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Abstract—We consider a network in which several service substantially improve the utilization of the availableagersces,
providers offer wireless access to their respective subsbed \We now elucidate the benefits of such cooperation using a
customers through potentially multi-hop routes. If providers sequence of examples.

cooperate by jointly deploying and pooling their resourcessuch . . .
as spectrum and infrastructure (e.g., base stations), andggee to Ve first demonstrate how cooperation may substantially

serve each others’ customers, their aggregate payoffs, ariddi- €nhance throughput through efficient opportunistic atian
vidual shares, may substantially increase through opportnistic  of resources and lower overall energy consumption of the
utilization of resources. The potential of such cooperatio can, customers through multi-hop relaying; both the above tesul
however, be realized only if each provider intelligently déermines higher customer satisfaction and payoffs for the prorsde

who it would cooperate with, when it would cooperate, and how . - .
it would deploy and share its resources during such cooperain. Transmission qualities of available channels randomly-fluc

Also, when the providers share their aggregate payoffs, det tuate with time and space, owing to customer mobility and
oping a rational basis for such sharing is imperative for the propagation conditions. Also, in secondary access netsyork

stability of the coalitions. We mpgiel such cooperation usig the the providers may be secondary users who do not license
theory of transferable payoff coalitional games. We show that the - ohannels but communicate when the license holders (primary

optimum cooperation strategy, which involves the acquision, d t the ch Is. Such units
deployment and allocation of the channels and base statior(o users) do not use the channels. Such access opportunities ma

customers), can be computed as the solution of a concave or anonly arise sporadically. Since all customers of all provide
integer optimization. We next show that the grand coalitionis do not need to be served simultaneously, and the channels of
stable in many different settings, i.e., if all providers coperate, different providers may not be unavailable or have poorigual
there is always an operating point that maximizes the proviérs’ ties simultaneously, spectrum pooling can enhance thouigh

aggregate payoff, while offering each a share that removesng b itigati ice fluctuati ltina f ib
incentive to split from the coalition. Such stabilizing payff shares y mitigatng service Tuctuations resufling from occasibn

can be Computed by so|Ving the duals of the above Optimizam. variations in channel qualities and aVaiIabiIitieS, anslélmta-
The optimal cooperation strategy and the stabilizing paydf neous traffic overloads. In multi-hop wireless networkg (e.
shares can be obtained in polynomial time using distributed mesh networks), cooperation increases the number of alaila
computations and limited exchange of confidential informaion relays (mesh points). This in turn increases the number of

among the providers. Our numerical evaluations reveal that Iti-h tes t h t thereby d . th
cooperation substantially enhances individual providers payoffs muiti-hop routes 1o each customer, thereby decreasing the

under the optimal cooperation strategy and several differat total power usage and increasing the total throughput of the
payoff sharing rules. customers. Also, the customers may be induced to serve

as relays, perhaps, in lieu of service discounts. Then the
|. INTRODUCTION enhancement in throughput and energy consumption owing
to cooperation magnifies as the coalitions have a largerfset o
) o ) _customers, and therefore a larger number of multi-hop ute
‘We have witnessed a significant growth in commercial cogperation also reduces the costs incurred by the pravider
wireless services in the past few years, and the trend iy/likg;ngq thereby increases their net payoffs. A provider caniaequ
to continue in the foreseeable future. Satisfaction of this 5 channel by paying a fixed licensing cost or usage based
creasing demand is contingent upon efficient utilizatiothef -harges, or a combination of the two. The first case arises
transmission resources, which are either under-utilizzd.{ \yhen the providers are primary users who license the channel
spectrum - utilization of _Ilcensed spectrum is at times onkéom government agencies, and the other option arises when
15% [1]), or costly (e.g. infrastructure). Cooperation amonghey are secondary users who use the channels licensed by
wireless providers, whereby different providers may forfhe” primaries. When the providers do not cooperate, they
a coalition and pool their resources, such as spectrum andy need to operate as secondary users and opt primarily for
infrastructure like base stations (or access points) afay re;saqe hased charges, as the volume of their individualdraffi
nodes, and serve each others’ customers, has the potentighby ot justify other options. Since cooperation allows the

. . . o providers to pool the customers, the resulting higher aggee
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coverage and throughput guarantees while deploying fewserme standard sufficiency conditions for non-emptinesh®f t
base stations. For example, for a provider whose custonuare (e.g., convexity of the game).

base is concentrated in a particular region, traffic demandin the subsequent sections, we extend the formulation and
is low but non-zero (owing to customer mobility) in otheresults. We first consider the cases where the providers also
regions. The provider must deploy base stations even in theed to determine the locations of their base stations osehe
regions of low traffic intensity so as to provide universabf channels each base station has access to (Section V). The
coverage (otherwise the customers would desert). If idste@ptimal cooperation strategy can now be obtained by solving
the provider cooperates with another provider whose traffém integer optimization with nonzero duality gap unlike ame
demand is concentrated in a different region, both mayfgatisave optimizations used before. We obtain the optimal detis
coverage requirements by deploying base stations onlydn ttules and the payoff sharing mechanism using unimodularity
regions where their individual demands are concentrated, earguments. Subsequently, we extend the results in Sedtion |

thereby reduce individual operational expenses. to multi-hop wireless networks (Section VI). We consider
other profit sharing mechanisms, namely, the nucleolus and
B. Research Challenges and Contributions the Shapley value, and investigate whether they stabiliee t

Several research challenges must, however, be addresseo%%nd Coa"“of‘ of PrOV|ders_(Sect|on VII). We examine the
Impact of providers’ cooperation on the customers and gepo

fore large scale cooperation can be realized. First, coroialer framework for optimal (and selective) acceptance of servi
service providers are selfish entities who seek to maximi?e P P

their individual payoffs. Therefore, they will cooperataly evel agreements (SLASs) by the providers (Section Vill)tia

when cooperation increases their individual incomes. Evgﬁgtiﬂrﬁf g:: rtiséourrff,iggfsllngag%rf?ﬁnvgfegzgnse?ggﬂﬁiﬁva#?rtn
so, a provider may refuse to join a coalition if it perceivegl P P pay g

that its share of the aggregate payoff is not commensurgoperation under different sharing mechanisms and éifiier

to the amount it invested and the wealth it generated ngyoff functions as a function of the number of customers and

former depends on the transmission rates in the channds it ase stations (Section 1X).
acquired and the locations and the number of base stations it
has deployed, while the latter depends on its customer base.
So, developing a rational basis for determining the indiaid  Interactions among different entities in wireless netvgork
shares of the aggregate payoff is imperative. Note that thave primarily been investigated from the following extem
aggregate payoff and the individual shares depend on therspectives. In the first, each entity is assumed to select
providers’ cooperation strategies. Specifically, eachvigler its actions so as to maximize its own incentive without
needs to decide which providers it would cooperate witlepordinating with others, e.g., [3]. This scenario, whidsh
which channels would use, the locations of its base statioteen investigated using noncooperative game theory, iargen
and when it should serve the customers of other providers. Téuffers from inefficient utilization of resources [4]. Théher
sharing mechanism and the optimal cooperation strategies perspective has been to assume that entities selflesslysehoo
providers depend on each other and must be obtained jointheir actions so as to optimize a global utility function eve
We present a framework to determine the optimal decisiom$ien such actions may deteriorate individual incentives of
of the providers using tools frortransferable payoff coali- some entities e.g., [5]. We investigate interactions among
tional game theory2]. The framework also provides a rationalproviders assuming that each provider would be willing to
basis for sharing the aggregate payoff. The first netwodooperate and coordinate its actions with others when such
setup we consider is an access network where providers poobperation enhances its individual incentives.
their spectrum, base stations and customers (Section I'¥). W We obtain optimal cooperation schemes using the frame-
assume that the locations of base stations and the setwoik of cooperative game theory. This choice of tools allows
channels they have access to are determined a priori, but tlseto combine the desirable features of the extreme appesach
providers decide how they would allocate the base statinds astudied in the existing literature, that of allowing er#i
the channels of the coalition, to the customers. We thenirobtéo choose their actions guided by selfish objectives, and of
optimal decision rules for the providers and a strategy fonaximizing global utility functions. Surprisingly, cooraive
sharing the resulting aggregate payoff as solutions of @esmc game theory has seen only limited use in wireless context so
optimization problems. This sharing strategy ensures ithatfar. Nash bargaining solutions have been proposed for power
is optimal for all providers to cooperate. Specifically, ifiya control and spectrum sharing among multiple users [6]. €oal
subset of providers split from the grand coalition (the @¢@al tional games have been used recently for modeling cooperati
of all providers), irrespective of how they cooperate and ttamong nodes in the physical layer [7], [8], collaborative
way they share their aggregate payoff, at least one providensing by secondary users in cognitive radio networks [9],
in this subset receives less payoff than what it received fiate allocation in multiple access channels (MAC) [10]erat
the grand coalition. In coalitional game terminology, swch allocation among mobiles and admission control in hetero-
sharing scheme is said to belong to ttoee of the game. This geneous wireless access environments [11], and studying
result is of interest in itself as many cooperative gameshagooperation among single antenna receivers and transsnitte
empty cores, and the specific games we consider do not satisfyan interference channel [12]. Our problem formulation,
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solution techniques, and results significantly differ frane Each customer or a service unit may be involved in at
above owing to the difference in contexts - our focus is omost one communication at a given timéme sharing. We
cooperative resource allocation and subsequent payafingha assume, unless mentioned otherwise, that a) the locatibns o
among providers at the network and MAC layers. To ouhe base stations and the channels they have access to are
knowledge, our work is the first to investigate cooperatiopredetermined, and b) the service units and the customers
among wireless providers. communicate through single-hop links. We show how these
Coalitional game theory has been used for studying coopassumptions can be relaxed in Sections V and VI, respegtivel
ation in other communication networks as well (see [13] for Bach custome)j negotiates aervice level agreemetiSLA)
survey). For instance, Shapley value based profit sharisg fia form of a minimum rate guarantee; with its provider.
been proposed and investigated for incentivizing cooperat For ease of exposition, we consider only downlink commu-
among peers [14] and among internet service providers [1Bjcations in our model (the results easily extend to the case
Our framework can be used to study core allocations for eoalvthere communications involve both uplinks and downlinks).
tional games among internet service providers (Section VI)We assume that when customgiis served by service unit
k, j receives at a rate-;, a random variable which is
Il. SYSTEM MODEL a function of the location of customer and the state of
A. Communication Model channelk both of which can vary randomly. Let represent a

