (Foschini & M'bptimality.
janic [1], Yates [2], Hanly[[8]). The monograph by Chiang "The paper is organized as follows. In Sectidn Il we briefly
et al. [4] and references Fhereln provide an excellent Survgiscyss concepts dinite noncooperative gamesd popula-
of the area. Noncooperative games have been a natural @gh gamesWe study a network model with discrete mobiles
for analysis and design of distributed power control alggy gectior{TT. We propose a combined association and power
rithms. Scutari et al[]5] and Heikkinen![6] model distriedt ¢qntro| algorithm, model it as a noncooperative game, and
power control problems as potential games, while Altman &na1y7e its performance. We extend this analysis to a nétwor
Altman [7] show that many of the cellular power controlyith” 5 continuum of mobiles in SectioRJV. To address
algorithms can be modeled as submodular games. In contrggl, inefficiency of the proposed algorithms, we design toll
uplink resource allocation fanultichannemulticell networks  achanisms in Sectidil V. Finally, we conclude the paper with
poses several challenges as observed in Yales [2] and Jighghe remarks in SectidfVII. In AppendiXl A, we provide
et al. [8]. bounds on therice of anarchyf9] for the case of a continuum
o _ , of mobiles. We omit a few of the proofs for lack of space; these
This is an extended version of a paper that appeared in Gasn20@9. . .
This work was supported by an INRIA Associates program GANEgnd €@l b? found in our teChn'Cal report [10]. o . .
also by the Indo-French Centre for the Promotion of Advangesearch ~ Optimal power allocation and BS association in uplinks
(IFCPAR), Project No. 4000-IT-A. _ _of multichannel multicell cellular networks have not been
The authors are with the Department of Electrical Communica | f . i
tion Engineering, Indian Institute of Science Bangaloradia (email: EXP Ored_be ore._ Ou_rs IS an attempt at a deta_' _ed covera_ge
{chandra, anurag, rajesi@ece.iisc.ernet.in). on what is possible in general, with more specific results in
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some special cases. 1) there exists a seV such that4d; = N for all i € M,
and
2) there exist constant§s;,i € M) and nonincreasing

functions f;;,7 € M, j € N such that

IIl. GAME PRELIMINARIES
A. Finite Noncooperative Games

A noncooperative strategic form gameM, (A;,i € R Mg
M), (ci;i € M)) consists of a set of playersvt = ci(a) *f“”( Z ﬂl) forall a € x;=y Ay i € M.
{1,...,M}. Each playeri is accompanied by an action a2,

set A4; and a cost functionr; : xM 4, — R. In this
work, we assume all action sets to be finite. An acti
profile a = (a;,¢ = 1,...,M) prescribes an actiom;
for every playeri € M. Fora = (a;,i = 1,..., M),
denotea_i = (al,...,ai_l,ai+1,...,awf) and (b,-,a_i) =

0In the above definition, we interpraf as a set of facilities and

El as the load offered by playérThen,) c.. £; denotes the

total load on facilitya;, under an action pfofif’a. The game is

asingletoncongestion game because each action picks exactly

(@13 Qi1 biy @it - - anr)- one facility. It isweightedbecause players offer different loads,
Definition 2.1: Nash Equilibrium (NE): For an action pro-2nd it is player-specificoecause the cost functions(.) are

file a, a mobilei’s best responseBi(a) C A;, is defined Player-specific. . . _ .

as B;(a) = argmin, ., ci(b;,a_;). a is said to be a Nash Rosenthal[[15] defined congestion games with unweighted

Equilibrium for the éarﬁe it2; € Bi(a) for all i € M. players and player-independent cost functions, but mone ge
Definition 2.2: Potential Game: A gamdM, (4;,i ¢ eral action sets. The above generalization is due to Milch-

M), (c;,i € M)) is said to be an ordinal potential game itaich [13] who showed that singleton weighted congestion

there exists a functio’ : x, 4; — R, known as arordinal 92mes with player independent costs admit the FIP property
potential function that satisfies but singleton player specific unweighted congestion games
need not. Gairing et al[ [16] studied these games in the
ci(bi,a_;) < ci(a) & V(b,a;) <V(a) special case of affine cost functions. Harks et[all [17] skibwe
that a weighted congestion game admits a weighted potential
function if and only if either all the cost functions are afin
or they all are certain exponential functions. Mavronisola
et al. [18] considered a subclass of these games where each
ci(bi,a_;) < ci(a) = V(bj,a_;) < V(a) player-specific cost function is composed (by means of an
. abelian group operation) of a player-specific constant and a
foralli e M,bi € Aj,a € xiZi Ai. facility-specific nondecreasing function. Sbabbul [19] sidn

Clearly,_generallzed ordinal pot_entlgl games subsume O'8ted another subclass for which all the Nash equilibria @an b
nal potential games. Further, all minimizers of a poterftiat-

tion V' are Nash equilibria of the game. Thus all generalizegc}e)tsill?eeslngrr;%lgrtlgvokmg the potential function or the ni
ordinal potential game§M, (A;, 7 € M), (¢;,i € M)) admit '
at least one Nash equilibrium. Since the games are finiteg(fini
number of players and finite action sets), they also have tg_e
finite improvement path (FIP) property, i.e., do not contain
improvement cycles (Monderer & Shapléy [11, Lemma 2.3]). A population game (Sandholm 20\ M, (A;,l €
Thus, in a finite generalized ordinal potential game, whe®), (cij,1 € £,j € A;)) consists ofL = {1,..., L} classes
players update as per thetter response strategppund-robin  0f nonatomic populations of players\i = U, M,, and
or randomupdate processes converge to a Nash equilibriubd; := [M,| denotes the total mass of the cldssopulation.
in a finite number of steps. With the same strategiesgsym- By a nonatomic population, we mean that the mass of each
Chronougjpdate process also converges (N| []_2, Chapter 5Dember of the population is infinitesimal. Players of class
are associated with an action sét. Actions of these (class
Remark 2.1:The strategic form games that have the FIP players lead to an action distributian’ = (my;,j € A;),
property also admit the finite best-response path (FBRWhere .., mi; = M,. All the players within a class are
property, i.e., they do not contain best response cyclekkMi alike. Thus the action distributions completely specifg th
taich [13, Section 5ﬂ_ Thus, if players update as per theplay; we can characterize the states and dynamics of play
best responsstrategy, then also the above update processdely in terms of action distributions. Leh = (m',1 € £)
converge to a Nash equilibrium in a finite number of steps. Tigignote the action distribution profile across the entire-pop
reverse implication is not true in general - the FBRP propertllation, and letM* denote the set of all such profiles. A

forall i € M,b; € A;,a € xM, A;. The game is called
generalized ordinal potential game if there exists a pa@kent
functionV : xM, A; — R satisfying

Population Games

need not imply the FIP property.
Definition 2.3: Congestion Game: A gameM, (A;,i €

population/ is also accompanied by continuous cost density
functionsc;; : M* — R.

M), (c;;i € M)) is said to be a player-specific weighted Definition 2.4: Nash Equilibrium (NE): An action distribu-

singleton congestion game if

1A best response cycle is a finite best response gath - - , aX such that
al = ak, and for somej € {1,--- ,k— 1}, the deviating player in iteration
j strictly benefits[[14].

tion profile m is a pure strategy Nash equilibrium for the
game(M, (A;,i € M), (cj,l € L,j € (A;)) if and only if
forall l € £ andj € A;, a positive massn;; > 0 implies
cj(m) < ¢ (m) for all k € A;.



Remark 2.2:Definition[2.4 implies that, at a Nash equilib-BSs and mobilesEach BS operates in a distinct frequency
rium m, for a clasg, if j andk are any two facilities in4; band.Let V' ={1,...,N} andM = {1,..., M} denote the
such thatm;; > 0, my; > 0, thenc;j(m) = ¢ (m). set of BSs and the set of mobiles, respectively.

