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CSMA/CA Networks With Short Term Unfairness

Abhijit Bhattacharya and Anurag Kumar, Fellow, IEEE

Abstract— We consider single-hop topologies with saturated
transmitting nodes, using carrier-sense multiple access with
collision avoidance (CSMA/CA) for medium access, as standard-
ized under the IEEE 802.11 distributed coordination function.
We study systems where one or more backoff parameters of the
CSMA/CA protocol (the initial backoff, the backoff multiplier,
and the number of retries) are different from the standard. It is
known that, for several classes of these protocol parameters, such
systems exhibit a certain performance anomaly known as short
term unfairness. We also find that the phenomenon of short term
unfairness is observed in systems where the propagation delays
among the participating nodes are not negligible compared with
the duration of a backoff slot, even when the nodes use the
default backoff parameters of the standard. It also turns out
that the standard fixed point analysis technique (and its simple
extensions) does not predict the system behavior well in such
cases. For systems with large propagation delays, we observe
that, as propagation delay increases, the collision probability
of a node initially increases, but then flattens out, contrary to
what is predicted by the standard fixed point approximation.
Our study of several example systems reveals some interesting
connections between the protocol parameters, the number of
nodes, the propagation delay, and the degree of unfairness. This
paper reveals that the inability of the standard fixed point model
to capture the performance in such cases is due to its state-
independent attempt rate assumption. In this paper, we develop
a novel approximate, but accurate, analysis that uses state-
dependent attempt rates with a parsimonious state representation
for computational tractability. The analytical method is also able
to quantify the extent of short term unfairness in the system,
something not possible with existing analytical techniques, and
can, therefore, be used to tune the protocol parameters to achieve
desired throughput and fairness objectives.

Index Terms— Wireless LAN, unmanned aerial vehicles, sto-
chastic processes, Markov processes.

I. INTRODUCTION

THE most popular performance analysis of
IEEE 802.11 CSMA/CA (WiFi) networks was provided

by Bianchi in the seminal work [1], and was later generalized
by Kumar et al. [2]. However, it is now well-known that
this analysis might not work if the DCF backoff parameters
are different from those in the standard; in particular,

Manuscript received October 23, 2016; revised May 28, 2017; accepted
August 10, 2017; approved by IEEE/ACM TRANSACTIONS ON NET-
WORKING Editor G. Paschos. Date of publication September 27, 2017;
date of current version December 15, 2017. (Corresponding author:
Abhijit Bhattacharya.)

A. Bhattacharya was with the Department of Electrical Communication
Engineering, Indian Institute of Science, Bangalore 560012, India. He is
now with Qualcomm Research India, Bangalore 560066, India (e-mail:
abhijitb@qti.qualcomm.com).

A. Kumar is with the Department of Electrical Communication Engi-
neering, Indian Institute of Science, Bangalore 560012, India (e-mail:
anurag@ece.iisc.ernet.in).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors.

Digital Object Identifier 10.1109/TNET.2017.2747406

Ramaiyan et al. [3] demonstrated via some examples that
the analysis may not capture the system performance well
when the backoff sequences are such that the system exhibits
short-term unfairness. In these examples, one node or the
other repeatedly succeeds in acquiring the channel for a
long random time period, while the other nodes languish
at large backoff durations, followed by another, randomly
selected node acquiring the privileged status, and so on.
In Section IV, we present such an example of short term
unfairness with parameters that arise in extensions of the
IEEE 802.11 standard (i.e., the IEEE 802.11e standard).
Further, we have found that the phenomenon of short-term
unfairness is also observed under the practical setting
where the backoff sequences are as per the standard, but
the propagation delays among the participating nodes are
large compared to the duration of a backoff slot; this
situation arises in a variety of applications such as providing
broadband connectivity to remote rural areas using WiFi
based long distance networks [4]. There has also been interest
in using WiFi for network formation among Unmanned
Aerial Vehicles (UAVs), or between UAVs and a ground
station over distances of several kilometres. Furthermore,
with the evolution of WiFi standards, the slot (i.e., backoff
slot) durations are decreasing; e.g., the WiFi standard
IEEE 802.11ac adopts a slot duration of 9 μs, as compared to
20 μs in the older IEEE 802.11b. Thus, even the propagation
delays that were negligible compared to the slot duration in
earlier WiFi standards may occupy multiple slot durations in
the future. In this case also, the analysis in [1] (or simple
extensions thereof) does not work well.

The analysis of [1] and [2] makes the key modeling sim-
plification that, in steady state, during contention periods,
the nodes make attempts as equal rate independent Bernoulli
processes embedded at the backoff slot boundaries. Since
the node attempt model is state-independent, such a model
does not capture the possibly advantageous position that a
successful node might be in, as compared to the unsuccessful
nodes, and hence cannot yield the short term unfairness
that has been observed in the situations described earlier.
This significantly limits the applicability of the approximation
in [1] and [2], as there is no way without an exhaustive
simulation to know whether the approximation will predict
the system performance correctly for a given set of parameters.
The DCF mechanism is finding its way to newer applications
beyond the WLAN standards, and a common engineering
practice for new applications is to tune the parameters of the
protocol to the needs of the particular application; even EDCF
uses the initial backoff and the backoff multiplier to create
service differentiation [5].
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It is, therefore, necessary to have an analytical technique that
can predict the system performance not just for the standard
protocol parameters, but for more general backoff parameters,
as well as with propagation delays. Our work is intended
as a first step in that direction. In this work, we address
this problem for the case of a single-hop topology consisting
of saturated transmitting nodes and their receivers, using
the IEEE 802.11 DCF basic access mechanism for medium
access. We use the theory of Markov Regenerative Processes
to develop a tractable generalization of the analysis in [1].
Comparison against extensive simulations have shown that the
analysis captures the system performance well even in the
presence of high correlation in system evolution.

Summary of Contributions: Based on a study of the evolu-
tion of the system, and a stochastic simulation, we find that
the phenomenon of short term unfairness in IEEE 802.11 DCF
networks renders inaccurate the stateless, constant attempt
rate approach adopted in [1] and [2]. In addition, our studies
also reveal some interesting connections between the extent
of unfairness, the system size, and the protocol parameters
(see Section IV). In our analytical approach, we maintain
some state information, and introduce state-dependent attempt
rates. How we do this in a parsimonious and computationally
tractable manner, while developing an accurate approximation,
is the primary contribution of this work (Section VII). More-
over, we demonstrate a key property of systems with large
propagation delays, namely, misaligned sensing of channel
idleness, that sets them apart from systems with negligi-
ble (zero) propagation delays. This has important conse-
quences on the tractability of the analysis, which we discuss
in Section VI-A.