Consider a network with a set of provide¥& Each provider network state (customer location, chanr_1e| qualities tesyl
i deploys a set of base stations (or access points) in ordef@§" fading and channel access of primary u$er§) be
serve its set of customerst;. Each base station has acces§i® collection of allws andP(w) be the probability that the
to a certain set of channels (e.g., FDM carriers in Gsietwork state isv. The ratesr;;, are functions ofv and are

and OFDMA systems),and each base station-channel pair idenoted asjx(w). We assume thaf2| is finite, since (i)
referred to as a service unit. Thus, a provider's resources 4€asible service rates in any practical communicationesgst

its service units. LeB; be the set of service units of provider?€!0ng to afinite set, and (i) we can partition the geogrephi

i, BiNB; =0 andM; N M, = 0 for i # j. For aS C N region where the network is deployed in such a way that the
let Bs and M denote the set of service units and customef§TVICe rates are identical in each partition.

associated with providers is. Thus By and M, are the B, A Coalition Game Model

sets of all service units and all customers, respectively. We now propose a coalitional game theory framework that

models the interactions of the providers.

Ch3
Ch1l Ch2 i Definition 1ll.1. A coalition S C N is a subset of providers
’,U“ ’,U“ Cﬁ: who cooperate. We refer t& as the grand coalition.
I I Definition 11l.2. A coalitional game with transferable payoff
v < N,v > consists of a finite sef\V' (set of providers)
N N and a characteristic functiom(-) that associates with every
BS1 BS2 BS 3 nonempty subsef of A/, a real numberuv(S), which is the

: 1‘ ’ E any arbitrary way among the members &f
c2 C3 0 . . .
E E €5 - A service unit can serve a customer only when either
c1 ca CG both are associated with the same provider, or the providers
) ) . associated with them are in a coalition. Consider a network
Fig. 1. The dashed (solid, _resp.) base statlon_s, channdls apyie ., Let a;i(w) € [0,1] be the fraction of time service
gustomeis)t, belong LO r;rm;]l_dirr(]z resp.). Ptrowderl r(])wnsl urr]mio(ti[ k serves customef. When the provider associated with
ase stations each of which has access to one channel, . . ; s
thus corresponds tbservice unit each. Provid€rowns1 base eiStomer; is in coalitions, the rate received by is i ()
> _ reBs Yik(W)rjk(w). Note thatrj,(w) does not depend on
station which has access to two channels, and thus corrdspo im(@),1 € My, m € By} due'to assumption I11.1. When
to 2 service units. Thu$, = {1,2} andB; = {3,4}. Also, ¢, stomers associated with providereceive ratesy;(w) =
My ={2,3,6} and My = {1,4,5,7}. {y;(w),j € M;}, i gains a benefit (e.g., revenue from the
customers) ofU;(y;(w)), whereU;(-) is a concave function.

Assumption 111.1. We assume that the achievable rates of ¥&Xt, owing to the tariffs imposed by spectrum regulators or

customer-service unit pair do not depend on communicatio¥ the license holders of the channels, provideincurs a
of other customers and service units. cost of Vi(zi(w)), wherez;(w) = {zi(w), k € Bi}, zx(w) =
> jems @ik(w) is the total fraction of time service unit

% maximum aggregate payoff (or profit) available for division
c7

lwe assume that each base station has a separate radio laviilagvery
channel. Most of our formulations and all our results go tigto even when 2|n case a provider is a secondary user of a licensed chateegvailable
some base stations have fewer radios than channels - whexgpkicable we rate in the channel depends on the usage patterns of therprirser, as the
mention the necessary changes in the formulations in this.ca secondary can use the channel only when it is not being uséldebgrimary.



is used andV;(-) is a convex functiord. Then the profit (or a provider is divided into several channels (sub-carriers i
payoff) of a coalitionS is the sum of théJ;s fori € S minus OFDM terminology) (For small-scale providers, some of thes
the sum of theV;s for i € S. We assume that the benefitthannels can be secondary access channels or spectrum white
and cost functiond/;(-), V;(-) are decided apriori (based onspaces acquired from primary users). Each provider pamtti
spectrum regulation, customer charging policies etc.g, ém its set of sub-carriers into reuse groups, assigning oné suc
not investigate the optimal selections of these functions. group of sub-carriers to each base station in such a way to en-
Providers in a coalitior§ have to decide how to schedulesure that inter-cell interference to simultaneous trassions
service units to customers, i.e., select the variablegw)s, in other base station sub-carrier pairs is negligible. Ay an
for eachw € (), based on the benefit and cost functiongiven time, a base station assigns a sub-carrier to only one
Ui(-),Vi(:), and the service unit to customer rateg (w)s customer, but more than one sub-carrier can be assigned to a
so as to attain the maximum possible payeff) subject to customer ultiple allocatior). Thus, the intra-cell interference
possible service level agreements. is negligible as well. Also, each base station, in each state

C. How the Framework Relates to Existing Wireless NetworRg>'9NS & fixed transmit power to each .Of its carriers. Thnes, t
rate that a customer gets from a service unit (which denotes

We now illustrate via examples how our framework cag pase station and sub-carrier pair) to which it is assigned
be used to model specific communication systems. Considgiends only on the channel gain from the corresponding base
elastic data transfers in the downlink of a CDMA cellular-syssiation sub-carrier pair to itself, channel usage of primesers
tem (e.g., used for internet access of cellular subscjiefs a5 applicable, and not on the assignments of other customers

Chapter 5] with provider set/. Owing to simplicity of physi- anq service units. Hence assumption 1111 holds.
cal layer implementations, a base statioalways transmits at

a pre-determined fixed powé?;. This happens even when no
mobile associated with it requires downlink transmissibi] ) ) ) )
Each base station has access to only one band and thusAh&ptimal Allocation of Customers to Service units
service units are same as the base stations. Customers in phe characteristic function(S) for a coalitionS C A/, is
cell are served on d@ime-sharingbasis, ie, a base stationthe maximum aggregate payoff of providersSrand is given
transmits to at most one customer at a given time. AISO, at aﬂy the fo”owing concave Optimization pr0b|em'

given time, a customer receives transmissions from at NSt G 6y . 1o, o Plw (U» (o)) — V(2 (w )

base station. Ther{;(w)} represent the fractions of time ( ) %Zfe}gz W Tiyiw) = Vilz(w))
customers are served by different base stations. When basBiect to:

IV. RESOURCEPOOLING GAME

stationk transmits to customef and the network realization 1) y;(w) = > ,cp, @k(W)rjk(w), j € Ms,w e Q
is w, the achievable rate;;.(w) from k to j is a function of = 2) zx(w) =3, s @ik(w), Kk € Bs,w € Q
the downlink SINR SINR,(w) [16, Chapter 5], where 3) D rens ik(w) <1, jE€Ms,weQ
hip(w)P D jems k(W) <1, kEB&wEQ
SINRy () = i) 5) Py () = my j € Ms

Diresa\(ky i (@) P + NoW 6) ajr(w) >0, jeMskeBs,weN

hjk(w) are the channel gains between customer-base stat@nstraints (3) ensure that for all € Mg, the fraction of
pairs, Ny is the power spectral density of the additive noise anfine customer; is served is at most. Constraints (4) ensure
W is the spectrum bandwidthThus, SINR(w) and hence that the fraction of time each service urit € Bs serves
7jk(w), is independent of which customers are being serveslat most1.5 Constraints (5) provide the minimum service
by other base stations. Thus, assumption Ill.1 holds. guarantees. Incidentally, constraints (3), (4) arise fritva

Next, consider downlink communications in a multi-celtime-sharing modéi,but for the multiple allocation model (see
OFDMA system [16, Chapter 6]. Different providers ac-

quire non-overlapping bands and the bandwidth acquired bYwhen a base station has access to multiple channels with origio,
constraint (4) must be modified to bound the sumugf, (w) over customers
SWe saya > b if the inequality is satisfied for each component. Then, & € Mg, and service unitst corresponding to the base station by 1.
function f(-) is increasing iff(a) > f(b) for any a > b. Natural revenue For example, if the base station has access: tchannels, the fractional
and cost connotations would imply thé& (-), V;(-) are increasing an@ at  associations to the correspondirgservice units,ki,..., k., satisfy the

the origin - though our formulations and analytical resditsnot rely on these
f’:\ssumptions. Again, lleua”WL:(y) ; ZjeMi 9i5 (yj), whereg;;(-) is an
increasing concave (either strict or linear) revenue fiamcthosen by provider

. c
constramtzzl:1 jems Yk (w) < 1_, w € Q It can be shown that

all the subsequent results extend to this scenario.
6The system can be represented by a complete bipartite grayghevihe

1 for customer;. We therefore allow a provider to choose different revenugustomers and the service units represent the nodes arel éRists a link

functions for different customers. The revenue functions assumed to be
concave since customers would pay in accordance with tlaisfactions,
which are usually concave functions of rates (increaseligeltly in practice).