Definition 2.5: Potential Game: A population game A mobile must be associated with one BS at any time,
M, (Al e L), (a;,l e L,j € Ay))is said to be a potential and is free to choose the BS with which it associates. Let
game if there exists €' functionV : M* — R, known as a h;; denote the power gain from mobileto BS j. Let the

potential function that satisfies receiver noise at all BSs have the average power Let
aV (m) p; denote the power transmitted by mobile and let a;
T ¢j(m) be the BS to which it is associated. Under an association
L profile a = (a;,i = 1,...,M), let M;(a) be the set of
forallle £,j € A,me M. mobiles associated with B$. Under an association profile
It is well known that Nash equilibria are the profiles whichy and a power vectop = (pi,i = 1,..., M), the signal to

satisfy the Kuhn-Tucker first order conditions for a miniemiz interference plus noise ratio (SINR) of mobilat BSa; is
of the potential function (Sandholin [20, Proposition 3.2y

dynamics withpositive correlationand noncomplacencyfor fria i 5
e.g., the best response dynamics) approaches a Nash equilib Zl€/\/lai(a)\{i} hia,pr + o
rium [20]. Mobile i has a target SINR requirement
We are interested imonatomic congestion gamgSand-  Remark 3.1:Assume a scenario where the channels are

holm [2Q]) in which A, = N, VI € L, for a given setN. close together relative to their centre frequencies. Tihen t
As before, we interpref\" as a set of facilities. Moreover, channel gains for various mobile-BS pairs can be taken to
each clasd has an associated offered load densjty> 0. bpe functions of distances between them. In particular, lif al
An action distribution profilem leads to a congestion profilethe mobiles (respectively, the BSs) are collocated, then th
(mj,j € N), wherem; = >, .my;v. The cost density channel gains will depend on BSs'(respectively, the mabjile
functionsc;; depend omm only throughm;, and are increasing indices (see Sectiofis III-C2 afd 1-C3).
n m;.

B. The MAPC Algorithm

C. Pricing Yates [2] and Hanly[]3] proposed an algorithm for dis-
Levying of tolls is a conventional way to enforce systenributed association and power control in single channkl ce
optimality in nonatomic networks. Beckman_[21] and Dafeftular networks. Convergence results for the algorithm are
mos & Sparrow [[2P] studied optimal tolls in transportatiomased on the concept ofstandard interference functioThe
networks with a single class of users. Later Dafermos [28chnique is based on a mobile reassociating itself with a
and Smith [[24] extended the analysis to multiclass networksS with which it needs to use the least power; this fails to
Roughgarden & Tardos [25] applied these ideas in compuigérk in the case of a multichannel network and analogous
networks and analyzed tolls for optimal routing. convergence results for this algorithm may not hold (see
In the atomic (discrete) setting, Caragiannis et [264ates [2, Section VI]). Even in instances where the algarith
proposed tolls for two-terminal parallel-edge networkshwi converges, it may get stuck at an association profile thadtis n
unweighted users and linear latency functions. Subsetyienpareto efficient (see Definitidn_3.2).
they considered the cases of heterogeneous users (with difwe propose an alternative distributed algorithm for com-
ferent sensitivities to taxes) and of asymmetric games &hejined BS association and power control in multichannel mul-
each client has at most two permissible choices [27]. Fetakicell cellular networks. We also show its convergence. We
& Spirakis [28] studiedcost balancing tolldor generic two- make use of the following simple fact (see, for example,
terminal networks with unweighted users and arbitraryéasr Kumar et al. [31, Chapter 5]). Consider the subproblem of
ing latency functions. Fotakis et al. [29] broadened thiglgt power control with a fixed associatien Define s, = -,
to incorporate heterogeneous users and single-sourcetault measure of the “load” offered by mobile
sink networks. More recently, Jelinek et al. [30] analyzed Proposition 3.1:For a fixed associatioa,
the scenario where tolls have to respect some given uppigrThe power control subproblem of B$ is feasible iff
bound restrictions on the links. They also focused on parallzleMv(a) B < 1;
edge networks and unweighted users (either homogene@fsif the power control subproblem of B$ is feasible, there
or heterogeneous), and allowed arbitrary increasing dgterexists a unique efﬁcidﬂnpower vectorp(a) given by

functions. We propose an alternative toll mechanism, and 9
demonstrate that the proposed tolls can be computed in a pi(a) = U—L
distributed fashion. hij 1= 3 e, (a) B
Throughout we assume that there exists at least one feasible
I1l. DISCRETEMOBILES association and power vector. Proposition] 3.1 motivates th
A. System Model following algorithm.

We now deS(_:ribe the model adopted in _th_iS work. We 2gficiency is in the sense of minimizing the aggregate trangawer of
consider the uplink of a cellular network consisting of gale all the mobiles.



Multichannel Association and Power Control (MAPC): 2) Collocated Mobilesin this case, all mobiles are situated
Mobiles switch associations in a round-robin fashion in aclose togetherin a group. Thiag; = h; foralli € M, j € N,
cordance with the the optimal power consumptions (given land

Proposition[311(ii)) at the BSs with which these associate. o2 B;

More precisely, a switching mobile associates with a BS wher ci(a) = 5— =S B

it would require the least power. As the load at a BS changes, “ lEMa ()

it immediately broadcasts the new load, and the associa

tﬁﬂs yields a player independent weighted singleton conges

mobiles update their powers to the optimal required powefs game
as per the new loads. Mathematically, define ' .
P 5 ¥ 3) Collocated BSsHere all BSs are assumed to be situated
() — 9 Bi 1) Close together. Thus;; = h; for all i € M, j € N/, and
C’L (a) h 1 + ) ( )
ta; [ - Zle/\/lj(a) ﬂl] )
where[z]T = max(z,0). Fort = 0,1,2,..., mobilei where ci(a) = o Pi —.
1 =14(t mod M) updates its association and power &tl hi [1 = ZZEM%(a) pil

if a;(t) ¢ argmin;cn ci((4,a(t)-:)). In this case,
Now, we get a player specific weighted singleton congestion

ai(t + 1) € argminc;((5,a(t)-4)), (2a) game.
S
and witha(t + 1j) = (a;(t+1),a(t)_;), The following result ensures that MAPC converges in each

of these special cases.
pu(t+1) = afa(t+1)), Proposition 3.2: The finite  strategic form game
VI € Ma,wy(a(t)) UMa, i) (alt +1))- (2b)  (Af A7, (ci,i € M)) is a generalized ordinal potential
Remark 3.2:Observe that while only one mobile update§ame and thus admits the FIP property in each of the
its association at a time, all mobiles that perceive a chamgefollowing cases.
load at their BSs update their powers to optimal values_ baseg) 8, = Bforalli e M,
on th_e new loads. If the power requwemgnts of a mobile arez) hi; = h, forall i € M, j € N,
identical at two or more BSs, one of those is chosen at randon?g. B ) |
Remark 3.3:Consider the special case where the mobiles ) hij = hi forallie M, jeN.
have a common target SINR requirement. In this case, even Proof: In each case, we show that the game
if the algorithm starts with an infeasible associationfisel (M, N, (¢;,i € M)) is better response equivalent (Neell[12,
moves of players eventually lead to a feasible one, and epdaChapter 5]) to a generalized ordinal potential game (by demo
remain feasible thereafter. strating a potential function for the latter). This impligst, in
This algorithm is also distributed in nature as the one preach case(M, N, (¢;,i € M)) itself is a generalized ordinal
posed in[[2]. BSj broadcasts its total congesti@leMj(a) B potential game. It is also finite which implies that the FIP
on a common control channel so that even non-associat@dperty holds.
mobiles receive this information. In addition, each mohile 1) Let us first observe that, in MAPC algorithm, mobiles

is told its scaled gain% by each BSj € V. do not switch to a BS if the new aggregate load of the BS
exceeds (or equals). Therefore, in any improvement path,
C. A Congestion Game Formulation if a BS’s aggregate load becomes permissible (ke.l), it

To show the convergence properties of the proposed alg@ntinues to be below. After finitely many steps we get a
rithm, we model the System as a Strategic form game. Let tﬁgrtition of the set of BSs in two sets such that BSs in the
mobiles be the p|ayers and the action set for each p|ayerfb’§t set have permissible loads while those in the second set
the possible associations, id; = A\ for all i € M. Define do not, and mobiles do not switch across these sets (the latte
the cost functions of the players to bga) for all i € M. It Set may be empty). Hence, to investigate the FIP property,
can be seen that above is a player-specific singleton weightée focus on the set of BSs with permissible load and on the
congestion game, and belongs to the subclass of congestit@piles associated with them. Alternatively, we assumé tha
games with multiplicative player-specific constants dieset after finitely many steps, all the BSs have permissible loads
in [18]. In the following we refer to it as the strategic formNow note that the strategic form ganig1, NV, (c;,i € M))
game(M, N, (c;,i € M)). is better response equivalent (M, N, (,CL“Z‘ € M)). Also

Before analyzing the general game, we consider the follofote that
ing special cases.