A. Related Work

There is a considerable body of literature on perfor-
mance analysis of IEEE 802.11 DCF, starting with the sem-
inal work by Bianchi [1], which was later generalized by
Kumar et al. [2] to incorporate general backoff parameters.
Several extensions have been proposed since then to account
for non-saturated nodes, and/or hidden terminals, among
others. See, for example, [6], [7]. Performance analysis of
IEEE 802.11e EDCA has also received significant attention;
see [3], [8], and the references therein. However, none of this
work is suitable for predicting the performance of systems
that exhibit short term unfairness, and this has been explicitly
pointed out in [8].

Short term as well as long term unfairness have been
observed (and modeled) before in the presence of hidden
terminals in WLANs, e.g., by Garetto et al. [9]. However,
parts of their analysis rely on the assumption that under
no hidden nodes, the system is fair, and existing techniques
predict system behavior accurately, which is not quite correct
as demonstrated in [3], and also our current work. Therefore,
in the light of the findings in our current work and in [3],
the problems in [9] need a relook.

Simo-Reigadas et al. [10] aimed to develop an exten-
sion of the analysis in [1] to predict the performance of
IEEE 802.11 DCF with non-negligible propagation delays.
However, we shall argue in Section V-B that the analysis

in [10] does not capture two distinct features of such systems,
and as a consequence, the collision/success probabilities com-
puted using the analysis are inaccurate compared to simula-
tion results obtained from a detailed stochastic model, as well
as from the Qualnet simulator [11].1

Vlachou et al. [12] modeled IEEE 1901 CSMA/CA protocol
used in Power-Line Communication (PLC) networks, and
observed short-term unfairness in such systems. However, due
to important differences between IEEE 1901 CSMA/CA and
IEEE 802.11 CSMA/CA protocols as also pointed out in their
work, their techniques cannot be applied to IEEE 802.11 DCF.

Our work is thus intended as a first step towards an accu-
rate analytical model for such systems. Our key contribution
is the development of a principled approach for analyzing
IEEE 802.11 DCF based systems with short term unfairness.

II. A BRIEF DESCRIPTION OF IEEE 802.11 DCF
As in [1], we make the following assumptions throughout

the paper: the nodes perform basic access without RTS-CTS.
There are no hidden nodes, and there is perfect sensing of an
ongoing transmission. The transmission queues are saturated,
i.e., each node always has a packet to transmit. There are
no channel errors. In case of simultaneous transmission by
multiple nodes, there is no packet capture.

The backoff durations of the nodes are in multiples of
a standardized backoff slot (e.g., 20 μs in IEEE 802.11b).
When a node completes its backoff, it starts a packet trans-
mission. In the zero propagation delay setting, any other node
that does not complete its backoff simultaneously hears the
ongoing transmission instantaneously, and freezes its backoff
counter. If no other node completes its backoff simultaneously,
the packet transmission is successful, and the intended receiver
sends a MAC level ACK. On the other hand, if two or more
nodes complete their backoffs together, they all start a packet
transmission simultaneously, leading to a collision. At the
end of the activity duration (successful transmission or col-
lision), each transmitter involved in the activity samples fresh
backoffs. All the nodes wait for an interval called DIFS, and
resume counting down their backoffs thereafter. If a packet
encounters several successive transmission failures, the packet
is discarded; in the saturated queue model the discarded packet
is immediately replaced with another packet.

In the IEEE 802.11 framework, each node samples its
backoff uniformly from a contention window [1,Wk], where
Wk is the contention window size after the kth reat-
tempt, 0 ≤ k ≤ K; K is the maximum number of reattempts
after which a packet is discarded. After each reattempt,
the contention window size is increased by a factor p, i.e.,
Wk+1 = pWk, until it reaches a maximum allowed value.
After a successful transmission, the contention window is reset
to W0. For example, in the IEEE 802.11b standard, W0 = 32,
p = 2, K = 6, and the maximum allowed contention

1This anomaly does not show up significantly in the numerical results
presented in [10] primarily because they do not compare the collision/success
probabilities obtained from their analysis against any experimental or simu-
lation results, and provide comparison results only for system throughput,
which, as our numerical results later on demonstrate, is less sensitive to
(but not unaffected by) inaccuracies in the analysis than other performance
measures such as collision probability.
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window size is 1024. Throughout this work, we shall assume a
homogeneous system, i.e., all the nodes have the same backoff
parameters.

III. IEEE 802.11 DCF MODELING IN [1] AND [2]

The system evolution over backoff slots can be modeled as
a Discrete Time Markov chain (DTMC) that tracks the backoff
stage and the residual backoff of each node at the beginning
of each backoff slot; see [2]. However, the state space of this
DTMC is too large to facilitate a direct computation; hence
approximate analytical techniques were developed to predict
the system performance with reasonable accuracy.

A. The Approximate Analysis in [1] and [2]

The Decoupling Approximation: Consider n contending
transmitters. From the description of the protocol, it is clear
that the system alternates between transmission and contention
periods, and that the attempt processes of the nodes are
dependent. The decoupling approximation is to assume that
during the contention periods, the attempt processes of the
nodes are independent Bernoulli processes with equal attempt
rate, β. Let γ denote the collision probability: i.e., the
probability that an attempt by a tagged node finds simultaneous
attempts by other nodes. Using this approximation, in [2]
the backoff process evolution at a tagged node is analyzed
via a renewal-reward analysis, with renewal points being the
successful transmission or packet discard epochs. This yields
β := G(γ), where

G(γ) :=
1 + γ + γ2 + · · · + γK

b0 + γb1 + γ2b2 + · · · + γkbk + · · · + γKbK
(1)

Here, bk is the mean backoff duration after the kth reattempt,
i.e., bk = (1 + Wk)/2 slots. Using the Bernoulli attempt
process approximation, the collision probability, γ, is given by

Γ(β) := 1 − (1 − β)(n−1) (2)

These two equations together constitute the desired fixed point
equation.

