
FLOW-CONTROLLED THROUGHPUT
IN DISTRIBUTED SIMULATORS

OF FEEDFORWARD QUEUEING NETWORKS

Rajeev Shorey�and Anurag Kumar
Dept. of Electrical Communication Engg.,

Indian Institute of Science,
Bangalore, 560 012, INDIA

Email: srajeev@in.ibm.com, anurag@ece.iisc.ernet.in

Abstract

Sequential simulation of complex systems can be exceedingly
slow and expensive. An obvious means of obtaining faster sim-
ulation is to dedicate more resources to it. Distributed Discrete
Event Simulation has emerged an important method to study
the behaviour of various systems, such as, for example, wire-
line and wireless networks. In this paper we study the flow-
controlled throughput in the distributed simulators of commu-
nication networks. In particular, we study feedforward queue-
ing networks. It is known that, without some kind of interpro-
cessor flow control, a distributed simulator of a feedforward
queueing network is unstable, in the sense that event message
queues, at event sequencers, grow without bound. Interpro-
cessor flow control is thus necessary to stabilize the simulator.
We study two flow control mechanisms: bounded buffers and
moving time windows. We model a simple distributed simu-
lator with these flow controls, and obtain the flow controlled
throughput for each control, with conservative and maximum
lookahead sequencing. For bounded buffer flow control we s-
tudy the flow controlled throughput with varying buffer limit.
We find that, in both flow control schemes, the flow controlled
throughput is bounded by the throughput without flow control.
For the moving time window protocol, we show that the rate of
virtual time advance of the flow controlled logical processes is
equal.
Keywords: Modelling, Communication Networks, Distributed
Simulation, Throughput, Flow-control

1 Introduction

Performance modelling of communication networks can be
quite complex, and, it is well known that except for some sim-
ple systems, mathematical analysis of communication network-
s is intractable. Closed form expressions are hard to find and
therefore, simulation of such systems becomes necessary in or-
der to study their detailed behaviour.

It is generally the case that sequential simulation of complex
systems is exceedingly slow and expensive. Running a simula-

�The (corresponding) author’s current address is: IBM India Research
Laboratory, Block 1, Indian Institute of Technology, Hauz Khas, New Delhi
110016, India. Email: srajeev@in.ibm.com, Phone: 91-11-6861100; Fax: 91-
11-6861555

tion requires substantial computational resources. An obvious
means of obtaining faster simulation is to dedicate more re-
sources to it. It is for this reason that Distributed Discrete Event
Simulation [2] has received much attention in recent years.

In Distributed Discrete Event Simulation, the system being
modelled, usually referred to as the physical system, is viewed
as being composed of some number of physical processes that
interact at various points in simulated time (also called the vir-
tual time). The distributed simulator is constructed as a set of
logical processes, one per physical process. All interactions be-
tween physical processes are modelled by time-stamped even-
t messages sent between the corresponding logical processes
(LPs). It is well known that a distributed simulation is correct
if one adheres to the local causality constraint, i.e., if each LP
processes events in nondecreasing time-stamp order [2].

In [6], we proved that in distributed simulators of feedfor-
ward queueing networks, the message queues that precede the
event sequencers are unstable for conservative sequencing. We
then proved that even with maximum lookahead (i.e., prescient
knowledge of the time-stamp of the next message yet-to-arrive
on a channel with an empty message queue) these queues are
still unstable. We concluded in [6] that in feedforward models
the resequencing problem is fundamentally unstable, and some
form of interprocessor “flow control” is necessary in order to
make the message queues stable.