1 +
1) Single Class TrafficThis is the case where all the mo- I 7h“;i 1~ Ma,(2)|5]"
biles have a common target SINR requirements := ﬁ ci(a) o B
In this case, ) .
52 5 The functionV; : NM — R given by
cla) = ——
@) = e L= Mo @IBF e

i, . . , 1 N
and we have a player specific unweighted singleton congestio  V;(a) = ~3% H hia, H H [1—1tp]
game. leM keN t=1



satisfies Now, we focus on the general case. Gairing et [16]
, 1 1 show (via a counter-example with players) that player-
Vi(j,a—;) —Vi(a) = — (cz-(j 2 Ci(a>) Il Ma  specific weighted singleton congestion games with affine cos

leM\{i} functions are not necessarily generalized ordinal paéenti
[ M (a)\{i}] games, and so, need not possess the FIP property. Thisugegati
_ 4Bt i
X H H [1—1t5] result applies to our game also, and convergence proofsibase
kEN t=1 on potential functions cannot be used. However, it follows

from [13] that the strategic form game\, N, (c¢;,i € M))

for all i € M,j € N,a € N™. Notice that all the product admits (i) FIP property if\/] — 2, (i) FBRP property if

terms in the right hand side are strictly positive becaulkthal

- ) M| =2.
BSs have permissible load. Thus the gapd, N, (—2,i € | : . . .
M)) is a generalized ordinal potential game with a potential Georgiou et aI.I:_[EIZ] establlsh_that player—spec_lflc weighte
function Vi singleton congestion games with players and linear cost

2) The strategic form gaméM, A, (ci,i € M)) is better functions possess FBRP property. Mavronicolas et[all [18]

response equivalent OV, AV, (— 2= i € A)). Also note that broagign this result to generic cost funcyons with player-
ci specific constan&.Spemflcally, they show in an exhaustive

B; hai[l =3 e m, (a) BT manner that such games do not possess laast response
= - : cyclesﬁ Their result and proof technique extend to the game

(M, N, (¢;,7 € M)) even though the cost functionsare not

For the functionVs : N — R given by linear. Thus, the gaméM, N, (c;,i € M)) can be shown to

ossess the FBRP property|if1] = 3.
hafi ([1 = Sientn B +(1-8)) P property|t1|

C(a) o?

Va(a) = — Z In the case of more thab players, convergence of the best
b o2 ’ response dynamics in weighted singleton congestion games

with linear cost functions is an open problem|[32],1[34].
Va(j,a_;) — Va(a) = Georgiou et al.[[32] conjecture that such games always admit

(M, N, (c;,i € M)) is best response equivalent to another
game in which costs are composed of multiplicative player-
specific constants and affine nondecreasing functions., Also
simulations run on numerous instances of the game suggest

at least one NE. Though functioms are not linear, the game
—23 <hj [1— ZzeMj(a) Bi—Bi]  ha, [1- ZZGM% (a) 51]) 9 9
i - 2

o2 o

for alli € M,j € N,a € NM. Therefore

B - Bi = Va(j,a_;) < Va(a). that players’ updates as per the best response strategysalwa
ci(j,a—i) ci(a) ’ converge in a finite number of steps. We therefore conjecture
that

So V5 is a potential function for the game\, NV, (—f—f,i € ) Th fini . f
M), and so the latter is a generalized ordinal potential game.CO/?[JeCtur,e 3.1:The |g|t§ itrati%CRP orm gam(;
3) The strategic form gaméM, N, (c;,i € M)) is better (M, N, (e;,0 € M)) admits the property an
response equivalent taM, ', (7}15_1,’1‘ € M)). Also note thus possesses at least one pure strategy Nash equilibrium.

that The FBRP property ensures th®tAPC converges in a
B; [1- ZzeM% (a) BT finit_e number of steps (seg Remé&rk]2.1). However, the round-
- Tca(a) =- ) . robin update process requires some coordination to ensate t
the designated mobile updates its association in a slotuset
The functionVs : NM — R defined as consider the following variants dflAPC.
Bill = X iem, (a) B 1) Random update proces#it eacht, one mobile is ran-
Va(a) = — Z o2 } domly chosen to update its association, while ensuring
iceM that all the mobiles have strictly positive probabilities
satisfies of being chosen. In a framework with no synchronizing

Va(j,a ) — Vi(a) agent and with an arbitrarily fine time-scale, it is unlikely
3\, 8~ 3 that two mobiles update simultaneously. Random update
(U - ZlEMj(a) B — Bil B [1- ZleM%(a) 51]) process is a natural candidate in this setup.
2
ag

= —25;

2 2) Asynchronous update processt eacht, each mobile;
updates its association with probabilitye (0,1). There

a

for all i € M,j € N',a € NM. Therefore is thus a strictly positive probability that any subset of
Bi Bi .
_hici (j:a,i) < _hicil(a) = V3(J7a—z') < V3(a). 40n the other hand, they also demonstrated a best responke icya

game with3 players and costs composed of additive player-specifictantss
. . . and facility-specific nondecreasing functions. More rélgenGairing and
So _the game_(M,N, (7@/3@72 € M)) '? an ge_tnerallzed Klimm [33] demonstrated lack of a NE in & player singleton weighted
ordinal potential game witlys as a potential function. B  congestion game with concave cost functions that differ tayes-specific
additive constants only.
3This potential function is similar to those proposed[inl[1&] linear cost 5There does not seem to be any reason why this technique céenot
functions, and in[[18] for cost functions composed of plageecific constants extended to more thad players; though the number of possibilities in the
and facility-specific functions. exhaustive search may become enormous.




mobiles may update their associations simultaneously. Aperate in disjoint bands. Assume
before, all mobiles update their powers based on the new

loads. This algorithm does not require any coordination hia < hi11 < =

among mobiles (to ensure one by one updates), and is L "

thus fully distributed. and ot < hoy < a 2 7
-

The FBRP property of the gameM, N, (¢;,i € M))
implies that these two algorithms also converge to a NE e unique Pareto efficient association(is = 1,az = 2)
finite number of steps with probability (see SectiofiI=A).  With power allocation(Z—~, 7Z-~). However, if we start with

initial association(a; = 2,a2 = 1), MAPC will not move
forward, because a unilateral switch requires larger pdwer
D. System Optimality meet the target SINR. Neither mobile will switch to the BS

A system optimal power allocation should bring about theith which it has a better channel. Hende5—, 7-v) is a
lowest interference environment. This motivates the foitg ~ Steady state power vector at which the algorithm settlass th
definition of system optimality. (a1 = 2,az = 1) is Pareto inefficient.

Definition 3.1: For an association profike, define a system  In the following we consider special cases, and investigate
performance measui@(a) = Zz?vil ci(a) with ¢;(a) defined Whether the proposed algorithm leads to a system optimal
in @). We define an association profie® to be system association profile.
optimal if it minimizes C'(a) over all possible associations 1) Collocated Mobiles and Single Class TraffiEven in

ac xM A, this special caseVIAPC may settle at a Pareto inefficient NE
Let us now recall the following notion of Pareto effi-aS Shown in the following example. _
ciency [31, Chapter 5]. Example 3.2:Consider a2-cell network with4 collocated

Definition 3.2: An association profile is said to be Pareto Mobiles andj; = f,i = 1,2,3,4. Assume thath;, and h;
dominated by another association profifeif c;(a’) < c¢;(a) Satisfy
for all i € M with ¢;(a’) < ¢;(a) for somei. An association hi(1—38) = ha(l—28),
profile a is said to be Pareto efficient if it is not Pareto
dominated by any other association profilexs. A,. hi(1-26) > ho(1-f).

Clearly any association profile that is system optimal fshe following facts are easily verified. Both the inequaesti
also Pareto efficient. Thus, if there is a unique Pareto effan be met simultaneously. The association = as = az =
cient association profile, it is also the unique system ogitimi q, = 2) is a NE from which the algorithm does not move.
one. However, unlike the case of single channel networkshis association is Pareto dominated fay = a4 = 1,a; =
joint association and power control problems in multichelnng, = 2) which is another NE. ThuMAPC may settle at a
networks do not in general admit a unique Pareto efficiePtreto inefficient NE.
association profile. In particular, whepM| > |N], there  Consider now a variant IAPC in which mobilei = 1+ (¢
cannot be unique Pareto efficient association prifife. see mod M) updates its association &t 1 iff]
this, define®; for any mobile; as the set of best match BSs

as follows ) ,
UQ,W ai(f') ¢ argmln Ci(]a a(t)—i)a Z
JeN leM; (Galt)—)

B

©; := argmin
JEN ij
. . . In this case,
The system optimal association profi€ is clearly Pareto

efficient. Next, two cases are possible.

