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Abstract—We consider the competition between two competing
content creators who can reach out to their potential consumers
via two different online social networks. The efficiency of a
network for information spread is characterized by two simple
properties: the level of activity within the network and the pop-
ularity of the network among the population of consumers. We
assume that the contents under our consideration are exclusive in
nature, i.e., each consumer is interested in receiving only one of
the competing contents. Each content creator optimizes the total
budget spent across the two social networks. We study the non-
cooperative game and characterize the best response functions
for the content creators. From the best response functions we
observe that there exists a hysteresis-like behavior when it comes
to resource allocation across multiple networks, i.e., as a player
responds to increasing budget of the competitor, there is an
interval of the opponent’s budget between when the player
saturates the resources in the better network and when he begins
to invest in the worse network. A similar behavior is also observed
when the player begins reducing resources, responding to a much
higher budget of the competitor. We also observe that the larger
the difference between the networks’ efficiency levels, the larger
the interval. We then numerically evaluate the Nash equilibria
from the best response functions and conclude with discussions
on possible future scope of this work.

I. INTRODUCTION

Social media provide a more direct interface, as against
traditional media, for content creators to reach out to their
potential consumers. With increasing activity in Online Social
Networks (OSN) like Facebook and Twitter, and with a greater
fraction of the global population being present on these net-
works, content creators have begun investing in online social
media advertisements. The proliferation of mobile Internet
and smartphones have ensured that the consumers stay online
in one or more of these social networks most of the time,
hence permitting timely delivery of content as opposed to other
traditional media (such as print media, television, etc.)

There has been considerable interest in the research commu-
nity to study influence spread in the context of viral marketing,
and develop algorithms for choosing the most influential set
of initial nodes in the social network [1], [2] under various in-
fluence spread models (such as Linear Threshold, Independent
Cascade, etc.). Since modern day social networks have a large
user base (for instance, Facebook has 1billion+ users), there
have also been efforts to use fluid limits [3] to approximate the
influence spread on such networks [4]. These yield differential
equations capturing the average dynamics of such processes,
much similar to the ones traditionally used in epidemiology
[5]. Recent efforts have also focused on epidemic games [6],
[7], [8] to study competition between content creators on a
social network.

One aspect that is largely unexplored in the literature of
viral marketing, is characterizing competition across multiple
social networks. We observe that there are several online social
networks, such as Google+, Facebook, Twitter with consid-
erable user-base derived from a common pool of consumers
(i.e., the set of all Internet users). Each consumer spends
varying amounts of time in each of these social networks,
depending on the network’s popularity and usefulness. Thus,
the content creators need to simultaneously manage campaigns
across multiple social networks. Recent literature has studied
the aspect of migration across such social networks [9], but
modeling competition across several such social networks has
not received sufficient attention.

In this work, we characterize the competition between two
content creators for a common user base, via two social
networks. Each social network is characterized by its level
of activity and its popularity among the consumers. There is a
maximum number of resources that each content creator can
use in each of the networks, and the aim is to optimize the net
budget for competition. Our main contributions are as follows.

• Introduce two simple parameters to capture the informa-
tion spread efficiency in different social networks

• We study the non-cooperative game between the two
content creators and characterize the best response.

• From the best response function we observe that, for
increasing values of the competitor’s net allocation, the
content creator begins by allocating his budget to the
better social network. Interestingly, we observe that after
exhausting the resources in the better network, there is an
intermediate interval of competitor’s allocation, for which
the content creator refrains from investing in the second
social network. A similar behavior is observed when the
content creator starts reducing his budget in response to
a much higher budget of the competitor.

• We obtain the Nash equilibria from the intersections
of the best response functions. We observe that the
equilibrium budget for competition increases with

– decrease in the player’s own cost per unit budget
– increase in the opponent’s cost per unit budget

The paper is organized as follows: In Section II, we describe
the system model for the competition framework and the social
network, and justify the assumptions involved using real-world
instances. In Section III we derive the utility functions from
the system dynamics and formulate the non-cooperative game
in terms of the net budget used by each of the content creators.
In Section IV we obtain the best response functions for each
of the users, and thus characterize the Nash equilibria, as the
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Fig. 1. Interaction between various components of the system. Sources recruit
promotional accounts (sij ) in each of the social networks, and users visit each
network with a probability γj . Once inside the network, they receive updates
from the promotional accounts at the rate λj

intersection of the best response functions. We also provide
interesting remarks on the structure of the best response
function and the hysteresis behavior. We also discuss a variant
of the cost structure and discuss its implications. Section V
provides numerical study of the best response functions and
the Nash equilibrium, and provides interesting insights into
the solution. Finally we conclude by providing possible future
directions for this work.