4This SINR expression assumes that all base stations useathe lsand.
This facilitates smooth hand-overs but provides poor SIMRhe mobiles
at cell boundaries owing to high interference from neigltphbase stations.
Note that CDMA technology can provide acceptable rates @v@mesence of
low SINRs. Nevertheless, in some implementations, neighpdase stations
are allocated different bands. In that case, we sum overocatihannel base
stations to obtain the aggregate interference in the dematon

between every customer-service unit node pair. Under the-sharing model,
any customer-service unit assignment corresponds to ehingtn the above
graph. Note that for eacl, {a;x(w)} comprise a feasible allocation of
service units to customers if and only if there exists a apoading collection
of matchings L1, L2,... and a collection of non-negative real numbers
Y1,72, .. such that (i) ;vi=1L7% >0 and (ii) if the service unit -
customer allocation follows matching; for ~; fraction of time for eachi,
then service unitk transmits to customey for ;. (w) fraction of time for

all 7, k. Constraints (3), (4) provide the necessary and sufficientlition for
feasibility of {c;;(w)} for eachw [19].



y;j(w) > m;(w) for eachw € . The modified optimization
: P(S) continues to be a concave maximization with linear
payoft constraints, and all subsequent results apply. Alterabtiv
Dol /r’/‘ “soft” minimum rate guarantees may be ensured in eadly

choosing strict concave revenue functions. Specificaibhér
P the degree of concavity of the revenue functions (that isslow
the second derivatives), a provider incurs higher addiion
: revenue in anyw by enhancing the service rate of a customer
m; mo O 0y rate who is receiving a low rate at that as opposed to enhancing

Fig. 2: Examples of revenue functions. The customers pHJAt Of & customer who is receiving a high rate at thaThus,

fixed costsp;s for being guaranteed minimum average ratdyoviders are more likely to equalize the sgrvicg .rates bf al
m;s, but do not pay additional costs for rates beyépsl customers at each, and thereby ensure certain minimum rates

to each customer at evewy.

the last paragraph of Section 111-C), only (4) suffice - aluls B. Sharing Aggregate Payoffs

presented below extend even in absence of (3). A rational basis for sharing the maximum aggregate payoff
is imperative to motivate the providers to join the grandgoy
other) coalition. We use a solution concept from coalitiona
edgmes known as theore to provide such a basis.

Assumption IV.1. P({i}) is feasible for each € N, i.e.,
each provider can support the minimum rates of its custom
even when it does not cooperate with other providers.
Definition IV.1. For any real valued vectox = (z;,i € N)
nd any coalitionS, we letz(S) = >, =;. Such a vector is
aid to be an imputation if (V') = v(N) andz; > v({i}) for

Then RS) is feasible for eacks C N. Also, the optimiza-
tion problem RS) provides the maximum aggregate payo

of _the providers in a _coaI|t|or$ and_ alsq the optlmal SEVIC® 41l i € A. The core of the coalitional game with transferable
unit-customer allocations that attain this maximum.

i ) .payoff (N, v) is the set of all imputations for which >
Finally, we examine whether the above resource aIIocatléJ?g) f(gr éI1I)>S c N In other wgrds z(8) =
framework captures the intricacies of existing wirelessfit. ' ’

We focus on data as it is fast emerging as the predominang = {x € RV : z(\N) = v(N), z(S) > v(S),VS Cc N}
component of wireless traffic. Many emerging applications, 1)
such as streaming video, require certain minimum rate, and ] . ] ]
the quality of service is critically sensitive to the semviate. AN imputation provides the payoff shares of providers in a
Thus, minimum rate constraints are likely to be integral eongrand coalition such that no provider's payoff is below what
ponents of service agreements in near future, and provid&r§arns in absence of cooperation. The core is a collection o
are likely to charge (i) fixed fees that are increasing fuoresi IMPuUtations that provide stronger guarantees: no coaltias
of the minimum rates agreed upon, and (i) additionally f@nY incentive to split from the grand coalition if the proers
service rates they can provide over and above the requirdif'e the aggregate payoff\') as per an imputation in
minimum value. A customer may however be willing to paj€ core. To see this, suppose a set of providers N
additionally for rates only up to a certain maximum ratéPlit from the grand coalition, form a separate coalition,
value determined by his QoS requiremehtghe following and share their aggregate payoffS) as perw. A provider
simple pricing strategy captures the above features. If th& S, however, would agree to split only ib; > ;. Thus,
average rate a customer of providereceives isr, and he (S) =2 icswi > 2 ;s Which contradicts the fact that
has negotiated a minimum rate guaranteergfthen he pays X € C. Th_e_refore, every imputation in the core renders the
d; max (min(r, 0) — m,0) + e/m, whered is the maximum 9rand coalition stable. _ _
rate the customer needs (Fig. 2 with = ¢/m;). Owing to e now elucidates(-) andC using a simple example.
the minimum rate constraints (5) in(#), each customer’s Example IV.1. LetA = {1,2}, B; = {i},i = 1,2, andM; =
average rate is at least;. Thus, {2i—1,2i},i=1,2. Letrj, = P for j € My, andrj, = Q
o\ . o with e o _ for j € Mo, forall k € By, P<Q andm; =0,Vj € M.
U’L(yl) = dz ;/l maX(ij'-Yj) + €M with € = €; + d’L Let Ul(X) _ ZjeMi ; andV;() — 0 for eachi € N Then
SN _ o({1}) = P, v({2}) = @, andv({1,2}) = 2Q (when the
captures the above pricing strategy. Note thigt-) is a con- providers cooperate, the aggregate benefit is maximizedhwhe
cave function for each. Finally, constraints (5) in &) apply only 2’s customers are served and this maximur2@y. Then,

to the average service rates; more stringent QoS demagds (x ¢ R2: z,+uy = 2Q, 21 > P, x5 > Q}. For instance,

may require constraints on service rates in eache., given (M’ %) is an imputation in the core. Whein2 cooper-

in desired mini tor diff 2 _
certain desired minimum rates;;(w) for differentw € .,  ate, the benefit (revenue) earned froim (2's, resp.) customers

is 0 (2Q, resp.), and therefore less (more, resp.) than its payoff
“For instance, for layered video streaming [20], all custsmeeed a ( Q p) ( p) pay

minimum rate for an acceptable quality video, but they do me¢d more u_nder.the abpve impUtation' Providers payoff is positive
than the rate required to decode the finest layer. since its service unit fetches part of the coalition revebye



serving 2's customers. Also, this imputation increases eactheorem IV.1. Z # () andZ C C.
provider's payoff by— as compared to that in absence of Proof: Since D* £ 0, T # (. We show that for an

P

cooperation (i.e.; — v({i}) = 4. arbitrary x* € Z, x* € C. Note that since/;(-)s andV;(-)s

In several coalitional games the core is empty, i.e., rare concave and convex functions respectively, the olgecti
allocation can stabilize the grand coalition [2, Exan86.3], function of RS) is concave. Also, the constraints of$ are
and in general it is NP-hard to determine whether the core alf linear. Therefore, ) is maximizing a concave function
a coalitional game is nonempty [21]. A sufficient conditiomver a convex set. Thus, strong duality holds.
for the core to be nonempty is the convexity of the coali- Now, consider an arbitrarx* € Z, corresponding to one
tional game, i.e.p(S) +v(7) < v(SUT)+v(SNT) for (A, v*,B*,v* p*) € D*. Clearly z*(N) = 3, 2} is the
all S, 7 C N [2, pp. 260]. But, as the following example optimal value of BA). Since OS) is the dual of RS) for

illustrates, the game we are considering need not be conveeach S C N, by strong dualityz*(N) = v(N). Now we
Example IV.2. Let N' = {1,2,3}, B, = {i},i — 1,2,3, O need 10 show that*(§) = 3 ,cs } = v(S) for any
N ) S C N. By strong dualityy(S) equals the optimum value of
M; = {i},i=1,2,3. Letryy, = Rk € By, mj1 = P,j € ; . e o
. D(S). Consider the sub-vectorss, vs, 55,75, ps consisting
{2,3}andrjr = Q,j € {2,3},k € {2,3} and P > Q. ok ak ax ok
of the components oh\*, v*, 3*,7*, p* in S. Clearly these
Letm; = 0 for all j € My. LetUi(x) = 3.\, @ and sub-vectors constitute a feasible solution gf9), andz*(S)
Vi(-) = 0 for eachi € N. Thusv({1}) = R, v({l 2}) = ’
v({1,3}) = R+ P, andv({1,2,3}) = R+ P + Q. Let

is the value of the objective function of(B) for the above
S ={1,2} and7T = {1,3}. Thenv(S) +v(T) =2R+ 2P

feasible solution. Therefore, the optimal value ofd) is a
andv(SUT)+v(SNT) =2R+P+Q. Thusv(S)+v(7T) >

lower bound forz*(S), i.e., z*(S) > v(S). [ |
w(SUT) + (SN T). Hence, this game is not convex. Thus, any imputation irZ stabilizes the grand coalition.

It also ensures that the payoffs of the providers are com-
Nevertheless, we next show that the gamd/, v > always mensurate with the resource they invest and the wealth they
has a nonempty core. Our proof technique is similar to ongenerate. For ease of exposition, let there be no minimuen rat
presented in [22]-[25]. The proof is constructive in that itequirements and let the benefit and cost functions be linear
provides an imputation i€ as well. Then, g, (A\*, p*) = hi(v*) = 0, and provideri's payoff
We obtain the dual of the optimization problem:} equals the sum of the Lagrange multipliers correspond-
P(S) following dual formulation techniques in [26,ing to the constraints (3), (4) for its customers and service
Chapter 5F Let A\, € RMs*? vy e RPs*?, and units (;(w),v;(w), respectively). Lagrange multiplier; (w)
p € RMs. Let g, (X, p) = maxy, )0 (Pw)Ui(yi(w)) + (B} (w), resp) is high only when service urit (customery,

Yieam; YiWAj(w) + pPw ))) and  hy,(v) = resp.) is fully utilized, i.e., serves customers (is servesdp.)
maxzi(;)zo ( — Pw)Vi(zi(w) + Yieg, 2k(w)vi(w)). all the time, and provides high transmission ratgs{w) and
Then we have the following as the dual of9P: cost less (pay more, resp.) per unit time (bandwidth, resp.)

Thus, i's Lagrange multipliers and hendés payoff is high
D(S) : min} ;¢ (Zweﬂ (gm + hiw + D e, (W) + when it invests more resource and/or generates more wealth.

