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Abstract—Mobile P2P technology provides a scalable approach
for content delivery to a large number of users on their mobile
devices. In this work, we study the dissemination of a single
item of content (e.g., an item of news, a song or a video
clip) among a population of mobile nodes. Each node in the
population is either a destination (interested in the content) or
a potential relay (not yet interested in the content). There is
an interest evolution process by which nodes not yet interested
in the content (i.e., relays) can become interested (i.e., become
destinations) on learning about the popularity of the content (i.e.,
the number of already interested nodes). In our work, the interest
in the content evolves under the linear threshold model. The
content is copied between nodes when they make random contact.
For this we employ a controlled epidemic spread model. We
model the joint evolution of the copying process and the interest
evolution process, and derive joint fluid limit ordinary differential
equations. We then study the selection of parameters under
the content provider’s control, for the optimization of various
objective functions that aim at maximizing content popularity
and efficient content delivery.

I. INTRODUCTION

Peer-Peer (P2P) architectures help relieve file servers from
excessive load by enabling clients to communicate among
themselves and exchange content, hence providing a scalable
approach to content delivery for a large audience. With the
proliferation of smart phones and high speed mobile Internet,
there is increasing download of media content directly into
mobile devices. Mobile P2P technology aims to leverage this
trend and several possible architectures have been proposed.
In this paper we are concerned with peer-to-peer spread of the
content under the mobile opportunistic forwarding paradigm.

While studying content distribution, it is essential to under-
stand the evolution of demand for the content. For modeling
demand evolution, we can adopt the point of view that
the existing demand for an item influences others to also
get interested in it. There has been considerable interest in
such models in the area of viral marketing research. Content
creators interested in increasing the popularity of the content
use data mining techniques to identify optimal viral marketing
strategies and to identify the most influential users in a social
network [1]. In this paper, we are also concerned with the
spread of interest in the item of media content, and for this
we adopt an influence spread model introduced earlier in the
context of viral marketing [1].

Evidently, content providers need to adopt their content
dissemination strategies according to the prevailing interest in

the particular content. Though there have been several works
that discuss optimal strategies for content distribution among
mobile nodes [2][3] they do not address the issue of jointly
modeling the spread of interest in the content and the content
itself. In our work, we aim to model the joint evolution of
demand and spread of the content in a mobile P2P setting.

A recent work [4] addresses a related problem of demand-
aware distribution by employing fluid models for the viral
spread of demand and aims at obtaining a hybrid P2P and
client-server architecture that can meet the demand. While [4]
assumes that the demand spread is uncontrolled and optimizes
for content delivery, in this work, we separately discuss
optimizing the parameters of the demand evolution process
(to increase the popularity the content), as well as the content
delivery process (to efficiently meet the content demand).
Our Contributions:

« We develop ordinary differential equation (o.d.e.) models
for the co-evolution of popularity of the content and its
spread via controlled epidemic copying in a mobile P2P
environment

o We then use these o.d.e. models to provide insights into
the choice of parameters for the content provider in order
to optimize various system performance objectives

In Section II we introduce the combined system model, and
obtain the fluid limits for interest evolution and content spread
in Sections III and IV. We finally provide numerical results
for some practical optimizations (Section V) associated with
the evolution of interest and the joint-evolution of interest and
spread of the content.

II. THE SYSTEM MODEL

We consider a population of homogeneous mobile nodes
meeting each other according to a random contact model and
we wish to model the spread of a single content among these
nodes. Pertaining to the content, each node has a current state
represented by two bits: the want bit indicates whether the
node is interested in the content and the have bit indicates
whether the node has the content. When the want bit of a
node is 1, we call the node a destination (i.e., interested in
the content), else we call it a relay (i.e., not yet interested in
the content). There is a central server that keeps track of the
want state of all the nodes and broadcasts the total number
of destinations (nodes interested in the content), a measure of
content popularity at regular intervals via a low-bitrate control



channel. Thus, for the purpose of spread of content popularity,
the network is fully connected.

