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Abstract—We consider a network in which several service
providers offer wireless access to their respective subscribed
customers through potentially multi-hop routes. If providers
cooperate by jointly deploying and pooling their resources, such
as spectrum and infrastructure (e.g., base stations), and agree to
serve each others’ customers, their aggregate payoffs, andindi-
vidual shares, may substantially increase through opportunistic
utilization of resources. The potential of such cooperation can,
however, be realized only if each provider intelligently determines
who it would cooperate with, when it would cooperate, and how
it would deploy and share its resources during such cooperation.
Also, when the providers share their aggregate payoffs, devel-
oping a rational basis for such sharing is imperative for the
stability of the coalitions. We model such cooperation using the
theory of transferable payoff coalitional games. We show that the
optimum cooperation strategy, which involves the acquisition,
deployment and allocation of the channels and base stations(to
customers), can be computed as the solution of a concave or an
integer optimization. We next show that the grand coalition is
stable in many different settings, i.e., if all providers cooperate,
there is always an operating point that maximizes the providers’
aggregate payoff, while offering each a share that removes any
incentive to split from the coalition. Such stabilizing payoff shares
can be computed by solving the duals of the above optimizations.
The optimal cooperation strategy and the stabilizing payoff
shares can be obtained in polynomial time using distributed
computations and limited exchange of confidential information
among the providers. Our numerical evaluations reveal that
cooperation substantially enhances individual provider’s payoffs
under the optimal cooperation strategy and several different
payoff sharing rules.

I. I NTRODUCTION

A. Motivation

We have witnessed a significant growth in commercial
wireless services in the past few years, and the trend is likely
to continue in the foreseeable future. Satisfaction of thisin-
creasing demand is contingent upon efficient utilization ofthe
transmission resources, which are either under-utilized (e.g.,
spectrum - utilization of licensed spectrum is at times only
15% [1]), or costly (e.g. infrastructure). Cooperation among
wireless providers, whereby different providers may form
a coalition and pool their resources, such as spectrum and
infrastructure like base stations (or access points) and relay
nodes, and serve each others’ customers, has the potential to
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substantially improve the utilization of the available resources,
We now elucidate the benefits of such cooperation using a
sequence of examples.

We first demonstrate how cooperation may substantially
enhance throughput through efficient opportunistic utilization
of resources and lower overall energy consumption of the
customers through multi-hop relaying; both the above result
in higher customer satisfaction and payoffs for the providers.
Transmission qualities of available channels randomly fluc-
tuate with time and space, owing to customer mobility and
propagation conditions. Also, in secondary access networks,
the providers may be secondary users who do not license
channels but communicate when the license holders (primary
users) do not use the channels. Such access opportunities may
only arise sporadically. Since all customers of all providers
do not need to be served simultaneously, and the channels of
different providers may not be unavailable or have poor quali-
ties simultaneously, spectrum pooling can enhance throughput
by mitigating service fluctuations resulting from occasional
variations in channel qualities and availabilities, and instanta-
neous traffic overloads. In multi-hop wireless networks (e.g.,
mesh networks), cooperation increases the number of available
relays (mesh points). This in turn increases the number of
multi-hop routes to each customer, thereby decreasing the
total power usage and increasing the total throughput of the
customers. Also, the customers may be induced to serve
as relays, perhaps, in lieu of service discounts. Then the
enhancement in throughput and energy consumption owing
to cooperation magnifies as the coalitions have a larger set of
customers, and therefore a larger number of multi-hop routes.

Cooperation also reduces the costs incurred by the providers
and thereby increases their net payoffs. A provider can acquire
a channel by paying a fixed licensing cost or usage based
charges, or a combination of the two. The first case arises
when the providers are primary users who license the channels
from government agencies, and the other option arises when
they are secondary users who use the channels licensed by
the primaries. When the providers do not cooperate, they
may need to operate as secondary users and opt primarily for
usage based charges, as the volume of their individual traffic
may not justify other options. Since cooperation allows the
providers to pool the customers, the resulting higher aggregate
traffic may allow them to license channels, share the licensing
fees and thereby reduce the individual costs. Next, deploying
and maintaining base stations constitutes one of the major
costs in expanding the networks. Cooperation may reduce the
expansion costs by allowing the providers to deliver desired
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coverage and throughput guarantees while deploying fewer
base stations. For example, for a provider whose customer
base is concentrated in a particular region, traffic demand
is low but non-zero (owing to customer mobility) in other
regions. The provider must deploy base stations even in the
regions of low traffic intensity so as to provide universal
coverage (otherwise the customers would desert). If instead,
the provider cooperates with another provider whose traffic
demand is concentrated in a different region, both may satisfy
coverage requirements by deploying base stations only in the
regions where their individual demands are concentrated, and
thereby reduce individual operational expenses.

B. Research Challenges and Contributions

Several research challenges must, however, be addressed be-
fore large scale cooperation can be realized. First, commercial
service providers are selfish entities who seek to maximize
their individual payoffs. Therefore, they will cooperate only
when cooperation increases their individual incomes. Even
so, a provider may refuse to join a coalition if it perceives
that its share of the aggregate payoff is not commensurate
to the amount it invested and the wealth it generated. The
former depends on the transmission rates in the channels it has
acquired and the locations and the number of base stations it
has deployed, while the latter depends on its customer base.
So, developing a rational basis for determining the individual
shares of the aggregate payoff is imperative. Note that the
aggregate payoff and the individual shares depend on the
providers’ cooperation strategies. Specifically, each provider
needs to decide which providers it would cooperate with,
which channels would use, the locations of its base stations,
and when it should serve the customers of other providers. The
sharing mechanism and the optimal cooperation strategies for
providers depend on each other and must be obtained jointly.

We present a framework to determine the optimal decisions
of the providers using tools fromtransferable payoff coali-
tional game theory[2]. The framework also provides a rational
basis for sharing the aggregate payoff. The first network
setup we consider is an access network where providers pool
their spectrum, base stations and customers (Section IV). We
assume that the locations of base stations and the set of
channels they have access to are determined a priori, but the
providers decide how they would allocate the base stations and
the channels of the coalition, to the customers. We then obtain
optimal decision rules for the providers and a strategy for
sharing the resulting aggregate payoff as solutions of concave
optimization problems. This sharing strategy ensures thatit
is optimal for all providers to cooperate. Specifically, if any
subset of providers split from the grand coalition (the coalition
of all providers), irrespective of how they cooperate and the
way they share their aggregate payoff, at least one provider
in this subset receives less payoff than what it received in
the grand coalition. In coalitional game terminology, sucha
sharing scheme is said to belong to thecoreof the game. This
result is of interest in itself as many cooperative games have
empty cores, and the specific games we consider do not satisfy

some standard sufficiency conditions for non-emptiness of the
core (e.g., convexity of the game).

In the subsequent sections, we extend the formulation and
results. We first consider the cases where the providers also
need to determine the locations of their base stations or theset
of channels each base station has access to (Section V). The
optimal cooperation strategy can now be obtained by solving
an integer optimization with nonzero duality gap unlike in con-
cave optimizations used before. We obtain the optimal decision
rules and the payoff sharing mechanism using unimodularity
arguments. Subsequently, we extend the results in Section IV
to multi-hop wireless networks (Section VI). We consider
other profit sharing mechanisms, namely, the nucleolus and
the Shapley value, and investigate whether they stabilize the
grand coalition of providers (Section VII). We examine the
impact of providers’ cooperation on the customers and propose
a framework for optimal (and selective) acceptance of service
level agreements (SLAs) by the providers (Section VIII). Inthe
context of the resource pooling game we numerically evaluate
and compare the providers’ payoff increases resulting from
cooperation under different sharing mechanisms and different
payoff functions as a function of the number of customers and
base stations (Section IX).

II. RELATED WORK

Interactions among different entities in wireless networks
have primarily been investigated from the following extreme
perspectives. In the first, each entity is assumed to select
its actions so as to maximize its own incentive without
coordinating with others, e.g., [3]. This scenario, which has
been investigated using noncooperative game theory, in general
suffers from inefficient utilization of resources [4]. The other
perspective has been to assume that entities selflessly choose
their actions so as to optimize a global utility function even
when such actions may deteriorate individual incentives of
some entities e.g., [5]. We investigate interactions among
providers assuming that each provider would be willing to
cooperate and coordinate its actions with others when such
cooperation enhances its individual incentives.

We obtain optimal cooperation schemes using the frame-
work of cooperative game theory. This choice of tools allows
us to combine the desirable features of the extreme approaches
studied in the existing literature, that of allowing entities
to choose their actions guided by selfish objectives, and of
maximizing global utility functions. Surprisingly, cooperative
game theory has seen only limited use in wireless context so
far. Nash bargaining solutions have been proposed for power
control and spectrum sharing among multiple users [6]. Coali-
tional games have been used recently for modeling cooperation
among nodes in the physical layer [7], [8], collaborative
sensing by secondary users in cognitive radio networks [9],
rate allocation in multiple access channels (MAC) [10], rate
allocation among mobiles and admission control in hetero-
geneous wireless access environments [11], and studying
cooperation among single antenna receivers and transmitters
in an interference channel [12]. Our problem formulation,
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solution techniques, and results significantly differ fromthe
above owing to the difference in contexts - our focus is on
cooperative resource allocation and subsequent payoff sharing
among providers at the network and MAC layers. To our
knowledge, our work is the first to investigate cooperation
among wireless providers.

Coalitional game theory has been used for studying cooper-
ation in other communication networks as well (see [13] for a
survey). For instance, Shapley value based profit sharing has
been proposed and investigated for incentivizing cooperation
among peers [14] and among internet service providers [15].
Our framework can be used to study core allocations for coali-
tional games among internet service providers (Section VI).

III. SYSTEM MODEL

A. Communication Model

Consider a network with a set of providersN . Each provider
i deploys a set of base stations (or access points) in order to
serve its set of customersMi. Each base station has access
to a certain set of channels (e.g., FDM carriers in GSM
and OFDMA systems),1 and each base station-channel pair is
referred to as a service unit. Thus, a provider’s resources are
its service units. LetBi be the set of service units of provider
i, Bi ∩ Bj = ∅ andMi ∩Mj = ∅ for i 6= j. For aS ⊆ N ,
let BS andMS denote the set of service units and customers
associated with providers inS. ThusBN and MN are the
sets of all service units and all customers, respectively.