Remarks:
1) It was shown in [2] that Γ(G(γ)) : [0, 1] → [0, 1], has a

unique fixed point if bk, k ≥ 0, is a nondecreasing sequence,
which is, in fact, the case for the IEEE 802.11 standard.

2) The asymptotic mean field analysis in [13], with its
conclusion of “convergence to chaos,” has been suggested as
supporting the idea of the decoupling approximation. Hence,
in the remainder of the paper, we will refer to the analysis
in [1] and [2] as the mean field analysis. �

IV. A SYSTEM WITH SHORT TERM UNFAIRNESS

Our point of departure from the above work is the following
question: will the mean field type analysis ( [1], [2]) continue
to predict the system performance well, if the protocol para-
meters are changed from those in the IEEE 802.11 standard?
In particular, will it work for any non-decreasing backoff
sequence (b0, . . . , bK) (recall from Section III that the system 1
and 2 has a unique fixed point for non-decreasing backoff
sequences), and any number of nodes, n? It turns out that this
is not the case.

Fig. 1. Collision probability vs. number of nodes for the backoff sequence
of Section IV-A; comparison of the values obtained from the analysis in [1]
against those obtained from simulations.

A. Example: An IEEE 802.11-Like Backoff Expansion
Framework (Adapted From [3])

Consider a system where all nodes use the
IEEE 802.11 DCF backoff expansion framework for
medium access, but with parameters as follows: K = 7,
b0 = 1, bk = 3kb0 for all 0 ≤ k ≤ K . This system is of
interest because it is in the framework of IEEE 802.11e
standard, which allows modification of the backoff parameters
for service differentiation purpose (see, for example, [5] and
[14, Ch. 5 ]).

Figure 1 demonstrates the performance of the analysis
in [1]. The error in the collision probability obtained from the
analysis in [1] is much worse than 10% when the number of
nodes, n, is less than 100. For the parameters in the standard,
the mean field analysis worked remarkably well, yielding
estimates of the collision probability that were within 3-4%
of the values obtained from simulation ( [1], [2]). Thus, in the
remainder of the paper, we will use an error of more than 10%
as an indication of the mean field analysis being unsuitable for
modeling the system.

To understand why the mean field analysis does not capture
the system performance, let us take a closer look at the system
behavior for a small value of n. Consider a system with
n = 20 nodes, and backoff parameters as above. It turns out
that this system exhibits short term unfairness, in the sense
that when a node’s transmission is successful, it monopolizes
the channel for the next several thousands of backoff slots,
resulting in starvation and high short term collision probabil-
ities for the other nodes [3].

Panel 12 of Figure 2 depicts the short term collision prob-
abilities of two of the 20 transmitters. We recall that this
contention based system alternates between channel activity
periods (during which one or more node transmits a packet)
and contention periods during which the nodes count down
their backoff counters. We call a contention period along with
the following channel activity period a transmission cycle.
Each point in the plot is the short term collision rate (i.e.,
the ratio of the number of collisions to the number of attempts)
of a node over a window of 200 consecutive transmission
cycles. The results are shown for 100 windows in the simula-
tion. Also plotted is the long run average collision probability,

2When discussing figures with multiple panels, in the text we will number
the panels row-wise, from left to right
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Fig. 2. Simulation results depicting short term unfairness for the backoff
sequence in Section IV-A. Panel 1 shows the short term collision probabilities
of two of the transmitters (see text for details) for a system with n = 20;
also plotted is the long run average collision probability, averaged over all
the nodes and all simulation time. Panels 2 and 3 show the evolution of the
success process of the two nodes over 1000 successful transmissions of the
system with n = 20 and n = 600 respectively. The success process is bursty
for n = 20, indicating short term unfairness. The burstiness (and hence, short
term unfairness) decreases as the number of nodes, n, increases.

averaged over all the nodes, and over the simulation duration.
It can be observed from the plot that it is often the case that
in a window of 200 transmission cycles where Node 1 has
a low short term collision probability (often as low as 0.05),
Node 2 has a very high short term collision probability (close
to 1), and vice-versa, thus indicating that one of the nodes
monopolizes the channel in each window, shutting out the
other node, thus leading to a high collision probability for
the other node during that period.

An alternate depiction of the short term unfairness in this
20-node system is shown in Panel 2 of Figure 2, where
we show the Node IDs of the successful nodes for the last
1000 successful transmissions in a simulation run. Observe
that the success processes at the nodes are bursty3 in nature,
indicating that one node captures the channel over prolonged
durations, while the other gets zero throughput during that
period.

Intuitively, the short term unfairness in this system can be
explained as follows: when a node succeeds, it attempts again
in the immediate next slot (since the initial backoff window
is only 1 slot), whereas due to the much larger backoffs after
successive collisions, the other nodes are busy counting down
their large residual backoffs. This causes the successful node
to monopolize the channel (attempt in every slot).

3This conclusion is reached by applying the Wald-Wolfowitz Runs test
(see, e.g., [15]) for the null hypothesis that the sample is from a Bernoulli
random process (as would be suggested by the Bernoulli attempt rate model
in [1] and [2]). In every case where we conclude that the success process is
bursty, the null hypothesis is rejected with a vanishingly low probability of
false rejection, and in every case that we conclude that the success process is
“fair”, the null hypothesis could not be rejected even for false rejection level
arbitrarily close to 1.

Short-Term Unfairness and Inaccuracy of the Mean Field
Analysis: This also explains why the collision probability
predicted by the analysis in [1] and [2] is higher than that
obtained from simulations (see Figure 1). This is because in
the presence of short term unfairness, the last successful node
has a much larger probability of accessing the channel in the
next slot than the other nodes, thus further boosting its success
probability, unlike in a fair system, where all the nodes have
comparable probability of accessing the channel, resulting in a
higher probability of collision. The mean field analysis ignores
the correlation in the system evolution in an unfair system.
The high correlation in the system evolution means that the
decoupling approximation made in the analysis in [1] and [2]
does not hold, which explains why the analysis does not work.

Decreasing Short-Term Unfairness With Increasing n: Fig-
ure 2 also demonstrates the variation in short term unfairness
as a function of the number of nodes, n (see Panels 2 and 3).
It can be seen from Panel 3 that as the number of nodes
becomes large, the burstiness in the success processes of
the nodes disappears, implying fairer access to the channel
for all the nodes, i.e., the short term unfairness disappears.
This is consistent with the fact that the analysis in [1]
(and the decoupling approximation) works well for larger n
(see Figure 1).