The rate of departure of processed “customers” from the sim-
ulator is the throughput of the simulator. The throughput of the
simulator is a useful quantity as it is a measure of progress of
the simulation. For example, each departure from the simula-
tor yields a sample of customer sojourn times; the larger the
simulator throughput the greater the number of samples we get
in a fixed amount of simulation time. With this in mind, in
this paper, we focus on the throughput of distributed simula-
tors of feedforward queueing networks with flow control. In
the study of flow controlled throughput, we analyse two ap-
proaches, namely, bounding the buffers of the message queues,
and Moving Time Windows [7], [8]. Various logical processes
can be prevented from getting too far apart in virtual time by
means of a mechanism like Moving Time Windows. We anal-
yse bounded buffer flow control with conservative sequencing
and with maximum lookahead sequencing; we analyse moving
time window flow control with maximum lookahead sequenc-
ing. We obtain numerical results and expression for the flow



�
��

��

�

�

�

�

�

�

logical process

processor
event

sequencer
event

from ���

from ���

from ���

Figure 1: Schematic View of a Logical Process

��
�

�

�

�

�

2

1

processor
event

sequencer
event

Figure 2: A Logical Process with Two Input Message Streams

control throughput; in each case the flow controlled throughput
is found to be bounded by the throughput without flow control.

While such mechanisms will serve to stabilize buffers, our
approach of modelling and analysing the message flow process-
es in the simulator points towards certain fundamental limits of
efficiency of distributed simulation, imposed by the synchro-
nization mechanism.

The outline of the paper is as follows. In Section 2 we de-
scribe our model for a distributed simulator, and recall the basic
instability result of [6]. In Section 3 we obtain the simulator
throughput without flow control. In Sections 4.1 and 4.2 we
analyse the model with bounded buffers, and moving time win-
dow flow controls, respectively. Section 5 has the Conclusions.

2 Instability of Event Sequencing

A distributed simulator comprises several logical processes
(LPs) on several processors. Each logical process simulates a
portion of the queueing network. The simulation is coordinat-
ed by exchange of time-stamped messages between the various
LPs. Each�� may be viewed as comprising an input queue for
each channel over which it can receive messages from anoth-
er logical processes (e.g., ���� ���� � � � � ���) (see Figure 1).
The simulation makes progress when events are processed in
an event processor associated with an LP. Since the event pro-
cessor must process the events in time-stamp order, it must be
preceded by an event sequencer. The event messages must e-
merge from the sequencer in time-stamp order. This view of
a distributed simulator as itself being a queueing system has
been used to study the performance of distributed simulation;
see [6], [9].

Consider two time-stamped message streams arriving to a
logical process (see Figure 2). Within each stream the messages
are in time-stamp order. The messages must be processed in
overall time-stamp order by the event processor.

In [6], we assumed that the two message arrival streams for-
m independent Poisson processes, and that the successive time-
stamps in each stream are independent sequences of Poisson

�

�
�
�
�

�
�
�
�

�
��

�

�

Throughput =
��
��
��� � ���

�

PROCESSOR
EVENT

���
��

��

���

���

Sequencer

Event

Figure 3: Throughput of the Event Sequencer with no Flow
Control and ��

��
� ��

��

epochs independent of the message arrival process. These as-
sumptions apply to a simulator of a stationary, feedforward,
Jackson network, and if the event processor service times are
exponentially distributed. With these stochastic assumptions,
we proved that in the model of Figure 2 the message queues are
unstable for both conservative sequencing and sequencing with
maximum lookahead�.

We then showed ([6]) some generalizations of these instabil-
ity results to point processes with certain ergodicity properties.
Extensions of these instability results to simulators of queueing
networks with feedback can be found in [3].

3 Throughput of the Event Sequencer
with no Flow Control

In this section, we obtain the throughput of the event sequencer
when there is no flow control. We consider a simple model with
two arrival streams at the event sequencer (see Figure 3). We
find an expression for the throughput of the event sequencer.
The throughput of the event sequencer will be equal to the ar-
rival rate of messages to the event processor that follows the
event sequencer. The results can easily be generalized to the
case where there are more than two arrival streams, or when
the output from the event sequencer is fed to an event proces-
sor or another event sequencer.