Relay nodes, on receiving popularity broadcasts from the
central server, might get converted to destinations according
to an influence spread model. We model this influence process
(evolution of interest in the content) using the Homogeneous
Influence Linear Threshold (HILT) model, a special case of
the Linear Threshold model (LT) introduced in Kempe et al.
[1]. For the content copying process, we model the random
contacts between pairs of nodes as independent Poisson point
processes (a model also used in the context of mobile P2P in
[5]), with the copying (when pairs of nodes meet) being con-
trolled probabilistically, in a manner similar to the Susceptible-
Infective (SI) epidemic model.

A. Modeling Interest Evolution: The HILT Model

In this section we introduce the HILT model used to model
the evolution of interest in the content. In the original LT
model [1][6], nodes are part of a weighted directed graph G =
(N,E), where £ C N x N. With each 4,j € &, there is
associated a weight w; ; which gives a measure of influence
of node 7 on node 7, normalized such that the total weight into
any node is at most 1, i.e., ZZ w;,; < 1. The Homogeneous
Influence Linear Threshold (HILT model) is a special case of
the LT model where the network graph is complete and all
nodes are homogeneous. Hence, we have a mesh network on
the population A containing N = || nodes with each edge
carrying the same influence weight vy = % and I' < 1.

The evolution of interest in the content is modeled by the
following influence process evolving in discrete time. Each
node j € N independently chooses a random threshold ©;
from a given distribution F' at the beginning. We begin with
an initial set of destinations .A(0). In the HILT model, the net
influence of a set of destinations on any relay is vy times
the size of the destination set. The number of destinations
(currently interested nodes) is broadcast to all the nodes by
the central server after each period, and a relay gets converted
into a destination once the net influence exceeds its chosen
threshold. In other words, a relay j ¢ A(k—1) gets influenced
in step k if,

Ak = 1) > ©; (1)

At the end of each period the population will contain three
types of nodes (see Figure 1): A(k), the set of non-infectious
destinations, D(k) C A(k), the set of newly infected desti-
nations in that period (infectious for the next period) and the
set of relays denoted by S(k). It is clear that the activation
process stops at a random step U when there are no more
infectious destinations, i.e., D(U) = (), and a terminal set
A(U) is reached.

B. Modeling Content Copying: SI Model

In order to model the content delivery process, we further
classify the nodes depending on whether they have the content
(i.e., based on the have bit). Let X' (k) C A(k) denote the
set of destinations that have the content, and Y(k) C S(k)
denote the set of relays that have the content. For the evolution
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Joint evolution of content popularity and spread in the HILT-SI

of (X(k),Y(k)), we model a content copying process based
on the Susceptible-Infective (SI model). Between the discrete
time steps, pairs of nodes meet at the points of a Poisson
process with rate A, and whenever a node that has the content
meets a node that does not, content transfer takes place in
a probabilistic manner. At such a meeting, we distinguish
between the node that does not have the content, being a
destination or a relay, by having different copy probabilities
« and o respectively.

C. Co-evolution of Interest and Spread: The HILT-SI Model

In the combined model, underlying the content delivery
process (the SI model), the influence process (the HILT model)
converts relay nodes into destinations. Thus, in our setup, the
fraction of destinations is time-varying (unlike [3]). Also, the
content spread is dependent on the interest evolution but not
vice versa. Figure 2 shows the possible transitions between the
four sets of nodes. An interesting feature of this model is the
importance of copying to a relay node. As a content provider,
we might be interested in delivering only to the destinations
(interested in the content). But, there are two advantages of
copying to a relay. First, copy to a relay promotes the further
spread of the content even to destinations; this is the aspect
explored in a controlled Markov process setting in [3]. Second,
the relay we copy to now might later get influenced (by the
HILT model) to become a destination, which is a unique
feature of the HILT-SI model.

