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Abstract

Sequential simulation of complex systems can be exceedingly
slow and expensive. An obvious means of obtaining faster sim-
ulation isto dedicate more resourcesto it. Distributed Discrete
Event Simulation has emerged an important method to study
the behaviour of various systems, such as, for example, wire-
line and wireless networks. In this paper we study the flow-
controlled throughput in the distributed simulators of commu-
nication networks. In particular, we study feedforward queue-
ing networks. It is known that, without some kind of interpro-
cessor flow control, a distributed simulator of a feedforward
gueueing network is unstable, in the sense that event message
queues, at event sequencers, grow without bound. Interpro-
cessor flow control is thus necessary to stabilize the simulator.
We study two flow control mechanisms: bounded buffers and
moving time windows. We model a simple distributed simu-
lator with these flow controls, and obtain the flow controlled
throughput for each control, with conservative and maximum
lookahead sequencing. For bounded buffer flow control we s-
tudy the flow controlled throughput with varying buffer limit.
We find that, in both flow control schemes, the flow controlled
throughput is bounded by the throughput without flow control.
For the moving time window protocol, we show that the rate of
virtual time advance of the flow controlled logical processesis
equal.

Keywords: Modelling, Communication Networks, Distributed
Simulation, Throughput, Flow-control

1 Introduction

Performance modelling of communication networks can be
quite complex, and, it iswell known that except for some sim-
ple systems, mathematical analysis of communication network-
sisintractable. Closed form expressions are hard to find and
therefore, simulation of such systems becomes necessary in or-
der to study their detailed behaviour.

It is generally the case that sequential simulation of complex
systems is exceedingly slow and expensive. Running asimula:
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tion requires substantial computational resources. An obvious
means of obtaining faster simulation is to dedicate more re-
sourcestoit. Itisfor thisreason that Distributed Discrete Event
Simulation [2] has received much attention in recent years.

In Distributed Discrete Event Simulation, the system being
modelled, usualy referred to as the physical system, is viewed
as being composed of some number of physical processes that
interact at various pointsin simulated time (also called the vir-
tual time). The distributed simulator is constructed as a set of
logical processes, one per physical process. All interactionsbe-
tween physical processes are modelled by time-stamped even-
t messages sent between the corresponding logical processes
(LPs). It iswell known that a distributed simulation is correct
if one adheresto the local causality constraint, i.e., if each LP
processes events in nondecreasing time-stamp order [2].

In [6], we proved that in distributed simulators of feedfor-
ward queueing networks, the message queues that precede the
event sequencers are unstable for conservative sequencing. We
then proved that even with maximum lookahead (i.e., prescient
knowledge of the time-stamp of the next message yet-to-arrive
on a channel with an empty message queue) these queues are
till unstable. We concluded in [6] that in feedforward models
the resequencing problem is fundamentally unstable, and some
form of interprocessor “flow control” is necessary in order to
make the message queues stable.

Therate of departure of processed “ customers’ from the sim-
ulator is the throughput of the simulator. The throughput of the
simulator is a useful quantity as it is a measure of progress of
the simulation. For example, each departure from the ssimula-
tor yields a sample of customer sojourn times; the larger the
simulator throughput the greater the number of samples we get
in a fixed amount of simulation time. With this in mind, in
this paper, we focus on the throughput of distributed simula-
tors of feedforward queueing networks with flow control. In
the study of flow controlled throughput, we analyse two ap-
proaches, namely, bounding the buffers of the message queues,
and Moving Time Windows [7], [8]. Various logical processes
can be prevented from getting too far apart in virtual time by
means of a mechanism like Moving Time Windows. We anal-
yse bounded buffer flow control with conservative sequencing
and with maximum |ookahead sequencing; we analyse moving
time window flow control with maximum lookahead sequenc-
ing. We obtain numerical results and expression for the flow
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Figure 2: A Logical Process with Two Input Message Streams

control throughput; in each case the flow controlled throughput
is found to be bounded by the throughput without flow control.

