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Abstract—We consider a setting in which a single item of content is disseminated in a population of mobile nodes by
opportunistic copying when pairs of nodes come in radio contact. The nodes in the population may either be interested in
receiving the content (referred to as destinations) or not yet interested in receiving the content (referred to as relays). We
consider a model for the evolution of popularity, the process by which relays get converted into destinations. A key contribution
of our work is to model and study the joint evolution of content popularity and its spread in the population. Copying the content
to relay nodes is beneficial since they can help spread the content to destinations, and could themselves be converted into
destinations. We derive a fluid limit for the joint evolution model and obtain optimal policies for copying to relay nodes in order to
deliver content to a desired fraction of destinations, while limiting the fraction of relay nodes that get the content but never turn
into destinations. We prove that a time-threshold policy is optimal for controlling the copying to relays, i.e., there is an optimal
time-threshold up to which all opportunities for copying to relays are exploited, and after which relays are not copied to. We then
utilize simulations and numerical evaluations to provide insights into the effects of various system parameters on the optimally
controlled co-evolution model.

Index Terms—Delay tolerant networking, Epidemic spread of information, Influence spread, P2P content spread, Fluid limits
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1 INTRODUCTION

Due to the ubiquity of cellular networks, there has
been a proliferation of hand-held mobile devices. The
idea of mobile opportunistic networking is to exploit
the mobility of users carrying such devices to transfer
content in a device-to-device (D2D) [4] fashion during
chance meetings. This is enabled by low-power radio
interfaces on these devices (such as Bluetooth or WiFi
Direct), and provides the opportunity for creating
a multi-hopping communication network completely
bypassing the cellular infrastructure. Since such a
scheme cannot meet delay guarantees, applications
that utilize mobile opportunistic networking must be
delay tolerant. On the other hand, such a peer-to-peer
(P2P) content delivery is scalable [12], as the rate of
service scales in proportion to the number of peers
in the system with little additional cost to the system
planner.

In this paper, we consider such a networking
paradigm, and study the problem of dissemination
of an item of content among the population of mobile
nodes. The content could be a video (news footage,
sports highlights, a movie teaser, etc.) or an audio file
(a recent song, a popular ringtone, etc.). We assume
that the content is neither too big (can be transfered
as a single chunk in a pairwise contact) nor too small
(there is some advantage to off-loading its transfer
directly from the infrastructure wireless network). To
begin with, not all nodes in the population are inter-

ested in the content. In this paper, we refer to nodes
who are interested in the content as destinations and
those who are not yet interested in the content as relays.
In such a situation, the system objective could be to
facilitate the spread of content to as many destinations
as possible. In doing this, the relay nodes can be
used to cache the content, thus making the content
more available in the population. This could cost the
system planner, due to the need for incentivizing the
relay nodes to participate in relaying the content. The
overall objective would then be to deliver the content
to as many destinations as possible, while minimizing
the number of nodes that have the content but never
became interested in it.
Literature Survey: There has been considerable work in
proposing improved architecture and protocols for an
opportunistic network over mobile nodes [7], [11]. In
the delay tolerant networking context, there is prior
literature (see [14] and [9] and the references therein)
on the optimal opportunistic copying of content in
order to optimize delivery delay and/or wasteful
copying to relays.

An interesting aspect, that is largely unexplored
in prior literature, is the evolution of interest in the
content. For recently “released” content (such as a
new video clip), the set of destinations need not be
static. The interest in the content could grow, due to
the influence of destinations already present in the
population. Such influence could be mediated via a
centralized server, which uses a low bit-rate channel
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to broadcast the current popularity of the content, or
by interactions between the mobile nodes themselves.
Thus, it may be necessary to deliver the content
to destinations while keeping track of the demand
evolution.

Shakkottai and Johari [13] have recently explored
this aspect by utilizing an epidemic model to char-
acterize demand evolution and obtained a hybrid of
P2P and client-server architecture to efficiently meet
the demand. While the work reported in [13] mainly
focusses on the tradeoff between centralized and de-
centralized dissemination, in our work, we are inter-
ested in optimizing a purely decentralized system.
Also, while in [13] the peer-to-peer file dissemination
occurs only among the nodes interested in the content,
we consider the notion of relays aiding the spread,
thus leading to a more general dynamics.
Our Contributions: In this paper we consider a popu-
lation of N mobile nodes, and model their pair-wise
meetings by independent Poisson point processes.
The item of content is provided to a subset of the
initially interested set of nodes. Epidemic models are
used to model both the spread of popularity and the
content. In this framework, we make the following
contributions:

1) We model the evolution of popularity and the
spread of content by models inspired from epi-
demiology. While the former is similar to an un-
controlled SIR (Susceptible-Infected-Recovered)
process, the latter is modeled as a controlled SI
(Susceptible-Infected) process, with the copying
probability to a relay (σ) serving as a static con-
trol, thus yielding what we call the SIR-SI model.
The evolutions are modeled as coupled continu-
ous time Markov chains. We scale the population
size N , and under certain assumptions on the
scaling with N of the model parameters, we use
Kurtz’s theorem [10] to derive the fluid limit
of the joint evolution process. Simulation results
are provided to illustrate how large a value of
N is required before the fluid limit is a good
approximation to the finite population dynamics.

2) Then, permitting the copying probability, σ, to
vary with time, we obtain a system of controlled
o.d.e.s for which we obtain the optimal control
by direct arguments using certain monotonic-
ity properties. This results in a time-threshold
structure of the optimal control. We provide an
extensive numerical study of this model, thus
providing additional interesting insights.

2 JOINT SPREAD OF INTEREST AND CON-
TENT

In this section we describe the system that we wish to
model, and motivate our assumptions and simplifica-
tions, by taking recourse to an example of a hypothet-
ical mobile application. This application framework

that we propose utilises opportunistic links between
mobile personal devices and can be used for pre-
release publicity of a product. The product could be
an upcoming movie, a book soon to be launched, or
a new gadget about to be released to the market.
The actual item of content under consideration could
be a digital discount coupon that could be used to
pre-order the product. This may also be bundled
with promotional material such as a trailer, a sample
chapter, or a demo video; thus, the ”coupon” carries
a non-trivial quantity of data. The demand for the
content could evolve with time and the content creator
would wish to spread the digital coupons suitably to
meet the demand (as it evolves).