We assume that the two message streams form Poisson pro-
cesses with rates �� and �� respectively, and that the successive
time-stamps in each stream are Poisson epochs with rates ��
and �� respectively. If now ��

��
� ��

��
(i.e., the rate of arrival

of virtual time from ��� is greater than that from ���), then
the queue of messages received from ��� (i.e., Queue 2) will
grow without bound. Thus a message arrival at Queue 1 will
result in a batch of messages arriving at the event processor.
In conservative sequencing, this batch consists of the arriving
message in Queue 1, and all those messages in Queue 2 that
have lower time-stamp than the message in Queue 1. In the
maximum lookahead algorithm, since there is already a looka-
head at Queue 1 (it being empty prior to the arrival), all the
messages in Queue 2 with time-stamp lower than the looka-
head would have already been sequenced. Now, an arrival at
Queue 1 immediately leaves the sequencer resulting in a new

�An unrealisable, ideal algorithm in which the sequencer knows the time-
stamp of the next event yet to arrive at a queue. In general purpose simulators,
that use only event time stamps for sequencing, no sequencing algorithm can
process more correct events than the maximum lookahead algorithm; see [5].



�

�
�
�
�

�
�
�
�

��

�

�
�

�

���
��� ��

��� ��

���

���

Sequencer

Event

Figure 4: ��� and ��� Sending Messages to ��� (bounded
buffers)

lookahead at Queue 1. Thus, in maximum lookahead, the de-
parting batch consists of the arriving message at Queue 1 and
all those messages in Queue 2 that have time-stamp that fall
within the new lookahead.

The time-stamp process at stream 	, 	 � �� �, is a Poisson
process with rate ��. Therefore, the mean number of messages
that depart from Queue 2 for each arrival into Queue 1, is given
by ��

��
.

It follows that,

Departure rate of messages from Queue 1 � ��

Departure rate of messages from Queue 2

� ��

�
��

��

�
� Throughput of the event sequencer

� �� � ��

�
��

��

�
� ��

�
� �

��

��

�

The expression for the throughput of the event sequencer in-
volves the parameters of the simulator (processor speeds) and
the model being simulated, and hence clearly demonstrates the
performance impact of various ways of mapping the simulation
model onto the processors. In [5], we have studied in greater
detail the mapping of the queues to the processors.

In the next section, we study the throughput of the even-
t sequencer when there is flow control at the event sequencer
queues, thus, rendering the message queues stable.

4 Throughput of the Event Sequencer
with Flow Control

The instability result in [6] implies that if all logical processes
(LPs) are permitted to proceed at their own rates then message
buffers will overflow. Thus these simulations must be stabilized
by some form of interprocessor “flow control”. There are vari-
ous ways to flow control the LPs. We could bound the buffers
at the event sequencer and send flow control messages when
buffer overflow is imminent, or, various LPs can be prevented
from getting too far apart in virtual time by means of mecha-
nisms like Time Windows [7]. In this section, we will analyse
each of these mechanisms and find the throughput of the event
sequencer.

4.1 Analysis of Bounded Buffer Flow Control

We assume that each message queue at the event sequencer can
hold at most � messages. When the buffer size at a message

queue reaches �, a flow control message is sent to the sending
�� instructing it not to send any more messages. In Figure 4,
an event sequencer with two message queues is shown. If the
buffers (messages queues) have � messages, then ��� or ���
do not send any more messages. Note that we assume zero
communication delays in the distributed simulator.

We assume that the two message arrival streams form Pois-
son processes with rates �� and �� respectively, and that the
successive time-stamps in each stream are Poisson epochs with
rates �� and �� respectively.

We also assume that, on receiving a control message, an ��
(��� or ���) stops generating any more messages. When ���

releases the control, the �� that was blocked resumes message
generation; owing to our assumption of exponential message
generation times, the time after which the next message arrives
from that �� is exponentially distributed.

4.1.1 Throughput with Conservative Sequencing

We wish to study the process
�
���� (� ���� � � � ���������� � ��� �� �� � � � ����, where

��� � 	 if the number of unsequenced messages in Queue 1
is 	, and 
��� � �	 if the number of unsequenced messages in
Queue 2 is 	. Note that both queues cannot have unsequenced
messages, and in conservative sequencing one queue is always
nonempty.