1) For alli, a¢ € ©,. Since|M| > |N], there exist two ait +1) € v aGhab)-), Y, A

mobilesi andi such thata? = af. LeM;(alt) )

2) There exists a mobilé such thata? ¢ ©,. In words, a mobile selects a least loaded BS (after taking
Consider a mobile as in Case 1, or as in Case 2. L&t its own load into account) among the ones which require
be another profile which is system optimal subject teeing transmission with the least power. We name this variant
associated with any of its best match BSs and no other modHé&\PC ™.
being associated with that BS. It can be easily checked thaf’roposition 3.3:Consider the case wherg; = § and
a’ is also Pareto efficient. hi; = hj for all i € M,j € N. If the strategic form game

As the following example illustrate$dAPC may settle at (M, (¢i,i € M)) contains no best response cycles, then
a Pareto inefficient association profile, and hence may not Y&PC™ converges in a finite number of steps.
system optimal. Proof: See [10]. . u

Example 3.1:Consider a network with two BSs, two mo- 1he FBRP property (Conjectuie B.1) ensures taPC*
biles, and a common SINR requirement The two BSs CONVerges in a finite number of steps. We now show that

MAPC* converges to a Pareto efficient NE in the special case

SHowever, different Pareto efficient association profilesyrba identical Of collocated mobiles and single class traffic.
up to a permutation, e.g., if two mobiles are indifferenthaiespect to their
SINR requirements and channel gains to all the BSs. "The minimization is with respect to the lexicographical endg.



Proposition 3.4: For the noncooperative
(M,N, (ci,i € M)), whenh;; = h; and 3; = f for
all i € M, j € NV, the steady states ®MAPC* are the Pareto
efficient NEs of the game.

Proof: Proposition$ 3]2 and 3.3 imply that MAP@on-

verges in a finite number of steps in this special case. F

any association profile, let m;(a) be the number of mobiles
associated with BS. Leta be a NE, and’ be another profile

dominatinga. We show that the proposed variant of MAPCa

does not settle a.

We first argue that congestion vectorm(a)
(my(a),--- ,my(a)) andm(a’) cannot be identical. Indeed
if this is the casea’ is obtained by permuting the mobiles’

associations im in some way. But then their payoffs undergo
the same permutation, which makes it impossible for all of2

them to gain.

We defineg, Z—f and f(m) = =4z Then a mobile
associated with BS incurs a costy; f(m;(a)). Further,a
being a NE,

gif(mj(a)) < gxf(me(a) +1)
for all j,k € NV. In particular,

mi@) Smp@) +1 if g <g;,  (3a)
and mj(a) <mi(a)+1 if gp <g;. (3b)
Next, we define
© T jeN:rgi}((apogjf(mj(a))’
andN; =  argmax g,f(m;(a))

JEN :m; (a)>0

Undera’ none of the mobiles incurs a cost more tharin
particular, those associated with a B& N7 undera’ must
have cost less thaa This impliesm,(a’) < m; (a) for all
j € Ni. Now suppose thatr;(a’) = m;(a) for all j € M,
andmy(a’) > my(a) for ak € N'\ ;. Then,

gef(mi(a’)) > gr.f(mi(a) +1) > g; f(m;(a))

for anyj € V. The last inequality holds becausds an NE.
Thus we have that

gif(mx(@’)) > ¢,

game Now, we claim that there exist BSsc N7 andk € N3

such thaty; < g,. Assume this claim holds. Then,
gef(mr(a) +1) = ¢ = g; f(m;(a))

plies thatm;(a) > my(a) + 1. Thus, under the proposed
z%orithm, one of the mobiles associated with B&oves to
BS k, i.e., the algorithm does not settle at

We prove the claim via contradiction. Suppage> g, for

Il 7 € N1,k € N>. Obtaininga’ from a may involve three
types of load transfers.

1) One mobile moves from a BS € N, to a BSk € Ns
such thatg; = gi. By the definition ofA5, such moves
only permute the overall cost profile, and by themselves
cannot lead ta'.

) One mobile moves from a B N; to a BSk € N>

such thatg; > g. Then, the cost reduces fot;(a) — 1

mobiles that are still with BSj, but increases t@ for

my(a) > m;(a) —1 mobiles (see[(3a)). Such moves also
cannot lead to the association profile

n > 1 mobiles move from a BSj € N; to BSs

ki,...,k, € N2 (they have to move to different BSs,

again by the definition of\). Now, the cost reduces for
mj(a) —n mobiles, but increases ®for

im

3)

S my, (@) > nlm; (a) - 1) > my(a) —n (see (@)
=1

mobiles. Such moves also cannot lead to the association
profile a’.

Thus there must be BSsc N; andk € N such thay; < gx

as claimed. This completes the proof of the propositiors

However, the obtained Pareto efficient association profile
need not be system optimal. This is demonstrated by Exam-
ple[4.2 for the case of a continuum of mobiles.

2) Collocated BSs and Single Class Traffiblext, we
consider the case where the mobiles have identical taryR Sl
requirements and the BSs are collocated, so Ahat= h; for
all i € M,j € N. For any association profile, define its
supportS, to be the sef{j € N : a; = j for somel € M}.

We say thata hasfull supportif S, = A

Lemma 3.1:In the game M, N, (¢;,i € M)), wheng;

g andh;; = h; for all i € M, j € N/, any association profile

and hence there are more mobiles incurring costs greafgth full support is Pareto efficient.

than or equal toc undera’ than undera. This contradicts
the hypothesis thaa’ Pareto dominatea. Thus there must
be BSsj € N,k € N\ N7 with m;(a’) < mj(a) and
mi(a’) > my(a) which is same asni(a’) > my(a) + 1.
Again, a being an NE,

grf(me(@’)) > ¢
But the hypothesis that’ Pareto dominatea implies that
grf(mi(a’)) <e.
Thus k must belong to the set
Ny :={k e N\ N : grf(mi(a) +1) =c}

Moreover,mg(a’) = mg(a) + 1.

Proof: See [10]. [ |
Proposition 3.5:All the Nash equilibria in the game
(M, N, (ciyi € M)), whens; = 8 and h;; = h; for all
1€ M,j e N, are Pareto efficient.
Proof: Let a* be a Nash equilibrium. The following are
the two possible scenarios.

1) a* does not have full supportVe must haveM| < |NV].
Indeed, if| M| > |N| anda* does not have full support,
then there must be mobilesand ! with ] = a; and
a BSj with M;(a*) = 0. Clearly, mobilei benefits by
moving to BSj. This contradicts the fact that* is a NE.
Next, ¢ # [ implies a} # af for the same reason as
explained above. Since all BSs have the same channel
gain to a mobilea* is Pareto efficient.



2) a* has full supportLemmal3.]l implies that* is Pareto i.e., a vector that isnajorizedby any other vector (Marshall
efficient & Olkin [B5]). All such vectors are permutations of (Al-
m ternatively, if there exist BSg andk such thatn; > my +2,

However, a NE need not be system optimal if the mobilégoving a mobile from B to BS % results in a strictly lower

are not collocated as shown in the following example. cost). This concludes the proof. u
Example 3.3:Consider a 2-cell network with 5 mobiles.
The 2 BSs are collocated. Furthér, = ik and 8; = 3,i = IV. CONTINUUM OF MOBILES

1,2,3,4,5 wherei < B < % Any profile in which two In this section, we consider a nonatomic version of the

mobiles associate with one BS, and the remaining three wipstem in Sectiod_III-A. Such a model is of interest for

another is a NE. On the other harld; = a2 = 1,a3 = a4 = two reasons. First, for many of the fixed QoS traffic classes
as = 2) and (a1 = az = 2,a3 = ay = a5 = 1) are the only (e.g., voice), the target SINR requirements in CDMA celiula
socially optimal NEs. systems are very small. In a typical IS 95 CDMA system with

3) Collocated BSs and Symmetrically Placed Mobiles:system bandwidth 1.25 MHz, chip rate 1.2288 Mcps, data rate
Now, we consider the case whelig; = h for all i € M,j € 9.6 Kbps, and targe% = 6 dB, the target SINR turns out to
N. Mobiles may have different target SINR requirements. Ibe -15 dB, i.e.z; (Kumar et al.[31, Chapter 5]). If we assume
this case also MAPC may settle at a Pareto inefficient NE #sat at any time the number of mobiles associated with a BS
shown in the following example. is large, it is reasonable to say that an incoming mobile or

Example 3.4:Consider a 2-cell network with 6 mobiles.an outgoing mobile has a negligible effect on the congestion
The BSs are collocated and the mobiles are symmetricahgcondly, we have seen that our proposed algorithm may end

located around them. Assunig = 5, = 0.3, 83 = 0.4, 54 = up with inefficient associations. There is extensive workadin

Bs = 0.5andfs = 0.6. It can be seen thdti; = ag = 1,a2 = mechanisms that induce system optimality in networks with
as = 2,a3 = a4 = 3) is a feasible association profile, so we continuum of mobiles. The analysis of toll-mechanisms (or
have a feasible problem at hand. But = a; = 1,a3 = ag = pricing) on a multichannel multicell network with a contim

2,a4 = a5 = 3) is a NE which is infeasible and also Paret@f mobiles can be expected to shed light on the existence and
inefficient because it is dominated l{w, = a2 = 1,a3 = properties of pricing mechanisms for networks with diseret
2,a4 = a5 = ag = 3). mobiles.