II. SYSTEM MODEL

In this section, we will introduce the system model and
justify the associated assumptions by considering examples
from real world networks. We begin with the description of the
competition framework and then describe the social network.

A. Competition Framework

We restrict our attention to publish-subscribe based net-
works, i.e., networks in which there are sources which generate
content and users follow the sources. Consider M content
sources trying to spread their content to a consumer population
through K different such networks. We primarily deal with
digital content, say news articles, popular song videos or
podcasts. We also assume that the content sources specialize
in the same genre of content, and hence there is a competition
among them to attract a larger fraction of the common user
base. We also assume that the contents are exclusive in nature,
i.e., a particular consumer would adopt the first content he
comes across, and is no longer interested in others. This is true
in cases such as news podcasts (CNN, BBC,etc.) covering the
same sports event, media streaming sites (Youtube, Vimeo,
etc.) providing the same music video, etc. Figure 1 shows
the various components (content sources, social network and
the user population) in the system. We look at the scenario
where the users could be present in one of several such
networks at any given point of time. These networks vary in
their popularity in the user population, and also in the level
of interaction within the network. Thus each network j is
characterized by a visit probability per user, γj , and a meeting

rate within the network, λj . Note that
∑
j∈K γj ≤ 1. The

system parameters γj and λj can be interpreted as follows: in
each time slot, every user chooses which network to be present
in, according to the probability γj , and once in Network j,
he/she visits the sources’ pages at the rate λj .

Though there are several online social networks, each of
them have evolved to provide a unique service, and hence
it is common for users to maintain accounts simultaneously
on multiple social networks. For instance, Gmail is primarily
intended for personal and professional communications among
a small group of individuals. Facebook is used to stay in
touch with our social circle (acquaintances and friends) and
broadcast contents to all (or a majority) of friends. Twitter
is primarily used as a content-sharing network, where users
follow (unidirectional) content sources for latest updates. γj
represents how users divide their attention across these various
social networks. This will highly depend on individual prefer-
ences, but for simplicity we have assumed this to be constant
for the user population under consideration.
λj is dependent on the network, since different networks

may operate on different time scales and have varying mech-
anisms by which users access the content. For instance, it has
been empirically observed [10], that the dynamics of news
cycles on Facebook and Twitter occur at different rates, with
Twitter being more up to date. This may be due to the different
reasons for which the networks have evolved, as hinted earlier.
Consider a single user who has subscribed to a mailing list on
Gmail, has liked a page on Facebook (thus receives updates)
and also follows a particular account on Twitter. Receiving
half a dozen updates about a content from a single account
over the period of a day may be perceived as normal on
Twitter, while on Facebook it might be annoying and on Gmail
subscriptions it might border on spamming. Thus content
sources are restricted to using a λj as dictated by the time-
scale at which the network operates.

Each content source creates aliases in each of the networks,
to spread his particular content. This can be done by creating
accounts/pages on these networks to promote their content, and
recruit personnel to manage and update these accounts/pages.
We denote by sij , the fraction of promoters for content i in
network j. The net budget spent by a given content source
i is then

∑
j sij . We will also assume that there is a cost

per unit budget for each source and is given by φi. We also
assume there is a maximum limit to the number of promotion
accounts that can be created on each network. sij’s are hence
normalized with respect to the user population, i.e., sij ≤ 1.
The aim of the content provider would then be to optimize
the net budget to maximize his revenue. The exact utility to
be optimized is provided in Section III.

For this work, we will restrict our attention to two
content sources and social networks (M=2, K=2), though the
methodology and the results in this work can be generalized
for the (M,K) case.

B. Social Network
Consider the social network as shown in Figure 2. We have

considered Network 1 for example. si1 denotes the promotion
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Fig. 2. The different subsets of users within a given social network
(Social Network 1 is considered as an example). si1 represents the promotion
accounts related to source i and xi denotes the fraction of total user population
that has consumed content i. γ1 is the probability with which a user is present
in Network 1.

accounts promoting content from source i. The total set of
users in the population is normalized to 1 and the fraction of
users currently present in Network 1 is given by γ1. Among
these, γ1x1 fraction of users have already consumed content of
source 1 and γ1x2 fraction of users have consumed content of
source 2. Hence the competition between the sources is for the
fraction of users who haven’t consumed either of the content
and are currently present in Network 1, i.e., γ1(1− x1 − x2).
These users receive content updates from each of the sources
(in s11 or s21) at rate λj and depending on which source
reaches them first, they get converted to x1 or x2. We can use
this to write down the system dynamics.