While such mechanisms will serve to stabilize buffers, our
approach of modelling and analysing the message flow process-
esin the simulator points towards certain fundamental limits of
efficiency of distributed simulation, imposed by the synchro-
nization mechanism.

The outline of the paper is as follows. In Section 2 we de-
scribe our model for adistributed simulator, and recall the basic
instability result of [6]. In Section 3 we obtain the simulator
throughput without flow control. In Sections 4.1 and 4.2 we
analyse the model with bounded buffers, and moving time win-
dow flow controls, respectively. Section 5 has the Conclusions.

2 Instability of Event Sequencing

A distributed simulator comprises several logical processes
(LPs) on several processors. Each logical process simulates a
portion of the queueing network. The simulation is coordinat-
ed by exchange of time-stamped messages between the various
LPs. Each L P may beviewed as comprising an input queuefor
each channel over which it can receive messages from anoth-
er logical processes (e.q., LPy,LP,,...,LP,) (see Figure 1).
The simulation makes progress when events are processed in
an event processor associated with an LP. Since the event pro-
cessor must process the events in time-stamp order, it must be
preceded by an event sequencer. The event messages must e-
merge from the sequencer in time-stamp order. This view of
a distributed simulator as itself being a queueing system has
been used to study the performance of distributed simulation;
see [6], [9].

Consider two time-stamped message streams arriving to a
logical process(seeFigure 2). Within each stream the messages
are in time-stamp order. The messages must be processed in
overall time-stamp order by the event processor.

In [6], we assumed that the two message arrival streams for-
m independent Poisson processes, and that the successive time-
stamps in each stream are independent sequences of Poisson
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Figure 3: Throughput of the Event Sequehcer with no Flow
Control and 3+ < {2

epochs independent of the message arrival process. These as-
sumptions apply to a simulator of a stationary, feedforward,
Jackson network, and if the event processor service times are
exponentially distributed. With these stochastic assumptions,
we proved that in the model of Figure 2 the message queuesare
unstable for both conservative sequencing and sequencing with
maximum |lookahead'.

We then showed ([6]) some generalizations of these instabil-
ity results to point processes with certain ergodicity properties.
Extensions of these instability resultsto simulators of queueing
networks with feedback can be foundin [3].

3 Throughput of the Event Sequencer
with no Flow Control

In this section, we obtain the throughput of the event sequencer
when thereis no flow control. We consider asimple model with
two arrival streams at the event sequencer (see Figure 3). We
find an expression for the throughput of the event sequencer.
The throughput of the event sequencer will be equal to the ar-
rival rate of messages to the event processor that follows the
event sequencer. The results can easily be generalized to the
case where there are more than two arrival streams, or when
the output from the event sequencer is fed to an event proces-
sor or another event sequencer.

We assume that the two message streams form Poisson pro-
cesses with rates vy and v, respectively, and that the successive
time-stamps in each stream are Poisson epochs with rates A\
and A, respectively. If now ;—1 < ;—z (i.e., the rate of arrival
of virtual time from L P is greater than that from LP;), then
the queue of messages received from LPs (i.e., Queue 2) will
grow without bound. Thus a message arrival at Queue 1 will
result in a batch of messages arriving at the event processor.
In conservative sequencing, this batch consists of the arriving
message in Queue 1, and al those messages in Queue 2 that
have lower time-stamp than the message in Queue 1. In the
maximum lookahead algorithm, since thereis already a looka-
head at Queue 1 (it being empty prior to the arrival), all the
messages in Queue 2 with time-stamp lower than the looka-
head would have already been sequenced. Now, an arrival at
Queue 1 immediately leaves the sequencer resulting in a new

LAn unrealisable, ideal algorithm in which the sequencer knows the time-
stamp of the next event yet to arrive at a queue. In general purpose simulators,
that use only event time stamps for sequencing, no sequencing algorithm can
process more correct events than the maximum lookahead algorithm; see [5].