4) Collocated Mobiles, Symmetrically Placed BSs, and Sin-
gle Class Traffic:In the special case when all the mobileg\, System Model
are coltkzca;';]ed aﬂd aItI tge les are s;;]mmettr?c?lll)l/ plgcelf W'thLet M = UL M, be an infinite set off = {1,...,L}
respectto the collocated mobiies, we have the 107oWINGHIeS ¢ asses of nonatomic mobiles. By nonatomic mobiles, we

mean that the effect of a single mobile at a BS is infinitesimal
. ‘ ; The population of clas$ mobiles has “mass™;. All the
M)), with 5; = andh; = hforalli € M,j € N, are mobiles in a class are collocated and require equal minimum

syster ogtllr_\;]al. bi I BS indistinauish bSINR. In particular, all such mobiles have the same power
. ~f001: The MobIles as Well as Bos are in |st|ngU|s_ a Eains to any of the BSs (gains from a mobile to different BSs
in this game. At a NE, letn; be the number of mobiles

iated with BS. We fi h NE. th can be different). Assumg@/ to be the finite set of BSs. As
associated with Bg. We first prove that at any 1 eveCtorbefore,a denotes the common standard deviation of receiver

of mobiles’ costs is unique up to permutations. To prove, thiﬁoise at all BSs. Let, be the common minimum required

!t sufflces to prove that the vectan - (m;,j € N) for a NE SINR density for clas$ mobiles, andh;; be the power gain
is unique up to permutations. Aa yields a NE, the following between a class mobile and BS;j. An association profile

must hold for allj, k € N is a measurable function : M — A. Any associationa

Proposition 3.6: All the NEs in the gaméM, N, (¢;,i €

o2 B - o? B leads to a congestion profi@(a) = (my;(a),l € L, € N),
1 - m;B h1l—mB—8 my;(a) being the mass of clagsmobiles associated with BS
orm; < mg+1. (4) J-Let M* denote the set of all such congestion profiles.

Under an association profile and a power density allo-
Definen = [ | andl = M — nN. From [3) we see thath cationp : M — R., the SINR density forr € M,,l € £
givenbym; =n+1,j=1,...,I,mj=n,j=1+1,....N s
characterizes one of the NEs; other NEs are permutations of
this vector, andn is unique up to permutations. We now show T 2
thatm is a system optimal congestion vector, and the system 221 Ja, La(@s 2)huayp(2)dz + o
optimality of all other NEs follows. To do this observe that where  1,(z,2) — { 1, if a(x) = a(z)

hia(z)p()

9 0, otherwise
o 15} o m; 3
Cla) = 7 Z T—m, B3 & Z 1—m;B Our definition of a “class” makes all the mobiles in a class
iemM : JEN alike, and so, congestion profiles are sufficient to charizete
is a Schur-convefunction in (my,...,my) becauser™ is

f . This i i h h .. | . 8The conditionh;; = h; for all j € N is used to deduce that NE profiles
a convex function. This implies that the minimum value I§re majorized by any non NE profile; the conditibg; = /; for all i € M

attained at a vector which is as close to uniform as possibkeysed to deduce Schur-convexity ©fa).



the system. In the sequel, we just usg; for my;(a) for Proof: In the region{m : m; < 1,Vj € N}, the function

convenience. The dependence®is understood. V:M* = RU{+o0} defined as

Consider again the subproblem of power control with a fixed m,
congestion profilem. The following result is analogous to /(1) := ~imy; log gu; +/ log c(x)dz | , (6)
Propositior 3.1, and is shown in]10, Appendix A]. ]%;, g ’ " Jo

Proposition 4.1: 1) The power control subproblem of BS, ! functi h
j is feasible iff Y, _ . mv < 1. is aC! function wit

2) If the power control subproblem of BSis feasible, there oV(m) _ _
exists a unique efficifitpower densityy given by omy ilog gij + log e(m;) =y log ci; (m)
o2 i forall e £,j € N,m € M*. Thus the nonatomic game
p(z) = h—hm, (M, N, (qlogeay,l € L,j € N)) is a potential game with
S

V(m) as a potential function (see Definitibn R.5). Note that
Vax € M, such thata(z) = 5,1 € £, wherea is the the strategic form gameM, N, (¢;;,1 € L,j € N)) is better
underlying association profile. response equivalent toM, N, (y;loge;,l € L,j € N)).

An evolutionary dynamics can be proposed to address theus the former is also a potential game with the same
combined association and power control problem. To this er@gbtential functionV'(m).

we define functions;; : M* — R, wherec;;(m) denotes  Now consider the following optimization problem

the minimum power density for clagsnobiles associated with

. . Minimiz
BS j under congestion profilen, as € Vim)

, subjectto > my; =M, €L (7a)
_ Y10 JEN
ClJ(m)_hlf i + - .
L= 2 e miml my; >0, leLl,jeN. (7h)
For notational convenience, define All the conditions are self-explanatory. Observe that
o vo? 0%V (m) _ yiyic(my;) if k=7,
93 = hij Imimy; 0 otherwise
L , Thus, with an appropriate ordering of the componentsnof
mj = i, Vi €N the Hessian o/ (m) is given by
=1
and  o(2) { L ife<1 ¢(m1)D ( 0) 0
= i 0 c(mo)D ... 0
> 2
o0, if z2>1. vgv(m) _ . . . . 7
We then have 0 ; ( : \D
c(m
cij(m) = gije(my). (5) N
where
Again we assume that the system is feasible, i.e., therésexis -
a feasible assignment, as done in Secfion]II-B. This boils D = TT7, (8a)
down to assuming ;. . viM; < N in the case of nonatomic andT' = [y1, - ,v]". (8b)

mobiles. Now, structures of the cost functions allow us
restrict attention to the region where; < 1,Vj € N if

m; > 1 foraj € N, all the mobiles associated withincur
infinite cost.

t8Iearly, D, and henceV?V (m) is a positive semi-definite
matrix. Thus,V(m) is a convex function ofm. Since we
are minimizing a convex objective function subject to linea
constraints, there exists at least one minimizer, and allma
are global minima. Also, Kuhn-Tucker first order conditions
B. A Congestion Game Formulation are necessary and sufficient [36, Section 5.5.3]. Combining
n%his with the fact that NEs are the profiles which satisfy the
Klihn-Tucker first order conditions for a minimizer of the
ggtential function (see SectionIIFB), we see that the séteé
coincides with the set of minimizers of the potential fuooti
[ |

Remark 4.1:The assertion in the above proposition does
not hold for general population games. While all local min-
imizers of potential function are equilibria, not all edhila
N

We model the problem as a nonatomic congestion gal
The continuum of mobiles constitute the population, &vid
denotes the common action set for players of all the class
Classi players are accompanied by cost functiep$m), j €
N In the following, we refer to it as the gan@é1, N, (c;;,1 €
L,jeN)).

Proposition 4.2: The nonatomic gamgM, N, (¢;;,1
L,7 € N)) is a potential game. Furthermore, it admits
least one NE, and the set of NEs coincides with the set
minimizers of the potential function.

inimize potential (even locally) in general 20, Sectioh 3
is is unlike finite player potential games where only equi-
libria are the local minimizers of potential functions.