We will now write down the system of o.d.e.’s for the system
evolution under fluid limit assumptions [3], [4] with the total
user population normalized to 1. Let x1, x2 denote the fraction
of users who have seen content 1 and 2 respectively (x1+x2 ≤
1). The system evolution can then be given by,

ẋ1 = (s11λ1γ1 + s12λ2γ2)(1− x1 − x2) (1)
ẋ2 = (s21λ1γ1 + s22λ2γ2)(1− x1 − x2) (2)

In the above equations, the first term represents the fraction
of nodes delivered the content in Network 1 (by si1), and
the second term represents the fraction of nodes delivered the
content in Network 2 (by si2). Let a = λ1γ1 and b = λ2γ2.
The system evolution o.d.e.’s then become:

ẋ1 = (as11 + bs12)(1− x1 − x2) (3)
ẋ2 = (as21 + bs22)(1− x1 − x2) (4)

Let Xi represent the final fraction of users who have seen
content i, i.e., Xi := xi(∞) from equations (3) and (4). By

solving the above system we get,

Xi =
asi1 + bsi2

asi1 + bsi2 + asj1 + bsj2
(5)

Note that since we are restricting ourselves to publish-
subscribe based networks, we do not consider content sharing
among users in this work. Modeling information spread in
such system taking into account content sharing is a promising
future direction. This will require a realistic modeling of the
graph structure within each of these networks. This would
also involve addressing issues such as, users sharing contents
across the social networks (sharing an article read on Facebook
to his followers on Twitter), and the distinction between user
sharing and promotion from sources (users generally tend to
share only once, since they are not interested in maximizing
the visibility of any particular content).

III. GAME FORMULATION

We model the competition between the two content creators
(players) as a non-cooperative game, with strategies (s11, s12)
for player 1 and (s21, s22) for player 2. sij’s are normalized
with the user population, hence sij ≤ 1. The general utility
function for player i is of the form,

Ui = Xi − φi(si1 + si2)

where Xi represent the final fraction of users who have seen
content i, as given in Equation 5 and φi is the cost per unit
budget for content source i. We have made the cost depend
only on the source, assuming that he does not pay differently,
the personnel involved in spreading his content on different
networks. Section IV-D has discussions on a variant of the
cost structure, which depends both on the source and the
corresponding social network.

We see that λjγj serves as a measure of how efficient a
network is for spreading information quickly to the common
pool of consumers. This is intuitive, since λj indicates the rate
at which you can generate content in Network j and γj indi-
cates how often users are present in Network j. Without loss of
generality, assume a, b > 0, with a > b i.e. λ1γ1 > λ2γ2. Then
if we fix the total budget, say Bi = si1+si2, then we can show
that in the optimal allocation of the net budget (assuming a cost
structure independent of the network) is, si1 = min(B1, 1) and
si2 = min((B1 − 1)+, 1). This implies that since Network 1
is better than Network 2 (a > b), given a total budget, it is
optimal to invest in Network 1 until the maximum limit is
reached, and then invest in Network 2. It is evident that, even
in the case of a general K network system, the networks can
be ordered in decreasing order of λjγj and the budget can be
allocated beginning with the best network and proceeding to
the next network once the maximum limit is reached.

Define,
z1 = amin(B1, 1) + bmin((B1 − 1)+, 1)

z2 = amin(B2, 1) + bmin((B2 − 1)+, 1)

We can then rewrite the utilities as function of the budgets
(B1, B2).

U1 =
z1

z1 + z2
− φ1B1



U2 =
z2

z1 + z2
− φ2B2

Hence we have,

Ui =

{
aBi

aBi+zj
− φiBi, Bi ≤ 1

a−b+bBi

a−b+bBi+zj
− φiBi, 1 ≤ B1 ≤ 2

(6)

Thus, by observing the optimal allocation across the social
networks, we have reformulated the utility in terms of a single
strategy for each user, i.e., the net budget Bi. We can now
solve for the Nash equilibrium of the above non-cooperative
game by studying the best response dynamics of (B1, B2).

Observe that when B2 = 0, the strategy B1 = ε > 0 yields
a utility of U1 = 1 − φ1ε for player 1 and ∀ε > 0, B1 = ε

2
yields a higher utility. But, by the system definition, B1 = 0
yields zero utility. Thus there is no best response for B2 = 0,
and the utility function U1 is discontinuous at B1 = 0. Hence
we require Bi ≥ δ > 0, the minimum budget for each player.
Also, since sij ≤ 1, it is sufficient to restrict the strategy set
of each user to Bi ∈ [δ, 2].