Figure 4. LP; and LP, Sending Messages to L. P; (bounded
buffers)

lookahead at Queue 1. Thus, in maximum |lookahead, the de-
parting batch consists of the arriving message at Queue 1 and
al those messages in Queue 2 that have time-stamp that fall
within the new lookahead.

The time-stamp process at stream 4, ¢ = 1,2, is a Poisson
process with rate \;. Therefore, the mean number of messages
that depart from Queue 2 for each arrival into Queue 1, is given
by 42.

It follows that,

Departurerate of messagesfrom Queuel = v,
Departure rate of messages from Queue 2

(e
(2

= Throughput of the event sequencer

A A
cnon ()2 ()

The expression for the throughput of the event sequencer in-
volves the parameters of the simulator (processor speeds) and
the model being simulated, and hence clearly demonstrates the
performanceimpact of variousways of mapping the simulation
model onto the processors. In [5], we have studied in greater
detail the mapping of the queues to the processors.

In the next section, we study the throughput of the even-
t sequencer when there is flow control at the event sequencer
queues, thus, rendering the message queues stable.

4 Throughput of the Event Sequencer
with Flow Control

The instability result in [6] impliesthat if al logical processes
(LPs) are permitted to proceed at their own rates then message
bufferswill overflow. Thusthese simulations must be stabilized
by some form of interprocessor “flow control”. There are vari-
ous ways to flow control the LPs. We could bound the buffers
at the event sequencer and send flow control messages when
buffer overflow is imminent, or, various L Ps can be prevented
from getting too far apart in virtual time by means of mecha
nisms like Time Windows [7]. In this section, we will analyse
each of these mechanisms and find the throughput of the event
sequence.

4.1 Analysisof Bounded Buffer Flow Control

We assume that each message queue at the event sequencer can
hold at most K messages. When the buffer size at a message

queuereaches K, aflow control messageis sent to the sending
LP ingtructing it not to send any more messages. In Figure 4,
an event sequencer with two message queues is shown. If the
buffers (messages queues) have K messages, then LP; or LP,
do not send any more messages. Note that we assume zero
communication delays in the distributed simulator.

We assume that the two message arrival streams form Pois-
son processes with rates v; and v respectively, and that the
successive time-stamps in each stream are Poisson epochs with
rates A\; and \, respectively.

We also assume that, on receiving a control message, an LP
(L P, or LP,) stops generating any more messages. When L P;
releases the control, the L P that was blocked resumes message
generation; owing to our assumption of exponential message
generation times, the time after which the next message arrives
from that LP is exponentialy distributed.

411 Throughput with Conservative Sequencing

We wish to study the process
{X(t)}(e{-K,...,—-3,—-2,—-1}U{1,2,3,...,K}), where
X (t) = i if the number of unsequenced messages in Queue 1
isi, and X (t) = —i if the number of unsequenced messagesin
Queue 2 isi. Note that both queues cannot have unsequenced
messages, and in conservative sequencing one queueis always
nonempty.

We study the process { X (¢) } embedded at the epochsin the
superposition of two Poisson streams of rates v; and v5. De-
note this embedded processby {X,,}. When - K < X,, < K
then each epoch in the embedding Poisson stream corresponds
to a message arrival. When X,, = K, however, then only the
epochs of the Poisson process of rate v, correspond to arrival-
s from LP,; at the other epochs of rate v, thereis no change
in the process {X,,}. Similar comments hold for X,, = —K.
This is the uniformisation approach for analysing the continu-
oustime process { X (t)}.