9Efficiency is in the sense that the aggregate transmit powassa the Furth_e_rmore, NEs have the following property (séel [37,
continuum of mobiles is minimized. Proposition 3.3]).
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Proposition 4.3: The congestion at a BS is constant acrogsor the reason described earlier, we restrict attentiorhéo t
all the NEs of the game&M, N, (¢;,01 € L,j € N)). region wheren; < 1,Vj € N. In this region,
Consequently, the cost density for a class is also constant d 1
across all the NEs. Z—mye(mg) = Ame
Remark 4.2:At NEs, the congestions (at BSs) by class, J J
my;, are not unique because the objective functfdn (6) is n@fd som;c(m;) is a convex function ofn;. ThusC(m) is a

strictly convex with respect to this set of variables. Schur-convex function ofm;, 1 < j < N), and is minimized
at anym™ with )
C. System Optimality mi =5 Do uM;
Analogous to the definition in Sectign 1D, we define the leL
system performance measure forall j € N. Whenh;; = hforalll € £,j € N, any
. congestion profile with equal congestion at all the BSs is a
NE. Thus, the system optimal profii@* is a NE. Since all
C :: a a a . 9 ., B
(m) ;;m“g”c(mﬂ © the NEs incur equal cost (see Propositionl 4.3), all NEs are
) ] *] . ) . system optimal. [ |
A congestion profilem™ € M* is said to be system Sptlmal However, NEs need not be system optimal if BSs are not
if it minimizes C'(m) over all possible profilesn € M. collocated, or mobile are not collocated. We illustratesthe

In contrast with the discrete mobiles case where equilibrjgqis through the following examples.
need not be Pareto efficient (see Exaniplé 3.1), we have theyample 4.1:Consider an infinite setM of nonatomic

following result for the nonatomic case. . mobiles belonging to two classes; class 1 and class 2 mobiles
Proposition 4.4:All - NEs of the nonatomic game have massesi/; and 3M; respectively. Assume common
(M,N, (a1 € L,j € N)) are Pareto efficient. minimum SINR density requirement, and let3M;y < 1.

Proof: Let m be a NE congestion profile. Under a NE{ gt there be two collocated BSs. Let the power gain between
the cost densities for the mobiles of the same class are .eqyal|asg mobile and a BS bé;, h, < % A congestion profile
irrespective of their associations (see Reniark 2.2). Tiis, is 4 NE if and only if it assigns equal load to both the BSs.
sufficient to prove that there does not exist another cof@esty ;s the total cost incurred at NE
profile m’ such that for every class and for all BSsj, k, Moo 30 Mo
with my; > 0,mj, > 0, o — yio yMio .

hi(1 —2yMy) — ho(1 —2vMy)
(10) Next, consider a profile in which class 1 mobiles associate
and strict inequality holds for some suéhj and k. Assume with BS 1 and class 2 mobiles associate with BS 2. The cost

that such ann’ exists. Then, incurred now is

ar(m’) < ¢5(m),

- "}/M10'2 3"}/M10'2
C (L= My) o ho(1 = 3yMy)
It can be easily checked that < C* if

gie(my,) < gije(m;) < gue(my)

where the last inequality follows becauseis a NE andn;; >
0. This yieldsmj, < my. This further implies that there is a
BS s such thatm/, > m,, and a clasg such thatn}, > mq.. Mo« 2t ha/3 —h1
By the strictly increasing property af we have v oha—Mha

Example 4.2:Consider an infinite setM of nonatomic
mobiles all belonging to same clasy; := | M|. Assume com-
for a BS r such thatm,, > 0. Such a BS of course existsmon minimum SINR density requirement and letAi/y < 1.
and the latter inequality follows becauseis a NE. The two Let there be two BSs witlht; the gain to BSj, j = 1,2. An
inequalities implyc;s(m’) > c;.(m), and so the tuplé,,s NE congestion profiléa* M, (1 — a*)M) is given as
violates [ID). Thus the assumption that Pareto dominates 1) if % < (1—M~),a* =0,
m is incorrect. This completes the proof. B oy f ke o (1- M), a* =1,

We show that the NEs are system optimal if all the mobilesg) otrillérv_visea* satisfies
are collocated, and all the BSs are symmetrically placed

grse(ml) > gisc(ms) > girc(my)

2 2
around them. 2id _ e
Proposition 4.5:Al NEs in the nonatomic game hi(1 = a*yM) ha(1 = (1 = a*)yM)
(M,N, (cij,l € L, € N)), with hy; = h for all o _ LoaM _ ha (11)
leL,jc N, are system optimal. "1-(1—a*)yM h1
Proof: In the case of collocated base stations On the other hand, a congestion profile®), (1 — a®M)
2 L will be system optimal if and only it° solves the following
C(m) = T %;Vzmzjc(mj) optimization problem: 2 2
= M 1 —a)yM
o2 Minimize —— 27 (1 = ajyMo (12)
= - ijc(mj) hi(l —ayM) = hao(l — (1 —a)yM)

JEN subjectto 0 < a < 1.
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This is a convex optimization problem, and it is straightfor If h,; = h; foralll e £,j e N,
ward to show that

. _  mye(my)o?
1) if Z—;g(lfM'y),a":O, C(m)fg h; )
J
2) if /2 <(1-M °=1 . . o
) hi = ( 7) “ ' Using the observation(z) + xc/(x) = (), it is easy to see
3) otherwisea® satisfies that
1 —a"yM ha PC(m) _ [ amefmlet it g j,
1—(1—a°)yM "V (13) Omkm; 0 otherwise
e . Ry R . h h and
Hence, ifmin{3!, 72} > 1 — M~, thenmin{, /L, /32 } > ,
1—M+~, ando* anda® must satisfy[(T11) and E{S) respectively. %D 0 e 0
In such a case, the NE will be system optimal if and only if 0 ma)o® iy 0
2 h
h1 = ho. \4 C(m) = . 2. . . )
0 0 c//('rrLN)azD
V. PRICING FORSYSTEM OPTIMALITY hN
A. Continuum of Mobiles with D given by [B&){(8b). It is now obvious th&f?C(m)
In this section, we show that there is a toll mechanism thftatpos't';'e semi-definite matrix, and £(m) is a convix
can induce system optimal associations and power allotsati unction ofm.

However, the tollst;;(m) may fail to strongly enforce a
taastem optimal congestion profile even if all the BSs collo-
cated, the mobiles require a constant SINR densgityut they
are not collocated. To see this, consider the congestidilgro
m* with
d _ 1 ; M,

d(z) = { =c(z) = 1—2)2° ': z i 1 my; = Wl vieLl,jeN.
00, T z=

in a cellular network with multiple classes of mobiles. Weaal
show that the mechanism can be employed in a distribu
fashion.

Define

) . ] It can be easily checked that, for alE £,
Consider a congestion profik = (my;,l € £,j € N). We

S . . L 22
propose that a clagsmobile joining BS; be levied a toll N i a2\ yorM; , (vM
; ay(m’) = e +;h N\~ )
tiy(m) =3 ) mijgiic (my). (14)  which is independent of € . Thusm* is a NE of the game
=1 (M N, (6,1 € L,j € N)). But m* may not be system
Now, definec,;(-) = ¢;(-) + t;(-),Vl € L, € N, and optimal (see Example4.1).
consider the nonatomic gameéM, N, (¢;,1 € L,j € N)). Remark 5.1:1) ¢;; = ¢ + t;; can be interpreted as the

Players may incur different power costs;(-)) in different marginal cost due to additional association of clas®biles to

NEs of this game. Therefore, one has to distinguish betweBB j. The terme;; is the power density incurred by these new

the following two cases (see Fotakis & SpiraKis|[38]). mobiles, and;; is the increase in power consumption densities
1) A toll mechanism is said toveakly enforcesystem Of the mobiles already associated with BSntegrated over all

optimality if some NE of the game with tolls is an optimaﬁUCh mobiles. Economists call them “private cost” and “abci
profile. cost”, respectively. Selfish mobiles do not care for the aloci

2) It is said tostrongly enforcesystem optimality if all the €OSt while the social optimality criterion accounts foisth
NEs of the game with tolls are optimal profiles. marginal externality[[39].

N 2) The cost functions for various classes have a certain
We show that tollg;;(-) weakly enforce system optimality in : : : .
- . . structure in the settings of interest to us. Mobile clasbes t
all cases and strongly enforce it in a special setting.

Proposition 5.1: The nonatomic gameM, AV, (c,, [ consider a BS pay tolls proportional to their required SINR

, : . . densities. In particular, tolls are uniform across all thebire
L,7 € N)) is a potential game. Furthermore, a congestio . . .

. . . o . classes that have equal SINR requirements. This is special t
profile m is system optimal only if it is a NE of this game.

Proof: See [10] our setting; usually one does not see uniform tolls in the cas
’ o of multiclass networks (see Dafermés[[23], Smith][24]).