Ch 3

Ch 4

BS 1 BS 3BS 2

Ch 1 Ch 2

C 1

C 2 C 3

C 4

C 5 C 7

C 6

Fig. 1: The dashed (solid, resp.) base stations, channels and
customers) belong to provider1 (2, resp.). Provider1 owns
2 base stations each of which has access to one channel, and
thus corresponds to1 service unit each. Provider2 owns1 base
station which has access to two channels, and thus corresponds
to 2 service units. ThusB1 = {1, 2} andB2 = {3, 4}. Also,
M1 = {2, 3, 6} andM2 = {1, 4, 5, 7}.

Assumption III.1. We assume that the achievable rates of a
customer-service unit pair do not depend on communications
of other customers and service units.

1We assume that each base station has a separate radio available for every
channel. Most of our formulations and all our results go through even when
some base stations have fewer radios than channels - wherever applicable we
mention the necessary changes in the formulations in this case.

Each customer or a service unit may be involved in at
most one communication at a given time (time sharing). We
assume, unless mentioned otherwise, that a) the locations of
the base stations and the channels they have access to are
predetermined, and b) the service units and the customers
communicate through single-hop links. We show how these
assumptions can be relaxed in Sections V and VI, respectively.
Each customerj negotiates aservice level agreement(SLA)
in form of a minimum rate guaranteemj with its provider.

For ease of exposition, we consider only downlink commu-
nications in our model (the results easily extend to the case
where communications involve both uplinks and downlinks).
We assume that when customerj is served by service unit
k, j receives at a raterjk, a random variable which is
a function of the location of customerj and the state of
channelk both of which can vary randomly. Letω represent a
network state (customer location, channel qualities resulting
from fading and channel access of primary users2), Ω be
the collection of allωs andP(ω) be the probability that the
network state isω. The ratesrjk are functions ofω and are
denoted asrjk(ω). We assume that|Ω| is finite, since (i)
feasible service rates in any practical communication system
belong to a finite set, and (ii) we can partition the geographical
region where the network is deployed in such a way that the
service rates are identical in each partition.

B. A Coalition Game Model

We now propose a coalitional game theory framework that
models the interactions of the providers.

Definition III.1. A coalitionS ⊆ N is a subset of providers
who cooperate. We refer toN as the grand coalition.

Definition III.2. A coalitional game with transferable payoff
< N , v > consists of a finite setN (set of providers)
and a characteristic functionv(·) that associates with every
nonempty subsetS of N , a real numberv(S), which is the
maximum aggregate payoff (or profit) available for divisionin
any arbitrary way among the members ofS.

A service unit can serve a customer only when either
both are associated with the same provider, or the providers
associated with them are in a coalition. Consider a network
stateω. Let αjk(ω) ∈ [0, 1] be the fraction of time service
unit k serves customerj. When the provider associated with
customerj is in coalitionS, the rate received byj is yj(ω) =
∑

k∈BS
αjk(ω)rjk(ω). Note thatrjk(ω) does not depend on

{αlm(ω), l ∈ MN , m ∈ BN } due to assumption III.1. When
customers associated with provideri receive ratesyi(ω) =
{yj(ω), j ∈ Mi}, i gains a benefit (e.g., revenue from the
customers) ofUi(yi(ω)), whereUi(·) is a concave function.
Next, owing to the tariffs imposed by spectrum regulators or
by the license holders of the channels, provideri incurs a
cost of Vi(zi(ω)), wherezi(ω) = {zk(ω), k ∈ Bi}, zk(ω) =
∑

j∈MS
αjk(ω) is the total fraction of time service unitk

2In case a provider is a secondary user of a licensed channel, the available
rate in the channel depends on the usage patterns of the primary user, as the
secondary can use the channel only when it is not being used bythe primary.
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is used andVi(·) is a convex function.3 Then the profit (or
payoff) of a coalitionS is the sum of theUis for i ∈ S minus
the sum of theVis for i ∈ S. We assume that the benefit
and cost functionsUi(·), Vi(·) are decided apriori (based on
spectrum regulation, customer charging policies etc.), and do
not investigate the optimal selections of these functions.

Providers in a coalitionS have to decide how to schedule
service units to customers, i.e., select the variablesαjk(ω)s,
for each ω ∈ Ω, based on the benefit and cost functions
Ui(·), Vi(·), and the service unit to customer ratesrjk(ω)s
so as to attain the maximum possible payoffv(S) subject to
possible service level agreements.

C. How the Framework Relates to Existing Wireless Networks

We now illustrate via examples how our framework can
be used to model specific communication systems. Consider
elastic data transfers in the downlink of a CDMA cellular sys-
tem (e.g., used for internet access of cellular subscribers) [16,
Chapter 5] with provider setN . Owing to simplicity of physi-
cal layer implementations, a base stationk always transmits at
a pre-determined fixed powerPk. This happens even when no
mobile associated with it requires downlink transmission [17].
Each base station has access to only one band and thus the
service units are same as the base stations. Customers in a
cell are served on atime-sharingbasis, i.e., a base station
transmits to at most one customer at a given time. Also, at any
given time, a customer receives transmissions from at most one
base station. Then,{αjk(ω)} represent the fractions of time
customers are served by different base stations. When base
stationk transmits to customerj and the network realization
is ω, the achievable raterjk(ω) from k to j is a function of
the downlink SINR SINRjk(ω) [16, Chapter 5], where

SINRjk(ω) =
hjk(ω)Pk

∑

i′∈BN \{k} hji′(ω)Pi′ + N0W
,

hjk(ω) are the channel gains between customer-base station
pairs,N0 is the power spectral density of the additive noise and
W is the spectrum bandwidth.4 Thus, SINRjk(ω) and hence
rjk(ω), is independent of which customers are being served
by other base stations. Thus, assumption III.1 holds.

Next, consider downlink communications in a multi-cell
OFDMA system [16, Chapter 6]. Different providers ac-
quire non-overlapping bands and the bandwidth acquired by

3We saya ≥ b if the inequality is satisfied for each component. Then, a
function f(·) is increasing iff(a) ≥ f(b) for any a ≥ b. Natural revenue
and cost connotations would imply thatUi(·), Vi(·) are increasing and0 at
the origin - though our formulations and analytical resultsdo not rely on these
assumptions. Again, usually,Ui(y) =

∑

j∈Mi
gij(yj), wheregij(·) is an

increasing concave (either strict or linear) revenue function chosen by provider
i for customerj. We therefore allow a provider to choose different revenue
functions for different customers. The revenue functions are assumed to be
concave since customers would pay in accordance with their satisfactions,
which are usually concave functions of rates (increase sub-linearly in practice).

4This SINR expression assumes that all base stations use the same band.
This facilitates smooth hand-overs but provides poor SINR to the mobiles
at cell boundaries owing to high interference from neighboring base stations.
Note that CDMA technology can provide acceptable rates evenin presence of
low SINRs. Nevertheless, in some implementations, neighboring base stations
are allocated different bands. In that case, we sum over all co-channel base
stations to obtain the aggregate interference in the denominator.

a provider is divided into several channels (sub-carriers in
OFDM terminology) (For small-scale providers, some of these
channels can be secondary access channels or spectrum white-
spaces acquired from primary users). Each provider partitions
its set of sub-carriers into reuse groups, assigning one such
group of sub-carriers to each base station in such a way to en-
sure that inter-cell interference to simultaneous transmissions
in other base station sub-carrier pairs is negligible. At any
given time, a base station assigns a sub-carrier to only one
customer, but more than one sub-carrier can be assigned to a
customer (multiple allocation). Thus, the intra-cell interference
is negligible as well. Also, each base station, in each stateω,
assigns a fixed transmit power to each of its carriers. Thus, the
rate that a customer gets from a service unit (which denotes
a base station and sub-carrier pair) to which it is assigned
depends only on the channel gain from the corresponding base
station sub-carrier pair to itself, channel usage of primary users
as applicable, and not on the assignments of other customers
and service units. Hence assumption III.1 holds.

IV. RESOURCEPOOLING GAME

A. Optimal Allocation of Customers to Service units

The characteristic functionv(S) for a coalitionS ⊆ N , is
the maximum aggregate payoff of providers inS and is given
by the following concave optimization problem.

P(S) : max
∑

i∈S
ω∈Ω

P(ω)
(

Ui(yi(ω)) − Vi(zi(ω))
)

subject to:

1) yj(ω) =
∑

k∈BS
αjk(ω)rjk(ω), j ∈ MS , ω ∈ Ω

2) zk(ω) =
∑

j∈MS
αjk(ω), k ∈ BS , ω ∈ Ω

3)
∑

k∈BS
αjk(ω) ≤ 1, j ∈ MS , ω ∈ Ω

4)
∑

j∈MS
αjk(ω) ≤ 1, k ∈ BS , ω ∈ Ω

5)
∑

ω∈Ω P(ω)yj(ω) ≥ mj , j ∈ MS

6) αjk(ω) ≥ 0, j ∈ MS , k ∈ BS , ω ∈ Ω

Constraints (3) ensure that for allj ∈ MS , the fraction of
time customerj is served is at most1. Constraints (4) ensure
that the fraction of time each service unitk ∈ BS serves
is at most1.5 Constraints (5) provide the minimum service
guarantees. Incidentally, constraints (3), (4) arise fromthe
time-sharing model,6 but for the multiple allocation model (see

5When a base station has access to multiple channels with only1 radio,
constraint (4) must be modified to bound the sum ofαjk(ω) over customers
j ∈ MS , and service unitsk corresponding to the base station by 1.
For example, if the base station has access toc channels, the fractional
associations to the correspondingc service units,k1, . . . , kc, satisfy the
constraint

∑c

l=1

∑

j∈MS
αjkl

(ω) ≤ 1, ω ∈ Ω. It can be shown that
all the subsequent results extend to this scenario.

6The system can be represented by a complete bipartite graph where the
customers and the service units represent the nodes and there exists a link
between every customer-service unit node pair. Under the time-sharing model,
any customer-service unit assignment corresponds to a matching in the above
graph. Note that for eachω, {αjk(ω)} comprise a feasible allocation of
service units to customers if and only if there exists a corresponding collection
of matchings L1, L2, . . . and a collection of non-negative real numbers
γ1, γ2, .. such that (i)

∑

i
γi = 1, γi ≥ 0 and (ii) if the service unit -

customer allocation follows matchingLi for γi fraction of time for eachi,
then service unitk transmits to customerj for αjk(ω) fraction of time for
all j, k. Constraints (3), (4) provide the necessary and sufficient condition for
feasibility of {αjk(ω)} for eachω [19].
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Fig. 2: Examples of revenue functions. The customers pay
fixed costspjs for being guaranteed minimum average rates
mjs, but do not pay additional costs for rates beyondθjs.

the last paragraph of Section III-C), only (4) suffice - all results
presented below extend even in absence of (3).