Define ulljrlw =, /\1);:/\2 =: 0. If therates vy, s
and A\, \, are strictly greater than zero, then 0 < « < 1, and
O0<o <1

The process {X,,,n > 0} is a Markov Chain on S :=

{-K,---,-3,-2,-1} U {1,2,3,4,--- + K} with transition
probabilities:
Forl1<i< K
Diji+1 = «
P—i—(i+1) = (1-a)

and, for1<i< K

piie; = (1—a)ol(l1-o0) for0<j<i—-1
pi—1 = (L—a)d'
Poi—(imjy = a(l—o)o for0<j<i-1

)
P-in a(l —o)"

At the boundaries of the state space K and — K, we have

Pk = (1—a)(l—-0)+a

P—k,-k = ao+(l—a)



These equations easily follow from the assumptions of Poisson
event arrivals and time-stamps. For example, consider p i x;
if X,, = K then X,,;; = K at the next embedding epoch if
the next epoch corresponds to an embedding epoch of rate v
(this has probability «), or if the next epoch correspondsto an
embedding epoch of rate v, and the time-stamp of the arriving
event (notethat L P, isnot blocked) is less than the time-stamp
of the first event queued in Queue 1 (this has probability (1 —
@)(1-0)).

Let Pk be the transition probability matrix of this Markov
chain. We obtain 7, the stationary probability vector of the
Markov chain by solving the equations [10]
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We solve these equations numerically.

Departures from the event sequencer can occur only at e
pochs in the uniformising Poisson process of rate v, and vs.
The mean number of departures at such an epoch, when the
sequencer buffer isin state i, is

i(l1—a)o® + i(] +1)(1—a)d(1-o0)

The first term in this expression corresponds to the event that
at thisepoch an arrival occurs at Queue 2, and itstime-stamp is
larger than that of all messagesin Queue 1; hence al the events
in Queue 1 (i.e., i messages) can depart the sequencer. The
second term is for the case in which the arrival at Queue 2 has
atime-stamp larger than j(0 < j < i) messagesin Queue 1,
in which case j messages |eave from Queue 1, and the arriving
message also leaves.

Hence the throughput, 7¢ons, Of the system is given by

K

Tcons — (Vl + V2) {ZW;{Z(]. — Oé)ai

i=1

[

11—

+ Y G +1DA-a)i(1-0)}

J:

+ Zﬂ' i 1—U’+2_:(]+1) (1—U)j0}}
7=0

[e=]

4.1.2 Throughput with Maximum L ookahead Seguencing

Maximum lookahead is an idealised agorithm, in which the
event sequencer is provided with the time-stamp of the next
event yet to arrive at each empty queue. Suppose Queue 1 is
empty. Eventsin Queue 2 whose time-stamps are less than the
lookahead epoch in Queue 1 can be alowed to leave. When
the event arrives to Queue 1 it isimmediately allowed to leave
(since Queue 2 has been sequenced upto the time-stamp of this
arriving event), and a new lookahead is sampled for Queue 1.
If now thelookahead at Queue 1 isso largethat all the eventsin
Queue 2 can |leave, then alookahead is obtained for Queue 2 a-
s0; thus both queues can become empty and virtual time moves
up to the smaller of thevirtual times at the two queues. Now the
event arriving to the queue with the smaller (lookahead) virtual

time will leave immediately, but the event arriving to the other
queue will haveto wait.

Asin the previous section, let { X ,,,n > 0} denote the num-
ber of unsequenced messages just after n*"* epoch in a Poisson
stream of rate vy + v». We use the same stochastic assumptions
and notation as before. As observed above, now X ,, can be 0.