The decrease in short term unfairness with increasing n can
be intuitively explained as follows. The successful node goes
to backoff stage 0, where it attempts again with probability 1 in
the very next slot. The other nodes have large backoffs and
hence the probability of any individual node attempting in the
same slot as the successful node is small. However, if there
are enough of the other nodes (i.e., n is sufficiently large)
then the probability of one or more of them completing their
backoffs in the next slot will be large, hence the probability
of the successful node colliding in its next attempt can be
large, thereby causing that node as well to quickly join the
ranks of the nodes with large backoffs, thus ameliorating the
unfairness.

See the techreport [16] for more examples of short term
unfairness, reinforcing the above observations.

Next, we demonstrate that short term unfairness is observed
even with the default protocol parameters, when the propaga-
tion delays among the nodes are large compared to the duration
of a backoff slot.

V. SYSTEMS WITH LARGE PROPAGATION DELAYS

Consider the transmitter-receiver configurations shown
in Figure 3. Let the propagation delay between each pair
of transmitters be Δ, that between each receiver and all the
transmitters be Δr (e.g., in configuration (b) of Figure 3,
the propagation delay from receiver R1 to both the transmitters
T1 and T2 is Δr), and the duration of each backoff slot be σ.
Let m

�
= �Δ

σ �, i.e., m is the propagation delay among the

transmitters in integer multiples of slots. Also let mr
�
= �Δr

σ �.
When the propagation delays are negligible, m = mr = 0.

A node’s transmission will be heard by the other transmit-
ting nodes after a propagation delay of m slots. We consider
the setting where the packet duration, T , is much larger
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Fig. 3. Example systems with possibly large propagation delays where all
transmitters are equidistant from one another, and each receiver is equidistant
from all the transmitters. (a) 2 transmitters and 1 common receiver. (b) 2
transmitters, and 2 receivers. (c) 3 transmitters, with 1 common receiver at
the centroid. (d) 4 transmitters, and 1 common receiver, in a tetrahedron
configuration. Note that the transmitter configurations shown are the only
possible ones under this restriction; however, additional receivers can be added
in some cases, e.g., scenario (c).

than the propagation delay, m.4 Thus, if two or more nodes
finish their backoffs within m slots of one another, their
transmissions collide, and all the packets involved are lost.

Upon a successful transmission, the transmitting node
receives an ACK from its intended receiver. Due to the round-
trip propagation delay between the transmitter and its receiver,
the overall transmission overhead in a successful transmission
is increased by 2mr compared to the case without propagation
delay. Thus, the ACK Timeout parameter in the protocol
should be suitably adjusted for non-negligible propagation
delays.

A. Short Term Unfairness

Panels 1 and 2 in Figure 4 depict snapshots of a simulation
run for Scenario (b), Figure 3, operating with the standard
protocol parameters of IEEE 802.11b, with a propagation
delay of m = mr = 7 slots. In Panel 1 of Figure 4, we depict
500 successive successful transmissions in the system, and the
Node ID of the successful node in each of these transmissions.
It is clearly seen from the plot that the success processes
for the two transmitter-receiver pairs are bursty in nature; the
burstiness is inferred in the same way as in Section IV-A.

To ascertain that this is not a sporadic phenomenon, but
typical behavior of the system, we show in Panel 2 of Figure 4
the short term collision probabilities of the two nodes; each
point in the plot is the short term collision probability of a
node computed over a window of 100 consecutive system
transmissions, and the process was repeated for 100 windows
in the simulation. Also plotted is the long run average collision
probability, averaged over all the nodes, and the simulation
duration. We see from the plots that it is often the case that
in a window where Node 1 has a low short term collision
probability (often as low as 0.1), Node 2 has a very high
short term collision probability (close to 1), and vice-versa,
thus indicating that one of the nodes repeatedly succeeds over
a window of at least 100 transmission cycles, shutting out the
other node, thus leading to a high collision probability for the
other node during that period.

In order to demonstrate that this property is observed only
at higher propagation delays, we show in Panels 3 and 4

4This assumption is satisfied in most scenarios of interest. For example,
if the PHY layer rate is 2 Mbps, the packet duration for a 1500 bytes packet
is 6000 μs, whereas the propagation delay over a distance of 42 km is only
140 μs.

Fig. 4. Simulation results depicting short term unfairness at higher prop-
agation delays for a system with 2 transmitting nodes, each having the
default DCF backoff parameters. (Panels are row-wise, from left to right)
Panels 1 and 2: Propagation delay between node pairs is m = mr = 7 slots.
Panel 1: Evolution of the success process of the two nodes over 500 successful
transmissions of the system. Panel 2: Short term collision probabilities of the
two transmitters; also plotted is the long run average collision probability,
averaged over nodes and simulation duration. Panels 3 and 4: The same plots
as in Panels 1 and 2, but for propagation delay m = mr = 1 slot.

in Figure 4, snapshots of a simulation run for the same system
as before, but with a propagation delay of m = mr = 1 slot.
It is observed from Panel 3 of Figure 4 that the success
processes of the two nodes are no longer bursty in nature; in
particular, no node is starved for a prolonged duration. From
Panel 4 of Figure 4, we see that the large differences of short
term collision rates between the two nodes are now absent.

Discussion: The phenomenon of short term unfairness with
higher propagation delays stems from the fact that, with
high propagation delay, the collision probability becomes very
large (almost 30% beyond m = 3; see the γ plot in Figure 11)
even for a small number of nodes, and so backoff distributions
become stochastically very large as well. As a consequence,
after a successful transmission, the residual backoffs of the
frozen nodes are likely to be large. Since the successful node
will sample its next backoff from the initial (smallest) window,
its next backoff is likely to be much smaller than the other
nodes. Thus, the successful node is likely to attempt much
earlier than the other nodes, and succeed again; the number of
other nodes that have large residual backoffs is small, making
it unlikely that one of them will make an attempt and thereby
dislodge the successful node.