Consider every user in the population carrying a
smartphone with a D2D interface turned on. Each of
the phones runs the application (app), on which the
users can
• Maintain a wishlist of upcoming products

(movies, books, gadgets, etc.)
• Share and receive wishlists among other users in

the population
• Receive promotional offers either from the central

server or via pairwise contacts
By allowing users to declare the interest and en-

abling the spread of interest, we extend the notion
of a personal wishlist (in e-commerce platforms like
Amazon) to a social wishlist. The application also com-
bine the services of coupon delivery (e.g., Groupon)
with such wishlists, thus allowing targeted discount
delivery, wherein brands can identify the users who
are interested in the coupon and deliver it to them.

For simplicity we will consider a single product to
explain the application framework.

Initial seeding: Let an initial subset of users add
the product to their wishlist, influenced by extrinsic
means such as traditional advertising, mass cam-
paigns, etc. These will form the initial set of active
destinations. The central app server chooses a subset
of these destinations and sends them the promotional
offer (digital coupon), thus yielding an initial set of
destinations who have the content. This concludes the
initial seeding phase.

Wishlist exchange: At each pairwise contact, the
smartphones exchange their wishlist information. For
each product (our analysis is concerned with only one
such product) the wishlist information contains the
following bits:
• want bit : 1 if the node is a destination, 0 other-

wise
• reco bit : provided the node is a destination,

1 if it is active, 0 if it is inactive. Only active
destinations aid in popularity spread.

• have bit : 1 if the node has the digital coupon, 0
otherwise

The want and have bits, as their names suggest,
indicate whether the user wants to receive the
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Fig. 1. The above figure shows two possible sample exchanges. (a) Pairwise meeting of an active destination
with content (node A) and a relay without content (node B). (b) Pairwise meeting of a relay with content and an
inactive destination without content. There is no state change in the popularity spread phase, since neither of
the nodes is an active destination.

content, and whether the user possesses the content.
The reco bit is used to indicate whether the user is
actively spreading interest for the content. As long
as the reco bit of a user is 1, the app in the user’s
device will make this recommendation to relays that
it meets. Users become inactive by switching the reco
bit from 1 to 0 (modeled as occurring at rate βN ).
Users become inactive when they lose motivation
to spread the popularity after a while, due to aging
of the content. These users will no longer aid the
popularity spread, but still wish to receive the
content. This is equivalent to users subscribing to a
page on Facebook, but later revoking the rights of
the page to post on the user’s behalf.

After exchanging the wishlists, the following phases
may occur depending upon the states of the two
nodes in contact.
Popularity spread: If one of the nodes is an active
destination (want=1, reco=1) and the other is a relay
(want=0), then popularity spread may occur. The app
of the relay user will receive a recommendation from
the active destination device, and this is notified to the
user by the app interface. We assume that the as yet
uninterested user (relay) gets influenced with some
probability, and model this by the relay switching to
(want=1, reco=1) with probability Γ.
Content spread: If the two nodes that meet have differ-
ent have states, then content (digital coupon) spread
may occur. If the node without the content is a
destination (want=1), then the content is copied with

probability 1, while if it is a relay (want=0) then the
app decides to copy the content with probability σ.
Figure 1 shows two possible pairwise interactions that
can occur in this system.
The process is terminated when a sufficient fraction
of destinations have been given the content (digital
coupon). This indicates that the content creator has
successfully completed his campaign and the product
is removed from the application server.
Remarks:
• Though we might be interested only in delivering

the content to the destinations, there are two
advantages of copying to a relay. First, a copy
to a relay promotes the further spread of the
content even to destinations (explored in [14]).
Second, the relay we copy to now might later get
influenced to become a destination.

• Incentives and Freeriders: There is incentive for a
node in the population to declare its interest in a
particular product, since it is highly likely that
it will receive a promotional offer by being in
the system. We also assume that the nodes for-
ward the content without engaging in freeriding
behavior, i.e. receiving the content but not sharing
it on future pairwise meetings. The impact of
freeriders is an interesting future direction of
research and we suspect mechanisms suggested
for existing P2P networks [8] can be adopted for
this system.

• We also observe that the popularity spread is
independent of the possession of content. This
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might be an adequate model for the spread of
pre-release promotional material among an estab-
lished fanbase, for example, ”fans” of a particular
genre of movies, or of a particular author; among
fans, having the promotional material may not
change the influence level. More complex cou-
pled dynamics will arise if the (want=1, reco=1,
have=1) nodes have a different rate of spread-
ing interest in the content, as compared to the
(want=1, reco=1, have=0) nodes.

3 CTMC MODEL OF THE JOINT EVOLUTION

We consider the dissemination of a single item of
content among a population N of mobile nodes of
fixed size N . We assume that pairs of nodes meet
at the points of a Poisson process with rate λN = λ

N .
This assumption is justified by earlier studies of sev-
eral random mobility models in the literature. For
instance, in the Random Waypoint Model (RWP), the
expected meeting rate between two mobile nodes [5]
is given by

λ =
2vr

A

where v is the average velocity of each node, r is the
radio range and A is the system area. If we assume
that individual node velocities and radio ranges do
not scale with N , then the assumption of meeting
rate scaling inversely with N , implies the system area
scales as N . This can be seen as a result of ensuring
a constant node density (number of nodes per unit
area).

Define AN (t) to be the set of destinations at time
t and let SN (t) = N\AN (t) be the set of relays. We
classify the destinations further as active (DN (t)) and
inactive (BN (t)). 1 Let AN (t),BN (t) and DN (t) be the
sizes of the sets AN (t), BN (t), and DN (t) respectively.
We then have AN (t) = BN (t) + DN (t). Only active
destinations can convert other relays into destinations,
i.e., infect them, whereas inactive destinations are
still interested in the content, but no longer spread
the content’s popularity. The spread of popularity is
governed by two parameters Γ and βN . These are
similar to the infection and recovery rates in the
SIR epidemics. An active destination remains in the
active state for an exponentially distributed duration
with parameter βN . Thus the rate at which an active
destination gets converted to an inactive destination
is βN , while, the probability with which an active
destination infects a relay it meets is given by Γ.
From the Poisson process model of meetings, and the
exponentially distributed active duration, it follows
that the process (BN (t), DN (t)) is a continuous time
Markov chain (CTMC); Figure 2 shows the state tran-
sitions in the content popularity process.