Zje_/\/lq; Bj (W)) - Zjezm mjpj) C. Computation Complexity and Distributed Computation
subject to: , Note that RS), D(S) are concave optimizations with linear
) Aj(@)rje(w) + ve(w) + Bi(w) +mw) = 0, j € constraints, and () (D(S), resp.) hasO(|My||Bx|I9])

Ms k€Bs,we variables and constraintsO(max (| M| + |Bx|)|Q|) vari-
) Gj(w) (@) pj 20, j&Ms,keBs,wel ables, O(|M/||Bx||2]) constraints respd. Under certain

Clearly, D(S) is feasible for eact € V. Formulate V)  technical conditions, which involve existencedtoncordant
by appropriately defining vectors, 3,~,v, p and letD* be barrier functions [27, Chapter 2, Definition 2.1, Chaptet]3.

the set of optimal solutions of @). Then,D* # (). Let iterative interior point algorithms compute—solutions for
such optimizations using computation time that grows poly-
z _{x ER™ 27 = Z (gw(/\ 2P) F D (V) nomially in the number of variables and constraints given th
wen desired accuracy parameter ¢, and the distance between
+ Z i (w) + Z ﬁ;‘(w)) - Z m;p; the optimal solution and the starting point of the iterasipn
keB; JEM; JjEM; the latter is bounded if the feasible set is bounded [27,

Chapter 4J° The technical conditions hold for a large class

f * D* U . ) Lo o
or some (A, v, 5%, 7", p°) € } of objective functions, including linear, logarithmic ef@7,

Here is the main result:
9Note that we have fewer dual variables as compared to priovasteaints
8The notations can be explained considerifig = 1, M; = {4,5,6} and as the dual variables corresponding to some primal nontiégaconstraints
Mo = {7,8,9}. A vectorz € RM1*2 will have components:s, z5 and  can be omitted without any imprecision.
6 correspondmg to customets 5 and6 respectively. Similarly, a vectat € 10An e-solution is one that (i) attains an objective value thattisnast e
RM2X€ will have componentscr, zg and zg corresponding to customers less than the maximum value and (ii) satisfies the feasiliibinstraints within
7,8 and 9 respectively. an error margin of.



Chapter 10], and interior point algorithms have been knownformation ensures confidentiality of operations.
to perform well even in their absence [26, Chapter 11.511]. | For brevity we describe the distributed computations only

can be shown that the optimization problem for P(S) - an imputation in the core may be similarly com-
max Z?Zl ¢i(x;) puted via solving S). We consider the case thét(-), V;()
subject to:x € G have bounded partial derivatives, and the customers do not

where ¢; : R — IR are concave functions|,¢”(x)| < have minimum rate requirements; therefore, owing to the
B and ¢ C RY is specified by C linear con- separability described above, we focus on the optimizé&tion
straints involving W variables W > @) and A = onlyonew. Based on message exchanges with other providers,
maX?:1 (maxxeg T; — mingeg r;), May be solved within er- ez(;tc)h provider iteratively updates (i) the downlink allecas

ror margin e in O(W? (C + Q2,32B)3/2) fime [18, Ap- _aﬂ'k from its s:enr)wce un.l.t_s to all custpmers, (i) _the rate_s of
pendix A]. Note that BS) satisfies the above condi-its customersy; and (iii) the total time allocation for its

(n

tions with A = maxjer keBywenjk(w), W ~ Service unitsz ) and the iterations provably converge to the
O(|Mur||BalI9)), Q ~ O((IMNI + |BN|)'|Q|) and C ~ optimum (the superscript indicates the iteration index). At
O(|Mu||Bx]|Q]), if the revenue and cost functions aréhe end of each iteration, each providecommunicates (i)
additive, i.e., Ui(y) = > ,cu 9i5(y;) and Vi(z) = the {Q{E.Z_)} iterates for all its service units (i.ek € B;),

> ke, hik(zr) (which is likely to be the case in practice)and (ii) indicators indicating the status of the satisfactdf
and -B < g/i(z) < 0 and0 < R (z) < B for all the constraints (1), (3) for its customers (i.5 M,), to the
re [min?,l Minyeg wi,maxgl maxyxeg 7). A large class of providers whose service units can serve its customers (i.e.

revenue and benefit functions have bounded second deril2Se with positiver;; to its customers). These indicators are
tives, €.9.,9;;(y;) = log(vi; + y;) OF gij(y;) = (%]‘Jlrgja) used by oth.er prov!de.rs in the updates for the next iteration
for arbitrary positivey;;s. The dual DS) also satisfies the = We describe the indicators and the update process next. Let
above conditions provided additionally (i) the minimumeratllgl) be 1 if for customer; at the end of thesth iteration the
constraints do not exist, (i| ;;_(I)| >4, |h§/j(17)| > § forsome LHS exceeds the RHS of constraint (1)1 if RHS exceeds

§ > 0and for allz € [min® | minygeg ;, max®? | maxyeg i the LHS, and) otherwise. Nextléz) is defined similarly for

and (iii) the first and third derivatives of these functions a constraint (2) (for service unit). Now, lé?)_ is 1if for customer
upper bounded. Then3 is a function of the bounds in (ii) j the LHS exceeds the RHS of constraint (3) anatherwise.
and (iii). For D(S), W ~ O(IMr|+|Bx]), A is the absolute Next, lff,z) is defined similarly for constraint (4) (for service
value of the maximum of the above first derivatives a@nd) unit k). We now describe the update for each providarsing
are as for S). constants),,, K that would be described later. In the+ 1th

The computation times can be large sin€H, typically, iteration, provideri (i) for each of its customerg, obtains
is large. This may not however pose a major challenge 97%”“) by addingy§") andd,, (%Ui(ygn)) — sz;)), (i) for

the computations are done off-line using large work-stegio each of its service units, obtainSz:,(g"H) by decrementing,ﬁ")

and at a slower time-scale (only when the network state 9 (n) (n) )
statistics change or the coalitions are assessed). Alsenwhby On (%Vi(zi ) + Ky, ) and (iii) for each customef
ever customers do not have minimum rate constraints (s&d its service unit: (not necessarily its customer though)
Constraints (5)), we can solve bot{&, D(S) by solving such thatr;, > 0, obtains ol by adding a§2) and
separate convex optimizations, one for eache Q - the §, K Tjklg?) +l§Z) —lé?) _ lff;i) _

number of variables and constraints for each such optimizat e updates of the optimization variables depend on the

depends only 0'1/\/15|7_|B_5|-1_1 This separability allowed Us geriyatives of the objective functions and also on whether t

to solve the above optimizations for reasonably large 8yste consiraints are satisfied - intuitively, the iterates sesively

using Monte Carlo simulations (Section 1%). move closer to the optimum value of the objective function
Concave optimizations with linear constraints can be sblvgpject to the constraints. Formally, similar to the probf2s,

in distributed manner using the theory of subgradients,eas drheorem 5], it can be shown that for any (&) exceeding the

scribed in [28] for example. The advantage of this distelolit jaximum value of the partial derivatives of thé(-), V()

computation is that each providérneeds to know only its fynctions and (b)s,} such thaty", 6, = oo, limy, .o &, =

benefit and cost function&;(-), Vi (-) (_and 'n_ot _those of the 0, {a(r]z)} converge to the optimum allocations [18].
others), the link rates;;, only when eitherj is its customer J

or k is its service unit. The need for limited access to glob@®. Insights From the Framework

Now we discuss how this framework can provide useful

11y - . S S Y ¢
This separability speeds up the computations as the cofigutimes for  jngjghts ghout the relation between a provider's payoffsha
the optimizations are super-linear in the number of vadakdnd constraints

12 each run of the Monte Carlo simulation, we generate a masmte T resources it contributes, and the wealth it generates.
w, using the distribution on the service unit-customer ratesd solve the Among the demands and assets in possession of a provider,
optimizations P(S) for the coalitionsS for the givenw. Subsequently, we gne could be more constrained than the others. For instance,
computed the average of the payoffs of the providers overge laumber of id iaht h lot of t but f . it
runs. Using ergodicity it can be analytically shown thattes number of runs provi e.r mig X ave a lot or cus omers, u . E€w service unis
tend to infinity, the averages converge to the optimum smiuti Then, increasing the number of service units could boost the



payoff generated by the provider, while adding to the numbaccess to a specific channkl it opens the corresponding
of customers might not change it. An intuitive observatioert service unit, by paying the spectrum regulator (a goverrtmen
is that the provider that offers more of the demand or assagency or a license holder) the fixed fee (membership charge)
that is sought most by the majority in the coalition, is likéd  fx, and pays usage-based charges for using it subsequently.
receive a larger share of the aggregate payoff. The follgwilDepending on the spectrum pricing model, either the mem-
example will further elucidate this. bership charge or the usage-based charge may be zero, or
oth may be positivé® In a base station deployment game, a

pErovider decides the locations of its base stations. Wallyit
assume that each base station has access to only one band, and
thus, the service units are the same as the base statiorseThe
of candidate locations of base stations of provideonstitutes

AL its set of available service units, and the band available to
example allocation in the coré%, %’313) fetches payoff candidate location is decided apriori (based on interfegen

i 3P P i
gains of=5-, 5 and P to the three providers as compared toconditions). A provider can construct a base station at a

the case when they do not cooperate. Also, somewhat contr; LY didate locatiork by paying the fixed establishment (and

to intuition, provider1, who has the least number of servicq,n - Lo
. N - - aintenance) cosf,. Usually, it will not pay any usage based
units, attains the highest payoff. This is because the othced' ) cosh y bay any 9

providers, i.e.,2,3 have fewer customers than service units, sts subsequently and the(:) functions aref.

and .these excess se.rvice units are utilize_d only.V\lh'e'ms the A characteristic Function Formulation

coalition along with its customers. Thusjs adding the most o ) )
value to the coalition by bringing in the demand that is sdugh We now formulate the characteristic functions Qf the servic
out by others: note thav({2,3}) = v({2}) + v({3}) but unit deployment game. We assumg = 0 for all j e_/\/l/\/,
v({1,2,3}) > o({1}) +v({2}) + v({3}). Also, the providers’ Ui(X) = 2 jen, 42, Vi(X) = D pep, swax for all i € N,
shares of the aggregate payoff are usually largely deteeatin@nd also that customers are static and the quality of channel

by parameters other than their decision variables, e.ge, tifiC not vary with time, i.e|Q = 1. _ _
number of customers, service units, etc. For a coalitionS C N, the payoffu(S) is then obtained by