B. Performance of an Existing Fixed Point Analysis for
Large Propagation Delays

Simo-Reigadas et al. [10] aimed to develop an approximate
analytical model for single-hop, long distance WiFi systems
by extending the model in [17]. For the case of a homogeneous
system, their model reduces to the following: each node,
conditioned on being in backoff, attempts independently with
a probability β in each slot, irrespective of the system state.
When a node transmits, the conditional probability that its
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Fig. 5. Comparison of the analysis in [10] with simulation. Collision
probability, γ, vs. m for Scenario (b) in Figure 3 with Δ = Δr .

transmission encounters a collision, is γ, independent of the
system state. They obtain β in terms of γ using the well-
known polynomial ratio formula (see Eqn. 1). To obtain the
collision probability, γ, they observe (inaccurately) that the
vulnerable window of a tagged node has size 2m, since any
node attempting within m slots before or after the tagged
node’s attempt will cause a collision. They then compute the
probabilities of any node attempting in that vulnerable window
by assuming (inaccurately) that the node was in backoff at the
start of the vulnerable window, and using the Markov chain
model proposed in [17] that describes the evolution of the node
in backoff time. Thus, they arrive at a fixed point equation in γ.

The model in [10] does not consider the fact that after a
collision, due to the propagation delay, the starts of the backoff
counters of the nodes could be misaligned (see Section VI-A),
and hence when a tagged node attempts again, its vulner-
able window need not be 2m, since the other nodes may
not even have started their backoff countdowns. Moreover,
the assumption of constant attempt probability β irrespective
of the system state ignores the short term unfairness property,
which has the effect of skewing the attempt probability in
favor of a successful node as explained earlier. Figure 5
compares the collision probabilities obtained from the analysis
in [10] against those obtained from simulations for the con-
figuration (b) of Figure 3 with default backoff parameters of
IEEE 802.11b, and a range of propagation delays. As can be
seen, the values predicted in [10] do not match well with the
simulation results.

DISCUSSION AND PROPOSED WAY FORWARD

Our aim is to develop an accurate analytical technique to
predict the performance of IEEE 802.11 systems that use
general backoff prameters, and that have propagation delays.
To that end, we adopt the following approach:

1. We first demonstrate a key property of systems with large
propagation delays that sets them apart from systems with zero
propagation delays, and discuss its implications. This property
was not captured in the analysis in [10].

2. Recall from [2] that there is a 2n-dimensional Markov
chain model that exactly captures the system evolution for
zero propagation delay. This model also holds for arbitrary
backoff parameters (with zero propagation delay). The mean
field type approximation developed in [1] and [2] is essentially
an approximation for this Markov chain model. In Section VI,

we show that for systems with possibly large propagation
delays, there is a Markov renewal model that can be viewed as
a generalization of the earlier 2n-dimensional Markov chain
model, and that exactly captures the system evolution. We use
this model as a prototype for the system.

3. Simulation of this model is much faster compared to
off-the-shelf even-driven simulators such as Qualnet [11],
and allows us to examine certain finer details of the system
performance with relative ease. Hence, in our subsequent
simulations, we simulate this model.

4. However, analysis even of this model is computationally
intractable. Hence, we introduce a parsimonious approxima-
tion of this Markov renewal model, which uses state dependent
attempt rates to capture the bursty nature of the success
processes due to short term unfairness (see Figure 4).

VI. A MARKOV RENEWAL MODEL OF THE SYSTEM

In this section, we shall present a Markov renewal process
model for the system evolution under possibly large propaga-
tion delays. We shall demonstrate via comparison with Qualnet
simulations [11] (see Figure 8) that this model is indeed a
faithful prototype for the system. Before presenting the model,
we need to demonstrate a key property of systems with large
propagation delays.

A. A Key Observation: Misaligned Sensing
of Channel Idleness

In a system with zero propagation delay, all nodes sense
the start and end of channel activity simultaneously, a DIFS
period follows, and then the starts of the back-off periods at
all the nodes are always aligned. In the present case, consider
the situation depicted in the left panel of Figure 6 for a system
with two transmitter-receiver pairs (for example, Scenario (b)
in Figure 3). As explained in Figure 6, when Node 2 finishes
its backoff within k < m slots of Node 1, they encounter a
collision, and the starting points of when they next begin to
count down their backoff counters are misaligned by k slots.
The misalignment, k, can take values in {0, 1, . . . ,m}.

Important Remarks on Misalignment:
1. The possible misalignment of the backoff counters hap-

pens only when there is a collision. In the case of a success,
as explained in the right panel of Figure 6, they start their next
backoff together.

2. Note that in the case of a point-to-point link, there is
a misalignment of the backoff counters of the two nodes by
mr slots even after a successful transmission. Hence, as such,
we cannot apply the analytical model presented in this paper
to a point-to-point link. However, only minor modifications to
the state space are necessary to handle this case.

3. Figure 6 can be drawn for more than two nodes being
involved in a collision. Consider a multiple node collision, and
denote by Nodes 1 and 2 respectively, the node that attempted
next to last, and the node that attempted last. Then it is seen
from the left panel of Figure 6 that Node 2 will start its backoff
earlier than the other nodes, all of whom start their backoffs
together. The misalignment is precisely the difference between
the attempt instants of Nodes 1 and 2. The general principle
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Fig. 6. Left Panel: A collision, leading to misalignment. Node 1 starts a transmission at time 0. Node 2 finishes backoff k slots after Node 1, where
k < m, and starts its transmission, only to begin to sense Node 1’s transmission at time m, thus resulting in a collision. Node 2 will sense the channel idle at
time T +m, and count down its DIFS, after which, it will start a fresh backoff. However, Node 1 will sense the channel idle only at time T +k+m > T +m.
Thus, Node 1 will start counting its DIFS k slots after Node 2, and hence it will also start its backoff countdown k slots after Node 2. Thus, the starting
points of the backoff counters are misaligned by k slots. Right Panel: A success. Node 1 starts a transmission at time 0. Node 2 hears this transmission after a
propagation delay of m slots, and freezes its backoff. Receiver 1 receives the end of Node 1’s transmission after a propagation delay of mr slots, i.e., at time
T +mr , and starts sending an ACK. Since the propagation delays from Receiver 1 to both the nodes are equal, namely, mr slots, both Nodes 1 and 2 hear the
ACK from Receiver 1 at the same time, and hence, start their DIFS together, following which, they start their next backoffs together. Thus, no misalignment
in the next backoff initiation happens in this case.

is that the node that initiates transmission earlier is the one
that will have a delayed backoff in the next cycle, because it
will hear the end of the other transmission later.