1. Due to the similarity with the spread of infection, we will often
use terminology from epidemic spread models, such as, susceptible,
infected, recovered, etc.

DN(t)

BN(t)

(b, d)

(b + 1, d− 1)

(b, d + 1)

λNd(N − b− d)ΓdβN

Fig. 2. Possible state transitions for the popularity
process (BN (t), DN (t)).

We aim to model the joint spread of interest in
the content and of the content itself. We do this by
combining the SIR model for popularity spread with
a controlled-epidemic copying process for content
spread (probabilistic control, similar to the SI model).
We will refer to this joint model as an SIR-SI model.
In order to model the content delivery process, we
further classify the nodes depending on whether they
have the content. Let XN (t) ⊆ AN (t) denote the set of
destinations that have the content, and YN (t) ⊆ SN (t)
denote the set of relays that have the content. Let
XNb (t) and XNd (t) respectively be the intersection of
XN (t) with the sets BN (t) and DN (t). For the evolu-
tion of (XN (t),YN (t)), we model a content copying
process based on the SI model. Whenever a node that
has the content meets a node that does not, content
transfer takes place based on a controlled copying
process. We always copy to a destination that does
not have the content, whereas copying to a relay
is controlled by a probability σ ∈ [0, 1]. We wish
to obtain the fluid dynamics of this model. A brief
summary of notation is provided in Table 3.1.

3.1 System Evolution

The set of all possible transitions among the dif-
ferent states of nodes is shown in Figure 3. Note
that the process evolves at epochs tk, k ≥ 1
which are either pairwise meetings (occurring at
rate λN |N |(|N | − 1)) or instances of recovery of an
active destination (occurring at rate βND

N (t)). The
system state is represented by the tuple ZN (t) =
(BN (t), DN (t), XN

b (t), XN
d (t), Y N (t)), the sizes of the

respective sets. Again, due to the Poisson process
model for the meeting instants, and the exponentially
distributed active durations for destination nodes,
ZN (t) is a continuous time Markov chain; in Table 2
we show its transition structure.
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Notation Explanation
AN (t) set of destinations at time t, of size AN (t)
SN (t) set of relays at time t, of size SN (t)
BN (t) set of inactive destinations at time t, of size BN (t)
DN (t) set of active destinations at time t, of size DN (t)
XN (t) set of destinations with the content at time t, of size XN (t)
XN

b (t) set of inactive destinations with the content at time t, of size XN
b (t)

XN
d (t) set of active destinations with the content at time t, of size XN

d (t)
YN (t) set of relays with the content at time t, of size Y N (t)

ZN (t) (BN (t), DN (t), XN
b (t), XN

d (t), Y N (t))

Z̃N (t)
ZN (t)

N

TABLE 1
A summary of the notation

Epoch type i Rate Ri(Z) State update δi(Z)
D −Xd recovers βN (D −Xd) (1,-1,0,0,0)
Xd recovers βNXd (1,-1,1,-1,0)
B − Xb meets X + Y λN (B −Xb)(X + Y ) (0,0,1,0,0)

D −Xd meets Y λN (D −Xd)Y
(0,0,0,1,0)
+ (0,1,0,1,-1) w.p. Γ

D −Xd meets X λN (D −Xd)X (0,0,0,1,0)
Xd meets Y λNXdY (0,1,0,1,-1) w.p Γ
S − Y meets Xb + Y λN (Xb + Y )(S − Y ) (0,0,0,0,1) w.p. σ
S − Y meets D −Xd λN (D −Xd)(S − Y ) (0,1,0,0,0) w.p. Γ

S − Y meets Xd λN (Xd)(S − Y )
(0,1,0,1,0) w.p. Γ
(0,0,0,0,1) w.p(1− Γ)σ

TABLE 2
Transition rates and state updates for various possible epochs in the SIR-SI process, when the current state of

the CTMC ZN (t) is given by Z = (B,D,Xb, Xd, Y )

destinations)
(infectious

want

don’t want
(relays)

want

destinations)
(non−infectious

Content spread (SI Model)

Influence spread (SIR Model)

have don’t have

Influence & Content spread

Y

Xd

Xb

D −Xd

S − Y

B − Xb

Fig. 3. Possible transitions between the states in the
SIR-SI model. Observe that, in addition to the transi-
tions due to SIR model and SI model separately, there
are instances where both can occur simultaneously.
For instance, when an active destination node i ∈ Xd
meets a relay node j ∈ S − Y, the relay might get
converted to a destination and also receive the content,
as indicated by the diagonal transition.

3.2 Drift Equations

The drift rate is the expected rate of change of the
process out of a given state. We can express the
expected drift of the system as follows:

FN (Z) =
∑
i∈E

Ri(Z)δi(Z) (1)

where i ∈ E indexes the epoch type, Ri(Z) and δi(Z)
are the respective transition rates and corresponding
state changes given the current state of the CTMC
ZN (t) = Z, as given in Table 2. The co-evolution pro-
cess evolves at pairwise meetings or recovery instants.
Given the current state of the system, the rates of each
possible transition epoch type can be determined (as
shown in Table 2), and the state update depends on
the type of node(s) involved in the pairwise meeting
(or node recovery). The exact expressions for the mean
drift rates FN (Z) are provided in Section 7.1. Define
Z̃N (t) = ZN (t)/N and consider the o.d.e.s given
below.

ḃ = βd (2)
ḋ = −βd+ λΓds (3)
ẋb = βxd + λ(b− xb)(x+ y) (4)
ẋd = Γλ(d− xd)y + Γλxds+ (5)

λ(d− xd)(x+ y)− βxd
ẏ = −Γλdy + λσ(s− y)(xb + y + (1− Γ)xd) (6)
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where s(t) = 1 − b(t) − d(t) and x(t) = xb(t) + xd(t).
We can then state the following result.