With the above description of maximum lookahead sequenc-
ing, and the stochastic assumptions we have made, it is easy
to see that the process {X,,n > 0} is a Markov chain

on{-K,---—3,-2,-1,0,1,2,3,4,---,4+ K } with transition
probabilities: For1 <i < K
Diji+1 = «
Poi—(iy1) = l-a
and,for1 <i< K,
Pii—j (1-a)/(l1-0) 0<j<i-1
pio = (L—a)d’
poi(i—jy = a(l—o)o 0<j<i—-1
p_io = oa(l-— O')i
Po1 = a(l - o)
po,-1 = (l—a)o
poo = 1—(po1+po, 1)
Fori =K
Pk = (1—a)(l—-0)+a
p-k-k = a+(l-a)

The throughput (my1,) of the system is given by

™ = (v +w) {Zm{l-{—z (1-a)dt

i—1

+> G+ DA —a)el(1-0)}

j:O

+Z7r A1 +i)a
+ i(] +1)a(l - U)ja}}
=0

+(v1 +) {{ac+(1—a)(1—0)}mo}

(1-o0)

Consider, for example, the last term in the expression above.
We give an explanation for this term. When the queues are
both empty there is a lookahead in both the queues. An ar-
rival to Queue 1 (with probability «) departsimmediately if its
time-stamp is less than the lookahead in the other queue (with
probability o). Similarly, we get theterm (1 — a)(1 — o). In
either case at most 1 departure occurs.

4.1.3 Comparison of the Throughputs

In Figure 7, we show the throughput for conservative and
maximum lookahead sequencing, versus K. In the figure,

a = = 0.5, ando = A4 = 0.5. Thisimplies that

Vi +V2
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Figure5: V (t) Process at the Event Sequencer (x denotes max-
imum lookahead)

K—i = ;—z and, therefore, the throughput is equal to v, + v» as
K — oo. nter

It is seen that for reasonably small buffer sizes, the through-
put in the maximum lookahead sequencer is strictly greater than
that in the conservative sequencer. Asthe buffer size increases,
we see that the throughput from both the sequencing algorithms
converges to the same value. Thisis as expected from the dis-
cussionsin Section 3.

The throughput of maximum lookahead is the best that can
be achieved by any sequencing algorithm that relies only in
time-stamp information. We have proved this formally in [5].
Thus the gap between the two curves in Figure 7 indicates the
scope for improvement if the conservative sequencing mecha-
nismis replaced by, say, an optimistic sequencing mechanism.
As the available buffer size increases, throughput increases but
the scope for improvement in the conservative agorithm de-
creases.

In the following subsection, we analyse other flow control
mechanisms. For example, various L Ps can be prevented from
getting too far apart in virtual time by means of a mechanis-
m like Time Windows. In the Moving Time Window protocoal,
a set of safe events is determined that can be processed con-
currently in the distributed simulator. We analyse the Moving
Time Window protocol with maximum lookahead sequencing.

4.2 Analysis of Moving Time Window (MTW)
with Maximum L ookahead

The purpose of Moving Time Window (MTW) (introduced by
Sokol et a. [7]) is to reduce the “search space” one must tra-
verse in determining if an event is safe to process by an LP.
The MTW approach uses afixed time window of size W. Only
eventswith time-stampsin theinterval [T, T + W], where T is
the smallest time-stamped event in the simulation, are eligible
for processing. An event outside the time window (i.e., later
in virtual time) is blocked (or ineligible) until the window is
advanced to include this event.

In this section, we analyse the simulator in Figure 5 with the
MTW protocol. We assume maximum lookahead at the syn-
chronizer. We recall that in maximum lookahead the synchro-
nizer knows the next time-stamp expected from LP; or LP;.
Just after the arrival of a message from LP;, (i € {1,2}) the
next time-stamp from L P; is sampled and made known to the
synchronizer.

Let G(t) denote the virtual time upto which the event se-
guencer has completed sequencing at wall-clock time ¢, i.e.,
all messages from LP; or LP, with time-stamp less than G(t)

V(t) =—
L7
exp(X1)
653?‘('1/1 +#)
=t
R 7 7
exp(v1)

Figure 6: Flow Control with MTW of size W

have been passed through by the sequencer. The MTW restric-
tion implies that L P, or LP, will not process an event if this
will cause their virtual clocksto exceed G(t) by more than .
Let, fort > 0,

X)(e {...,-3,-2,-1,0,1,2,3,...}) := Number of
unsequenced messages at time t. X (¢) has the same in-
terpretation asin Section 4.1.1.