4. Observe that in the above argument, the property of equal
propagation delays among all transmitters is used crucially.
If the propagation delays were unequal, the backoff counters
of all the nodes could be potentially misaligned with respect
to one another (unlike the argument in Item 3 above, where
all except one node start their backoffs together), and we
would have to keep track of pairwise misalignments among
the nodes, instead of a single misalignment, making the state
space much larger (see also Sections VI and VII). Hence,
direct extension of the techniques in this paper to the case
of unequal propagation delays will lead to a very complex
state-space.

5. Due to this misalignment of the backoff counters we
cannot apply the analytical approach in [1] and [2] in
this case, since there the authors were able to model the
process evolution by focusing only on back-off times (see also
Section V-B).

6. Such misalignment of backoff counters was also
observed (even with zero propagation delay) and studied
in the context of IEEE 802.11e EDCA; see [3], [8] and
references therein. However, a crucial difference compared
to our setting is that the misalignment there is deterministic
for given protocol parameters, whereas in the current setting,
the misalignment is random; this prevents the use of the
techniques proposed in the EDCA context to address the
current problem. �

B. A Detailed Markov Renewal Model

An “activity” in the medium is defined as the duration from
the instant when a transmission starts in the medium, to the
instant when some node is ready to start its next DIFS. For
example, in the Left panel of Figure 6, there is an activity in
the medium during the interval [0, T + m], and in the Right
panel of Figure 6, there is an activity in the medium during
the interval [0, T +mr +ACK +mr].

Fig. 7. Transmission Cycles for n = 2. The evolution of the timelines can
be explained as follows. Node 1 happens to be the first to start its backoff
after an activity in the medium. Node 2 starts its backoff after a misalignment
of k1 slots. Both the nodes happen to finish their backoffs together, and
start a transmission at the same time, leading to a collision. In this case,
the ends of their transmissions are aligned, and hence both the nodes sense
the channel idle (after a propagation delay of m slots), and start their DIFS
at the same time, following which they start fresh backoffs, with the starts
of the backoff counters aligned. This time, Node 1 finishes its backoff first,
and starts a transmission. Node 2 finishes its backoff k2 slots after Node 1,
where k2 < m, thus leading to a collision, and subsequent misalignment of
the starts of their next backoffs by k2 slots, in the same manner as explained
in the left panel of Figure 6, with Node 2 leading Node 1 by k2 slots. Denote
by Tu, the first instant after the uth activity in the medium when some node
starts counting down its backoff. The intervals [Tu, Tu+1] and [Tu+1, Tu+2]
are, respectively, the (u + 1)th and (u + 2)th transmission cycles.

Let Tu be the first instant after the uth activity in the
medium when some node starts counting down its backoff.
See, for example, Figure 7, which depicts a sample path of
the system evolution for n = 2. We call the interval [Tu, Tu+1]
the (u + 1)th transmission cycle. In each transmission cycle,
there is exactly one activity in the medium.

Let Bu,i, Su,i, Zu,i, denote respectively the residual backoff
count, backoff stage, and misalignment (w.r.t. Tu) of the start
of backoff counter of Node i, i = 1, 2, . . . , n at Tu. Recalling
the notation for the protocol parameters of IEEE 802.11 DCF,
Su,i ∈ {0, 1, . . . ,K}, Bu,i ∈ {1, . . . ,WSu,i}, and Zu,i ∈
{0, 1, . . . ,m}. Then, the process ({Bu,i, Su,i, Zu,i}n

i=1, Tu) is
a Markov Renewal Process [18], with {Bu,i, Su,i, Zu,i}n

i=1

being the embedded Markov chain, whose transition structure
is explained next.
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Note that (Tu +Bu,i + Zu,i) is the instant when Node i is
scheduled to finish its backoff, and attempt a transmission in
the (u+1)th transmission cycle. Let Bu = min1≤i≤n(Bu,i +
Zu,i), and Iu = argmin1≤i≤n(Bu,i + Zu,i).

Observations:
1. (Tu + Bu) and Iu are, respectively, the attempt instant,

and Node id of the first node to attempt transmission in the
(u+ 1)th transmission cycle.

2. A successful transmission happens iff for all i �= Iu,
Bu,i + Zu,i > Bu + m, and a collision happens otherwise.
We need to consider only the integer part of the propagation
delay between the transmitters in slots, i.e., m, since the proba-
bilities of the events corresponding to success and collision are
unaffected by the fractional part of the propagation delay; to
see this, note that Bu,i and Zu,i always take values in integer
multiples of slots.

With the above information, the transition structure of the
embedded Markov chain can be obtained without much diffi-
culty; we provide the details in the Supplementary Material.

Remarks:
1. For the zero-propagation-delay case, the Markov renewal

model embedded at the epochs Tu is equivalent to the exact
DTMC model (Section III) embedded at the backoff slot
boundaries in the following sense: for any given system,
suppose we simulate the two models starting with the same
initial conditions (backoff stages of the nodes), and the same
random seed; the same random seed ensures that the backoff
sampled by a Node i after the kth retransmission of its jth

packet is the same for both the simulations, for all i, j, k. Then,
the two models give rise to the same sample path for the
system evolution (after reconstructing the original process in
unconditional time from the backoff process obtained from
the DTMC model). Since the DTMC model is known to give
excellent accuracy [3], this establishes the accuracy of the
Markov Renewal model for the zero propagation delay case.

2. We have simulated this detailed model for the case of
n = 2, default backoff parameters of IEEE 802.11b, and a
wide range of propagation delays (with m = mr) to obtain
the long run average collision probability, γ, and compared
these analysis results against simulation results obtained from
Qualnet.5 The results are shown in Figure 8; it can be
seen that the proposed model captures the system behavior
very accurately for long run average collision probability.
Similar observation holds for the long run average system
throughput. �

However, the proposed model involves an embedded
3n-dimensional Markov chain, whose state space has
size (nm + 1)(W0 + W1 + · · · + WK)n, where K
is the retransmission limit for the protocol, and Wj

is the contention window size for backoff stage j.
For the default protocol parameters of IEEE 802.11b,
the size of the state space is prohibitively large even for
m = 1, and n = 2, making an exact analysis of the
embedded Markov chain computationally intractable.