. _ . solving the following optimization problem.
In Example V.3, if prowde_rz can somt_ehovy expand its CUSP(S) : max I je s aju(rjra; — s) — S rese frbr
tomer base, e.g., by extensive advertising, its share e . ) keBs
although the aggregate payoff remains the same. Thus,SL{'PJeCt to:
provider can accordingly decide how to upgrade its resaurcd) Dreps @ik <1, JEMs
jeMs Yk <bg, keBs
V. RESOURCEDEPLOYMENT GAMES 3) aj, 20, j€EMs,keDBs

. . . .4) b, €{0,1}, keB
We now consider a service unit deployment game whmﬁ k€ {01} S

allows the providers to maximize the aggregate payoffs afPnstraints (1) ensure that the total fraction of time consto

also enhance individual payoffs by deciding which bands §o'S being served, is upper bounded byA service unitk

lease from spectrum regulators or primary users and alSg" Serve at most fraction of time if it is open and can not
where to deploy base stations in addition to deciding theif"Ve Otherwise, by constraints (2). The following example
allocations to customers. Redefife to be the set of service |Ilustraftes how cooperanon may Chz_;mge providers denisio
units available to providersi; B;, i € N are assumed to be regarding the opening of service units.

disjoint. A provideri can use a service unit available to it Example V.1. Let N = {1,2}, By = M; = {1} and B, =

once it “opens” it by paying a fixed feg; it subsequently Aq, = {2,3}, wheref; = 0, and fo = f3 = f. Letr; =
pays usage based charge for using it (the) functions in ., — r3y = Q, ry; = 199 = 733 = P, andr;; = 0 otherwise.

the previous sections) which depends only on the amount®fipposef < P, ands; < Q < P. Leta; = 1 for eachj
usage and i if k is not used. Leb, = 1 if provideri opens ands;, = 0 for k > 1. Nowv({1}) = Q — s1. Alsov({2}) =

k € B; and0 otherwise. A provider need not open all servicep_2 andv({1,2}) = max[2P— f —s1,2P+Q—2f —s1],
units available to it, and thus thig;s constitute its decision where the former payoff is the result of opening just service
variables (in addition to thga;x}s). A service unitk € B;  unit 3, while the latter arises in the event of opening baih.

can then serve customgrif a) b, = 1 andb) service unitk | Q < f < P, opening both service units is optimal when
and customeyj are associated with the same provider or witfot in coalition, while opening only is optimal otherwise.
different providers who are in a coalition. Thus, a provider may need to open fewer service units while

We now describe how (i) spectrum acquisition game and (i} coalition, which is beneficial for large opening fees.
base station location game can be captured in the setting of a
service unit deployment game. In the former, providersdieci 13in the settings where the providers have decided apriorchvichannels
the channels each base station has access to. Each avaifp[ease stations have access to and only need to deterrgirsertfice unit-
. . . . customer allocations, as in Sections Ill, IV, the fixed feg@d for each
service unit corresponds to a base station-available CEhangﬁannel irrespective of the allocation decisions - thusehéo not alter the
pair, and thus if a provider decides to allow a base statieptimum allocations and hence were not explicitly consider

Example 1V.3. Consider the setting in Example IV.1 exce
thatj\/: {1,2,3}, |./\/l1| =5, |./\/l2| = |M3| =2, |Bl| =2,
|B2| = 3, and |Bs| = 4, r;y = P for all j € My and
k € By. Then,v({i}) = 2P for i € N, v({1,2}) = 5P,
v({1,3}) = 6P, v({2,3}) = 4P, andv({1,2,3}) = 9P. An



B. Nonemptyness of the Core For any coalitionS C NV, Pelaxed S) satisfies the sufficiency

We proceed to prove that the core of the coalitional ganqé)r!ditions in the above theorem, and therefore has an &itegr
< N,v >, with characteristic function(-) given by P¢(S), ©OPtimum solution. Thus:
is nonempty. Note that the aggregate payoff of a coalitiofheqrem v4. For any coalitions C AV, the integer program
now is given by an integer (rather than concave) optimimtiqDC(S) v(S) = 9(S) forall S C N,
problem. As a result, the strong duality used in Section IV -
does not hold in general. Our proof relies on unimodularity Theorem V.4 implies that = C. Thus, from Theorem V.1,
arguments instead and proceeds in two steps.

Step (i): Consider the coalitional game N, 9 >, where Theorem V.5. 7o # (), andZ, C C.

N is the same set of providers and the characteristic functionyt follows directly from this theorem that the optimal segei
o(-) is given by the LP, RaxedS). PrelaxedS) is the linear ynit opening decisions and the service unit allocationsamd
relaxation of R(S), where the constraints, € {0,1} are mpuytation in the core can be obtained by solving the linear
now replaced byb;, € [0,1]. We show that the core of the programs RjaedN), Dretaxed V), Which can be done in poly-

coalitional game< NV, ¢ >, C, is nonempty. nomial time. Specifically, Raxed V') hasW ~ O(| M|/ Bx|)

Using A € R™Ms, and v,y € R, we construct the yvariables and” ~ O(|M||By|) constraints, Riaed ') has
following LP as the dual of Baxed S) W ~ O(My| + |By|) variables andC' ~ O(|M||By])
Drela}xec(S) : min Zje,/\/ts Aj+ ZkeBs Tk constraints. Thus each can be solved using Karmarkar’s in-
subject to: terior point algorithm [31] inO(C3W2L) time where the

1) Aj +vg > rjkaj — sk, j € Ms,k€Bs obtained solution and the optimal solution match in L most

2) vy —v < fr, k€Bs significant digits.1* Also, the linear programs Baxed V),

3) Njy Uk, vk >0, j € Ms, ke Bs Drelaxed V) can be solved by the providers in a distributed
Let Djeq CONstitute the set of optimal solutions ofmanner and without revealing their confidential informatio
Drelaxed V). Define: 7, := {x* € RV : Tl = ZjeMi \j + such as the revenue and co$is;, s} to each other, using
Y ke, e forsome (A%, v*, 8%, 9%) € Dijayed - ' the sub-gradient technique as described in Section 1V llgina

. the resulting imputation, which belong to the core, disttés
Theorem V.1. 7 # (), andZ. € C the aggregate grand-coalition payoff among providers aoac

Proof: The proof is identical to that of Theorem Iv.m dance with the Lagrange-multipliers ofeRxed V), which as
Step (i): Next, we prove that, for any coalitios C gxplalned in Section IV, are commensurate Wlt_h the resource
N PreiaxedS) has an integral optimum solution, which therelnvestments and wealth generated by the providers.
fore constitutes an optimum solution of(B). We use the
fact that, the constraints ofdRxed S) can be represented as &. Generalizations
totally unimodular matrix:

Finally, we discuss how we can relax our earlier simpli-
fying assumptions. First, when the customers’ locationd an
channels’ qualities are random, i.éQ)|] > 1, then we can
We have the following sufficient conditions for the matrix Aprove using an extended duality technique that the corens no
to be totally unimodular [29]. empty and obtain an imputation in the core in polynomial time
" : ... under an additional assumption;(w) < 1/|By| for each
-Srgticgeg:u;/g' ?vﬁﬁptﬂsee?oﬁi\r/‘vizz %?gtgg;gzg_ into two disjoint ik, w [;8]. Similar results can be s_hown for a joint spectr_um

' ) ' ~acquisition and base station location game where providers
1) Every column of contains at most two non-zero entrieshaye to decide both the locations of the base stations and the

Definition V.1. A matrix A is totally unimodular if every
square submatrix of A has determinant eitlerl or —1.

2) Every entry ind is 0, +1, or —1; set of channels each base station has access to (allowihg eac
3) If two non-zero entries in a column of have the same pase station access to multiple channels) [18]. This auiti
sign, then the row of one is iB, and the other inC’;  assumption does not cause any loss of generality for the
4) If two non-zero entries in a column of have opposite petwork states in which there are several customers with
signs, then the rows of both are # or both in C. identical transmission rates from the service units (sueh n
ThenA is totally unimodular. work states arise frequently when the number of customers is
Now, consider the following linear program !arge). In su_ch cases, the aggregate payoff may be maximized
P: max ¢!z if each service unit time-shares among the customers thvat ha

identical transmission conditions - thus, even the optatidns
that do not impose this condition explicitly will choose dma

o, (w)s.

subject to:Az <b, x>0

We have the following theorem [30].

Theorem V.3 ( [30]). The linear program
. T H .