Theorem 1: Given the coevolution Markov process
Z̃N (t) = (B̃N (t), D̃N (t), X̃N

b (t), X̃N
d (t), Ỹ N (t)) with

initial conditions Z̃N (0) we have for each T > 0 and
each ε > 0,

P
(

sup
0≤u≤T

∣∣∣∣Z̃N (bNuc)− z(u)
∣∣∣∣ > ε

)
N→∞→ 0

where z(u) = (b(u), d(u), xb(u), xd(u), y(u)) is the
unique solution to the o.d.e. system given by Equa-
tions (2)-(6) with z(0) = Z̃N (0).

Proof: The proof involves verifying the conditions
for applying Kurtz’s theorem [10] to the SIR-SI process
(see Section 7.1). Since the drifts are Lipschitz, the
uniqueness of the solution of the o.d.e. is guaranteed
once the initial condition is fixed, by the Cauchy-
Lipschitz condition.
Remark: As is evident from the o.d.e., the interest
evolution and the content dissemination processes
have independence in one direction, i.e., the evolu-
tion of (b(t), d(t)) proceeds independently, while the
evolution of (xb(t), xd(t), y(t)) depends on (b(t), d(t)).

3.3 Accuracy of the O.D.E. Approximation
Figures 4 and 5 illustrate the convergence of the scaled
coevolution process Z̃N (t) to the o.d.e. solutions z(t)
for increasing values of N for σ = 1 and σ = 0.3.
We plot a(t) = b(t) + d(t), x(t) = xb(t) + xd(t)
and y(t) for clarity. Observe that as N increases, the
approximation of the original process by the o.d.e.
becomes better. Observe that when σ is increased
from 0.3 to 1, there is significant increase in y(t) but
the contribution to x(t) is not significant. Also for
σ a constant, i.e., static control, x(t) asymptotically
reaches a(t) irrespective of σ and y(t) asymptotically
reaches s(t) = 1−a(t) provided σ > 0. Note that from
the o.d.e. equations, it is clear that, x(t) is monotoni-
cally increasing, whereas in general y(t) need not be
monotonic.

3.4 Copying to Relays: Static vs. Dynamic Control
In the above section we considered σ to be a static
control, i.e. σ(t) = σ, ∀t. We could instead consider
a dynamic copying control σ(t) ∈ [0, 1]. Then for
each N we have a controlled continuous time Markov
chain. The optimal control appears difficult to obtain
in the finite size problem. We instead replace the
constant copying probability in the ODE limit by σ(t)
which yields a controlled ODE. We can then obtain
the optimal (deterministic) control for the controlled
ODE (as in 4.1). In certain situations it can be shown
that this control is asymptotically optimal for the finite
size problem as N increases [3]. The proof given in
[3], for discrete time MDPs with finite time horizon,
does not directly apply here, and needs to be extended
to accommodate our setting. In this paper, we derive

the optimal control σ(t) for the controlled ODE, and
then treat the use of this optimal control for the finite
population Markov chain as a heuristic.

In order to justify this approach, the convergence of
the co-evolution process to its o.d.e. limit is numeri-
cally demonstrated in Figure 6 for a time-threshold
type control. In this case, σ(t) = 1, t < 4 and σ(t) = 0
for t ≥ 4. Note that when σ(t) = 0, ẏ ≤ 0 from
Equation (6). Observe that the trajectory of x(t) is
very similar to the one obtained when σ = 0.3, but
the value of y(t) for large t is considerably smaller.
This indicates that this threshold policy (τ = 4) will
perform better than the static policy σ = 0.3, for
the purpose of copying to a large fraction of the
destinations, while keeping in check the number of
relays who get the content but do not eventually
convert to destinations.

4 THE OPTIMIZATION PROBLEM

In [14], since the fraction of destinations was constant,
it was suitable to choose the time of delivery to a frac-
tion α of destinations as the objective to be minimized.
In our setup, since the fraction of destinations is time-
varying, we define the target time,

Tσ = inf{t : xσ(t) ≥ αa(∞)}

where a(∞) is the terminal fraction of destinations
as given by the SIR model for interest evolution
(b(t), d(t)) and xσ(t) is the fraction of destinations that
have the content at time t under the control σ(t).
Note that since d(∞) = 0 and a(t) = b(t) + d(t),
a(∞) = b(∞). The cost we are interested in optimizing
is of the form

Cσ = ψyσ(Tσ) + Tσ = ψyσ(Tσ) +

∫ Tσ

0

1dt (7)

Here yσ(Tσ) denotes the number of relays that have
the content at time Tσ and signifies the number of
wasted copies, and ψ is the tradeoff parameter.

Even though the copying cost is distributed across
the nodes, we treat the number of wasted copies at
the target time Tσ as part of the system objective.
This can be motivated by considering an incentive
mechanism for the relay nodes which still hold the
content but are not converted into destinations by
the target time Tσ . Consider the earlier framework,
where the content is a discount coupon for some ser-
vice/product. The service provider, initially provides
these discount coupons to a subset of its customers,
who are then encouraged to spread replicas of the
coupon. Nodes that are interested in the service, and
are in possession of the coupon immediately claim the
service. The service provider stops accepting discount
coupons once a pre-defined number (here αa(∞)) of
coupons have been used. At this time, the relay nodes
that are still in possession of the coupon will need to
be provided a reimbursement for helping the spread
of the coupon. In the example described in Section
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2, this reimbursement could be in terms of credit on
their cellular service, say 100 free SMSs.

4.1 Optimal Control

In this section we will establish the optimality of a
time-threshold control for the objective given by the
Equation (7). We will use definitions and lemmas
provided in Section 7.2 in order to prove the following
theorem.

Theorem 2: For the o.d.e system given by Equa-

tions (2)-(6) there exists an optimal control of the form,

στ (t) =

{
1, 0 < t < τ
0, t ≥ τ (8)

which optimizes the cost in Equation (7).
Proof: Recall yσ(Tσ) is the amount of wasted

copies, at the target time Tσ . When σ(t) = στ (t), a
time-threshold policy (Equation (8)), we will denote
this by yτ (Tτ ), where τ is the time threshold associ-
ated with στ (t). The sketch of the proof is as follows.
We first establish that, the set of values taken by
yτ (Tτ ) form an interval of [0, ρmax]. Then, given any
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Fig. 7. Evaluation of optimal τ for the time-threshold policy. The plot shows the behaviour of Tτ and yτ (Tτ ) for
various values of τ , for fixed system parameters.

policy σ(t), we show that:
• If yσ(Tσ) = ρ ≤ ρmax, then ∃ a time-threshold

policy στ (t) such that yτ (Tτ ) = ρ and Tτ ≤ Tσ .
• If yσ(Tσ) = ρ > ρmax, we can find a time-

threshold policy στ (t) which has a smaller total
cost.