III. EVOLUTION OF INTEREST IN THE CONTENT

Consider the HILT model on N nodes, and with edge
weights vy = % Recall ©; is the influence threshold of
User i, 1 < ¢ < N. The ©;,1 < ¢ < N, are non-negative,
ii.d. random variables chosen according to a continuous
distribution F'(-), with density function f(-). (A(k),D(k)),
k > 0 represents the set of destinations and the infectious
destinations at the end of period k with D(0) = .A(0).
Define B(k) = A(k — 1) with B(0) = . Thus, for & > 1,



B(k) = Up<i<k—1D;. Also, since the nodes are homogeneous
in the HILT model, it suffices to record the sizes of the
respective sets. Let A(k), D(k) and B(k) be the sizes of the
sets A(k), D(k) and B(k) respectively.

A. O.D.E. Model for Interest Evolution

We can show that the original HILT process (B(k), D(k)) is
a Markov chain (see Technical Report [7]). In order to obtain
an approximating o.d.e., we work with an appropriately scaled
Markov process (B (t), DY (t)), which evolves over “minis-
lots” of duration 1/N (on a time scale N times faster than
that of the original process), with appropriately slowed down
dynamics [8]. In each minislot, each infectious destination in
DN (t) is permitted to influence the relays with probability
+ and its influence is deferred with probability 1 — . In the
former case, it contributes its influence of % and then moves
to the set BY (¢ + 1), otherwise it stays in the D™ (t + 1) set.
Define by CN(t) C DN (t) the set of infectious destinations

who use their influence at time ¢. Then,
DN (t)

CcN(t) = ~ +ZN(t+1)
BN(t+1)=BNt)+CV (1)
DN(t+1) = DN (t) - CN(t)
F(yn (BN (t) + CN (1)) — F(yw BN (1))
- | v "

(N— BN (t) — DN(t)) + ZV(t+1)

where Z{¥ (t+1) and ZJ (t+1) are “noise” random variables,
with zero mean conditioned on the history, and the expectation
in the expression for DV (¢t + 1) is with respect to C™V(t).
Defining B (t), C'N (t) and DN (t) as the fractional processes,
we can then state the following theorem.

Theorem 1: Given the interest evolution Markov process
(BN (t), DN(t)), for the threshold distribution with density
f(-), with bounded f’(-) and hazard function hp(z) =

1f§,()x),we have for each 7' > 0 and each € > 0,
1}»( sup ||(BN([Nu)), DY (| Nu))) — (b(u), ||>e>
0<u<T
N—)ooo

where (b(u),d(u)) is the unique solution to the o.d.e.,
b = d 2)
d = hpTO)Td(1—b—d)—d 3)

with initial conditions (b(0) = 0,d(0) = a(0)).
Proof: This is essentially an instance of Kurtz’s Theorem
[9]. A detailed proof is provided in our technical report [7].
|

B. Effect of the Threshold distribution

In the HILT model, while I'" is indicative of the total level
of influence each individual can receive from the others, the
threshold distribution F'(-) captures the variation among the
individuals® susceptance levels for getting interested in the

content. An empirical analysis on the effect of threshold
distributions on collective behavior is available in [10]. For the
HILT model of interest evolution under the uniform threshold
distribution, we see that the fluid limit becomes,

bt) = - e @)
r r
d(t) = doe_” (5)

We see that this matches well with the discrete expression
given in [6]. When the influence threshold is exponentially
distributed with parameter A , we have hp(x) = A, implying
a memoryless property for the influence process, i.e., the relay
nodes are equally likely to get influenced at a given time
instant, irrespective of the net accumulated influence in the
past. Under exponential distribution, the fluid limit is the
solution to the o.d.e.,

b = d

d = ADdQ1—b—d)—d

This is equivalent to the SIR epidemic model with infection
rate AT and recovery rate of 1. Note that b(t) is then equivalent
to the recovered set, and d(¢) is equivalent to the infected set.