Assumption IV.1. P({i}) is feasible for eachi ∈ N , i.e.,
each provider can support the minimum rates of its customers
even when it does not cooperate with other providers.

Then P(S) is feasible for eachS ⊆ N . Also, the optimiza-
tion problem P(S) provides the maximum aggregate payoff
of the providers in a coalitionS and also the optimal service
unit-customer allocations that attain this maximum.

Finally, we examine whether the above resource allocation
framework captures the intricacies of existing wireless traffic.
We focus on data as it is fast emerging as the predominant
component of wireless traffic. Many emerging applications,
such as streaming video, require certain minimum rate, and
the quality of service is critically sensitive to the service rate.
Thus, minimum rate constraints are likely to be integral com-
ponents of service agreements in near future, and providers
are likely to charge (i) fixed fees that are increasing functions
of the minimum rates agreed upon, and (ii) additionally for
service rates they can provide over and above the required
minimum value. A customer may however be willing to pay
additionally for rates only up to a certain maximum rate
value determined by his QoS requirements.7 The following
simple pricing strategy captures the above features. If the
average rate a customer of provideri receives isr, and he
has negotiated a minimum rate guarantee ofm, then he pays
di max (min(r, θ) − m, 0) + e′im, where θ is the maximum
rate the customer needs (Fig. 2 withpj = e′jmj). Owing to
the minimum rate constraints (5) in P(S), each customer’s
average rate is at leastmj . Thus,

Ui(yi) = di

∑

j∈Mi

max(yj , γj) + eimj with ei = e′i + di

captures the above pricing strategy. Note thatUi(·) is a con-
cave function for eachi. Finally, constraints (5) in P(S) apply
to the average service rates; more stringent QoS demands
may require constraints on service rates in eachω, i.e., given
certain desired minimum ratesmj(ω) for different ω ∈ Ω,

7For instance, for layered video streaming [20], all customers need a
minimum rate for an acceptable quality video, but they do notneed more
than the rate required to decode the finest layer.

yj(ω) ≥ mj(ω) for eachω ∈ Ω. The modified optimization
P(S) continues to be a concave maximization with linear
constraints, and all subsequent results apply. Alternatively,
“soft” minimum rate guarantees may be ensured in eachω by
choosing strict concave revenue functions. Specifically, higher
the degree of concavity of the revenue functions (that is lower
the second derivatives), a provider incurs higher additional
revenue in anyω by enhancing the service rate of a customer
who is receiving a low rate at thatω as opposed to enhancing
that of a customer who is receiving a high rate at thatω. Thus,
providers are more likely to equalize the service rates of all
customers at eachω, and thereby ensure certain minimum rates
to each customer at everyω.

B. Sharing Aggregate Payoffs

A rational basis for sharing the maximum aggregate payoff
is imperative to motivate the providers to join the grand (orany
other) coalition. We use a solution concept from coalitional
games known as thecore to provide such a basis.

Definition IV.1. For any real valued vectorx = (xi, i ∈ N )
and any coalitionS, we letx(S) =

∑

i∈S xi. Such a vector is
said to be an imputation ifx(N ) = v(N ) andxi ≥ v({i}) for
all i ∈ N . The core of the coalitional game with transferable
payoff〈N, v〉 is the set of all imputationsx for whichx(S) ≥
v(S) for all S ⊂ N . In other words,

C = {x ∈ R
N : x(N ) = v(N ), x(S) ≥ v(S), ∀S ⊂ N}.

(1)

An imputation provides the payoff shares of providers in a
grand coalition such that no provider’s payoff is below what
it earns in absence of cooperation. The core is a collection of
imputations that provide stronger guarantees: no coalition has
any incentive to split from the grand coalition if the providers
share the aggregate payoffv(N ) as per an imputationx in
the core. To see this, suppose a set of providersS ⊂ N
split from the grand coalition, form a separate coalition,
and share their aggregate payoffv(S) as perw. A provider
i ∈ S, however, would agree to split only ifwi > xi. Thus,
v(S) =

∑

i∈S wi >
∑

i∈S xi which contradicts the fact that
x ∈ C. Therefore, every imputation in the core renders the
grand coalition stable.

We now elucidatev(·) andC using a simple example.

Example IV.1. LetN = {1, 2},Bi = {i}, i = 1, 2, andMi =
{2i − 1, 2i}, i = 1, 2. Let rjk = P for j ∈ M1, and rjk = Q
for j ∈ M2, for all k ∈ BN , P < Q andmj = 0, ∀j ∈ MN .
Let Ui(x) =

∑

j∈Mi
xi and Vi(·) = 0 for eachi ∈ N . Then

v({1}) = P , v({2}) = Q, and v({1, 2}) = 2Q (when the
providers cooperate, the aggregate benefit is maximized when
only2’s customers are served and this maximum is2Q). Then,
C = {x ∈ R

2 : x1+x2 = 2Q, x1 ≥ P, x2 ≥ Q}. For instance,
(Q+P

2 , 3Q−P
2 ) is an imputation in the core. When1, 2 cooper-

ate, the benefit (revenue) earned from1’s (2’s, resp.) customers
is 0 (2Q, resp.), and therefore less (more, resp.) than its payoff
under the above imputation. Provider1’s payoff is positive
since its service unit fetches part of the coalition revenueby
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serving 2’s customers. Also, this imputation increases each
provider’s payoff byQ−P

2 as compared to that in absence of
cooperation (i.e.,xi − v({i}) = Q−P

2 ).

In several coalitional games the core is empty, i.e., no
allocation can stabilize the grand coalition [2, Example260.3],
and in general it is NP-hard to determine whether the core of
a coalitional game is nonempty [21]. A sufficient condition
for the core to be nonempty is the convexity of the coali-
tional game, i.e.,v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ) for
all S, T ⊆ N [2, pp. 260]. But, as the following example
illustrates, the game we are considering need not be convex.

Example IV.2. Let N = {1, 2, 3}, Bi = {i}, i = 1, 2, 3,
Mi = {i}, i = 1, 2, 3. Let r1k = R, k ∈ BN , rj1 = P, j ∈
{2, 3} and rjk = Q, j ∈ {2, 3}, k ∈ {2, 3} and P > Q.
Let mj = 0 for all j ∈ MN . Let Ui(x) =

∑

j∈Mi
xi and

Vi(·) = 0 for each i ∈ N . Thus v({1}) = R, v({1, 2}) =
v({1, 3}) = R + P , and v({1, 2, 3}) = R + P + Q. Let
S = {1, 2} and T = {1, 3}. Thenv(S) + v(T ) = 2R + 2P
andv(S ∪ T )+v(S ∩ T ) = 2R+P +Q. Thusv(S)+v(T ) >
v(S ∪ T ) + v(S ∩ T ). Hence, this game is not convex.

Nevertheless, we next show that the game< N , v > always
has a nonempty core. Our proof technique is similar to ones
presented in [22]–[25]. The proof is constructive in that it
provides an imputation inC as well.

We obtain the dual of the optimization problem
P(S) following dual formulation techniques in [26,
Chapter 5].8 Let λ, β ∈ R

MS×Ω, ν, γ ∈ R
BS×Ω, and

ρ ∈ R
MS . Let giω(λ, ρ) = maxyi(ω)≥0

(

P(ω)Ui(yi(ω)) +
∑

j∈Mi
yj(ω)(λj(ω) + ρjP(ω))

)

and hiω(ν) =

maxzi(ω)≥0

(

− P(ω)Vi(zi(ω)) +
∑

k∈Bi
zk(ω)νk(ω)

)

.
Then we have the following as the dual of P(S):

D(S) : min
∑

i∈S

(

∑

ω∈Ω

(

giω + hiω +
∑

k∈Bi
γk(ω) +

∑

j∈Mi
βj(ω)

)

−
∑

j∈Mi
mjρj

)

subject to:

I) λj(ω)rjk(ω) + νk(ω) + βj(ω) + γk(ω) ≥ 0, j ∈
MS , k ∈ BS , ω ∈ Ω

II) βj(ω), γk(ω), ρj ≥ 0, j ∈ MS , k ∈ BS , ω ∈ Ω

Clearly, D(S) is feasible for eachS ⊆ N . Formulate D(N )
by appropriately defining vectorsλ, β, γ, ν, ρ and letD∗ be
the set of optimal solutions of D(N ). Then,D∗ 6= ∅. Let

I =
{

x∗ ∈ R
N : x∗

i =
∑

ω∈Ω

(

giω(λ∗, ρ∗) + hiω(ν∗)

+
∑

k∈Bi

γ∗
k(ω) +

∑

j∈Mi

β∗
j (ω)

)

−
∑

j∈Mi

mjρ
∗
j

for some(λ∗, ν∗, β∗, γ∗, ρ∗) ∈ D∗
}

Here is the main result:

8The notations can be explained considering|Ω| = 1, M1 = {4, 5, 6} and
M2 = {7, 8, 9}. A vector x ∈ R

M1×Ω will have componentsx4, x5 and
x6 corresponding to customers4, 5 and6 respectively. Similarly, a vectorx ∈
R
M2×Ω will have componentsx7, x8 and x9 corresponding to customers

7, 8 and9 respectively.

Theorem IV.1. I 6= ∅ andI ⊆ C.

Proof: Since D∗ 6= ∅, I 6= ∅. We show that for an
arbitrary x∗ ∈ I, x∗ ∈ C. Note that sinceUi(·)s andVi(·)s
are concave and convex functions respectively, the objective
function of P(S) is concave. Also, the constraints of P(S) are
all linear. Therefore, P(S) is maximizing a concave function
over a convex set. Thus, strong duality holds.

Now, consider an arbitraryx∗ ∈ I, corresponding to one
(λ∗, ν∗, β∗, γ∗, ρ∗) ∈ D∗. Clearly x∗(N ) =

∑

i∈N x∗
i is the

optimal value of D(N ). Since D(S) is the dual of P(S) for
eachS ⊆ N , by strong dualityx∗(N ) = v(N ). Now we
only need to show thatx∗(S) =

∑

i∈S x∗
i ≥ v(S) for any

S ⊂ N . By strong duality,v(S) equals the optimum value of
D(S). Consider the sub-vectorsλ∗

S , ν∗
S , β∗

S , γ∗
S , ρ∗S consisting

of the components ofλ∗, ν∗, β∗, γ∗, ρ∗ in S. Clearly these
sub-vectors constitute a feasible solution of D(S), andx∗(S)
is the value of the objective function of D(S) for the above
feasible solution. Therefore, the optimal value of D(S) is a
lower bound forx∗(S), i.e., x∗(S) ≥ v(S).