P: maxc'z subjectto:Adz<b, >0 14Thus, L is the number of accuracy digits of the generated solutidterQ

has an optimal integral solution ifL) A is totally unimodular, e computation time results are stated in unitsiofe.g., O(C3/2V2) per
and (2)b contains only integers. accuracy digit in the algorithm output.
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VI. COOPERATIONIN MULTI-HOP NETWORKS its relaying role, a customer is like any other “resourcék€l
g})ectrum for example) whose utilization fetches benefits an
I

Cooperation in multi-hop networks allows the cooperatin ) Th h iders d ine the ok
providers to redirect their traffic through possibly betteulti- S0 incurs costs. Thus, the providers determine the rhojpi-

hop routes. Consider a network in which customers can coffutes so as to best utilize the customers’ service polentia
municate with service units via potentially multi-hop rest and to regulate the costs they incur. Note that a customer

that is, via other customers which act as relays. If now aket @ r.egulate Its parfuupatlon n relaylng through‘rmxmum
providers agree to cooperate by pooling their service wnith r_elay|_ng agreemenwith its prqwder that’I|m|tsf the amount of
customers, not only they benefit from sharing others’ servidme it can be U_SEd for relaying others trgﬁm.

units (as in single-hop networks), but they also have acess Ve now describe how the resource pooling game formulated
more relay nodes. This, in turn, can increase the capacity iBf Sections lIl, IV may be generalized to allow multi-hop
the network, as well as its power efficiency,thereby enh‘mcitransmissions. Consistent with the downlink communicatio
the payoffs of the providerS. For instance in Figure 3, in @ssumption, we assume that service units transmit to cesgom
absence of cooperation, providercan send data to custome{Who are either sinks or relays), but do not receive from
6, only throughC3, but when the providers cooperate, ithem. We assume that a pair of customers can communicate
can also send throughi4, C5. We formulate the interactions With each other (to relay packets) without interfering with
among the providers in a multi-hop network using a coaliionthe communications of other customer-customer or customer
game model, prove that the core of this game is non-emp8grvice unit pairs (owing to appropriate channel alloggio
obtain polynomial-time computable (i) optimal strategikat for example). S.Iml|al’ transmission models have e.xtengzlvell
maximize the aggregate payoffs and (i) payoff shares feeen assumed in related co_ntexts,_ e.g., [5]. The wirelegs li
individual providers that render the grand coalition staple., 0 @ customer; from a service unit or another customer

an imputation in the core) and are also commensurate with @1 transmit packets at a ratg;, a random variable which

resource investment and wealth generated by the providerd$ & function of the location of customgrand the state of
channelk. A customer and a service unit, or two customers,

Ch3 can communicate only when both are associated with the
Ch1 ] same provider or the providers associated with them are in
Trte, “HT a coalition. For instance in Figure 3, the link& — C6 and
" C2 — C1 arise when the two providers cooperate.
RN The service rate of a customgris defined as the total
rate at which traffic intended fof reaches;j. Let 7; be the
maximum fraction of time customer spends as a relay. Let
B, (w) € [0,1] be the fraction of time, customgs receives
the packets destined for customgy from customer or service
unit £ when the network state is; ﬁjsz (w) =0 forall j1, 72
andw. The providers determine the routes through the choice
of the allocations{3}!, (w)}.
Consider a coalitior§ and a network realizatiow. When

4 i . czhe provider associated with customgris in S, j receives a
objects (base stations, channels,customers and linkehdel - i ’
J ( Ny service ratey; (w) = > cpsums ﬁjk (W)rjk(w). Lety;(w) =

to provider 1 and the solid objects belong to provider . SR .

Hefe By = {1},B, = {2,3} /\,:1 = {2,3 69} andp/\/lg _ {yi(w),j € M;}. Then, provideri gains a benefit (e.g.,

{1 4,5 7). Providersl and2 want to send data to customars "¢ SnUe from the customers) @fi(y;(«)). Next, customer

and1 respectively, through multi-hop routes. The thick dotte relays the traffic f?lrtj (w) fra;:ltlon of t'rﬂe’ where;(w) =
0525 (W) + 555, (@) + G1.(w)). Let pjx(w)

links are those resulting from providers’ cooperation. J'l-,jzeMsYl',kEBs( _ : ;
represent the power usage of custormjewhen it transmits

o . ] to (and thereby relays others’ traffic to) custonier Then
_ As in single-hop networks, providers determine the allocg; cystomer; in a coalition S, has a total power usage of
tions of_ the service units. But, an interesting questiomiso 2i(w) = ZﬁeMS\{jMeMS 874 (w)pji (w) in relaying pack-
determines the communication routes - providers or custsmeq Letz; (w) = [2)(w), 5 € M;} andt;(w) = {t;(w),j €
. y . 7 - ] 9 7 7 - J 9
yvho relay the traff!c? When a customer relays others pagke;@li}_ Then, providei incurs a cost oV (z:(w), t;(w)) owing
it essentially provides a service that enhances the prav/idey, the compensations (i.e., service discounts) requireitsby
payoffs and consumes its time and energy, and must therefefgiomers for spending time and energy in relaying packets.
be compensated via discounts from the providers. Such dﬁjnctionsUi(-) (Vi(), resp.) are concave (convex, resp.) and
counts must depend on how much traffic each customer relays, gecided apriori, possibly through prior negotiatiorighw
and how much time and energy it invests in relaying. Thus, e customers. We assume that the locations of service units
. . , and the set of channels they have access to are determined a
15Note that for certain customers, the increase in the powageaisnay not iori. Th d ider fixed . it depl
be proportional to that in their service rates, but coopematncreases the priori. us, we 0 not (_:O”S| er fixed service unit deploymen
power efficiency of the network as a whole. costs or channel licensing costs.
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The aggregate payoff available to providers in a coalitioproviders in the same coalition route traffic to the cus-
is the difference between their benefits and costs. Thexefailomers (i.e., end users or the ISPs in lower tiers) through
in order to maximize their aggregate payoff, providers in aach other’s routers (analogous to our service units). The
coalition must optimally decide the a||0cati0l{l§;21k}, based characteristic function(S) now represents the total profit of
on the network state, and benefit and cost functions, subjdo¢ ISPs in a coalitiorS, and can be obtained by solving
to the minimum rate and maximum relaying constraints. Let concave maximization with linear constraints, similar to
v(8) denote the maximum aggregate payoff achievable byPa, (S) - the differences in this optimization are that (i) there
coalitionS. Then,v(S) is the maximum value of the objectiveis only onew as the link qualities will not vary randomly
function of the following concave optimization: in wireline networks, (ii) cost functiond/;(-) are zero as
Pu(S) : max Y ics P(W)(Ui(}’i(w)) _ Vi(zi(w),ti(w))) the routers belong to the ISPs (iii) constraint (5), (6) oa th

we fraction of time each service unit and relay is used must
, ) be replaced by link capacity constraints. The duality gap
1) 4j(©) = Xiessoms P @Irin(w),  j € Ms,w€ Q. continues to be zero. Hence, it can be shown similar to the

subject to:

2) ti(w) = Y eMs\y (ﬁj;j(w) + ﬁj}z (w) + proof of Theorem IV.1 that the core is non-empty and an
, keBs allocation in the core can be obtained in polynomial time.
-;.,;(w)), jeMs,we Q.

(W) =S, ey , '
3) zj(w) = ZJI}CGE/X[AS\J By Wlpje(w),  j € Ms,w € . VIl. OTHER SOLUTION CONCEPTS NUCLEOLUS AND
2 S
4) ZkeMsuB_s ﬁ;;k(w)rjzk(w) _ SHAPLEY VALUE
J1 . - -
2 jems By (@)riss (WJ)’ g1 # J2 E.Ms’w €. We now investigate aggregate payoff sharing among

5) tj(w) + ZkGBsUMs ﬁjk(w) <0, jeMs,wel providers using two other well known solution concepts in

6) > i wems Farw) <0, k€ Bs,we coalitional games, namely the nucleolus and the Shapleyeyal

7) weN

P(w)y;(w) > m;, je€ Ms. and examine whether these payoff shares stabilize the grand
8) D caPW)tj(w) <7, j€Ms. coalition (i.e., belong to the core).
9) ﬁgzlk(W)ZO, j17j2€M$7k€BSUM57WEQ

Constraints (4) ensure that the set @f ;s satisfy the flow A Nucleolus

feasibility constraints, while constraints (5) and (6) tardee

that they constitute a feasible allocation fér < 2/3.16 Definition VII.1. The excess of a non-empty coalitiSrc
Constraints (7) and (8) impose minimum rate and maximutnder an imputatiorx is es(x) = v(S) —z(S). Lete()(x) =
relaying guarantees, respectively. Similar to Assumptiéf, maxs.gcscy = es(x), i.e., e (x) is the maximum among

we assume that,R({i}) is feasible for eacti ¢ NV, and thus, the excesses of the non-empty and proper subsets of the
P (S) is feasible for eacks C . grand coalition, e(®)(x) is the second maximum etc. The

Similar to the proof of Theorem IV.1, one can formulate thucleolus is the imputatior that lexicographically minimizes
dual problem of the concave maximizatiog, @) (which is the excesses, i.e., has the minimum value(bfix) among
always feasible) and subsequently, define theZsappropri- all the imputations, subject to minimizing")(x) minimizes
ately. The same proof technique then shows fthaelongs to ¢'? (x), and so on.
the core. Hence, nonemptiness of the core follows.

Finally, similar formulations may be used to model coop-

eration among internet service providers (ISPs) in the sarﬁayOﬁ and (aggregate payoff under resp.) of coalitions.

tier. Specifically, peer ISPs may form coalitions where theﬁus’ one can think ofs(x) as a measure of dissatisfaction
- =P Y. P y of S underx. Then, the nucleolus is the payoff share (of the

16At eachw, the system can be represented by a graph where the custon@%g_regate grand C(_)"?‘“tlon payOﬁ) that ?quahzes the dsssa
and the service units represent the nodes and there existi ddtween factions of the coalitions as far as possible.

any two nodes (only one of which can be a service upity such that — The nycleolus of any transferable payoff coalitional game

rjk(w) > 0. Any customer-service unit and customer-customer assghm . . et
corresponds to a matching in the above graph. Note{tﬁ?}e (w)} comprise IS a S'ngleton [2' pp. 288]' Whenever the core of a coalitiona

a feasible allocation of service units to customers if anly dnthere exists game is nonempty, its nucleolus belongs to the core.

a corresponding collection of matchinds, L2, ... and a collection of non- When there are only two providers the excesses of the
negative real numbersg;, vz, .. such that (i)z. vi =1, v > 0 and (ii) if . . . !