We study the process �
���� embedded at the epochs in the
superposition of two Poisson streams of rates �� and ��. De-
note this embedded process by �
��. When �� � 
� � �

then each epoch in the embedding Poisson stream corresponds
to a message arrival. When 
� � �, however, then only the
epochs of the Poisson process of rate �� correspond to arrival-
s from ���; at the other epochs of rate �� there is no change
in the process �
��. Similar comments hold for 
� � ��.
This is the uniformisation approach for analysing the continu-
ous time process �
����.

Define
��

�����
�� � �

��
�����

�� �. If the rates ��� ��
and ��� �� are strictly greater than zero, then 	 � � � �, and
	 � 
 � �.

The process �
�� � � 	� is a Markov Chain on � 
�
���� � � � ���������� � ��� �� �� �� � � �� �� with transition
probabilities:
For � 	 	 � �

������ � �

���������� � ��� ��

and, for � 	 	 	 �

������ � ��� ��
���� 
� for 	 	 � 	 	� �

����� � ��� ��
�

���������� � ���� 
��
 for 	 	 � 	 	� �

����� � ���� 
��

At the boundaries of the state space � and ��, we have

���� � ��� ����� 
� � �

������ � �
 � ��� ��



These equations easily follow from the assumptions of Poisson
event arrivals and time-stamps. For example, consider ���� ;
if 
� � � then 
��� � � at the next embedding epoch if
the next epoch corresponds to an embedding epoch of rate � �
(this has probability �), or if the next epoch corresponds to an
embedding epoch of rate �� and the time-stamp of the arriving
event (note that ��� is not blocked) is less than the time-stamp
of the first event queued in Queue 1 (this has probability �� �
����� 
�).

Let �� be the transition probability matrix of this Markov
chain. We obtain �, the stationary probability vector of the
Markov chain by solving the equations [10]

� � ����
���

�� � �

We solve these equations numerically.
Departures from the event sequencer can occur only at e-

pochs in the uniformising Poisson process of rate �� and ��.
The mean number of departures at such an epoch, when the
sequencer buffer is in state 	, is

	��� ��
� �

����
���

�� � ����� ��
� ��� 
�

The first term in this expression corresponds to the event that
at this epoch an arrival occurs at Queue 2, and its time-stamp is
larger than that of all messages in Queue 1; hence all the events
in Queue 1 (i.e., 	 messages) can depart the sequencer. The
second term is for the case in which the arrival at Queue 2 has
a time-stamp larger than ��	 	 � � 	� messages in Queue 1,
in which case � messages leave from Queue 1, and the arriving
message also leaves.
Hence the throughput, �	
��, of the system is given by

�	
�� � ��� � ���

�
��
���

���	��� ��
�

�

����
���

�� � ����� ��
���� 
��

�

��
���

����	���� 
�� �

����
���

�� � ������ 
��
�

��
�

4.1.2 Throughput with Maximum Lookahead Sequencing

Maximum lookahead is an idealised algorithm, in which the
event sequencer is provided with the time-stamp of the next
event yet to arrive at each empty queue. Suppose Queue 1 is
empty. Events in Queue 2 whose time-stamps are less than the
lookahead epoch in Queue 1 can be allowed to leave. When
the event arrives to Queue 1 it is immediately allowed to leave
(since Queue 2 has been sequenced upto the time-stamp of this
arriving event), and a new lookahead is sampled for Queue 1.
If now the lookahead at Queue 1 is so large that all the events in
Queue 2 can leave, then a lookahead is obtained for Queue 2 al-
so; thus both queues can become empty and virtual time moves
up to the smaller of the virtual times at the two queues. Now the
event arriving to the queue with the smaller (lookahead) virtual

time will leave immediately, but the event arriving to the other
queue will have to wait.

As in the previous section, let �
�� � � 	� denote the num-
ber of unsequenced messages just after �	
 epoch in a Poisson
stream of rate �����. We use the same stochastic assumptions
and notation as before. As observed above, now 
� can be 0.