If all the mobiles are gollocated, the proposed tolls stipng This toll mechanism can be implemented in a distributed
enforce s_y_stem optlmallty. _ . fashion. All the BSs broadcast the tolls (normalized by SINR
Propos_ltlon 5'2'A"‘ NEs in ?he nonatomic  game densities) along with their aggregate congestions as e&tor

(MN,(ey,l € L,j € N)), with by = h; for al All mobiles need to know their scaled gai@é} to each BS

L€ %‘7 Gf{\lft' ar;_ sysiemhoptlrtr;]z;.j . funct j € N. A mobile then makes a choice taking both power
roof: It suffices to show (m) is a convex function density and toll into account,

if hyj =h;foralll e L,j € N. Then, any congestion profile
satisfying Karush-Kuhn-Tucker conditions (i.e., any NE) i 1oNormalized tollsi’/—f are uniform across all mobile classes that consider
system optimal. a BS. A mobile can recover the exact toll from the normalizathie.
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B. Discrete Mobiles words, h;; = h; and3; = g foralli € M,j € N. The
Pricing mechanisms for networks with discrete mobilgotential function for this special case can be written as

are relatively difficult to design and analyze (Fotakis & -Spi o |M;(a)|B

rakis [38]). Again, we propose a toll mechanism that weakly V(a) = Z h; [L—|M,(a)|8]t

enforces system optimality in all cases and strongly eeforc jEN T !

it in a special setting. The mechanism is motivated by thie tqjeﬁnegj - Z_'f’ f(m) = % andm;(a) = | M;(a)] for
mechanism for the nonatomic case (Theofem 5.1). all j € . Thenm(a) ! (_%ﬂa),j € N denotes the con-

Consider the network model of Sectibn IlI-A and an assejestion profile undea. Since mobiles are indistinguishable,

ciation profilga’/. Let mobile: evaluate BSj for association. any two association profiles that lead to identical congesti
Definea = (j,a’;). Analogous to the nonatomic case, defingqfiles are essentially indifferent from the point of view o

“private” and “social” costs as analysis. Thus we talk solely in terms of congestion prafiles
@) o2 B; Abusing notation (the argument df(-) was earlier defined to
cla) = — ) be the association profilg), we write
hij [1 =2 ke, (@) Bkl profile)
o2 8, V(m) = > g;f(my).
and¢;(a) = 7 > Bl JEN
teM;@\{iy keM; (@) Pk

Since (M, N, (¢;,i € M)) is a finite potential game, an
association profilan* will be a NE if and only if

T &l B]*)’(B)
keM; (@)\{i} Pk g;f(m3) +grf(my) < g;jf(m — 1)+ ge f(mj, +1) (17)

re;pec_tiyelE Clearly, c;(a) is the required power of mobile for a| 1 £ j j,k € A. The following proposition shows

@ if it joins BS j, while t;(a) is the aggregate increase innat tolls¢;(a) strongly enforce a system optimal association
power consumption of all other mobiles associated withjBS profile in case of collocated mobiles with single class teaffi
We propose a toll mechanism with tolls: N7 — R given Proposition 5.4: All the NEs in the gameé M, N, (¢, €

by (@3). This yields a new gameM, N, (¢;,i € M)) with M)), with h;; = hj andB; = B foralli € M,j € N,

cost functions for an association profiegiven by are system optimal. In other words, the tolls strongly erdor
‘ B system optimality.
i - 1 ti | | .
ci(a) ci(a) + (az) Proof: Let m° be a system optimal congestion profile,
- Z . . + andm* any other profile such thaf(m*) > V(m?). Partition
e Ma (2) P 1= ke st o P2 the set\ asV = Ny UN UN_ such that
: 1 *
i;‘—l b —- (16) JENy = mij=mJ
leMa, @\ (i} (1= Xkema, @iy O] JEN, <= mi>mi+1

JEN. = mj<mj—-1
Proposition 5.3:The  finite  strategic form game ) ) ) )
(M, N, (@,i € M)) is an ordinal potential game and Start with the congestion profilen*, and move mobiles
thus admits the EBRP property. from BSs A, to BSsN_ one mobile at a time, so that we

Proof: See [10]. m ©nd up with the congestion profile’. In this process we get
It is shown in [10] that the potential function’(a) a succession of congestion profiles, each of which satisfies

equals the system performance measGiga) defined in m; =m’i ¥V jeN

*

. .. . . J
SectionI[-D. Hence an association profde that optimizes my<mt ¥ jEN:
system performance is also a (global) minimizeddt), and ! .
therefore a NE of the potential game with tofo, we see that mj >mj Vo jeN

tolls ¢;(a) weakly enforce a system optimal association profile. There must exist a pair of successive congestion profiles
In general, tolls do not strongly enforce a system optim@h’ andm” such thatV (m’) > V(m”), with m” possibly
association profile. For instance reconsider Exariple 3&. Tine yltimate congestion profitm?. Let m” be obtained from
association profil§a; = 2,a; = 1) is inefficient, but an NE |/ by the transfer of a mobile from B$ € A, to a BS

for the game(M, N, (¢;,i € M)). ke N_. We then have
In the following we consider special cases, and investigate ) ) , .
the effect of the proposed tolls. g5 f(mf) + g f(my,) > g; f(m; — 1) + g f(mj, + 1)

1) Collocated Mobiles with Single Class Traffit:et us which is same as
consider the special case when all the mobiles are colldcate
and have identical minimum SINR requirements. In other g;(f(m}) — f(m} — 1)) > gr(f(m), + 1) — f(m},)). (18)

1 1 / * ! *
n (@8), when both terms within parentheses ate the expression is Recall thatf is a convex function anmj < Mgy My = My

taken to beoo; we may think of driving/3 to the true values from below, Using these in[{18), we get
and the first term always dominates the second. Same rembtk too other
such expressions also. gi(f(m3) — f(mj — 1)) > gr(f(my + 1) — f(my)),
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ie.,

951 (m3) + g f(my) > g; f(mj —1) + g f(my, +1) -~

—~ 120

which implies thatm* is not a NE (se€[{17)). This completes
the proof. [ ]

2) Collocated Mobiles and Symmetrically Placed BSs:
Now we consider another special case when all the mobil
are collocated and all the BSs are symmetrically placed wi
respect to the collocated mobiles. In this casg= h for all
1€ M,j € N. We have the following result.

Proposition 5.5:With h;; = h for all i € M,j € N, the
NEs in the gaméM, N, (¢;,7 € M)) coincide with those in

140

O ——MAPC
I — — — MAPC with tolls ||
These gaps depict infinite
transmt powers at the
iterations corresponding
to infeasible associations.

[any
© o
o o
T

aggregate power (C(a(t)
[e2]
o

(Mag ; (Cfia é € /?l/lI)O)]. % 50 100 150 200 250 300
roof: See . u iteration ()

Thus tolls may not strongly enforce a system optimal associ- _ _

ation profile in this case (see Exam3.4). E(Ie?étilénsAggregate transmit powers over all the mobiles \@nsumber of

3) Collocated BSs with Single Class TraffiEven in this
special case tollg;(a) may fail to strongly enforce a sys-
tem optimal association profile. For an illustration reddas VI. SIMULATION
Example[3.B. The association profile; = a3 = 1,a; = . .
as = as = 2) is not system optimal, but an NE for the game We now demonstrate the proposed joint BS association
(M, N, (&, € M)). and power control algorithms via simulation. To illustrate

Remark 5.2:1) While tolls at a BS are equal for all consider a cellular network with 30 mobiles and 3 BSs (thus
the mobiles not associated with it and having equal SIN|g2ding to3”” possible association profiles). The BSs use mu-
requirements, they are mobile dependent for all associafé@!y noninterfering channels (see Figlie 2). The motales
ones (see[(15)). This is unlike in nonatomic case where v'égattered independently and uniformly. We take the channel

saw uniform tolls at a BS for all the mobiles with equal SINFJINS to be equal to the path losses which are assumed to
requirements. follow the inverse square law. More precisely, for any mebil

2) The modified algorithm (the one accounting for tolls) cah@"d BS that are a distance;; apart,

be implemented in distributed fashion. All the BSs broadcas hij = (max{1,d;;}) 2.
quantitiest?(a) given by

52 3 The receiver noise at any BS has the average power 0.1 mW.
ti(a) = — d - The target SINRsy;s are independently and uniformly sam-
leM;(a) hug (L= 2 ke, a) B pled from the interval0.05, 0.1] for all 4. Thusg; < 0.1 and

: : . Bi < 3, which is necessary for feasibility of the joint BS

along with their aggregate congestloECIGMj(a) B A" the a%sociation and power control problem at hand.

mobiles need to know the scaled gaifg of their own \ve start with an arbitrary association and consider the

channels to all the BS$ € V. Mobiles use these broadcastangomupdate process, wherein at each iteration a randomly

mformqnon to c_alculate their powers and tolls, and cho®@se;osen mobile updates, with all mobiles equally likely to