IV. BEST RESPONSE DYNAMICS

In this section, we first establish the existence of a Nash
equilibrium and then proceed to characterize the best response
function for each player. We can then obtain the Nash equi-
librium as the intersection of the best response functions.

A. Existence of PSNE

Theorem 1 (Debreu, Glicksberg, Fan [11] ): Consider a
strategic form game < I; (Si); (ui) >, where I is a finite set.
Assume that the following conditions hold for each i ∈ I.
• Si is a non-empty, convex, and compact subset of a finite-

dimensional Euclidean space.
• ui(s) is continuous in s.
• ui(si, s−i) is quasi-concave in si

Then the game < I; (Si); (ui) > has a pure strategy Nash
equilibrium.
Since the set of strategies (the net budget), Bi ∈ [δ, 2] the
first condition is satisfied. From the utility functions (6), the
remaining two conditions can be verified, and hence the game
has a pure strategy Nash equilibrium.

B. Characterizing the Best Response Function

Let BRi(Bj) be the best response of player i corresponding
to the strategy Bj by player j. Let U∗i (Bj) be the correspond-
ing maximum utility. We then have the following cases:

Case (i) BRi(Bj) = δ, U∗i (Bj) = aδ
aδ+z2

− φ1δ
Case (ii): 0 < BRi(Bj) < 1

Setting dUi

dBi
= 0 in (6) for Bi ≤ 1, we get

BRi(Bj) =
1

a

(√
z2a

φ1
− z2

)

U∗i (Bj) =

(
1−

√
z2φ1
a

)2

Case (iii): BRi(Bj) = 1, U∗i (Bj) = a
a+z2

− φ1

Case (iv): 1 < BRi(Bj) < 2
Setting dUi

dBi
= 0 in (6) for 1 ≤ Bi ≤ 2 , we get

BRi(Bj) =
1

b

(√
z2b

φ1
− a+ b− z2

)

U∗i (Bj) =

(
1−

√
z2φ1
b

)2

+ φ1
a− b
b

Case (v): BRi(Bj) = 2, U∗i (Bj) = a+b
a+b+z2

− 2φ1

We note that the best response can belong to any of the
above cases, and hence by comparing the maximum utility
U∗i (Bj) obtained in each of the cases, we can construct the
best response function.

Define,

f1 =
1

a

(√
z2a

φ1
− z2

)

g1 =
1

b

(√
z2b

φ1
− a+ b− z2

)
If f1 ≥ g1 (which is true for sufficiently large φ1), then we

have the following structure for the best response function.
Let Θf1 , Θ′f1 be the values of B2 for which f1 = 1 and

similarly Θg1 , Θ′g1 be the values of B2 for which g1 = 1. The
best response function BR1(B2) is of the following form

BR1(B2) =


max(f1, δ), 0 < B2 < Θf1

1, Θf1 < B2 < Θg1

min(g1, 2), Θg1 < B2 < Θ′f1
1, Θ′g1 < B2 < Θ′f1

max(f1, δ), B2 > Θ′f1

The max and min terms feature, in order to ensure that the
budget remains in the feasible set [δ, 2]. We can similarly
characterize BR2(B1). The PSNE of the game can then be
obtained as the intersection of the best response curves.

C. Hysteresis Behavior of Resource Allocation

Figure 3 shows the structure of the best response function.
An interesting feature that arises out of this structure is that,
in the intervals Θf1 < B2 < Θg1 and Θ′g1 < B2 < Θ′f1 , it is
optimal to use the budget B1 = 1, i.e., exploit the resources
in Network 1 to the maximum, but refrain from investing in
Network 2. Especially as the opponent (player 2) increases
his budget from δ to 2, player 1 increases his investments in
Network 1. When Network 1 is saturated for Player 1, i.e.,
s11 = 1, he does not immediately begin investing in Network
2. Thus we observe there is an interval Θf1 < B2 < Θg1 when
the optimal response remains at B1 = 1. A similar behavior is
observed as Player 2 begins approaching his maximum budget
B2 = 2. In such a scenario, it is no longer optimal to maintain
B1 = 2 and hence Player 1 starts lowering his budget (thus
reducing his investment in Network 2). Once he relieves all
his resources in Network 2, it is observed that Player 1 does
not immediately begin reducing resource usage in Network
1. Instead there is an interval Θ′g1 < B2 < Θ′f1 , where
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Fig. 3. Structure of the Best Response Function

it is still optimal to operate his resources in Network 1 at
full capacity. Such a behavior is similar to hysteresis curves
generally observed in magnetism and thermodynamics. There
are also several observed instances of hysteresis in economics
[12], [13].