the allocations follow matching.; for ~; fraction of time for eachi, then coalitions {1},{2} for an imputatonx = (z1,72) are
customer; receives from customer or service udkitfor -, 374 (w) (v({1}) — z1,v({2}) — z2) - these are the negatives of the
fraction of time for all j, k. A sufficient condition for feasi]bility Is that the payoff gains brought about by cooperation_ Sinces an

fraction of time each service unit or customer communicatd®lowd, where ; _ ;
0 is a constant irf0, 1] and depends on the network topology. For bipartitémpUtatlon’I1+I2 B 1_)({1’ 2}) Is a constant, and thus the sum
networks, for instance = 1, which is also a necessary condition [19]. ItOf the two excesses is also constant. Also, since the nudeol
has been shown that in generél,= 2 is a sufficient but not a necessary minimizes the maximum excess, it equalizes the two excesses

condition [19]. Nevertheless, utilization would usuallg tess thar2/3 so ; _
as to avoid inordinate queuing delays. Thus, constraints(€ provide the Thus, the nucleolus is the payoff VeCi((QD({l, 2} —|—v({1})
necessary and sufficient conditions for feasibility {g8!, (w)} for eachw v({2}))/2, (v({1,2} + v({2}) — v({1}))/2). Thus, in Exam-
and6 < 2/3 - the § value is chosen based on delay constraints. ple IV.1, the nucleolus payoff allocations aI%;—P, 3Q;P

Recall thatv(S) (x(S), resp.) are the maximum aggregate
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respectivelyt’ The imputations obtained earlier by solving thehe above among all imputations also require exponential

dual of the aggregate payoff maximization problems do nobmputation time. Computation of the Shapley value through

necessarily equalize the payoff gains, but rather disteibthe (2) also requires exponential time as the number of possible

payoffs in accordance with the resource investments and tierings of the providers increases exponentially with éase

wealth generated by the providers (Section 1X). in the number of providers. On the other hand, the imputa-
tions obtained by solving the duals of the aggregate payoff

B. Shapley Value maximization problems are polynomial time computable and

Definition VII.2. For any i, and S C N such thati ¢ S, also stabilize the grand coalition.

let A;(S) = v(S U {i}) — v(S). The Shapley value is the

imputationx for which VIIl. | MPACT OF COOPERATION ONCUSTOMERS

1 Cooperation enhances providers’ aggregate payoffs which
Ti= T Z Ai(Si(U)), @ are increasing functions of the customers’ service ratbssT
veu intuitively, the rates of most of the customers increasewhe
wherel{ is the set of all orderings of the set of players, anthe providers cooperate. Cooperation may however decrease
Si(U) is the set of players precedingn ordering U. the rates of some of the customers, and therefore induce un-

In Example IV.1,A;(2) = v({i}), A1 ({2}) = Q, Ao({1}) = fairness. In Example V.1 when the providers do not coomerat

p Il customers may receive non-zero rates; but the customers

2Q — P, and the Shapley value {§Q + P)/2, (3Q — P)/2). a ) i . e

Shapley value is the unique imputation that attains certa?rtu prowderll Feceive no service W.h.en the providers coopgrate,.
desirable game-theoretic properties lilgymmetry dummy The_ unfa|r|_'1ess IS how_ever mitigated when the prov_|ders
player allocationand additivity [2, pp. 292]. For two player benef!t funct_lons_ are strictly concave. Fpr e.Xa"?p'e* if the
transferable payoff coalitional games the Shapley value aneflt _functlon |n_ Example V.1 is Io%anthmm (t;nstﬁad of
the imputation(v({1,2} + v({1}) — v({2}))/2, (v({1,2} + e TeLilys) = 2jca 1o8(1 1u,), then tcan be shiown
v({2}) —v({1}))/2; it is therefore identical to the nucleolusthat €ach customer of provides servec{l—(_l/P—l/Q)]/Q

action of time (assuming/P —1/Q < 1 which for example

and belongs in the core. But, in case of three or more playeg ; . .

the Shapley value need not be in the core, and therefore n pens ifP > 1) [18]. Note that whenP >> 1 (S'“C‘?

not stabilize the grand coalition: Q> P, thenQ_>> 1as well)z then each custo_mer of provider
1 (and of provider2 as well) is served approximatef)% of

Example VIL.1. Let NV = {1,2,3}, B; = {i} and M; time irrespective of whether the providers cooperate. Thus

be nonempty for each provider Let r;, = 1,5 € M; U cooperation does not induce any unfairness in this &ase.

Mz, rj1 =13 = 1,5 € Mz andrj, = 0 otherwise. Also, The benefit functions may be chosen during negotiations

let m; =0, Vj € My, Us(x) = >_,c0q, @7 and V;() = 0,  between providers and customers and may also be controlled

i € N. Clearly, v({i}) = 0 V i, v({1,2}) = v({2,3}) = by regulatory bodies (e.g., FCC in USA).

v({1,2,3}) = 2,v({1,3}) = 0. From (2) and Table I, the  Our coalitional game framework also allows the customers

Shapley value of the providers is = (Z,%,2). Note that to mitigate this unfairess (even in presence of linear fiene

1+ 22 = % <wv({1,2}). Hencex ¢ C. functions) by imposing minimum rate constraints through
SLAs (Example IV.1 had no SLAs), e.g., all the customers
in Example IV.1 may ask for a minimum raté. Then,

TABLE I: All possible orderings and marginal contributionsy({1}) = P,v({2}) = Q,v({1,2}) = P + @, and each

of the players. customer receives the same rate irrespective of cooparatio
U | A(U) | Ax(U) | As(U) But, then, the core has the unique imputatior{ BfQ2) which
123 0 2 0 provides no payoff gain to any provider as compared to when
132 0 2 0 they do not cooperate. The question then is whether provider
213 2 0 0 5
231 0 0 5 1 should accept the above SLA? More generally, should
312 0 2 0 providers accept any SLA? The following example suggests
321 0 2 0

that the providers ought to accept SLAs, but selectively.

] o ~ Example VIII.1. Again consider Example IV.1, with the
~ Computation complexity:Since the number of coali- gitference that each customer of providerequests an SLA
tions increases exponentially with increase in the numlber gqa to L Moreover, customers in\; do not require

providers, naive strategies for evaluating) (x) for a given service rates abovelf, and as a result will not pay for

imputation x require exponential computation time. Thusgny exira service. Let the grand coalition payoff be shared
naive strategies for evaluating the nucleolus which minési

17 o o ] 18Under logarithmic benefit functions, cooperation does nutamce the
The aggregate payoff of the coalition is maximized by onlwi® 2's  providers payoffs in this case either. This happens sinch eastomer has
customers. But, ifl's customers Ieavepg{l}) = 0,v({2}) = @, and the same rate from all the service units. However, when custs have rate-
v({1, 2}) = 2Q and the nucleolus i$%v 32 Thus, although''s customers  diversity, i.e., have potentially different rates from feient service units,
do not receive any service from the coalition, and therefiwenot generate cooperation substantially enhances the payoffs of indadidproviders for

any revenue, their mere presence enharicepayoff (from @ /2 to Q%). logarithmic and several other strictly concave benefit fioms (Section 1X).
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Fig. 4: The left, middle and right sub-plots respectivelpwstproviders’ payoffs, payoff gains and percentage pageffis as
functions of the number of customers: the three providev®B&, 4k and5k customers, respectively.

among the providers as per the nucleolus. If provider We first consider a logarithmic revenue (benefit) func-
rejects both SLAs, customers ik, leave and we have: tion U;(y;) = ;-\, log(1l + y;) and zero cost function
v({1}) = 0,v({2}) = Q, andv({1,2}) = 2Q. Consequently, V;(z;) = 0 for each provideri € N. Thus, U;(y;) is a
providers’ payoffs will be(zq,z2) = (%, %). Instead, if strictly concave function and assumes positive values xce
provider 1 accepts one of the SLAs and rejects the other, wéheny; is the zero vector and in this case the revenue is
have:v({1}) = 3£ v({2}) = @, andv({1,2}) = £ + %, 0. Note that logarithmic functions have been widely used as
which lead to payofféz;, 7o) = (22422 109=F) Finally, if satisfaction functions of customers and therefore cartstit
provider1 accepts both SLAs, we haveg{1}) = P,v({2}) = good candidates for the revenues they pay (and hence for the
Q, andv({1,2}) = P+ Q, and therefore(z;,z2) = (P, Q). benefits the providers incur). The cost functions are zererwh
If Q >5P/2(Q < 3P/2, resp.), then it is optimal for provider the providers acquire the resources (spectrum, base retio
1 to reject (accept, resp.) both SLAS.%i < @ < 5P/2,then apriori by paying fixed (licensing or deployment) fees and do
it is optimal for provider1 to accept only one of the SLAs. notincur subsequent usage based ctstdso, we assume that

the customers do not have SLAs as is typically the case for

We now introduce a framework that allows the providers 'Blastic transfers from the Internet (e.qg., file transfangg.allow

a coalition to jointly decide which SLAs to accept. Clearlyy,o gepyice unit-customer rateg, to be uniformly distributed
the optimal cooperation strategy of a coalitiSrthen involves ‘

. e over the set{0, 100, 200}Kbps, and to be independent across
selectlng a set qf SLAS_ that maximize the aggregate payQfly;ice unit-customer pairg, k). The characteristic functions

- let 1.’(.8) be _th|s maximum aggregate payoff. Lef "?e v(8) for different coalitionsS and the dual based imputation
a decision variable indicating whether customjé&r SLA is in the core can now be obtained by solving the concave
accepteds; = 1 if so ands; = 0 otherwise. Thenj(S) is

optimization FS), D(S) (Section 1V). The nucleolus can sub-
given by the maximum value of the objective function ¢&SP P RS), D) ( )

. ; ith ) bei sequently be computed using Definition VII.1. We denote the
in Section IV, with constraints (3), (5) being . 5, @1 (w) < payoff of a provider (i) in absence of cooperation as (i.e.,

sj, J € Ms’lw €, hZW%QIP(w)yj(w) = ‘i-\?'mj’_ J € 2, = w({i}), (i) in the grand coalition as:? (nucleolus) or
Ms respectively. No_te_ that for any customgrthe minimum x} (via solving dual optimization). Owing to large state spgace
rate constraint (modified constraint (5)) is nontrivial,\oiif we useMonte Carlo simulationsn our evaluations.

s; = 1. Also, for a customey with s; = 0, ajr(w) =0, \we first consider3 providers, B, — B; — By — 1,
for eachk € Bs and at eachv because of constraint (6) and M, = 3k M, = 4k, My = 5k where k ranges from

and modified constraint (3). These two conditions ensure trlato 20 (Figure 4). The plots show that cooperation leads

IonnI?/n)éu(;?ct)lrr::rlssajiliﬁogcge;?: d agl(_)Xi (;?gn!;?\:f; g_rﬁféer;bb substa_ntia_l payoff improvements for all provider_s, ahd t
lution of this integer optimization provides the o .timam, Syoff-gams increase as the number of custom_ers_ Incréase.