Y (t) := Sign(X (t)) x (amount by which the time-stamp
of last queued message is ahead of G(¢)). Note that
Y(t)=0if X(t) = 0.

S;(t) := Amount by which the maximum |ookahead epoch
on channel i at wall-clock time ¢ is ahead of the known
virtual time on channel 4. If X(¢) > 0, then S1(t) >
0 and S»(t) = 0 (the latter because with X () > 0 the
lookahead on channel 2 would have been utilized, and the
virtual time on channel 2 would be equal to the lookahead
epoch on channel 2); if X(¢) < 0, then S»(¢) > 0 and
Si(t) = 0; if X(t) = 0, then exactly one of S, (t) or
Sa(t) is zero with probability 1. Define

Y(#)+Si1(t) if X(t)>0
V(t) := { Y(t)—S2(t) if X(t)<0
Si(t) —S2(t) if X(t)=0

Observe that if X (¢) > 0, then G(t) is less than the time-

stamp of the first event in Queue 1, and V' (¢) is the amount by
which LP; will be ahead of G(t) if it were to process its next
event. Figure 6 shows a sample path of V' (¢) versustime¢ in
the event sequencer.

For aMTW of W the process V (t) evolves as follows (see
Figure 6). Suppose 0 < V(¢) < W. Now a message arrival
at t5, into Queue 2 will just pass through, since, owing to max-
imum lookahead, the effect of its time-stamp has already been
accounted for in V' (¢;.). A new sample from Exp()2) istaken
(say, S3) and

V(5 =V(t,) =S
An arrival at ¢, into Queue 1 resultsin anew sample (say, S1)
being taken from Exp(\,); thisis theincrementa time-stamp
of the next event expected from L P; and

V() =V(ty) + S



Now supposeV(th) > W. Thisimplies that the next event
to be processed by LP; lies outside the time window of W,
and LP; will not process this event until V' (¢) falls below W;
which it must as L P, can always process its next event since
thiswill only take it 0 ahead of G(t)!, and the next lookahead
at Queue 2 will be positive with probability 1! Parallel remarks
hold for V' (¢;) < —W. Thuswe notethat MTW with maximum
lookahead will not deadlock.

We now consider the case with X (¢;) = 0. Such asituation
arises, for example, if X (¢,7) > 0, and an event arrives from
LP,. A maximum lookahead S’, is sampled from Exp(\-), and
Sy > Y(t, ), so that all the queued events can be alowed to
immediately leave. Now Y'(¢) = 0and V (¢}) = V (t, ) — Sa.
If V(tf) > W, then LP; will not process its event, and the
next arrival will be from LP, at rate vo (see Figure 6). This
will pass through the sequencer. Another time-stamp will be
sampled a L P,, and hence, eventualy, LP,’s event will fall
within the time window. Suppose |V (t})| < W, then both
LP; and LP> will process their events. If W > V(t}) > 0
and LP;’'s event arrives first, it will get queued and another
sample from Exzp(A;) will be added to V().

From the description above and Poisson event arrivals and
Exponential time-stamp increments, V' (¢) isaMarkov Process.
Assume that it is positive recurrent and let f(¢) be its station-
ary density on (—oo, 00). Forany v € (—o0, 00), the average
rates of entrancesinto and exits from the composite state [v, oo)
are equal in the limit [1]. Exits from composite state [v, co)
must necessarily correspond to entrance into composite state
(—o0, v], and vice versa. Balancing the long run average rates
of downcrossings and upcrossings af level v yields an equation
that will involve the density function f(-). Now observe that,
owing to Poisson arrivals and i.i.d. exponential time-stamp in-
crement processes,

Upcrossing rate of level v =

(vAW)
v / fw)e (=W gy,

— 00

Downcrossing rate of level v =

V2/ flue
(vV(=W))

where the symbol “ V" denotesmaximumand “A” denotes min-
imum. Equating these rates