With the above description of maximum lookahead sequenc-
ing, and the stochastic assumptions we have made, it is easy
to see that the process �
�� � � 	� is a Markov chain
on ���� � � ���������� 	� �� �� �� �� � � � ����with transition
probabilities: For � 	 	 � �

������ � �

���������� � �� �

and, for � 	 	 	 �,

������ � ��� ��
���� 
� 	 	 � 	 	� �

���� � ��� ��
�

���������� � ���� 
��
 	 	 � 	 	� �

����� � ���� 
��

���� � ���� 
�

����� � ��� ��


��� � �� ����� � ������

For 	 � �

���� � ��� ����� 
� � �

������ � �
 � ��� ��

The throughput (�
�) of the system is given by

�
� � ��� � ���

�
��
���

����� � 	���� ��
�

�

����
���

�� � ����� ��
���� 
��

�

��
���

������ � 	����� 
��

�
����
���

�� � ������ 
��
�

��
�

���� � ��� ���
 � ��� ����� 
�����

Consider, for example, the last term in the expression above.
We give an explanation for this term. When the queues are
both empty there is a lookahead in both the queues. An ar-
rival to Queue 1 (with probability �) departs immediately if its
time-stamp is less than the lookahead in the other queue (with
probability 
). Similarly, we get the term �� � ���� � 
�. In
either case at most 1 departure occurs.

4.1.3 Comparison of the Throughputs

In Figure 7, we show the throughput for conservative and
maximum lookahead sequencing, versus �. In the figure,
� � ��

�����
� 	��, and 
 � ��

�����
� 	��. This implies that



�
�

�
�

�
�

�
�

��

�

�

����

� ���

���

Processor
Event

Sequencer
Event

*

*

���

���

Figure 5: � ��� Process at the Event Sequencer (� denotes max-
imum lookahead)

��
��

� ��
��

and, therefore, the throughput is equal to �� � �� as
� 
�. nter

It is seen that for reasonably small buffer sizes, the through-
put in the maximum lookahead sequencer is strictly greater than
that in the conservative sequencer. As the buffer size increases,
we see that the throughput from both the sequencing algorithms
converges to the same value. This is as expected from the dis-
cussions in Section 3.

The throughput of maximum lookahead is the best that can
be achieved by any sequencing algorithm that relies only in
time-stamp information. We have proved this formally in [5].
Thus the gap between the two curves in Figure 7 indicates the
scope for improvement if the conservative sequencing mecha-
nism is replaced by, say, an optimistic sequencing mechanism.
As the available buffer size increases, throughput increases but
the scope for improvement in the conservative algorithm de-
creases.

In the following subsection, we analyse other flow control
mechanisms. For example, various �� s can be prevented from
getting too far apart in virtual time by means of a mechanis-
m like Time Windows. In the Moving Time Window protocol,
a set of safe events is determined that can be processed con-
currently in the distributed simulator. We analyse the Moving
Time Window protocol with maximum lookahead sequencing.

4.2 Analysis of Moving Time Window (MTW)
with Maximum Lookahead

The purpose of Moving Time Window (MTW) (introduced by
Sokol et al. [7]) is to reduce the “search space” one must tra-
verse in determining if an event is safe to process by an �� .
The MTW approach uses a fixed time window of size � . Only
events with time-stamps in the interval 
�� � �� �, where � is
the smallest time-stamped event in the simulation, are eligible
for processing. An event outside the time window (i.e., later
in virtual time) is blocked (or ineligible) until the window is
advanced to include this event.

In this section, we analyse the simulator in Figure 5 with the
MTW protocol. We assume maximum lookahead at the syn-
chronizer. We recall that in maximum lookahead the synchro-
nizer knows the next time-stamp expected from ��� or ���.
Just after the arrival of a message from ���, �	 � ��� ��� the
next time-stamp from ��� is sampled and made known to the
synchronizer.