5after correcting an error in the default Qualnet implementation wherein an
extra delay of mr gets added to the NAV of the frozen node in addition to
the correct value of 2mr .

Fig. 8. Collision probability (γ) vs. propagation delay (m). Comparison of
collision probabilities obtained via a Monte-Carlo simulation of the detailed
MRP model against those obtained from Qualnet simulations [11].

We, therefore, focus on developing an approximate,
parsimonious analysis.

Note, however, that we will use the detailed MRP model as
a prototype of the actual system, and it will be simulations of
this MRP model against which to check the accuracy of our
approximate analysis technique. This approach is analogous
to the exact Markov model in [2] being approximated by
the decoupling approximation. The reasons for this choice
are as follows: there is a distinct advantage of using a
Monte Carlo simulation of this detailed model over using
Qualnet (or any other event-driven) simulation for predicting
the system performance. Qualnet simulation runs over backoff
slots, and works by simulating all the details of the protocol
at every node; on the other hand, the model-based simulator
runs over transmission cycles, and eliminates all unnecessary
details of the protocol. Hence, the model-based simulator
can run much faster while achieving comparable accuracy
(within 1-2% of Qualnet). Furthermore, it is easier to examine
certain finer details of the system evolution using this model,
which would otherwise be hard to do with Qualnet; for exam-
ple, the conditional attempt rates introduced in Section VII
can be easily obtained from a Monte-Carlo simulation of the
above model, but hard to obtain from Qualnet.

VII. STATE DEPENDENT BERNOULLI ATTEMPTS (SDBA)
APPROXIMATION OF THE DETAILED MARKOV RENEWAL

MODEL IN SECTION VI

The analysis in [1] and [2] is based on a simple model of
constant attempt rates, and can be viewed as an approximation
to the detailed 2n-dimensional Markov chain that represents
the system without propagation delay. In this section, we intro-
duce state-dependent attempt rates to develop an approxi-
mation to the Markov renewal model in Section VI-B. Our
attempt is to introduce as few attempt rate parameters as
possible.

A. State Dependent Attempt Rates

While retaining the embedded Markov process structure
at the starts of transmission cycles, we aim to simplify the
evolution of the process between these embedding points to
reduce the computational complexity. In particular, we aim to
avoid the exponential growth of the underlying state space size
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with the number of nodes. The complexity of the analysis of
the detailed process constructed in Section VI comes from the
complex transition structure, due to the necessity to keep track
of the various events, and their timing, between the embedding
points.

One possible way to simplify the evolution between
the embedding instants is to adopt the state independent,
Bernoulli attempt process approximation in [1] and [2]
(see Section III-A). Consider the consequence of this approx-
imation on the success processes of the nodes. Observe
that under this approximation, the probability that the next
successful transmission in the system is due to a particular
Node j ∈ {1, . . . , n} is 1

n , independent of which node made
the last successful transmission. To see this, note that under
the constant, state independent attempt rate approximation,
the evolution of the process from the last successful trans-
mission onwards does not depend on the node id of the last
successful node.

Let us compare this against observations from simulations.
Revisiting Figure 2, we observe that the success process of
the 600-node system (Panel 3) with the backoff parameters of
Section IV-A is consistent with the conclusions drawn earlier
from the state independent constant attempt rate approxima-
tion, but those conclusions clearly do not hold for the success
process of the 20-node system (Panel 2) with the same back-
off parameters, which exhibits significant correlation. Thus,
the constant, state independent attempt rate approximation will
not work in such cases.

Accounting for Short Term Unfairness in the Node Attempt
Process: Taking cue from this, we adopt the Bernoulli attempt
process approximation for the nodes as in[1] and [2], but
introduce state dependent attempt rates, namely, βs, βc, and βd

to distinguish among three cases: whether a node encountered
a success, a collision, or an interruption (of its backoff; due
to transmission by some other nodes), respectively, in the
previous transmission cycle. The rationale behind such choices
of attempt rates is explained in the remarks at the end of this
subsection. From our experience with such models, this also
seems to be the model with the fewest additional parameters
that works.

Observe that under this approximation, in order to construct
the system evolution in a transmission cycle, we need to know
the attempt rates of the nodes at the start of the transmission
cycle, which, in turn, depend on the number of nodes that
attempted in the last cycle, since the nodes that did not
attempt (i.e., were interrupted) will attempt at rate βd in
the next cycle, while the nodes that attempted in the last
cycle will attempt at rate βs or βc, depending on whether
the last transmission was a success or a collision. Hence,
we associate with each epoch Tu, a state, Nu, the number
of nodes that attempted in the previous cycle. In the detailed
model of Section VI, we did not need this state since we
kept track of more detailed states, namely, the backoff stage,
and the residual backoff of each node, which completely
determine the subsequent evolution (including the number of
nodes attempting in a transmission cycle).

Accounting for Possible Misalignment in Case of Large
Propagation Delay: We saw in Section V-B that if we do

not account for the possible misalignment of backoff counters
of the nodes after a collision (Section VI-A), the resulting
analysis is not accurate. To account for this, we associate with
each Tu, another state, namely, the misalignment, Zu, of the
backoff counters of the nodes at Tu. Note that Zu = 0 if
there was a success in the last transmission cycle, and Zu =
Zu,+ ∈ {0, 1, . . . ,m} otherwise. For example, in Figure 7,
the misalignments at Tu, Tu+1 and Tu+2 are respectively k1,
0, and k2 slots.

Further note that to use the state dependent attempt rates,
we need to know whether a transmission cycle ended in a
success, or a collision. Observe that while Zu > 0 clearly
indicates a collision in the previous transmission cycle, Zu = 0
could indicate either a collision or a success in the previous
transmission cycle. To distinguish between these two cases,
we introduce two new states, namely 0s, and 0c, indicat-
ing that there is no misalignment of the backoff counters
at Tu, and that the previous transmission cycle ended in a
success, or a collision respectively. Thus, in our new model,
Zu ∈ {0s, 0c, 1, . . . ,m}. Finally, note that Nu = 1 if Zu = 0s,
and Nu ≥ 2 otherwise.

The approximate model can be summarized as follows:
(A1) If Zu = 0s, all the nodes start their backoffs from Tu.