Thus, any imputation inI stabilizes the grand coalition.
It also ensures that the payoffs of the providers are com-
mensurate with the resource they invest and the wealth they
generate. For ease of exposition, let there be no minimum rate
requirements and let the benefit and cost functions be linear.
Then, giω(λ∗, ρ∗) = hiω(ν∗) = 0, and provideri’s payoff
x∗

i equals the sum of the Lagrange multipliers correspond-
ing to the constraints (3), (4) for its customers and service
units (β∗

j (ω), γ∗
k(ω), respectively). Lagrange multiplierγ∗

k(ω)
(β∗

j (ω), resp.) is high only when service unitk (customerj,
resp.) is fully utilized, i.e., serves customers (is served, resp.)
all the time, and provides high transmission rates,rjk(ω) and
cost less (pay more, resp.) per unit time (bandwidth, resp.).
Thus, i’s Lagrange multipliers and hencei’s payoff is high
when it invests more resource and/or generates more wealth.

C. Computation Complexity and Distributed Computation

Note that P(S), D(S) are concave optimizations with linear
constraints, and P(S) (D(S), resp.) hasO(|MN ||BN ||Ω|)
variables and constraints (O (max(|MN | + |BN |)|Ω|) vari-
ables, O(|MN ||BN ||Ω|) constraints resp.).9 Under certain
technical conditions, which involve existence ofϑ-concordant
barrier functions [27, Chapter 2, Definition 2.1, Chapter 3.1],
iterative interior point algorithms computeǫ−solutions for
such optimizations using computation time that grows poly-
nomially in the number of variables and constraints given the
desired accuracy parameterǫ, ϑ, and the distance between
the optimal solution and the starting point of the iterations;
the latter is bounded if the feasible set is bounded [27,
Chapter 4].10 The technical conditions hold for a large class
of objective functions, including linear, logarithmic etc. [27,

9Note that we have fewer dual variables as compared to primal constraints
as the dual variables corresponding to some primal non-negativity constraints
can be omitted without any imprecision.

10An ǫ-solution is one that (i) attains an objective value that is at most ǫ
less than the maximum value and (ii) satisfies the feasibility constraints within
an error margin ofǫ.
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Chapter 10], and interior point algorithms have been known
to perform well even in their absence [26, Chapter 11.5.1]. It
can be shown that the optimization problem
max

∑Q
i=1 φi(xi)

subject to:x ∈ G
where φi : R → R are concave functions,|φ

′′

(x)| ≤
B and G ⊂ R

Q is specified by C linear con-
straints involving W variables (W ≥ Q) and A =
maxQ

i=1 (maxx∈G xi − minx∈G xi), may be solved within er-

ror margin ǫ in O(W 2
(

C + Q2A2B
ǫ

)3/2

) time [18, Ap-

pendix A]. Note that P(S) satisfies the above condi-
tions with A = maxj∈MN ,k∈BN ,ω∈Ω rjk(ω), W ∼
O(|MN ||BN ||Ω|), Q ∼ O ((|MN | + |BN |)|Ω|) and C ∼
O(|MN ||BN ||Ω|), if the revenue and cost functions are
additive, i.e., Ui(y) =

∑

j∈Mi
gij(yj) and Vi(z) =

∑

k∈Bi
hik(zk) (which is likely to be the case in practice)

and −B ≤ g′′ij(x) ≤ 0 and 0 ≤ h′′
ik(x) ≤ B for all

x ∈ [minQ
i=1 minx∈G xi, maxQ

i=1 maxx∈G xi]. A large class of
revenue and benefit functions have bounded second deriva-
tives, e.g.,gij(yj) = log(γij + yj) or gij(yj) =

(γij+yj)
1−α

1−α
for arbitrary positiveγijs. The dual D(S) also satisfies the
above conditions provided additionally (i) the minimum rate
constraints do not exist, (ii)|g′′ij(x)| ≥ δ, |h′′

ij(x)| ≥ δ for some
δ > 0and for allx ∈ [minQ

i=1 minx∈G xi, maxQ
i=1 maxx∈G xi]

and (iii) the first and third derivatives of these functions are
upper bounded. Then,B is a function of the bounds in (ii)
and (iii). For D(S), W ∼ O(|MN |+ |BN |), A is the absolute
value of the maximum of the above first derivatives andC, Q
are as for P(S).

The computation times can be large since|Ω|, typically,
is large. This may not however pose a major challenge as
the computations are done off-line using large work-stations
and at a slower time-scale (only when the network state
statistics change or the coalitions are assessed). Also, when-
ever customers do not have minimum rate constraints (see
Constraints (5)), we can solve both P(S), D(S) by solving
separate convex optimizations, one for eachω ∈ Ω - the
number of variables and constraints for each such optimization
depends only on|MS |, |BS |.11 This separability allowed us
to solve the above optimizations for reasonably large systems
using Monte Carlo simulations (Section IX).12

Concave optimizations with linear constraints can be solved
in distributed manner using the theory of subgradients, as de-
scribed in [28] for example. The advantage of this distributed
computation is that each provideri needs to know only its
benefit and cost functionsUi(·), Vi(·) (and not those of the
others), the link ratesrjk only when eitherj is its customer
or k is its service unit. The need for limited access to global

11This separability speeds up the computations as the computation times for
the optimizations are super-linear in the number of variables and constraints.

12In each run of the Monte Carlo simulation, we generate a network state
ω, using the distribution on the service unit-customer rates, and solve the
optimizationsP (S) for the coalitionsS for the givenω. Subsequently, we
computed the average of the payoffs of the providers over a large number of
runs. Using ergodicity it can be analytically shown that as the number of runs
tend to infinity, the averages converge to the optimum solution.

information ensures confidentiality of operations.
For brevity we describe the distributed computations only

for P(S) - an imputation in the core may be similarly com-
puted via solving D(S). We consider the case thatUi(·), Vi(·)
have bounded partial derivatives, and the customers do not
have minimum rate requirements; therefore, owing to the
separability described above, we focus on the optimizationfor
only oneω. Based on message exchanges with other providers,
each provider iteratively updates (i) the downlink allocations
α

(n)
jk from its service units to all customers, (ii) the rates of

its customersy(n)
j and (iii) the total time allocation for its

service unitsz(n)
k and the iterations provably converge to the

optimum (the superscriptn indicates the iteration index). At
the end of each iteration, each provideri communicates (i)
the {α

(n)
jk } iterates for all its service units (i.e.,k ∈ Bi),

and (ii) indicators indicating the status of the satisfaction of
the constraints (1), (3) for its customers (i.e.,j ∈ Mi), to the
providers whose service units can serve its customers (i.e.,
those with positiverjk to its customers). These indicators are
used by other providers in the updates for the next iterations.

We describe the indicators and the update process next. Let
l
(n)
1j be 1 if for customerj at the end of thenth iteration the

LHS exceeds the RHS of constraint (1),−1 if RHS exceeds
the LHS, and0 otherwise. Next,l(n)

2k is defined similarly for
constraint (2) (for service unitk). Now, l(n)

3j is 1 if for customer
j the LHS exceeds the RHS of constraint (3) and0 otherwise.
Next, l

(n)
4k is defined similarly for constraint (4) (for service

unit k). We now describe the update for each provideri, using
constantsδn, K that would be described later. In then + 1th
iteration, provideri (i) for each of its customersj, obtains
y
(n+1)
j by addingy(n)

j andδn

(

∂
∂yj

Ui(y
(n)
i ) − Kl

(n)
1j

)

, (ii) for

each of its service unitsk, obtainsz(n+1)
k by decrementingz(n)

k

by δn

(

∂
∂zk

Vi(z
(n)
i ) + Kl

(n)
2k

)

, and (iii) for each customerj
and its service unitk (not necessarily its customer though)
such that rjk > 0, obtains α

(n+1)
jk by adding α

(n)
jk and

δnK
(

rjkl
(n)
1j + l

(n)
2k − l

(n)
3j − l

(n)
4k

)

.
The updates of the optimization variables depend on the

derivatives of the objective functions and also on whether the
constraints are satisfied - intuitively, the iterates successively
move closer to the optimum value of the objective function
subject to the constraints. Formally, similar to the proof of [28,
Theorem 5], it can be shown that for any (a)K exceeding the
maximum value of the partial derivatives of theU(·), V (·)
functions and (b){δn} such that

∑

n δn = ∞, limn→∞ δn =

0, {α(n)
jk } converge to the optimum allocations [18].

D. Insights From the Framework

Now we discuss how this framework can provide useful
insights about the relation between a provider’s payoff share,
the resources it contributes, and the wealth it generates.
Among the demands and assets in possession of a provider,
one could be more constrained than the others. For instance,a
provider might have a lot of customers, but few service units.
Then, increasing the number of service units could boost the
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payoff generated by the provider, while adding to the number
of customers might not change it. An intuitive observation then
is that the provider that offers more of the demand or asset
that is sought most by the majority in the coalition, is likely to
receive a larger share of the aggregate payoff. The following
example will further elucidate this.

Example IV.3. Consider the setting in Example IV.1 except
that N = {1, 2, 3}, |M1| = 5, |M2| = |M3| = 2, |B1| = 2,
|B2| = 3, and |B3| = 4, rjk = P for all j ∈ MN and
k ∈ BN . Then,v({i}) = 2P for i ∈ N , v({1, 2}) = 5P ,
v({1, 3}) = 6P , v({2, 3}) = 4P , and v({1, 2, 3}) = 9P . An
example allocation in the core(7P

2 , 5P
2 , 3P ) fetches payoff

gains of 3P
2 , P

2 and P to the three providers as compared to
the case when they do not cooperate. Also, somewhat contrary
to intuition, provider1, who has the least number of service
units, attains the highest payoff. This is because the other
providers, i.e.,2, 3 have fewer customers than service units,
and these excess service units are utilized only when1 joins the
coalition along with its customers. Thus,1 is adding the most
value to the coalition by bringing in the demand that is sought
out by others: note thatv({2, 3}) = v({2}) + v({3}) but
v({1, 2, 3}) > v({1})+ v({2})+ v({3}). Also, the providers’
shares of the aggregate payoff are usually largely determined
by parameters other than their decision variables, e.g., the
number of customers, service units, etc.