IV. JOINT EVOLUTION OF INTEREST IN AND SPREAD OF
THE CONTENT

In this section, we shall adopt techniques similar to Sec-
tion III to analyse the joint evolution of interest and spread
of the content (HILT-SI model). Recall that, while the HILT
model evolves independently, the evolution of the SI model
depends upon the HILT model. For this section, we shall
assume for simplicity that the thresholds in the HILT model
are uniformly distributed; the analysis can be easily extended
to HILT with general distribution F'.

Pairwise meetings of the nodes consitute points of a Poisson
process with rate Ay = %, and let o and o be the copy prob-
abilities to destinations and relays respectively (Section II-C
(Figure 2)). We can then express their sizes X and Y} as
a sum of contributions P (k), due to the content copying
process (SI model) and @4y (k), due to the interest evolution
process (HILT model). By the contact model, the probability
that a destination node without the content, receives the
content in one time slot is 1 — e~ AN (X (F)+Y (%) and similarly
for a relay. Also, by the HILT model, the probability of a
transition from ), may transition to X}, for each of the relay
nodes would be M For large N, we can then write,
X (0 AxalX(0) + V(1))

dlst

P,(k) ="Bin <A(k:)

P, (k) “ B (N Ak) <k>,ANo<X<k>+Y<k>>)
dist. v D (k)
Qutt) 2 (). 1220 )

Hence we can write the evolution of the processes X (k) and
Y (k) as follows.
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period k. In order to obtain the fluid limit, we again work with
the scaled process which evolves over mini-slots of width %

Theorem 2: Given the joint evolution Markov process
(BN (t), DN (t), XN (t), YN (t)), we have for each T' > 0 and
each € > 0,

P({ sup
0<u<T

(BN ([Nu]), DV (INu)), XV (| Nu)), YV (| Nu)))

the corresponding fluid limit. The solid lines indicate the evolution of o.d.e.
solutions. Shown in dots alongside are multiple runs of the original discrete
process.

choosing the right dy which can give us the required b, and

we see that by letting t — oo in Equation (4) we get,
boo(1 =T
P S— 10
0= T T (10

Also, given the initial fraction of destinations dy in an HILT

_ (b(u), d(u), z(u), y(u)) H > e> Nz onetwork with parameter T, the time we have to wait to get the

where (b(u), d(u), x(u),y(u)) is the unique solution to

b = d (6)

. I'd

d = 17Fb(1—b—d)—d (7)

i = Aa(x+y)(a—x)+l_7rby (8)
I'd

gy = d(z+y)(l-—a—y)— )

1-15"
with initial conditions (b(0) = 0, d(0) = do, (0) = =z,
y(0) = wo).

Proof: A detailed proof verifying the conditions for
Kurtz’s theorem to hold, are presented in our technical report

[7]. ]
A. Accuracy of the Fluid limit

We know from Kurtz’s theorem that the scaled process will
converge to the fluid limit ODEs, for large IV (see technical
report [7] for the accuracy plots). We wish to compare the
original HILT-SI process (B(k), D(k), X (k),Y (k)) with the
solutions of the o.d.e. by superimposing multiple sample
paths of the original discrete time HILT-SI process on the
o.d.e solutions.(see Figure 3). We find that the o.d.e solution
approximates the original process really well, and permits
using the fluid limit approximation for sufficiently large N.