Thus in either case, we have a time-threshold policy,
which performs at least as good as the given policy,
which proves the optimality of the time-threshold
policy. Refer Section 7.2 for the proofs of the above
claims.

Figure 7 shows the variation of Tτ , yτ (Tτ ) and Cτ as
a function of τ for fixed system parameters. It can be
seen that as τ is increased (as we continue to copy to
relays for longer) , Tτ decreases monotonically (the
target is achieved earlier), and we see an increase
in the value of yτ (Tτ ) (more wasteful copies). The
optimal threshold τ? minimizes the total cost Cτ ,
by balancing the two component costs, taking the
tradeoff parameter ψ into account.

5 NUMERICAL RESULTS
Having observed that the optimal control is of the
form 8, we can now numerically compute the optimal
time threshold, which we shall refer to as τ?. Recall
the cost function is of the form

Cσ = Tσ + ψyσ(Tσ) = ψyσ(Tσ) +

∫ Tσ

0

1dt

where Tσ is the target time to reach a fraction α of
the terminal fraction of destinations under the policy
σ(t),i.e.,

Tσ = inf{t : xσ(t) ≥ αa∞}
Since in this case, σ(t) = στ?(t), we shall denote the
total cost by Cτ? , and the two components of the
cost by Tτ? and yτ?(Tτ?). We obtain the optimal time-
threshold (τ?) by numerically sweeping over [0, Tmax]
to search for the cost minimizing value of τ (as in
Figure 7), where Tmax is the maximum simulation
time. In the following discussion we shall numerically
study the effect of various cost parameters, system
parameters and initial conditions on τ?,Cτ? , Tτ? and
yτ?(Tτ?).
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Fig. 8. Decentralized Influence Spread: Effect of d0 on
the optimal cost and optimal τ

5.1 Effect of initial conditions
Figure (8) shows the effect of d0 on the optimal τ?.
We see that as we increase d0 keeping the fraction of
xd0
d0

constant, there are more destinations that have
the content. Further, there are fewer relays in the
population, and with fixed Γ and β, there is less
chance for them to get converted into destinations.
This prevents us copying to more relays and hence
there is a decrease in the value of τ?. Note that
when d0 = 1, the entire population consists of only
destinations, and hence the optimal τ = 0.

Figure (9) shows the effect of xd0 on the optimal τ?.
As the fraction xd0

d0
is increased, since a larger number

of destinations have the content, the newly infected
relays also obtain the content. Observe that xd0

d0
= 1

implies that all the initial destinations are given the
content. This implies that any destination converted
in the future, will automatically receive the content.
This alleviates the need to copy to any of the relays,
since the main purpose of copying to relays is to serve
the destinations without the content (either because
they were destinations not given the content initially
or were converted by other destinations without the
content at a later time).

5.2 Effect of system parameters
Figure (10) shows the effect of Γ on τ?. We see that
as Γ increases, it increases the rate at which relays
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Fig. 10. Decentralized Influence Spread: Effect of Γ on
the optimal cost and optimal τ

get converted into destinations, without affecting the
rate at which content copying occurs (dependent on
the meeting rate λ and copying probability σ(t)).
We do not see much effect on τ?, and Tτ? . This is
because, though increasing Γ increases the terminal
set of destinations (and thus the target αa(∞)), it also
helps in achieving the target by the conversion of
relays with the contents into destinations with the
content. Also due to this conversion, we observe a
decrease in yτ (Tτ ), further indicated by the fact that
y(t) ≤ s(t) and the fraction of relays s(t) is decreasing
rapidly.

Figure (11) shows the effect of β on τ?. We observe
that when β is very low, destinations remain active
for a longer duration before recovery. This leads to a
faster decay in s(t), the fraction of relays, and also an
increase in the target αa(∞). The larger target requires
that copying to relays must continue for longer, and
the faster decay in the fraction of relays prevents an
excessive number of copies being eventually wasted
in spite of copying for longer. Thus, a small β results
in a large value of τ∗. For large β, since active
destinations stay active for a shorter duration, the
eventual population of destinations is small. Hence,
the population of destinations carrying the content is
small, thus requiring the relays to play a greater role
in the spread of the content. However, again, since β is
large these relays are less likely to get converted into
destinations, thus explaining the increase in yτ (Tτ ) for
large values of β.

Figure (12) shows the effect of λ on the optimal
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Fig. 12. Decentralized Influence Spread: Effect of λ on
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τ?. As λ increases, the rate at which content spread
increases, and thus a destination in need of the content
is highly likely to obtain it from another destination.
This results in a more passive policy of copying to
relays, leading to a decrease in the optimal τ? and
the corresponding costs.

5.3 Effect of cost parameters
Figure (13) shows the effect of α on τ?. For the
given system parameters, a∞ = 0.4352 and hence for
α < 0.23, we see that the target is already achieved at
time zero (since the initial seeding xd(0) = 0.1). Thus
for α < 0.23, τ? = 0,Tτ? = 0 and yτ?(Tτ?) = 0. As α in-
creases, we see that τ? increases and in turn increases
the costs, since we need to continue copying to relays
for a longer duration to achieve the target. It is also
to be noted that as α→ 1, Tτ approaches ∞, since by
definition x(t) reaches a(∞) only asymptotically.

Figure (14) shows the effect of ψ on τ?. As ψ
increases, we see that the emphasis on the wasted
copies, y(T ), increases, and hence the control needs
to be less aggressive. Thus we see a decrease in τ?

as ψ increases, and this leads to a decrease in the
wasted copies (yτ?(Tτ?)) and an increase in the delay
of reaching the target (Tτ? ). We see an increase in the
total cost Cτ? since both the terms in the cost function
(Tτ? and ψyτ?(Tτ?)) are increasing.