In Example IV.3, if provider2 can somehow expand its cus-
tomer base, e.g., by extensive advertising, its share increases,
although the aggregate payoff remains the same. Thus, a
provider can accordingly decide how to upgrade its resources.

V. RESOURCEDEPLOYMENT GAMES

We now consider a service unit deployment game which
allows the providers to maximize the aggregate payoffs and
also enhance individual payoffs by deciding which bands to
lease from spectrum regulators or primary users and also
where to deploy base stations in addition to deciding their
allocations to customers. RedefineBi to be the set of service
units available to provider i; Bi, i ∈ N are assumed to be
disjoint. A provideri can use a service unitk available to it
once it “opens” it by paying a fixed feefk; it subsequently
pays usage based charge for using it (theV (·) functions in
the previous sections) which depends only on the amount of
usage and is0 if k is not used. Letbk = 1 if provider i opens
k ∈ Bi and0 otherwise. A provider need not open all service
units available to it, and thus thebks constitute its decision
variables (in addition to the{αjk}s). A service unitk ∈ Bi

can then serve customerj if a) bk = 1 and b) service unitk
and customerj are associated with the same provider or with
different providers who are in a coalition.

We now describe how (i) spectrum acquisition game and (ii)
base station location game can be captured in the setting of a
service unit deployment game. In the former, providers decide
the channels each base station has access to. Each available
service unit corresponds to a base station-available channel
pair, and thus if a provider decides to allow a base station

access to a specific channelk, it opens the corresponding
service unit, by paying the spectrum regulator (a government
agency or a license holder) the fixed fee (membership charge),
fk, and pays usage-based charges for using it subsequently.
Depending on the spectrum pricing model, either the mem-
bership charge or the usage-based charge may be zero, or
both may be positive.13 In a base station deployment game, a
provider decides the locations of its base stations. We initially
assume that each base station has access to only one band, and
thus, the service units are the same as the base stations.Theset
of candidate locations of base stations of provideri constitutes
its set of available service units, and the band available toa
candidate location is decided apriori (based on interference
conditions). A provider can construct a base station at a
candidate locationk by paying the fixed establishment (and
maintenance) costfk. Usually, it will not pay any usage based
costs subsequently and theV (·) functions are0.

A. Characteristic Function Formulation

We now formulate the characteristic functions of the service
unit deployment game. We assumemj = 0 for all j ∈ MN ,
Ui(x) =

∑

j∈Mi
ajxj , Vi(x) =

∑

k∈Bi
skxk for all i ∈ N ,

and also that customers are static and the quality of channels
do not vary with time, i.e.|Ω| = 1.

For a coalitionS ⊆ N , the payoffv(S) is then obtained by
solving the following optimization problem.
Pc(S) : max

∑

j∈MS

k∈BS

αjk(rjkaj − sk) −
∑

k∈BS
fkbk

subject to:

1)
∑

k∈BS
αjk ≤ 1, j ∈ MS

2)
∑

j∈MS
αjk ≤ bk, k ∈ BS

3) αjk ≥ 0, j ∈ MS , k ∈ BS

4) bk ∈ {0, 1}, k ∈ BS

Constraints (1) ensure that the total fraction of time customer
j is being served, is upper bounded by1. A service unitk
can serve at most1 fraction of time if it is open and can not
serve otherwise, by constraints (2). The following example
illustrates how cooperation may change providers’ decisions
regarding the opening of service units.

Example V.1. Let N = {1, 2}, B1 = M1 = {1} and B2 =
M2 = {2, 3}, wheref1 = 0, and f2 = f3 = f . Let r11 =
r12 = r32 = Q, r21 = r22 = r33 = P , andrjk = 0 otherwise.
Supposef < P , and s1 < Q < P . Let aj = 1 for eachj
and sk = 0 for k > 1. Now v({1}) = Q− s1. Also v({2}) =
2P −2f andv({1, 2}) = max[2P −f−s1, 2P +Q−2f−s1],
where the former payoff is the result of opening just service
unit 3, while the latter arises in the event of opening both2, 3.
If Q < f < P , opening both service units is optimal when
not in coalition, while opening only3 is optimal otherwise.
Thus, a provider may need to open fewer service units while
in coalition, which is beneficial for large opening fees.

13In the settings where the providers have decided apriori which channels
the base stations have access to and only need to determine the service unit-
customer allocations, as in Sections III, IV, the fixed fee ispaid for each
channel irrespective of the allocation decisions - thus these do not alter the
optimum allocations and hence were not explicitly considered.
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B. Nonemptyness of the Core

We proceed to prove that the core of the coalitional game
< N , v >, with characteristic functionv(·) given by Pc(S),
is nonempty. Note that the aggregate payoff of a coalition
now is given by an integer (rather than concave) optimization
problem. As a result, the strong duality used in Section IV
does not hold in general. Our proof relies on unimodularity
arguments instead and proceeds in two steps.

Step (i): Consider the coalitional game< N , v̂ >, where
N is the same set of providers and the characteristic function
v̂(·) is given by the LP, Prelaxed(S). Prelaxed(S) is the linear
relaxation of Pc(S), where the constraintsbk ∈ {0, 1} are
now replaced bybk ∈ [0, 1]. We show that the core of the
coalitional game< N , v̂ >, Ĉ, is nonempty.

Using λ ∈ R
MS , and ν, γ ∈ R

BS , we construct the
following LP as the dual of Prelaxed(S)
Drelaxed(S) : min

∑

j∈MS
λj +

∑

k∈BS
γk

subject to:
1) λj + νk ≥ rjkaj − sk, j ∈ MS , k ∈ BS

2) νk − γk ≤ fk, k ∈ BS

3) λj , νk, γk ≥ 0, j ∈ MS , k ∈ BS

Let D∗
relaxed constitute the set of optimal solutions of

Drelaxed(N ). Define:Ic := {x∗ ∈ R
N : x∗

i =
∑

j∈Mi
λj +

∑

k∈Bi
γk for some (λ∗, ν∗, β∗, γ∗) ∈ D∗

relaxed}.

Theorem V.1. Ic 6= ∅, andIc ⊆ Ĉ

Proof: The proof is identical to that of Theorem IV.1.
Step (ii): Next, we prove that, for any coalitionS ⊆

N ,Prelaxed(S) has an integral optimum solution, which there-
fore constitutes an optimum solution of Pc(S). We use the
fact that, the constraints of Prelaxed(S) can be represented as a
totally unimodular matrix:

Definition V.1. A matrix A is totally unimodular if every
square submatrix of A has determinant either0, 1 or −1.

We have the following sufficient conditions for the matrix A
to be totally unimodular [29].

Theorem V.2. SupposeA can be partitioned into two disjoint
setsB and C, with the following properties:

1) Every column ofA contains at most two non-zero entries;
2) Every entry inA is 0, +1, or −1;
3) If two non-zero entries in a column ofA have the same

sign, then the row of one is inB, and the other inC;
4) If two non-zero entries in a column ofA have opposite

signs, then the rows of both are inB or both in C.

ThenA is totally unimodular.

Now, consider the following linear program
P: max cT x
subject to:Ax ≤ b, x ≥ 0
We have the following theorem [30].

Theorem V.3 ( [30]). The linear program
P: max cT x subject to:Ax ≤ b, x ≥ 0
has an optimal integral solution if(1)A is totally unimodular,
and (2)b contains only integers.

For any coalitionS ⊆ N , Prelaxed(S) satisfies the sufficiency
conditions in the above theorem, and therefore has an integral
optimum solution. Thus:

Theorem V.4. For any coalitionS ⊆ N , the integer program
Pc(S) v(S) = v̂(S) for all S ⊆ N .

Theorem V.4 implies thatC = Ĉ. Thus, from Theorem V.1,

Theorem V.5. Ic 6= ∅, andIc ⊆ C.

It follows directly from this theorem that the optimal service
unit opening decisions and the service unit allocations andan
imputation in the core can be obtained by solving the linear
programs Prelaxed(N ), Drelaxed(N ), which can be done in poly-
nomial time. Specifically, Prelaxed(N ) hasW ∼ O(|MN ||BN |)
variables andC ∼ O(|MN ||BN |) constraints, Drelaxed(N ) has
W ∼ O(|MN | + |BN |) variables andC ∼ O(|MN ||BN |)
constraints. Thus each can be solved using Karmarkar’s in-
terior point algorithm [31] inO(C

3

2 W 2L) time where the
obtained solution and the optimal solution match in L most
significant digits.14 Also, the linear programs Prelaxed(N ),
Drelaxed(N ) can be solved by the providers in a distributed
manner and without revealing their confidential information
such as the revenue and costs{aj , sk} to each other, using
the sub-gradient technique as described in Section IV. Finally,
the resulting imputation, which belong to the core, distributes
the aggregate grand-coalition payoff among providers in accor-
dance with the Lagrange-multipliers of Prelaxed(N ), which as
explained in Section IV, are commensurate with the resource
investments and wealth generated by the providers.

C. Generalizations

Finally, we discuss how we can relax our earlier simpli-
fying assumptions. First, when the customers’ locations and
channels’ qualities are random, i.e.,|Ω| > 1, then we can
prove using an extended duality technique that the core is non-
empty and obtain an imputation in the core in polynomial time
under an additional assumption:αjk(ω) ≤ 1/|BN | for each
j, k, ω [18]. Similar results can be shown for a joint spectrum
acquisition and base station location game where providers
have to decide both the locations of the base stations and the
set of channels each base station has access to (allowing each
base station access to multiple channels) [18]. This additional
assumption does not cause any loss of generality for the
network statesω in which there are several customers with
identical transmission rates from the service units (such net-
work states arise frequently when the number of customers is
large). In such cases, the aggregate payoff may be maximized
if each service unit time-shares among the customers that have
identical transmission conditions - thus, even the optimizations
that do not impose this condition explicitly will choose small
αjk(ω)s.