BS taking both into account. ~ _ be chosen. We have implemented MAPC (proposed in Sec-
Discussion:The proposed pricing technique can be usegh, TT-B) and also its variant with tolls as described in

to induce a system optimal routing in atomic weighted nekwoke io { V7B, We plot the aggregate power over all the mobiles
congestion games with arbitrary nondecreasing edge Wtefi¢ rigyre[1. The initial BS association is infeasible and s a

functions [40f In this setting, the joint BS association and, fe,y subsequent ones, resulting in infinite transmit poivers

power control problems can be viewed as network congestign, first few iterations. But the proposed algorithms quickl
games over two-terminal parallel-edge networks: the edges 1o, {5 feasible associations and power allocations. This i

identified w_ith BSs, and latencies are identified with minfmu oiqent from Figur&]l where we observe finite aggregate {rans
power requirements. It turns out that the proposed tollsiea ¢ howers after first few iterations. The proposed algonish
enforce a system optimal routing profile in general networkie quickly converge to equilibrium BS associations (NEs
congestion games. They strongly enforce a system optimalie respective games). Notice that we have simulated the

routing profile if most general case for which MAPC's convergence has not

1) the network is two-terminal series parallel, been formally established. The demonstrated convergehce o

2) the mobiles are unweighted (i.e, have identical weight§§APC corroborates Conjectufe B.1. While the equilibrium
and associations of these algorithms need not be system optimal

3) the latency functions are standdd. they are seen to substantially reduce the aggregate power

12Here, the system cost is weighted sum of the latencies ofialirtobiles. compa_red toan arbltrary aSSOCIatI,On' AISO_ recall thata-m@e .
134 Jatency functione(-) is calledstandardif me(m) is convex [39], e.g., Fansmit power acts as a potential function for the game in

e(m) = 1. Sectiol V=B (Proposition 513). Therefore, the aggregateegro

m
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A. Two BSs

First we consider a case with BSs as in Examplé_4.2.
Let hy > hy [ Also, let (o M, (1 — o*)M) and (e M, (1 —
a®)M) be the congestion profiles under a NE and a system
optimal association, respectively. Recall from ExanipBthat

1) if yM <1— /42, thena™ = a° =1

2) if 1— /8 <yM <1—22, thena* = 1, and from [IB)

0o = VI = Vha + MRy
I (V1 + Vha)yM

3) if yM > 1— 12, then from [T1)

10

— MAPC
— — — MAPC with tolls

14
. hi —hg—i—’Vth

(h1 + ho)yM

*

Fig. 2. A cellular network with 30 mobiles and 3 BSs. The syeathte .
associations under the two algorithms are also shown. anda? is as above.

C(m) and C(m°) are obtained via substituting = o*

) ) ) and o = a°, respectively, in the objective functiof (12).
for MAPC with tolls decreases after each iteration and %t“Straightforward calculations give that

at a local minimum (see Figufé 1).

Finally, we show the steady state associations for both the 1 it M < 1}\5,
algorithms in Figurd12. We observe that a few mobiles (6 A2—yM)yM
mobiles in Figurd 2) may associate with different BSs und®oA (M) = (1*7M)(2\5*(1*7M>(1+.A>i7ﬁ .
the two algorithms. if == <M< ==,
YM(14X) if M > 1=\
2V A—(1—y M) (1+N) =

VIl. CONCLUSION \ N L. Eurth culat | old th
: . L where A\ := 2 < 1. Further calculations also yield that
We studied the combined association and power controF ha y

problem in multichannel multicell cellular networks in whi 1 0A(M) is continuous atV/ = 457, and
a different channel is used by each cell, and so, there is no
intercell interference. We studied the cases of discreteile®

and a continuum of mobiles. We proposed several distributed dM
mechanisms motivated by the techniques of game theory. We i i . 1
studied the inefficiency of the distributed algorithm in trese | US: the price of anarchy is maximized whef = ~==.
of a continuum of mobiles. It is an open question whether subfPreover, the maximum price of anarchy is

inefficiency can be quantified in the case of discrete mobiles 1— )2

To mitigate the inefficiency, we proposed toll mechanisms in oA v

both the settings. A=A+

dPoA(M) [ >0if M < 122,
<0if M > 122

Viewing this now as a function ok € (0, 1], we see that the
APPENDIX A maximum price of anarchy decreases withWe also observe
PRICE OFANARCHY: CONTINUUM OF MOBILES that PoA — oo as\ — 0, i.e., arbitrarily h|gh PoAs can be

. . . _realized in2 BS networks.
Recall that a NE is not necessarily a system optlma?

congestion profile (see Examplel.Byice of anarchy[9] (or,
Coordination ratio[41]) characterizes the inefficiency cause®. N BSs

by the selfish behavior of players; it is the ratio of the Again, without any loss of generality, we assume that-

cost of the worst NE and the optimal cost. We observed ;{12 > ... > hy. We also assume that the population’s mass is

Propositior 4B that, in the nonatomic case, mobiles inlcar tA when it spills over BSj under NE. ClearlyA, < Ay <
same cost at all the NEs. We can then define price of anarchy Ax. In the case o2 BSs we proved that price_ of

as follows. _anarchy is maximized when the population spills over BS
Definition A.1: Letm be a NE, andn” be a system optimal \,nqer NE. In the case df > 2 BSs also, simulations suggest
congestion profile. Then therice of anarchyis that the price of anarchy is maximized at one of the spill over
C(m) points{A;,j = 2,...,N}. We have however not been able
PoA = C(m°)’ to prove this observation. We illustrate this observatiofili0,

. . . . Figure 1].
We restrict our analysis to a single class population. Weg ]

assume that all the mobiles have identical minimum requireda; ,, — 1,, equal fraction of population join each of the BSs under the
SINR densityy and identical power gaih; to BSj, j € . NE and the system optimal association, and the price of hydecl.
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However, we prove that the price of anarchy decreases withe anarchy valugfor classC is (see [[39, Definition 3.3.3])

mass forM > Ay. We defineey := 3, _ v ﬁ andey, :
Yr<n 7= It can be easily checked that, for > Ay,

M
PoA(M) = S S
enM~y—(exnN —e¥)
eNN—e}‘i

1+
enMy— (exN —ey)

]‘ hmax
aC)=sup afcp) == | 1 +4/——
ch€C 2 hmin

It can be easily checked thdi [39, Theorem 3.3.8] remains
valid with our new definition of anarchy value. Thus, price of
anarchy is bounded hy(C). For any0 < € < «(C)—1, a price
of anarchy> «(C) — ¢ is realized in a network in whicl)

from which the claim follows (see[[10, Appendix B] forthere is one BS with gaih.x, (i) there are several BSs with
details). Thus, to obtain a bound on the price of anarchy, wein h.,i, (minimum number depending o), and (iii) the

only focus onM < Ay. For M < Ay, the load on BS

1
mjg—(l—h—N)
gl h;

under NE. We use this observation in the next section.
[1]

C. A Bound on the Price of Anarchy

Now, we derive a sharp bound on the price of anarchiz]
for single class networks with arbitrary number of BSs,
and gainsh; € [Amin, hmax] for all the BSs. We follow
Roughgarder [39, Chaptséi.

In the BS association game, a generic cost function is of

the form o2 [4]
[5]

(3]

h1—~yM’

ep(m)
and
C .= {Ch(~) che [hminahmax]} -
is the class of all feasible cost functions. Observe that the
functionscy, () and the class both are standaft] We define 7
d(mep,(m)
dm
We also assume that the load on a BS with gajrdoes not

exceed
9 L 1 1 hmin
h -— ~ h

under NE. Thus, we redefirmnarchy valudor a cost function

cn(-) add

ch (m) =
(8]

El
[10]

alen) = sup P+ (1= A)] !

where A € (0,1) satisfiescy(Am) cp(m) and p
% < 1. Both A and i are functions ofm; we do not
show this dependence explicitly. Straightforward caltates

yield that

[12]

[13]

\ - 1—+1—-—my
B my ’ [14]
po= 1=my, [15]
1 1 -t
anda(c = sup - |[1- ——rrr
( h) mSIB);L 2 |: 1+ \% I- m7:| [16]
1 . h
B 5 * hmin [17]

15A cost functionc(+) is calledstandardif mc(m) is convex. A clasg is
standardif it contains a nonzero function and if each) € C is standard[39].

16The original definition [[3D, Definition 3.3.2] considers semum over
m € (0,00).

(18]

population has mags,
for details).

(see the proof of [39, Lemma 3.4.3]

max
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