6 CONCLUSIONS
In this paper we studied the joint evolution of popu-
larity and spread of content in a mobile opportunistic
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setting. We proposed a possible application frame-
work for such a system. We developed a continuous
time Markov model for the joint evolution and de-
rived its fluid limit. Finally we showed that a time-
threshold policy is an optimal copying policy for the
joint evolution model, to optimize the combined cost
of target time and the amount of wasted copies. We
also have reported several interesting insights into
the evolution of popularity and the co-evolution of
popularity and content delivery, which will help the
content producers and distributors understand the
interplay of various system parameters. By allowing
users to declare the interest and enabling the spread
of interest, we extend the notion of a personal wishlist
(in e-commerce platforms like Amazon) to a social
wishlist. The application also combine the services
of coupon delivery (Groupon) with such wishlists,
thus allowing targeted discount delivery, wherein
brands can identify the users who are interested in
the coupon and deliver it to them.

7 PROOFS

7.1 Verification of Kurtz’s theorem conditions for
SIR-SI model

Kurtz’s theorem [10] is used to approximate pure
jump Markov processes by ordinary differential equa-
tions in the limit (usually as system size N → ∞).
To do so, we must derive the mean drift rates of
an appropriately scaled version of the system, and

study the limit of these mean drift rates as the scal-
ing goes to ∞. In our case, for the joint evolution
model described in Section 3, we can use the Equa-
tion 1 and Table 2 to write down the mean drift
rates. Let Z = (B,D,Xb, Xd, Y ) denote the current
state of the CTMC ZN (t) and let Z̃ = Z

N . The
expected drift rate of the CTMC Z̃N (t), FN (Z̃) :=
(FNb (Z̃), FNd (Z̃), FNxb (Z̃), FNxd(Z̃), FNy (Z̃)) can then be
written as:

FNb (Z̃) = βN D̃

FNd (Z̃) = −βN D̃ +NλNΓD̃S̃

FNxb (Z̃) = βN X̃d +

NλN (B̃ − X̃b)(X̃ + Ỹ )

FNxd(Z̃) = ΓNλN (D̃ − X̃d)Ỹ −
βN X̃d + ΓNλN X̃dS̃ +

NλN (D̃ − X̃d)(X̃ + Ỹ )

FNy (Z̃) = −ΓNλN D̃Ỹ +

NλNσ(S̃ − Ỹ )(X̃b + Ỹ + (1− Γ)X̃d)

and the corresponding o.d.e. equations,

ḃ = βd (9)
ḋ = −βd+ λΓds (10)
ẋb = βxd + λ(b− xb)(x+ y) (11)
ẋd = Γλ(d− xd)y + Γλxds+ (12)

λ(d− xd)(x+ y)− βxd
ẏ = −Γλdy + λσ(s− y)(xb + y + (1− Γ)xd)(13)

where s(t) = 1 − b(t) − d(t) and x(t) = xb(t) +
xd(t). Let fb, fd, fxb , fxd , fy denote the right hand
sides of the above fluid limit equations and let f :=
(fb, fd, fxb , fxd , fy). The following four conditions are
shown to be equivalent [2] to the necessary conditions
for Kurtz’s theorem.

(i) Lipschitz property We see that each of the partial
derivatives ∂fu

∂v where u, v ∈ (b, d, xb, xd, y) is
bounded when (b, d, xb, xd, y) ∈ [0, 1] × [0, 1 −
b] × [0, b] × [0, d] × [0, 1 − b − d]. Thus the norm
of Jacobian is uniformly bounded, and it follows
that f(z) is Lipschitz.

(ii) Uniform Convergence Taking NλN → λ and
βN → β we see that the uniform convergence
of FN (z) to f(z) is straightforward.

(iii) Bounded Noise variance Since in the co-
evolution system the maximum jump rate out of
a state is bounded λNN(N −1)+βNN , and since
NλN → λ and βN → β, the jump rate is O(N);
the increments for the scaled process Z̃N (t) are
O(N−1). This is referred to as “hydrodynamic
scaling” [2]. This ensures that the noise conver-
gence to zero is ensured.

(iv) Convergence of initial conditions The
initial conditions are chosen such that
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(B̃N (0), D̃N (0), X̃N
b (0), X̃N

d (0), Ỹ N (0)) =
(b(0), d(0), xb(0), xd(0), y(0))

Since FN (.) and f(.) satisfy the above four condi-
tions, by [2], Theorem 1 follows. �

7.2 Kamke-dominance

Let w(t) be the solution of the o.d.e ẇ = f(w; z) with
piecewise Lipschitz continuous control z(t), where f
is continuously differentiable and Lipschitz in w and
z. Let w(1)(t) and w(2)(t) be the trajectories corre-
sponding to two controls z(1)(t) and z(2)(t) respec-
tively, i.e.,

ẇ(1) = f(w(1); z(1)) (14)
ẇ(2) = f(w(2); z(2)) (15)

Motivated by the Kamke condition (see [15]) we
define Kamke-dominance between two controls z(1)(t)
and z(2)(t) as follows.

Definition 1: We say z(1)(t) Kamke-dominates z(2)(t)
in the system f(w; z) if for each t0 where w(1)(t0) ≥
w(2)(t0) and ∃i with w

(1)
i (t0) = w

(2)
i (t0) then

fi(w
(1)(t0); z(1)(t0)) ≥ fi(w(2)(t0); z(2)(t0))

Lemma 1: Let w(1)(t) and w(2)(t) be as in Equa-
tions (14) and (15), and z(1)(t) Kamke-dominate z(2)(t)
in the system f(w; z). If w(1)(0) ≥ w(2)(0) then ∀t,
w(1)(t) ≥ w(2)(t).