14Thus,L is the number of accuracy digits of the generated solution. Often,
the computation time results are stated in units ofL, e.g.,O(C3/2V 2) per
accuracy digit in the algorithm output.
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VI. COOPERATIONIN MULTI -HOP NETWORKS

Cooperation in multi-hop networks allows the cooperating
providers to redirect their traffic through possibly bettermulti-
hop routes. Consider a network in which customers can com-
municate with service units via potentially multi-hop routes,
that is, via other customers which act as relays. If now a set of
providers agree to cooperate by pooling their service unitsand
customers, not only they benefit from sharing others’ service
units (as in single-hop networks), but they also have accessto
more relay nodes. This, in turn, can increase the capacity of
the network, as well as its power efficiency,thereby enhancing
the payoffs of the providers.15 For instance in Figure 3, in
absence of cooperation, provider1 can send data to customer
6, only through C3, but when the providers cooperate, it
can also send throughC4, C5. We formulate the interactions
among the providers in a multi-hop network using a coalitional
game model, prove that the core of this game is non-empty,
obtain polynomial-time computable (i) optimal strategiesthat
maximize the aggregate payoffs and (ii) payoff shares for
individual providers that render the grand coalition stable (i.e.,
an imputation in the core) and are also commensurate with the
resource investment and wealth generated by the providers.

Ch 3

BS 1 BS 2

Ch 1

C 7

C 6

Ch 2

C 1

C 5

C 2 C 3

C 4

Fig. 3: A multihop network with two providers: the dashed
objects (base stations, channels,customers and links) belong
to provider 1 and the solid objects belong to provider2.
Here, B1 = {1},B2 = {2, 3},M1 = {2, 3, 6} and M2 =
{1, 4, 5, 7}. Providers1 and2 want to send data to customers6
and1 respectively, through multi-hop routes. The thick dotted
links are those resulting from providers’ cooperation.

As in single-hop networks, providers determine the alloca-
tions of the service units. But, an interesting question is:who
determines the communication routes - providers or customers
who relay the traffic? When a customer relays others’ packets,
it essentially provides a service that enhances the providers’
payoffs and consumes its time and energy, and must therefore
be compensated via discounts from the providers. Such dis-
counts must depend on how much traffic each customer relays,
and how much time and energy it invests in relaying. Thus, in

15Note that for certain customers, the increase in the power usage may not
be proportional to that in their service rates, but cooperation increases the
power efficiency of the network as a whole.

its relaying role, a customer is like any other “resource” (like
spectrum for example) whose utilization fetches benefits and
also incurs costs. Thus, the providers determine the multi-hop
routes so as to best utilize the customers’ service potentials
and to regulate the costs they incur. Note that a customer
can regulate its participation in relaying through amaximum
relaying agreementwith its provider that limits the amount of
time it can be used for relaying others’ traffic.

We now describe how the resource pooling game formulated
in Sections III, IV may be generalized to allow multi-hop
transmissions. Consistent with the downlink communication
assumption, we assume that service units transmit to customers
(who are either sinks or relays), but do not receive from
them. We assume that a pair of customers can communicate
with each other (to relay packets) without interfering with
the communications of other customer-customer or customer-
service unit pairs (owing to appropriate channel allocations
for example). Similar transmission models have extensively
been assumed in related contexts, e.g., [5]. The wireless link
to a customerj from a service unit or another customerk
can transmit packets at a raterjk, a random variable which
is a function of the location of customerj and the state of
channelk. A customer and a service unit, or two customers,
can communicate only when both are associated with the
same provider or the providers associated with them are in
a coalition. For instance in Figure 3, the linksC5 − C6 and
C2 − C1 arise when the two providers cooperate.

The service rate of a customerj is defined as the total
rate at which traffic intended forj reachesj. Let τj be the
maximum fraction of time customerj spends as a relay. Let
βj1

j2k(ω) ∈ [0, 1] be the fraction of time, customerj2 receives
the packets destined for customerj1, from customer or service
unit k when the network state isω; βj2

j1j2
(ω) = 0 for all j1, j2

andω. The providers determine the routes through the choice
of the allocations{βj1

j2k(ω)}.
Consider a coalitionS and a network realizationω. When

the provider associated with customerj is in S, j receives a
service rateyj(ω) =

∑

k∈BS∪MS
βj

jk(ω)rjk(ω). Let yi(ω) =
{yj(ω), j ∈ Mi}. Then, provideri gains a benefit (e.g.,
revenue from the customers) ofUi(yi(ω)). Next, customer
j relays the traffic fortj(ω) fraction of time, wheretj(ω) =
∑

j1,j2∈MS\j,k∈BS
(βj1

j2j(ω) + βj1
jj2

(ω) + βj1
jk(ω)). Let pjk(ω)

represent the power usage of customerj when it transmits
to (and thereby relays others’ traffic to) customerk. Then
a customerj in a coalition S, has a total power usage of
zj(ω) =

∑

j1∈MS\{j},k∈MS
βj1

kj(ω)pjk(ω) in relaying pack-
ets. Letzi(ω) = {zj(ω), j ∈ Mi} and ti(ω) = {tj(ω), j ∈
Mi}. Then, provideri incurs a cost ofVi(zi(ω), ti(ω)) owing
to the compensations (i.e., service discounts) required byits
customers for spending time and energy in relaying packets.
FunctionsUi(·) (Vi(·), resp.) are concave (convex, resp.) and
are decided apriori, possibly through prior negotiations with
the customers. We assume that the locations of service units
and the set of channels they have access to are determined a
priori. Thus, we do not consider fixed service unit deployment
costs or channel licensing costs.
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The aggregate payoff available to providers in a coalition
is the difference between their benefits and costs. Therefore,
in order to maximize their aggregate payoff, providers in a
coalition must optimally decide the allocations{βj1

j2k}, based
on the network state, and benefit and cost functions, subject
to the minimum rate and maximum relaying constraints. Let
v(S) denote the maximum aggregate payoff achievable by a
coalitionS. Then,v(S) is the maximum value of the objective
function of the following concave optimization:
Pm(S) : max

∑

i∈S
ω∈Ω

P(ω)
(

Ui(yi(ω)) − Vi(zi(ω), ti(ω))
)

subject to:

1) yj(ω) =
∑

k∈BS∪MS
βj

jk(ω)rjk(ω), j ∈ MS , ω ∈ Ω.

2) tj(ω) =
∑

j1,j2∈MS\j
k∈BS

(

βj1
j2j(ω) + βj1

jj2
(ω) +

βj1
jk(ω)

)

, j ∈ MS , ω ∈ Ω.

3) zj(ω) =
∑

j1∈MS\j
k∈MS

βj1
kj(ω)pjk(ω), j ∈ MS , ω ∈ Ω.

4)
∑

k∈MS∪BS
βj1

j2k(ω)rj2k(ω) =
∑

j∈MS
βj1

jj2
(ω)rjj2 (ω), j1 6= j2 ∈ MS , ω ∈ Ω.

5) tj(ω) +
∑

k∈BS∪MS
βj

jk(ω) ≤ θ, j ∈ MS , ω ∈ Ω.
6)

∑

j1,j2∈MS
βj1

j2k(ω) ≤ θ, k ∈ BS , ω ∈ Ω
7)

∑

ω∈Ω P(ω)yj(ω) ≥ mj , j ∈ MS .
8)

∑

ω∈Ω P(ω)tj(ω) ≤ τj , j ∈ MS .
9) βj1

j2k(ω) ≥ 0, j1, j2 ∈ MS , k ∈ BS ∪MS , ω ∈ Ω

Constraints (4) ensure that the set ofβj1
j2ls satisfy the flow

feasibility constraints, while constraints (5) and (6) guarantee
that they constitute a feasible allocation forθ ≤ 2/3.16

Constraints (7) and (8) impose minimum rate and maximum
relaying guarantees, respectively. Similar to AssumptionIV.1,
we assume that Pm({i}) is feasible for eachi ∈ N , and thus,
Pm(S) is feasible for eachS ⊆ N .

Similar to the proof of Theorem IV.1, one can formulate the
dual problem of the concave maximization Pm(N ) (which is
always feasible) and subsequently, define the setI appropri-
ately. The same proof technique then shows thatI belongs to
the core. Hence, nonemptiness of the core follows.

Finally, similar formulations may be used to model coop-
eration among internet service providers (ISPs) in the same
tier. Specifically, peer ISPs may form coalitions where the

16At eachω, the system can be represented by a graph where the customers
and the service units represent the nodes and there exists a link between
any two nodes (only one of which can be a service unit)j, k such that
rjk(ω) > 0. Any customer-service unit and customer-customer assignment
corresponds to a matching in the above graph. Note that{βl

jk
(ω)} comprise

a feasible allocation of service units to customers if and only if there exists
a corresponding collection of matchingsL1, L2, . . . and a collection of non-
negative real numbersγ1, γ2, .. such that (i)

∑

i
γi = 1, γi ≥ 0 and (ii) if

the allocations follow matchingLi for γi fraction of time for eachi, then
customerj receives from customer or service unitk for

∑

j1∈MS
βj1

jk
(ω)

fraction of time for all j, k. A sufficient condition for feasibility is that the
fraction of time each service unit or customer communicatesis belowθ, where
θ is a constant in[0, 1] and depends on the network topology. For bipartite
networks, for instance,θ = 1, which is also a necessary condition [19]. It
has been shown that in general,θ = 2

3
is a sufficient but not a necessary

condition [19]. Nevertheless, utilization would usually be less than2/3 so
as to avoid inordinate queuing delays. Thus, constraints (5), (6) provide the
necessary and sufficient conditions for feasibility of{βl

jk
(ω)} for eachω

andθ ≤ 2/3 - the θ value is chosen based on delay constraints.

providers in the same coalition route traffic to the cus-
tomers (i.e., end users or the ISPs in lower tiers) through
each other’s routers (analogous to our service units). The
characteristic functionv(S) now represents the total profit of
the ISPs in a coalitionS, and can be obtained by solving
a concave maximization with linear constraints, similar to
Pm(S) - the differences in this optimization are that (i) there
is only oneω as the link qualities will not vary randomly
in wireline networks, (ii) cost functionsVj(·) are zero as
the routers belong to the ISPs (iii) constraint (5), (6) on the
fraction of time each service unit and relay is used must
be replaced by link capacity constraints. The duality gap
continues to be zero. Hence, it can be shown similar to the
proof of Theorem IV.1 that the core is non-empty and an
allocation in the core can be obtained in polynomial time.

VII. OTHER SOLUTION CONCEPTS: NUCLEOLUS AND

SHAPLEY VALUE

We now investigate aggregate payoff sharing among
providers using two other well known solution concepts in
coalitional games, namely the nucleolus and the Shapley value,
and examine whether these payoff shares stabilize the grand
coalition (i.e., belong to the core).