Let ���� denote the virtual time upto which the event se-
quencer has completed sequencing at wall-clock time �, i.e.,
all messages from ��� or ��� with time-stamp less than ����

� �

��

��

�

�

�

�

�������

������ � ���

�������

�������

�

��

�

� ���

Figure 6: Flow Control with MTW of size �

have been passed through by the sequencer. The MTW restric-
tion implies that ��� or ��� will not process an event if this
will cause their virtual clocks to exceed ���� by more than � .
Let, for � � 	,


����� �� � � ���������� 	� �� �� �� � � ��� := Number of
unsequenced messages at time �. 
��� has the same in-
terpretation as in Section 4.1.1.

� ��� := Sign(
���) � (amount by which the time-stamp
of last queued message is ahead of ����). Note that
� ��� � 	 if 
��� � 	.

����� := Amount by which the maximum lookahead epoch
on channel 	 at wall-clock time � is ahead of the known
virtual time on channel 	. If 
��� � 	, then ����� �

	 and ����� � 	 (the latter because with 
��� � 	 the
lookahead on channel 2 would have been utilized, and the
virtual time on channel 2 would be equal to the lookahead
epoch on channel 2); if 
��� � 	, then ����� � 	 and
����� � 	; if 
��� � 	, then exactly one of ����� or
����� is zero with probability 1. Define

� ��� 
�

�	



� ��� � ����� �� 
��� � 	
� ���� ����� �� 
��� � 	
������ ����� �� 
��� � 	

Observe that if 
��� � 	, then ���� is less than the time-
stamp of the first event in Queue 1, and � ��� is the amount by
which ��� will be ahead of ���� if it were to process its next
event. Figure 6 shows a sample path of � ��� versus time � in
the event sequencer.

For a MTW of � the process � ��� evolves as follows (see
Figure 6). Suppose 	 � � ��� � � . Now a message arrival
at �� into Queue 2 will just pass through, since, owing to max-
imum lookahead, the effect of its time-stamp has already been
accounted for in � ���� �. A new sample from ������� is taken
(say, � ��) and

� ���� � � � ���� �� ���

An arrival at �� into Queue 1 results in a new sample (say, � ��)
being taken from �������; this is the incremental time-stamp
of the next event expected from ��� and

� ���� � � � ���� � � ���



Now suppose � ���� � � � . This implies that the next event
to be processed by ��� lies outside the time window of � ,
and ��� will not process this event until � ��� falls below � ;
which it must as ��� can always process its next event since
this will only take it 0 ahead of ����!, and the next lookahead
at Queue 2 will be positive with probability 1! Parallel remarks
hold for � ���� � 	 �� . Thus we note that MTW with maximum
lookahead will not deadlock.

We now consider the case with 
���� � � 	. Such a situation
arises, for example, if 
���� � � 	, and an event arrives from
���. A maximum lookahead � �� is sampled from Exp(��), and
��� � � ���� �, so that all the queued events can be allowed to
immediately leave. Now � ���� � � 	 and � ���� � � � ���� ����.
If � ���� � � � , then ��� will not process its event, and the
next arrival will be from ��� at rate �� (see Figure 6). This
will pass through the sequencer. Another time-stamp will be
sampled at ���, and hence, eventually, ���’s event will fall
within the time window. Suppose

��� ���� ��� � � , then both
��� and ��� will process their events. If � � � ���� � � 	
and ���’s event arrives first, it will get queued and another
sample from ������� will be added to � ���.

From the description above and Poisson event arrivals and
Exponential time-stamp increments, � ��� is a Markov Process.
Assume that it is positive recurrent and let ���� be its station-
ary density on ������. For any � � ������, the average
rates of entrances into and exits from the composite state 
����
are equal in the limit [1]. Exits from composite state 
����
must necessarily correspond to entrance into composite state
���� ��, and vice versa. Balancing the long run average rates
of downcrossings and upcrossings af level � yields an equation
that will involve the density function ����. Now observe that,
owing to Poisson arrivals and i.i.d. exponential time-stamp in-
crement processes,

Upcrossing rate of level � �

��

� ���
 �

��

�� ����������! 