(vAW)
o [ fwe =

— 00

vy / flwe
(vV(=W))

Now, taking Laplace transform, consider the expression

/m /<vv<W>>
/ f(u)e_xzudu/ e~V gy
-W —00

which, for s < Ao,
/ f(u

pyg— /_W flu)e **du
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Similarly, for s > — Xy,

[ s

1 W
= )\1+s/,00f(u)e du

—A1 <8< A,
w 00
141 _ Uy o
uSd — uSd
A1+S[mf(u)e u AQ_S[Wf(u)e u
V2 >
/ fau=2 [ 1

In particular, for s = 0,
But, f_w;) f(u)du is the probability that LP; sends an event,
and [, f(u)du is the probability that LP, sends an event.
Calling these p; and p»,

Mgy ey

Thusfor

(u)du

Vip1 Vap2

N )

Observethat Equation 1isinteresting, asit statestheintuitive
result that with flow control the rate of virtual time advance of
the two flow controlled LPsis equal.

Hence throughput under MTW with maximum lookahead is

A A
vipt +vopy =vipr |1+ 2 = vops | 1+ — !
A1 A2

A2
= 1
vip1 ( + )\1>
. A A
min <l/1 (1 + )\_j> , Vo (1 + )\_;>>

Suppose now that - < £, then

A A
I/1<1+)\—2><V1+V2<I/2<1+)\—1>
1 2

A
= v1p1 + vep2 < Uy <1 + /\—2>
1

Hence,

A1
14 2L
V2p2< + )\2>

IN

Thus, 14 (1 + i—f) the throughput without flow control, is a

bound on the throughput with flow control.

Thus, we see that flow controlled throughput with MTW and

maximum lookahead is strictly less than the throughput ob-
tained when thereis no flow control.
Remark: The analysis of Moving Time Window assumed
maximum lookahead sequencing. Notethat strict Moving Time
Window will deadlock if the event sequencer is conservative,
for if LP, and LP, both find that their next time-stamp is &
head of (G(t) + W), then neither will send messages.

L ubachevsky [4] studies the Bounded Lag protocol. Bound-
ed Lag in asynchronization algorithm meansthat the difference
in simulated time (virtual time) between events being processed
concurrently is bounded from above by a known finite constan-
t. Let 7(e) denote the time-stamp (virtual time) of an event e.
The bounded | ag restriction with parameter 17/ is:



If events e; and e- are processed concurrently then |r(e;) —
T(e2)] < W, where0 < W < +o0 isaknown constant.

A careful comparison of Moving Time Window and Bound-
ed Lag [4] protocols shows that the two flow control protocols
areidentical in terms of their analytic performance modelling.
Thus, in Figure 5, when 5t < 52, the bound to the throughput
of the event sequencer in MTW is the same as that in Bounded

Lag,i.e, (1 + i—f)

5 Conclusions

In this paper, we have studied distributed simulators of feed-
forward queueing networks with respect to their throughput. In
[6], we have shown that if al logical processors (LPs) are per-
mitted to proceed at their own rates then message buffers will
overflow. Such simulations must be stabilized by some for-
m of interprocessor “flow control”. One of the ways to flow
control is to bound the buffers at the event sequencer. It was
seen that for reasonably small buffer sizes, the throughput in
the maximum lookahead sequencer is strictly greater than that
in the conservative sequencer. As the buffer size increases, the
throughput from both the sequencing algorithms converges to
the same value.

We analysed the Moving Time Window protocol with max-
imum lookahead sequencing. We saw that flow controlled
throughput in the Moving Time Window protocol, is strictly
less than the throughput when there is no flow control. Further,
the analysis of Moving Time Window protocol showed that the
rate of virtual time advance of the flow controlled L Psisequal.
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Figure 7: Throughput versus Buffer Size (K)