A. Nucleolus

Definition VII.1. The excess of a non-empty coalitionS ⊂ N
under an imputationx is eS(x) = v(S)−x(S). Let e(1)(x) =
maxS:φ⊂S⊂N = eS(x), i.e., e(1)(x) is the maximum among
the excesses of the non-empty and proper subsets of the
grand coalition, e(2)(x) is the second maximum etc. The
nucleolus is the imputationx that lexicographically minimizes
the excesses, i.e., has the minimum value ofe(1)(x) among
all the imputations, subject to minimizinge(1)(x) minimizes
e(2)(x), and so on.

Recall thatv(S) (x(S), resp.) are the maximum aggregate
payoff and (aggregate payoff underx, resp.) of coalitionS.
Thus, one can think ofeS(x) as a measure of dissatisfaction
of S underx. Then, the nucleolus is the payoff share (of the
aggregate grand coalition payoff) that equalizes the dissatis-
factions of the coalitions as far as possible.

The nucleolus of any transferable payoff coalitional game
is a singleton [2, pp. 288]. Whenever the core of a coalitional
game is nonempty, its nucleolus belongs to the core.

When there are only two providers, the excesses of the
coalitions {1}, {2} for an imputation x = (x1, x2) are
(v({1}) − x1, v({2}) − x2) - these are the negatives of the
payoff gains brought about by cooperation. Sincex is an
imputation,x1+x2 = v({1, 2}) is a constant, and thus the sum
of the two excesses is also constant. Also, since the nucleolus
minimizes the maximum excess, it equalizes the two excesses.
Thus, the nucleolus is the payoff vector((v({1, 2}+v({1})−
v({2}))/2, (v({1, 2}+ v({2}) − v({1}))/2). Thus, in Exam-
ple IV.1, the nucleolus payoff allocations areQ+P

2 , 3Q−P
2
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respectively.17 The imputations obtained earlier by solving the
dual of the aggregate payoff maximization problems do not
necessarily equalize the payoff gains, but rather distributes the
payoffs in accordance with the resource investments and the
wealth generated by the providers (Section IX).

B. Shapley Value

Definition VII.2. For any i, and S ⊂ N such thati /∈ S,
let ∆i(S) = v(S ∪ {i}) − v(S). The Shapley value is the
imputationx for which

xi =
1

n!

∑

U∈U

∆i(Si(U)), (2)

whereU is the set of all orderings of the set of players, and
Si(U) is the set of players precedingi in ordering U .

In Example IV.1,∆i(∅) = v({i}), ∆1({2}) = Q, ∆2({1}) =
2Q−P , and the Shapley value is

(

(Q + P )/2, (3Q−P )/2
)

.
Shapley value is the unique imputation that attains certain

desirable game-theoretic properties likesymmetry, dummy
player allocationand additivity [2, pp. 292]. For two player
transferable payoff coalitional games the Shapley value is
the imputation(v({1, 2} + v({1}) − v({2}))/2, (v({1, 2} +
v({2}) − v({1}))/2; it is therefore identical to the nucleolus
and belongs in the core. But, in case of three or more players,
the Shapley value need not be in the core, and therefore need
not stabilize the grand coalition:

Example VII.1. Let N = {1, 2, 3}, Bi = {i} and Mi

be nonempty for each provideri. Let rj2 = 1, j ∈ M1 ∪
M3, rj1 = rj3 = 1, j ∈ M2 and rjk = 0 otherwise. Also,
let mj = 0, ∀j ∈ MN , Ui(x) =

∑

j∈Mi
xj and Vi(·) = 0,

i ∈ N . Clearly, v({i}) = 0 ∀ i, v({1, 2}) = v({2, 3}) =
v({1, 2, 3}) = 2, v({1, 3}) = 0. From (2) and Table I, the
Shapley value of the providers isx = (2

6 , 8
6 , 2

6 ). Note that
x1 + x2 = 10

6 < v({1, 2}). Hencex 6∈ C.

TABLE I: All possible orderings and marginal contributions
of the players.

U ∆1(U) ∆2(U) ∆3(U)
123 0 2 0
132 0 2 0
213 2 0 0
231 0 0 2
312 0 2 0
321 0 2 0

Computation complexity:Since the number of coali-
tions increases exponentially with increase in the number of
providers, naive strategies for evaluatinge(1)(x) for a given
imputation x require exponential computation time. Thus,
naive strategies for evaluating the nucleolus which minimizes

17The aggregate payoff of the coalition is maximized by only serving 2′s
customers. But, if1’s customers leave,v({1}) = 0, v({2}) = Q, and
v({1, 2}) = 2Q and the nucleolus is(Q

2
, 3Q

2
). Thus, although1’s customers

do not receive any service from the coalition, and thereforedo not generate
any revenue, their mere presence enhances1’s payoff (from Q/2 to Q+P

2
).

the above among all imputations also require exponential
computation time. Computation of the Shapley value through
(2) also requires exponential time as the number of possibleor-
derings of the providers increases exponentially with increase
in the number of providers. On the other hand, the imputa-
tions obtained by solving the duals of the aggregate payoff
maximization problems are polynomial time computable and
also stabilize the grand coalition.

VIII. I MPACT OF COOPERATION ONCUSTOMERS

Cooperation enhances providers’ aggregate payoffs which
are increasing functions of the customers’ service rates. Thus,
intuitively, the rates of most of the customers increase when
the providers cooperate. Cooperation may however decrease
the rates of some of the customers, and therefore induce un-
fairness. In Example IV.1 when the providers do not cooperate,
all customers may receive non-zero rates; but the customers
of provider1 receive no service when the providers cooperate.

The unfairness is however mitigated when the providers’
benefit functions are strictly concave. For example, if the
benefit function in Example IV.1 is logarithmic (instead of
linear), i.e.,Ui(yi) =

∑

j∈Mi
log(1+yj), then it can be shown

that each customer of provider1 is served[1−(1/P−1/Q)]/2
fraction of time (assuming1/P −1/Q < 1 which for example
happens ifP > 1) [18]. Note that whenP >> 1 (since
Q > P, thenQ >> 1 as well), then each customer of provider
1 (and of provider2 as well) is served approximately50% of
time irrespective of whether the providers cooperate. Thus,
cooperation does not induce any unfairness in this case.18

The benefit functions may be chosen during negotiations
between providers and customers and may also be controlled
by regulatory bodies (e.g., FCC in USA).

Our coalitional game framework also allows the customers
to mitigate this unfairness (even in presence of linear benefit
functions) by imposing minimum rate constraints through
SLAs (Example IV.1 had no SLAs), e.g., all the customers
in Example IV.1 may ask for a minimum rateP2 . Then,
v({1}) = P, v({2}) = Q, v({1, 2}) = P + Q, and each
customer receives the same rate irrespective of cooperation.
But, then, the core has the unique imputation of(P, Q) which
provides no payoff gain to any provider as compared to when
they do not cooperate. The question then is whether provider
1 should accept the above SLA? More generally, should
providers accept any SLA? The following example suggests
that the providers ought to accept SLAs, but selectively.

Example VIII.1. Again consider Example IV.1, with the
difference that each customer of provider1 requests an SLA
equal to P

2 . Moreover, customers inM1 do not require
service rates above3P

4 , and as a result will not pay for
any extra service. Let the grand coalition payoff be shared

18Under logarithmic benefit functions, cooperation does not enhance the
providers payoffs in this case either. This happens since each customer has
the same rate from all the service units. However, when customers have rate-
diversity, i.e., have potentially different rates from different service units,
cooperation substantially enhances the payoffs of individual providers for
logarithmic and several other strictly concave benefit functions (Section IX).
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Fig. 4: The left, middle and right sub-plots respectively show providers’ payoffs, payoff gains and percentage payoff-gains as
functions of the number of customers: the three providers have 3k, 4k and5k customers, respectively.

among the providers as per the nucleolus. If provider1
rejects both SLAs, customers inM1 leave and we have:
v({1}) = 0, v({2}) = Q, and v({1, 2}) = 2Q. Consequently,
providers’ payoffs will be(x1, x2) = (Q

2 , 3Q
2 ). Instead, if

provider 1 accepts one of the SLAs and rejects the other, we
have: v({1}) = 3P

4 , v({2}) = Q, and v({1, 2}) = P
2 + 3Q

2 ,
which lead to payoffs(x1, x2) = (5P+2Q

8 , 10Q−P
8 ). Finally, if

provider1 accepts both SLAs, we have:v({1}) = P, v({2}) =
Q, andv({1, 2}) = P + Q, and therefore,(x1, x2) = (P, Q).
If Q > 5P/2 (Q < 3P/2, resp.), then it is optimal for provider
1 to reject (accept, resp.) both SLAs. If3P

2 < Q < 5P/2, then
it is optimal for provider1 to accept only one of the SLAs.

We now introduce a framework that allows the providers in
a coalition to jointly decide which SLAs to accept. Clearly,
the optimal cooperation strategy of a coalitionS then involves
selecting a set of SLAs that maximize the aggregate payoff
- let v̂(S) be this maximum aggregate payoff. Letsj be
a decision variable indicating whether customerj’s SLA is
accepted:sj = 1 if so andsj = 0 otherwise. Then,̂v(S) is
given by the maximum value of the objective function of P(S)
in Section IV, with constraints (3), (5) being

∑

k∈BS
αjk(ω) ≤

sj , j ∈ MS , ω ∈ Ω,
∑

ω∈Ω P(ω)yj(ω) ≥ sjmj , j ∈
MS respectively. Note that for any customerj, the minimum
rate constraint (modified constraint (5)) is nontrivial, only if
sj = 1. Also, for a customerj with sj = 0, αjk(ω) = 0,
for each k ∈ BS and at eachω because of constraint (6)
and modified constraint (3). These two conditions ensure that
in any optimal solution of the above optimization problem,
only customers with accepted SLAs are served. Thus, the
solution of this integer optimization provides the optimumset
of acceptable SLAs. Establishing the non-emptiness of the core
of this coalitional game remains open.

IX. QUANTITATIVE EVALUATIONS

In the context of the resource pooling game (Section IV),
we evaluate the benefits of cooperation and compare differ-
ent payoff sharing schemes such as the dual-based payoff
shares (Section IV) and the nucleolus (Section VII) for a range
of benefit functions.