Downcrossing rate of level � �

��

� �

�����
 ��

�� ����������! 

where the symbol “
” denotes maximum and “�” denotes min-
imum. Equating these rates

��

� ���
 �

��

�� ����������! �

��

�
�

�����
 ��

�� ����������! 

Now, taking Laplace transform, consider the expression�
�

��

�
�

�����
 ��

�� ����������! ����!�

�

�
�

�


�� ������! 

� �

��

���������!�

which, for " � ��,

�

�
�

�


�� ������
���������

�� � "
! 

�
�

�� � "

� �

�


�� �����! 

Similarly, for " � ���,

�
�

��

� ���
 �

��

�� ����������! ����!�

�
�

�� � "

� 


��

�� �����! 

Thus for��� � " � ��,

��

�� � "

� 


��

�� �����! �
��

�� � "

�
�

�


�� �����! 

In particular, for " � 	,

��

��

� 


��

�� �! �
��

��

�
�

�


�� �! 

But,



��

�� �! is the probability that ��� sends an event,

and

�
�


�� �! is the probability that ��� sends an event.
Calling these �� and ��,

����

��
�

����

��
(1)

Observe that Equation 1 is interesting, as it states the intuitive
result that with flow control the rate of virtual time advance of
the two flow controlled �� s is equal.

Hence throughput under MTW with maximum lookahead is

���� � ���� � ����

�
� �

��

��

�
� ����

�
� �

��

��

�

Hence,

����

�
� �

��

��

�
� ����

�
� �

��

��

�

	 ���

�
��

�
� �

��

��

�
� ��

�
� �

��

��

��

Suppose now that ��
��

� ��
��

, then

��

�
� �

��

��

�
� �� � �� � ��

�
� �

��

��

�

� ���� � ���� � ��

�
� �

��

��

�

Thus, ��
�
� � ��

��

�
, the throughput without flow control, is a

bound on the throughput with flow control.
Thus, we see that flow controlled throughput with MTW and

maximum lookahead is strictly less than the throughput ob-
tained when there is no flow control.
Remark: The analysis of Moving Time Window assumed
maximum lookahead sequencing. Note that strict Moving Time
Window will deadlock if the event sequencer is conservative,
for if ��� and ��� both find that their next time-stamp is a-
head of ����� �� �, then neither will send messages.

Lubachevsky [4] studies the Bounded Lag protocol. Bound-
ed Lag in a synchronization algorithm means that the difference
in simulated time (virtual time) between events being processed
concurrently is bounded from above by a known finite constan-
t. Let ���� denote the time-stamp (virtual time) of an event �.
The bounded lag restriction with parameter � is:



If events �� and �� are processed concurrently then ������ �
������ 	� , where 	 	� 	 �� is a known constant.

A careful comparison of Moving Time Window and Bound-
ed Lag [4] protocols shows that the two flow control protocols
are identical in terms of their analytic performance modelling.
Thus, in Figure 5, when ��

��
� ��

��
, the bound to the throughput

of the event sequencer in MTW is the same as that in Bounded

Lag, i.e., ��
�
� � ��

��

�
.

5 Conclusions

In this paper, we have studied distributed simulators of feed-
forward queueing networks with respect to their throughput. In
[6], we have shown that if all logical processors (LPs) are per-
mitted to proceed at their own rates then message buffers will
overflow. Such simulations must be stabilized by some for-
m of interprocessor “flow control”. One of the ways to flow
control is to bound the buffers at the event sequencer. It was
seen that for reasonably small buffer sizes, the throughput in
the maximum lookahead sequencer is strictly greater than that
in the conservative sequencer. As the buffer size increases, the
throughput from both the sequencing algorithms converges to
the same value.

We analysed the Moving Time Window protocol with max-
imum lookahead sequencing. We saw that flow controlled
throughput in the Moving Time Window protocol, is strictly
less than the throughput when there is no flow control. Further,
the analysis of Moving Time Window protocol showed that the
rate of virtual time advance of the flow controlled�� s is equal.