Proof: The proof of Proposition 1.1 in [15] can
be adopted directly in writing this proof. Since f is
continuously differentiable and Lipschitz in w and z,
by the Cauchy-Lipschitz condition, we have a unique
solution given the initial conditions. Let φ(1)t (w(1)(0))
denote the solution of (14) with initial condition
w(1)(0), and φ

(2)
t (w(2)(0)) denote the solution of (15)

with initial condition w(2)(0). We wish to show that
φ
(1)
t (w(1)(0)) ≥ φ

(2)
t (w(2)(0)). Consider m an integer,

and let φ(1),mt (w(1)(0)) be the solution corresponding
to

ẇ(1) = f(w(1); z(1)) +
( 1

m

)
e

Then, by continuity of o.d.e. solutions with respect
to drift and initial conditions [6, Chap.1, Lemma 3.1],
φ
(1),m
s (w(1)(0) + e

m ) defined on 0 ≤ s ≤ t for all large
m, say m > M and

φ(1),ms (w(1)(0) +
e

m
)→ φ(1)s (w(1)(0)) (16)

as m → ∞, uniformly in s ∈ [0, t], where e =
(1, 1, · · · , 1). We claim that for 0 ≤ s ≤ t, for all
m > M ,

φ(1)ms (w(1)(0) +
e

m
) >> φ(2)s (w(2)(0)) (17)

where x >> y implies xi > yi, ∀i.
Proof of claim: Fix m > M . We know that

w(1)(0) + e
m = φ

(1),m
0 (w(1)(0) + e

m ) >> w(2)(0) =

φ
(2)
0 (w(2)(0)). By continuity of φ(1) and φ(2), the claim

(17) holds for small s. If the claim (17) were false,

∃ 0 < t0 ≤ t such that (17) holds for 0 ≤ s < t0, and
an index i such that,(

φ
(1),m
t0 (w(1)(0) +

e

m
)
)
i

=
(
φ
(2)
t0 (w(2)(0))

)
i

and
d

ds

∣∣∣∣
s=t0

(
φ(1),ms (w(1)(0)+

e

m
)
)
i
≤ d

ds

∣∣∣∣
s=t0

(
φ(2)s (w(2)(0))

)
i

(18)
But since ∀j 6= i(

φ
(1)m
t0 (w(1)(0) +

e

m
)
)
j
≥
(
φ
(2)
t0 (w(2)(0))

)
j

and z(1)(t) Kamke-dominates z(2)(t) in the system
f(w, z), we have

fi(φ
(1),m
t0 (w(1)(0) +

e

m
); z(1)(t0)) +

1

m

> fi(φ
(1),m
t0 (w(1)(0) +

e

m
); z(1)(t0))

≥ fi(φ(2)t0 (w(2)(0)); z(2)(t0))

which implies
d

ds

∣∣∣∣
s=t0

(
φ(1),ms (w(1)(0)+

e

m
)
)
i
>

d

ds

∣∣∣∣
s=t0

(
φ(2)s (w(2)(0))

)
i

This contradicts (18) and hence proves the claim (17).
Applying (16) to this claim completes the proof of the
lemma.

Consider the system of equations representing the
evolution of (xb(t), xd(t), y(t)) in the SIR-SI process.

ẋb = βxd + λ(b− xb)(x+ y) (19)
ẋd = Γλ(d− xd)y + Γλxds+ (20)

λ(d− xd)(x+ y)− βxd
ẏ = −Γλdy + λσ(s− y)(xb + y + (1− Γ)xd)(21)

For identifying the optimal control σ(t) it is sufficient
to restrict our attention to Equations (19)-(21), since
by the definition of the SIR-SI process, (b(t), d(t))
are independent of the control, i.e., the popularity
evolution is fixed and not influenced by the content
dissemination. Let w(1) = (x

(1)
b , x

(1)
d , y(1)) and w(2) =

(x
(2)
b , x

(2)
d , y(2)) be the solutions respectively for the

controls σ(1)(t) and σ(2)(t) for the above system with
σ(1)(t) ≤ σ(2)(t). Define

(ub, ud, v) := (x
(1)
b , x

(1)
d , y(1))− (x

(2)
b , x

(2)
d , y(2))

and ∆σ(t) = σ(1)(t)− σ(2)(t). Then we can write,
u̇b|ub=0 = βud + λ(b− x(1)b )(ud + v) (22)

u̇d|ud=0 = Γλ(d− x(1)d )v + λ(d− x(1)d )(ub + v) (23)

v̇|v=0 = λ(s− y(1))[∆σy(1) + σ(1)ub + ∆σx
(2)
b (24)

+(1− Γ)(σ(1)ud + ∆σx
(2)
d )]

Lemma 2: Control Domination
(a) If ∀t, σ(1)(t) ≥ σ(2)(t), then σ(1)(t) Kamke-

dominates σ(2)(t) in the system given by equa-
tions (19)-(21).

(b) If ∀t, y(1)(t) ≥ y(2)(t), then y(1)(t) Kamke-
dominates y(2)(t) in the system given by equa-
tions (19)-(20).
Proof:
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(a) From equations (22)-(24). Since ∆σ ≥ 0, we find
that,
• if ud, v ≥ 0 and ub = 0, then u̇b ≥ 0
• if ub, v ≥ 0 and ud = 0, then u̇d ≥ 0
• if ub, ud ≥ 0 and v = 0 v̇ ≥ 0

This verifies the conditions of Definition 1, and
thus proves (a).

(b) From equations (22)-(23). Since v ≥ 0, we find that,
• if ud ≥ 0 and ub = 0, then u̇b ≥ 0
• if ub ≥ 0 and ud = 0, then u̇d ≥ 0

This verifies the conditions of Definition 1, and
thus proves (b).

Lemma 3: (a) If ∀t, σ(1)(t) ≥ σ(2)(t), and w(1)(0) ≥
w(2)(0), then ∀t, w(1)(t) ≥ w(2)(t)

(b) If ∀t, y(1)(t) ≥ y(2)(t), and (x
(1)
b (0), x

(1)
d (0)) ≥

(x
(2)
b (0), x

(2)
d (0)), then ∀t,

(x
(1)
b (t), x

(1)
d (t)) ≥ (x

(2)
b (t), x

(2)
d (t))

Proof: The proof follows by applying Lemma 1 to
the systems in Lemma 2 (a) and (b).

Define w(t) = (xb(t), xd(t), y(t)) We will now use
the above lemmas to prove the claims in Section 4.1,
in order to establish the optimality of a time-threshold
policy. Recall that α has been fixed earlier. Recall the
definitions of Tσ and yσ(Tσ). We shall replace them
with Tτ and yτ (Tτ ) whenever σ(t) = στ (t), a time-
threshold policy.