(S)?;cce table SLAsg Estszlishin thepnon om tinesps ofdhe Cexpected (from Definition VIl.1)the nucleolus distributes the

of this cr:JoaIitionaI géme remaing open P payoff gains more equna_bly _thgn the _dual based profit-share

' which allocates payoff gains in increasing order of the nemb

of customers (wealth generated), reserving the highestfpay

gain for the provider with the highest number of customers.
In the context of the resource pooling game (Section V),

we evaluate the benefits of cooperation and compare differ’®Recall that the fixed service unit deployment and acquisitees need to

ent payoff sharing schemes such as the dual-based pafiffonsidered expicitly only when the deployment and aition of service
nits constitute optimization decision variables as inrémource deployment

shares (SeCt|On IV) and the nucleolus (Section VII) for agean game in Section V, and not when these are decided apriori tiginesource
of benefit functions. pooling game of Section IV.

IX. QUANTITATIVE EVALUATIONS
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Fig. 5: Providers’ payoffs as functions oFig. 6: Providers’ payoffs as functions ofig. 7: The percentage payoff gains of the
number of customers: the first providerumber of base stations: the first providgfoviders are plotted as functions af

has 20 customers while the number obwns5 service units while the number of

customers of the second/s, is varied. service units,B,, of the second is varied.

Nevertheless, the payoffs of each provider are similar undenportantly, the percentage payoff gains for both providers
both payoff sharings, and also to those under the Shapleg vaincrease significantly with increase in - thus, higher the
(see [18]).The percentage gains in payoffs due to cooperatiamoncavity, the more beneficial cooperation iEhis can be
are quite significant30% — 40%) for each provider explained as follows. For smadl (i.e., nearly linear benefit
functions), at anyw, the aggregate revenue is maximized by
g)cating each service unit to one customer. Next, given th
e number of customerd({ or 20) significantly exceeds the

investigate the impact of varying the (i) demand (number gumber of service _unlt,slﬁ of e_ach p_rowder, usually (i.e., for_
customers) and (ii) asset (number of service units) of only omost w) each provider's service unit has excellent transmis-

provider while keeping the other's demand and asset fixedon conqmons to at least one of its own customers. Thus,
First, let N — 2, B, — By — 1, M; — 20 and vary the cooperation can not enhance the aggregate customers, rates

number of customera/, of provider 2 (Figure 5). Next, we nor the providers’ aggregate and hence individual payoffs.
let N =2, M, = M = 20, B, = 5, and vary the number of As « increases, the aggregate payoff increases when more

service unitsB, of provider2 (Figure 6). As the demand (Oreqw_table rg’_[es are provided to the customers at eatithen
asset) of the second provider is increased, the payoff of @t In coalition, in order to roughly equalize the rates oé th
second provider increases under both the nucleolus and dStomers, each provider's service unit must thereforeeser
based payoff sharing rules, but that of the first may eithQPStQmerS W't_h poor transmission q_uaht]yc for considerable
increase (Figure 5) or decrease (Figure 6), depending on h@Ftions of time. When the providers cooperate, usually,
its importance in the cooperation changes due to the inere&20St of the customers have high transmission rates from
in the demand (or asset) of the second. Mathematical?), least one service unit - thus equitable rates can also be

Henceforth, for simplicity, we focus o providers. Note
that the Shapley value is the same as the nucleolus in t |
case (Section VIl - paragraph before Example VII.1).

29 = v({1,2})+v({1})—v({2})/2, and as the demand (asset rovided by allowing each s.ervice unit to time-§hare among
of the second increases({1,2}), »({2}) increase buv({1}) he customers (|_'10t nece_ssarlly of.the same prqwdgr) thaalt ha
does not change. Thus, the differendé1, 2}) — v({2}) may good transmission quality from it. Thus, equity is a}ttamed_
either increase, or decrease. Nevertheless, the payofieof frough good match between customers and service units
first always exceeds that it attains without cooperatiorsoal @nd without compromising the overall customer rates and

in both cases the provider with the larger demand or asggpwders’ revenues. Thus, cooperation substantiallyaenés

obtains higher payoffs under both sharing rules. agg_regate, an_d therefore individgal, payoffs. )
Finally, we illustrate the benefits of cooperation and com-

We now in_vestigate how the choice of the revenue functigfy e the dual and nucleolus based payoff shares in presence
affects providers’ payoff gains. In particular, we consides 5| As. We consideB providers each witls service units

the generzallizaeda—fair revenue function [32]:Ui(yi) = and 10 customers. Nowy;; = 100 Kbps Q00Kbps, resp.)
deMi (yi)_a , Where0 < a < 1. Note that for eachj with probability0.8 (0.2, resp.). Each provider haspremium
a?—iji(yi) = —a(y;)~1~* and thus intuitively the “concav- and7 best effortcustomers: the former have negotiated SLAs

ity” of the revenue function increases with increasenifthe  Which guarantee a minimum average rate We consider
function is linear ifa = 0). We plot the providers’ percentagelinear revenue functions:

payoff gains as a function of, for N =2, B; = By, =1 3 10
and M; = 10 and M2 = 20 (Figure 7). Nucleolus and the Ui(yi) = Z (Bm + a(y; —m)) + Zayj
dual based sharing rules provide similar payoff gains. More = =4
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Fig. 8: Providers’ payoffs as a function of the guarantedd raFig. 9: Providers’ payoffs as a function of the number of
to the premium customers the premium customers of the third providei, =5, «% and
x9, 9, x4 are payoffs corresponding to the dual allocation and
the nucleolus respectively; , s, 3 are the providers’ payoffs

where 5 > « captures the higher payoff per Kbps for théf they do not cooperate.

service guarantees to the premium customers. We choose

a =1andgB = 1.5. The revenuexy_;”, y; is denoted as

“usage based revenue” and the ré¢st— «)3m is the fixed all providers, and allocates the fixed fees of each prowider’

fee associated with SLAs. Due to symmetry, providers receigustomers to the provider. Thus, the payoffs of provides

equal payoffs under both dual and nucleolus based sham@s.not change with increase ih, but that of provider3

As Figure 8 reveals, cooperation enhances each providersreases linearly with increase in The nucleolus however

revenue: the increase is significant when the size of ealthnsfers a part of the fixed fees providgrearns to other

coalition increases from 1 to 2, and somewhat less wheroviders - intuitively such transfer is warranted as pdavri3

the size increases to 3. For small, a provider does not can not support all its premium customers by itself for 3.

need to compromise on the efficient usage of resources (i.Bhus, payoff shares of all providers change with increase in

it preferentially serves the customers with high transioiss %, and evidently, the nucleolus based payoff gains are more

rates). Each provider’s payoff increases linearly within this equitable than the dual based ones. In all the allocations,

region due to the increase of the fixed fees associatedmwith a provider with larger number of premium customers gets

However, beyond a certain threshold, each provider needsatdarger payoff share, and each provider's payoff increases

schedule a few lower rate links to the premium customessibstantially due to cooperation.

(instead of the higher rate links to the best effort cust@ner

to satisfy the SLAs. This lowers the aggregate service rates

and each provider’s payoff decreases linearly with inaeéas  We studied cooperation among providers in wireless net-

m. Cooperation increases this threshold and also the aggregabrks. If providers cooperate, they can jointly decide how t

rate of all the customers by allowing the scheduling of higheleploy their service units, pool their service units andedke

rate links more often. them to the joint pool of customers in an optimal fashion.
Next, we consider an asymmetric scenario where eak¥e formulated the problem as a transferable utility cozdiéil

provider has10 customers as before, but they respectivelgame. We showed nonemptyness of cores in various scenar-

have3, 0, k premium customers; is varied from1 to 7. All  ios (see Theorems IV.1, V.5 etc.) implying that cooperat®on

the premium customers demand a minimum guaranteed rats only globally optimal, but also makes each of the prorsde

of 125Kbps. It turns out that a provider alone cannot guabetter off. Our proof technique is constructive and yields a

anteel125Kbps to more thar8 customers. Similarly, any two optimal resource allocation and corresponding profit share

providers can support at mo&tpremium customers together.Our numerical evaluations reveal that cooperation sukisthn

Thus, R{3}) is not feasible fork > 3, and assumption IV.1 enhances individual provider's payoffs.

no longer holds. Fok > 3, we definev({3}) as the objective ~ We now outline some open problems. The computation time

function of R{3}) with 3 premium customers, fok > 5, for an allocation in the core may be high since it depends

v({1, 3}) is the objective function of § 1, 3}) with 5 premium polynomially on the number of possible channel state and mo-

customers, and fok > 8, v({2,3}) is the objective function bile location realizations|{2|), which is large. Obtaining near-

of P({2,3}) with 8 premium customers. It turns out thatoptimal solutions with low computation time remains open.

the dual and nucleolus payoff shares are in the core, aNéxt, in practice, coalition formation can incur overheads

hence the core is non-empty. Figure 9 plots the providems.g., from increased computing requirements. Investigati

payoffs as functions of the number of premium custometBe stability of the grand coalition considering the coaidit

of the third provider under both allocations. The dual basddrmation overhead constitutes an open problem. Finally, w

allocation equally divides the total usage based payoffsrem considered a system where the customer subscriptions and

X. CONCLUSION AND FUTURE WORK
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the providers’ revenue function have already been detexthin[22] L. S. Shapley and M. Shubik, “The assignment game i: Theet
Investigating cooperation among the providers when the cug

tomers dynamically decide their subscription based on tl[lzé)’]
revenue functions, and how providers can dynamically and 225, 2001.
optimally select the revenue functions so as to enhance théf!

individual share of the overall profit remain open.
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