V. OPTIMIZATION PROBLEMS
A. Interest Evolution

Content creators are often interested in understanding the
evolution of popularity of their content, and would wish to
maximize the level of popularity achieved. In most cases, the
content creator does not have control over influence weight
T" or the threshold distribution F' of the population, and the
only parameter under control is dy, the initial fraction of
destinations in the population. We might be interested in

final fraction of destinations to be at least 5 (5 < dTO) is given
by,

1 1-
T(ﬁ,do,l—\):rh’l<1 [3T ) (1T)

—£r
with r as defined earlier. Since we are observing the process at
a finite time 7', d(T') is not zero. Hence, we consider a(T") =
b(T) 4+ d(T) and setting a(T") = 3 we get the above result.
We can also determine the initial fraction dy to be chosen so
that by time 7" we will have at least 8 fraction of the nodes

in the destination set. (see Technical Report [7]).

B. Joint evolution of interest and spread

In this section we discuss the optimization problems that
might be of interest for the joint evolution process. With the
interest in the content evolving independently, the main motive
of the content provider would then be to ensure that the content
is delivered to as many destinations as possible. Since we
intend to deliver to the destinations, it would be optimal to
set a« = 1. Hence the only control parameter is the copy
probability to a relay, o. This may be controlled in practice
by incentivizing copies to relay nodes. Having a high value
of o accelerates the x(¢) process, but it also leads to higher
value of y(¢), the number of wasted copies at time ¢. Here we
discuss two possible optimization problems for o that can be
posed, keeping in mind this tradeoff between x(t) and y(t).

1) Maximize target spread: As content providers, we might
be interested to deliver the content to as many destinations as
possible by some fixed time. This might be the case, when
the content is time-dependent and its usefulness expires by
that fixed time. The problem can be formally posed as,

(7)

We compute the feasible set {o : y(7) < (¢} numerically
obtain the optimal solution o* that maximizes x(7).From
Figure 4 we observe that, for 7 small, we can afford a high
value of o since y(t) may not exceed ( in such a short time.
Also, when 7 is large, we can have a high o, provided the
interest evolution process is strong enough (high I'). This will

max
{oy(r)<C}
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ensure that the number of relays s(¢) will be low enough by
7, and since y(t) < s(¢), Vt, y(t) cannot exceed (. Figure 5
shows that as ¢, the constraint on y(7), is relaxed, we see that
the optimal o* increases. It can be seen that y(7) stabilizes at
the value dictated by the number of relay nodes s(7) for high
value of o. Also note that, if the fixed time of interest 7 is
high, then there is negligible contribution due to increase in o
since z(t) increases to a(t) eventually irrespective of o.

2) Minimize reach time: Another problem of interest is to
deliver the content to a fraction of the destinations as early as
possible. Defining 7, = inf{t : (t) > n}, we can formally
pose this problem as,

min 7,
{owy(my)<¢}

We numerically compute the feasible set by computing 7,
for each ¢ and verifying if y(7,) < ¢. In Figure 6, it is clear
that a higher value of ¢ allows us to use a high value of ¢ so
that we can accelerate the content delivery to destinations. As
a result, we also see that the time taken to deliver the content
decreases with increasing (. In Figure 7, note that since we
begin with xy = 0.2, for n < 0.2, 7, = 0 and o can be any
value. When 7 increases, as long as 7, is low enough, we can
afford to have a high o and still keep y(7,) under control,
since the y(t) process may not have enough time to reach (.
But as 7 increases further, o needs to be reduced, since an
increased value of 7, implies, the process will run longer and
y(7,) might then exceed (.

VI. CONCLUSIONS

In this paper we studied the co-evolution of popularity
and spread of content in a mobile P2P environment using
a joint model (HILT-SI) and derived their fluid limits. We
derive explicit solutions for uniform threshold distribution,
and show that for exponential distribution of threshold the
HILT fluid limit is equivalent to the SIR model. We then
used fluid limits to address several optimization problems that
might be of practical interest. This work can be extended in
several possible directions. One could generalize the problem
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Fig. 6. Minimize reach time: The optimal solution plotted for a fixed value
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for analysing evolution of popularity and spread for multiple
P2P content. And finally one could consider other models for
both interest evolution and for the copying process, including
those where the processes of interest evolution and content
delivery are dependent on each other.
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