References

[1] P. H. Brill and M. J. M. Posner, “Level crossings in point
processes applied to queues: single-server case,” Opera-
tions Research, Vol. 25, No. 4, July-August 1977.

[2] R. M. Fujimoto, “Parallel discrete event simulation”,
Commun. ACM, Vol. 33, No. 10, pp. 30-53, October 1990.

[3] M. Gupta, A. Kumar, and R. Shorey, “Queueing Models
and Stability of Message Flows in Distributed Simulators
of Open Queueing Networks”, In IEEE/ACM/SCS 10th
Workshop on Parallel and Distributed Simulation (PADS
’96), Philadelphia, May, 1996.

[4] B. D. Lubachevsky, “Efficient distributed event-driven
simulations of multiple-loop networks”. Commun. ACM
32, 1 (January 1989), 111-123.

[5] R. Shorey, “Modelling and Analysis of Event Message
Flows in Distributed Discrete Event Simulators of Queue-
ing Networks”. Ph.D thesis, Dept. of Electrical Commu-
nication Engineering, Indian Institute of Science, Banga-
lore, India, 1997.

[6] R. Shorey, A. Kumar, and K. M. Rege, “Instability and
Performance Limits of Distributed Simulators of Feedfor-
ward Queueing Networks”. ACM Transactions on Mod-
elling and Computer Simulation (TOMACS), Vol. 7, No.
2, pp. 210-238, April 1997.

[7] L. M. Sokol, D. P. Briscoe, and A. P. Wieland, “MTW:
A strategy for scheduling discrete simulation events for
concurrent execution”. In Proceedings of the SCS Western
Multiconference on Distributed Simulation, 1988, pp. 34-
42.

[8] L. M. Sokol, J. B. Weissman, and P. A. Mutchler, “MTW:
An empirical performance study”. In Proceedings of the
1991 Winter Simulation Conference (WSC), 557-563.

[9] D. B. Wagner and E. D. Lazowska, “Parallel simulation of
queueing networks: limitations and potentials” in Proc.
1989 ACM SIGMETRICS and Performance ’89 Conf.,
1989.

[10] R. W. Wolff, Stochastic Modelling and the Theory of
Queues, Prentice Hall, 1989.

Biography of the Authors

Rajeev Shorey

Rajeev Shorey completed his B.E in Computer Science, Indian
Institute of Science, Bangalore, India in 1987. He then com-
pleted the M.S and Ph.D degrees in Electrical Communication
Engineering Department, Indian Institute of Science, Banga-
lore, India in 1990 and 1996 respectively. He is currently a
research staff member in the IBM India Research Laboratory,
New Delhi. His areas of interest are Modeling and Analysis
of Wireless and Wireline Networks. In the last one year, he
has worked on the Bluetooth standard and Internet Traffic En-
gineering. He has IBM patents and numerous international pa-
pers to his credit.

Anurag Kumar

Prof. Anurag Kumar completed his B.Tech in the Electrical En-
gineering Department, Indian Institute of Technology, Kanpur,
India in 1977. He then completed his Ph.D from Cornell, Itha-
ca, USA in 1981. After spending 7 years in AT&T Bell Labora-
tories in the Performance Modelling and Analysis Department,
he joined the Indian Institute of Science, Bangalore, India. He
is currently a Professor in the Electrical Communication Engi-
neering Department in IISc, Bangalore. His research and con-
sultancy interests are in Modelling, Analysis, Control, and Op-
timization problems arising in Communication Networks and
Distributed Systems. He has been elected as a Fellow of the
Indian National Academy of Engineering.



	��

	���

	��

	���

	��

	���

	��

	���

	��

	���

�

	 � � � � �	 �� �� �� �� �	

����������

�� !� "�#! �
 � 	��� � � 	��� �� � �� � ��

$��%!�&'��&! �

�

�

�

�

�

�
�

� � �

�'(� )��*'�!'+ �

�

�

�
�

�
�

�
� � �

Figure 7: Throughput versus Buffer Size (�)