We first consider a logarithmic revenue (benefit) func-
tion Ui(yi) =

∑

j∈Mi
log(1 + yj) and zero cost function

Vi(zi) = 0 for each provideri ∈ N . Thus, Ui(yi) is a
strictly concave function and assumes positive values except
when yi is the zero vector and in this case the revenue is
0. Note that logarithmic functions have been widely used as
satisfaction functions of customers and therefore constitute
good candidates for the revenues they pay (and hence for the
benefits the providers incur). The cost functions are zero when
the providers acquire the resources (spectrum, base stations)
apriori by paying fixed (licensing or deployment) fees and do
not incur subsequent usage based costs.19 Also, we assume that
the customers do not have SLAs as is typically the case for
elastic transfers from the Internet (e.g., file transfers).We allow
the service unit-customer ratesrjk to be uniformly distributed
over the set{0, 100, 200}Kbps, and to be independent across
service unit-customer pairs(j, k). The characteristic functions
v(S) for different coalitionsS and the dual based imputation
in the core can now be obtained by solving the concave
optimization P(S), D(S) (Section IV). The nucleolus can sub-
sequently be computed using Definition VII.1. We denote the
payoff of a provideri (i) in absence of cooperation asxi (i.e.,
xi = v({i}), (ii) in the grand coalition asxo

i (nucleolus) or
x∗

i (via solving dual optimization). Owing to large state spaces
we useMonte Carlo simulationsin our evaluations.

We first consider3 providers, B1 = B2 = B3 = 1,
and M1 = 3k, M2 = 4k, M3 = 5k where k ranges from
1 to 20 (Figure 4). The plots show that cooperation leads
to substantial payoff improvements for all providers, and the
payoff-gains increase as the number of customers increase.As
expected (from Definition VII.1),the nucleolus distributes the
payoff gains more equitably than the dual based profit-share
which allocates payoff gains in increasing order of the number
of customers (wealth generated), reserving the highest payoff
gain for the provider with the highest number of customers.

19Recall that the fixed service unit deployment and acquisition fees need to
be considered explicitly only when the deployment and acquisition of service
units constitute optimization decision variables as in theresource deployment
game in Section V, and not when these are decided apriori as inthe resource
pooling game of Section IV.
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Fig. 5: Providers’ payoffs as functions of
number of customers: the first provider
has 20 customers while the number of
customers of the second,M2, is varied.
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providers are plotted as functions ofα.

Nevertheless, the payoffs of each provider are similar under
both payoff sharings, and also to those under the Shapley value
(see [18]).The percentage gains in payoffs due to cooperation
are quite significant (30%− 40%) for each provider.

Henceforth, for simplicity, we focus on2 providers. Note
that the Shapley value is the same as the nucleolus in this
case (Section VII - paragraph before Example VII.1). We
investigate the impact of varying the (i) demand (number of
customers) and (ii) asset (number of service units) of only one
provider while keeping the other’s demand and asset fixed.
First, let N = 2, B1 = B2 = 1, M1 = 20 and vary the
number of customersM2 of provider 2 (Figure 5). Next, we
let N = 2, M1 = M2 = 20, B1 = 5, and vary the number of
service unitsB2 of provider2 (Figure 6). As the demand (or
asset) of the second provider is increased, the payoff of the
second provider increases under both the nucleolus and dual-
based payoff sharing rules, but that of the first may either
increase (Figure 5) or decrease (Figure 6), depending on how
its importance in the cooperation changes due to the increase
in the demand (or asset) of the second. Mathematically,
xo

1 = v({1, 2})+v({1})−v({2})/2, and as the demand (asset)
of the second increases,v({1, 2}), v({2}) increase butv({1})
does not change. Thus, the differencev({1, 2})− v({2}) may
either increase, or decrease. Nevertheless, the payoff of the
first always exceeds that it attains without cooperation. Also,
in both cases the provider with the larger demand or asset
obtains higher payoffs under both sharing rules.

We now investigate how the choice of the revenue function
affects providers’ payoff gains. In particular, we consider
the generalizedα−fair revenue function [32]:Ui(yi) =
∑

j∈Mi

(yj)
1−α

1−α , where 0 < α < 1. Note that for eachj
∂2

∂2yj
Ui(yi) = −α(yj)

−1−α and thus intuitively the “concav-
ity” of the revenue function increases with increase inα (the
function is linear ifα = 0). We plot the providers’ percentage
payoff gains as a function ofα, for N = 2, B1 = B2 = 1
and M1 = 10 and M2 = 20 (Figure 7). Nucleolus and the
dual based sharing rules provide similar payoff gains. More

importantly, the percentage payoff gains for both providers
increase significantly with increase inα - thus, higher the
concavity, the more beneficial cooperation is.This can be
explained as follows. For smallα (i.e., nearly linear benefit
functions), at anyω, the aggregate revenue is maximized by
allocating each service unit to one customer. Next, given that
the number of customers (10 or 20) significantly exceeds the
number of service units (1) of each provider, usually (i.e., for
most ω) each provider’s service unit has excellent transmis-
sion conditions to at least one of its own customers. Thus,
cooperation can not enhance the aggregate customers’ rates,
nor the providers’ aggregate and hence individual payoffs.
As α increases, the aggregate payoff increases when more
equitable rates are provided to the customers at eachω. When
not in coalition, in order to roughly equalize the rates of the
customers, each provider’s service unit must therefore serve
customers with poor transmission qualityrjk for considerable
fractions of time. When the providers cooperate, usually,
most of the customers have high transmission rates from
at least one service unit - thus equitable rates can also be
provided by allowing each service unit to time-share among
the customers (not necessarily of the same provider) that have
good transmission quality from it. Thus, equity is attained
through good match between customers and service units
and without compromising the overall customer rates and
providers’ revenues. Thus, cooperation substantially enhances
aggregate, and therefore individual, payoffs.

Finally, we illustrate the benefits of cooperation and com-
pare the dual and nucleolus based payoff shares in presence
of SLAs. We consider3 providers each with3 service units
and 10 customers. Now,rjk = 100 Kbps (200Kbps, resp.)
with probability0.8 (0.2, resp.). Each provider has3 premium
and7 best effortcustomers: the former have negotiated SLAs
which guarantee a minimum average ratem. We consider
linear revenue functions:

Ui(yi) =

3
∑

j=1

(βm + α(yj − m)) +

10
∑

j=4

αyj
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Fig. 8: Providers’ payoffs as a function of the guaranteed rate
to the premium customers

where β > α captures the higher payoff per Kbps for the
service guarantees to the premium customers. We choose
α = 1 and β = 1.5. The revenueα

∑10
j=1 yj is denoted as

“usage based revenue” and the rest(β − α)3m is the fixed
fee associated with SLAs. Due to symmetry, providers receive
equal payoffs under both dual and nucleolus based shares.
As Figure 8 reveals, cooperation enhances each provider’s
revenue: the increase is significant when the size of each
coalition increases from 1 to 2, and somewhat less when
the size increases to 3. For smallm, a provider does not
need to compromise on the efficient usage of resources (i.e.,
it preferentially serves the customers with high transmission
rates). Each provider’s payoff increases linearly withm in this
region due to the increase of the fixed fees associated withm.
However, beyond a certain threshold, each provider needs to
schedule a few lower rate links to the premium customers
(instead of the higher rate links to the best effort customers)
to satisfy the SLAs. This lowers the aggregate service rates,
and each provider’s payoff decreases linearly with increase in
m. Cooperation increases this threshold and also the aggregate
rate of all the customers by allowing the scheduling of higher
rate links more often.

Next, we consider an asymmetric scenario where each
provider has10 customers as before, but they respectively
have3, 0, k premium customers;k is varied from1 to 7. All
the premium customers demand a minimum guaranteed rate
of 125Kbps. It turns out that a provider alone cannot guar-
antee125Kbps to more than3 customers. Similarly, any two
providers can support at most8 premium customers together.
Thus, P({3}) is not feasible fork > 3, and assumption IV.1
no longer holds. Fork > 3, we definev({3}) as the objective
function of P({3}) with 3 premium customers, fork > 5,
v({1, 3}) is the objective function of P({1, 3}) with 5 premium
customers, and fork > 8, v({2, 3}) is the objective function
of P({2, 3}) with 8 premium customers. It turns out that
the dual and nucleolus payoff shares are in the core, and
hence the core is non-empty. Figure 9 plots the providers’
payoffs as functions of the number of premium customers
of the third provider under both allocations. The dual based
allocation equally divides the total usage based payoffs among
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Fig. 9: Providers’ payoffs as a function of the number of
the premium customers of the third provider.x∗

1, x
∗
2, x

∗
3 and

xo
1, x

o
2, x

o
3 are payoffs corresponding to the dual allocation and

the nucleolus respectively.x1, x2, x3 are the providers’ payoffs
if they do not cooperate.

all providers, and allocates the fixed fees of each provider’s
customers to the provider. Thus, the payoffs of providers1, 2
do not change with increase ink, but that of provider3
increases linearly with increase ink. The nucleolus however
transfers a part of the fixed fees provider3 earns to other
providers - intuitively such transfer is warranted as provider3
can not support all its premium customers by itself fork > 3.
Thus, payoff shares of all providers change with increase in
k, and evidently, the nucleolus based payoff gains are more
equitable than the dual based ones. In all the allocations,
a provider with larger number of premium customers gets
a larger payoff share, and each provider’s payoff increases
substantially due to cooperation.

X. CONCLUSION AND FUTURE WORK

We studied cooperation among providers in wireless net-
works. If providers cooperate, they can jointly decide how to
deploy their service units, pool their service units and allocate
them to the joint pool of customers in an optimal fashion.
We formulated the problem as a transferable utility coalitional
game. We showed nonemptyness of cores in various scenar-
ios (see Theorems IV.1, V.5 etc.) implying that cooperationis
not only globally optimal, but also makes each of the providers
better off. Our proof technique is constructive and yields an
optimal resource allocation and corresponding profit shares.
Our numerical evaluations reveal that cooperation substantially
enhances individual provider’s payoffs.

We now outline some open problems. The computation time
for an allocation in the core may be high since it depends
polynomially on the number of possible channel state and mo-
bile location realizations (|Ω|), which is large. Obtaining near-
optimal solutions with low computation time remains open.
Next, in practice, coalition formation can incur overheads,
e.g., from increased computing requirements. Investigating
the stability of the grand coalition considering the coalition
formation overhead constitutes an open problem. Finally, we
considered a system where the customer subscriptions and
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the providers’ revenue function have already been determined.
Investigating cooperation among the providers when the cus-
tomers dynamically decide their subscription based on the
revenue functions, and how providers can dynamically and
optimally select the revenue functions so as to enhance their
individual share of the overall profit remain open.
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