We can also infer that the intervals become larger, as the
difference in the networks’ efficiency (λ1γ1−λ2γ2) increases.
For instance, when the networks are equally efficient (λ1γ1 =
λ2γ2), then the problem is similar to a Cournot duopoly
model[11] with the inverse demand function P (B1, B2) =

1
B1+B2

and a budget constraint. Such a demand function is
termed as iso-elastic, since the quantity demanded is reciprocal
to price, and thus reflects a case where the consumers spend
a constant amount on the commodity, irrespective of the price
[14]. Also, for instance, when λ2γ2 = 0, and λ1γ1 > 0, we can
see that the players will never invest in Network 2 (implying
a possibly infinite hysteresis gap).

D. Remarks on Cost Structure

We have assumed that a source i pays φi per unit budget.
This assumption is valid, when the payment/cost incurred per
promotional account is independent of the social network. This
may not be the case, and in general, various social networks
could charge differently for promotional accounts on their
site. Twitter and Facebook have their own mechanisms for
promoting content spread, and charge the users per account.
With slight abuse of notation, let φj denote the cost per unit
budget, in the social network j. In such a case, the total cost
incurred by source i would be φ1si1+φ2si2. As a special case,
when φj = Cλjγj , i.e. proportional to the network efficiency,
then the utility functions will be of the form,

Ui =
Qi

Qi +Qi′
− CQi (7)

where Qi = λ1γ1si1 + λ2γ2si2. Thus we again get a varia-
tion on the Cournot duopoly game[11] with inverse demand
function P (Q1, Q2) = 1

Q1+Q2
and a budget constraint.

Fig. 4. Best response function for player 2 BR2(B1) for various values of
φ2

Fig. 5. Pure strategy Nash equilibrium obtained as the intersection of the
best response curves. The blue curves represent the best responses of player
2 BR2(B1) and the red curves represent the best responses of player 1
BR1(B2).

V. NUMERICAL RESULTS

In this section, we numerically study the best response
function for various values of cost per unit budget φi and
also compute the Nash equilibrium numerically.

A. Best response function

Figure 4 shows the best response function for player 2
BR2(B1) for various values of player 2’s cost per unit budget
φ2. We observe that for increasing values of φ2, player 2
becomes more conservative, i.e., if φ′2 < φo2, BR′2(B1) ≥
BRo2(B1) for all values of B1. We can also see that the simu-
lations verify the hysteresis behavior observed in Section IV.

B. Nash equilibrium

Figure 5 shows the computation of Nash equilibrium ob-
tained by intersection of the best response functions. We can
see that, for fixed cost per unit budget of player 2 (φ2 = 0.4)
the equilibrium budget of player 1 is greater for φ1 = 0.1 than
when φ1 = 0.4. This implies that the equilibrium budget for
competition increases with decrease in the player’s own cost
per unit budget (as observed in Section V-A). Also, we see
that for fixed cost per unit budget of player 1 (φ1 = 0.4), the
equilibrium budget of player 1 is greater for φ2 = 0.4 than
when φ2 = 0.1. This implies that the equilibrium budget for



competition increases with increase in the opponent’s cost per
unit budget.

VI. CONCLUSION

In this work, we have looked at a simple model for studying
competition between content creators for a common user base,
via multiple social networks. We characterized the efficiency
of each network for information spread by two simple proper-
ties, i.e., the level of activity (λj) and the network’s popularity
(γj). We formulated a non-cooperative game between the
content creators and obtained the best response functions. We
observed that there is a hysteresis-like behavior when content
creators allocate resources between the networks. Finally we
compute the Nash equilibrium numerically and discuss some
interesting properties of the equilibrium.

This work can be taken forward in several directions. In the
current formulation, the convergence of best response dynam-
ics and the uniqueness, stability of the Nash equilibrium can
be investigated. Puu [14] has an interesting characterization
of chaotic dynamics that can arise in such a Cournot system
with iso-elastic demand function, and it would interesting to
study such a dynamics for a system with budget constraint
and multiple markets (social networks). The model can also
be improved in several ways. Firstly, the model can be made
more realistic by including content sharing among users and
a more general graph structure within the social network. We
may also include variation among the users in their perceived
popularity of a social network γj and their level of activity
in that network. We can then generalize the work for multiple
content creators and multiple social networks. Finally, it would
be interesting to validate the observed hysteresis behavior
using real-world data from online social networks.
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