Consider τ such that τ ≥ Tτ =: τ ′. Evidently, Tτ ′ =
τ ′, and yτ (Tτ ) = yτ ′(Tτ ′), ∀τ ≥ τ ′.

Define T = {τ : τ ≥ 0} and T = {τ : τ ≤ Tτ} ⊂ T .
Observe that {ρ : ∃ τ ∈ T , yτ (Tτ ) = ρ} = {ρ : ∃ τ ∈
T , yτ (Tτ ) = ρ}. Hence we limit our discussion to τ ∈
T .

Lemma 4: The set {ρ : ∃ τ ∈ T , yτ (Tτ ) = ρ} forms
an interval of the form [0, ρmax].

Proof: Setting τ = 0, i.e., σ(t) = 0 , ∀t, we see
from Equation (21), since y(0) = 0, we have y(t) = 0,
∀t. This establishes that ρ = 0 belongs to the set. It is
also easy to observe that ρmax is achieved by τ such
that τ = Tτ . By the intermediate value theorem, it now
suffices to show that yτ (Tτ ) is a continuous function
of τ .

Consider τ, τ + δ ∈ T , i.e., τ ≤ Tτ , τ + δ ≤ Tτ+δ .
Observe from Lemma 3 , for δ > 0, Tτ+δ ≤ Tτ . With
the above constraints, evidently the only case to be
considered is

τ < τ + δ ≤ Tτ+δ ≤ Tτ
Let wτ (.) and wτ+δ(.) be the trajectories corre-

sponding to στ (t) and στ+δ(t), with wτ (0) = wτ+δ(0).
Since στ (t) = στ+δ(t), 0 ≤ t ≤ τ , it follows that
wτ (τ) = wτ+δ(τ). Further, from Equations (19)-(21)
we observe that,
||wτ (τ + δ)−wτ+δ(τ + δ)||2 ≤ C1δ, where
C1 =

√
(β + λ)2 + (2Γλ+ λ+ β)2 + (λ+ Γλ)2

∀t > τ + δ, στ (t) = στ+δ(t) and hence by continuity of
o.d.e. system w.r.t initial conditions at τ + δ implied

by the Lipschitz nature of f w.r.t w (see [1]), wτ (.) is
continuous w.r.t τ .

Recall that τ < τ + δ ≤ Tτ+δ ≤ Tτ . By the just
observed continuity, for ε > 0, we can obtain δ > 0
such that, |xτ+δ(Tτ+δ)− xτ (Tτ+δ)| ≤ ε , i.e.,

|αa(∞)− xτ (Tτ+δ)| ≤ ε

However over the interval (Tτ+δ, Tτ ], the rate of
increase of xτ (.) is bounded below by λa(t)2(1− α)α
(from Equations (19)-(21)). Hence,

|Tτ+δ − Tτ | ≤
ε

λa(t)2(1− α)α

which can be made small by choosing an appropriate
δ > 0. We have thus shown that Tτ continuous w.r.t
τ . τ ∈ T .

To show the continuity of yτ (Tτ ), consider,
|yτ (Tτ )− yτ+δ(Tτ+δ)| ≤
|yτ (Tτ )− yτ (Tτ+δ)|+ |yτ (Tτ+δ)− yτ+δ(Tτ+δ)|

In the above equation, the first term on the right hand
side can be made arbitrarily small by the continuity
of Tτ w.r.t τ and the fact that yτ (.) is a continuous
trajectory, and the second term can be made arbitrarily
small by the continuity of wτ (.) w.r.t τ . Thus yτ (Tτ ) is
a continuous function of τ , in the space of threshold
policies. And since yτ (Tτ ) : τ → ρ and τ ∈ [0,∞), we
see that ρ ∈ [0, ρmax].

Lemma 5: Let σ(t) be a policy such that yσ(Tσ) <
ρmax. Then there exists a threshold policy στ (t) whose
cost is no worse than that of σ(t).

Proof: Since ρ := yσ(Tσ) < ρmax, there exists τ ≥ 0
such that yτ (Tτ ) = ρ. We will argue that στ (t) is such
that Tτ ≤ Tσ .

Let wτ (t) and wσ(t) be the system trajectories for
the controls στ (t) and σ(t) respectively with wτ (0) =
wσ(0). By definition, for t ≤ τ , στ (t) ≥ σ(t) and hence,
by Lemma 3, wτ (τ) ≥ wσ(τ).

Suppose, contrary to the claim, Tτ > Tσ . Evidently,
this cannot happen if for all t, 0 ≤ t ≤ Tσ , yτ (t) ≥
yσ(t). This is because, by Lemma 3, we will have
xτ (t) ≥ xσ(t) and hence Tτ ≤ Tσ .

Hence, there exists t0, τ ≤ t0 < Tσ , such that
yτ (t0) = yσ(t0). Then we have yτ (t0) = yσ(t0) > ρ
(since yτ (Tτ ) = ρ and τ ≤ t0 < Tτ , and for t ≥ τ ,
ẏτ (t) < 0). Also, for t ≥ t0, στ (t) = 0 ≤ σ(t).
Thus from (21), ∀s ∈ {s : s > t0, yτ (s) = yσ(s)},
ẏτ (s) ≤ ẏσ(s). Thus for s ≥ t0, yτ (s) ≤ yσ(s). Since
yτ (Tτ ) = yσ(Tσ) = ρ, this implies Tτ ≤ Tσ .

Lemma 6: Consider a non-threshold policy σ(t)
which achieves ρ > ρmax. Consider the time-threshold
policy σ̂(t) of the form,

σ̂(t) =

{
1, 0 ≤ t < sup{t : σ(t) > 0}
0, otherwise

Then σ̂(t) policy achieves a smaller total cost (given
by Equation 7) than σ(t).
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Proof: Let σ(t) and στ̂ (t) be as above. Let wτ̂ (t)
and Tτ̂ be as defined earlier for time-threshold poli-
cies, corresponding to στ̂ (t). Then by Lemma 4,
yτ̂ (Tτ̂ ) ≤ ρmax < ρ = yσ(Tσ), and by Lemma 3,
Tτ̂ ≤ Tσ , and hence the στ̂ (t) policy achieves a smaller
total cost than σ(t).
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