The node that was successful in the previous transmission
cycle attempts independently with probability βs in each slot,
conditioned on being in backoff. The other nodes attempt
independently with probability βd in each slot, conditioned
on being in backoff. �

(A2) If Zu = 0c, all nodes start their backoffs from Tu.
Nu of the nodes attempt independently with probability βc

in each slot, while the remaining n − Nu nodes attempt
independently with probability βd in each slot, all conditioned
on being in backoff. If Zu = k > 0, Nu of the nodes attempt
independently with probability βc in each slot, conditioned on
being in backoff, one starting from Tu, and the others, starting
from Tu +k (Remark 3, Section VI-A); the remaining n−Nu

nodes attempt independently with probability βd in each slot,
conditioned on being in backoff, starting from Tu + k. �

Remarks:
1) After a successful transmission in the system, we may

expect the residual backoffs of the interrupted nodes to be
relatively large compared to the next backoff of the successful
node (which samples its backoff from the smallest contention
window), especially for backoff sequences that lead to short
term unfairness; thus, the attempt rates of the interrupted nodes
can be expected to be significantly lower than that of the
successful node. This is the rationale behind introducing the
attempt rates βs and βd to distinguish between the successful
node, and the interrupted nodes.

2) Following a similar rationale, in case of a collision,
we may expect the nodes that were interrupted (did not
participate in the collision) to have relatively large residual
backoffs compared to the nodes involved in the collision. Also,
since after a collision, a node will sample backoff from a
larger contention window, its attempt rate after a collision can
be expected to be lower than that after a success. Hence we
introduce the attempt rate βc to distinguish the colliding nodes
from the interrupted nodes, as well as the successful node. �
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The State Dependent Bernoulli Attempts Markov Renewal
Process (SDBA MRP) Approximation: With these approxima-
tions, observe that the process {(Zu, Nu), Tu}, is a Markov
renewal process, the state space of the embedded Markov
chain being {0s, 0c, 1, . . . ,m}×{1, . . . , n}. Also, observe that
for n = 2 and arbitrary m, it suffices to consider only the
state Zu, thus reducing the state space. Similarly, for m = 0
and arbitrary n, it suffices to consider only the state Nu.
We develop the details for these two cases. The underlying
principles apply to the more general setting as well, but the
equations become more involved.

B. Zero Propagation Delay, Arbitrary n: Analysis of the
SDBA MRP for m = 0 and Arbitrary n, Given βc, βd, and βs

The SDBA MRP model has n as a parameter, and requires
the quantities βc, βd, and βs, which are not known a pri-
ori. We shall explain how to compute βc, βd, and βs in
Sections VII-D, VII-E and VII-F. Given βc, βd, and βs,
let P be the transition probability matrix of the embedded
Markov chain. We now proceed to write down the transition
probabilities. We use the shorthand p(na, n

′
a) to denote the

probability Pr[Nu+1 = n′
a|Nu = na].

Computation of p(na, n
′
a):

Define the sets F (na, n
′
a) = {(i, j) : 0 ≤ i ≤ na, 0 ≤ j ≤

n− na, i+ j = n′
a} for all na, n

′
a ∈ {1, . . . , n}. Also define

q(na, n
′
a) =

∑

(i,j)∈F (na,n′
a)

(
na

i

)(
n− na

j

)
βi

x(1 − βx)na−i

× βj
d(1 − βd)n−na−j (3)

where βx = βs if na = 1, and βx = βc, if na > 1.
Observe that given the information that na nodes are

attempting at rate βx, and remaining (n − na) nodes are
attempting at rate βd, q(na, n

′
a) is the probability that n′

a nodes
attempt together in a backoff slot, while the remaining (n−n′

a)
nodes remain silent.

Then we can write

p(na, n
′
a) = (1−βx)na(1−βd)n−nap(na, n

′
a)+q(na, n

′
a) (4)

Here, the first term corresponds to the event that none of
the nodes attempt in the first backoff slot; in this case, due
to the assumption of Bernoulli attempt processes, the system
encounters a renewal with state na, and the conditional proba-
bility (given that none of the nodes attempted in the first slot)
of the next state being n′

a remains p(na, n
′
a). Thus we have

p(na, n
′
a) =

q(na, n
′
a)

1 − (1 − βx)na(1 − βd)n−na
(5)

where βx = βs if na = 1, and βx = βc, if na > 1.
From the above transition probability structure, it is easy to

observe that for positive attempt rates, the embedded DTMC
is finite, irreducible, and hence, positive recurrent. Let π
denote the stationary distribution of this DTMC, which can
be obtained as the unique solution to the system of equations
π = πP , subject to

∑

na∈{1,2,...,n}
π(na) = 1.

1) Obtaining the Collision Probability, γ: By symmetry,
the long run average collision probability for all the nodes is
the same, which we denote by γ. It is defined as

γ = lim
t→∞

Ci(t)
Ai(t)

, i = 1, 2, . . . , n

where, Ci(t) and Ai(t) denote respectively, the number of
collisions and the number of attempts by Node i until time t.

Denoting C(t)
�
=

∑n
i=1 Ci(t), the total number of collisions

in the system until time t, and A(t)
�
=

∑n
i=1Ai(t), the total

number of attempts in the system until time t, it is also easy
to observe (by noting that the long run time-average collision
rates, and the long run time-average attempt rates of all the
nodes are equal by symmetry) that

γ = lim
t→∞

C(t)
A(t)

Denote by C and A, respectively, the random variables
representing the number of collisions, and the number of
attempts in the system in a transmission cycle. Then, using
Markov regenerative theory (see, for example, [18]), we have

γ =

∑n
na=1 π(na)EC(na)

∑n
na=1 π(na)EA(na)

a.s (6)

where, EC(na) and EA(na) denote respectively, the expected
number of collisions, and attempts in the system in a trans-
mission cycle starting with state na, and can be computed by
using renewal arguments similar to those used for obtaining
the transition probabilities earlier, and observing that every
collision event involving n′

a nodes results in n′
a collisions (and

involves n′
a attempts, one from each node), and every success

event involves 1 attempt (from the successful node). We have,
for all na = 1, 2, . . . , n,

EC(na) =
n∑

n′
a=2

p(na, n
′
a)n′

a (7)

EA(na) =
n∑

n′
a=1

p(na, n
′
a)n′

a (8)

where, βx = βs if na = 1, and βx = βc, if na > 1.
2) Obtaining the Normalized System Throughput, Θ: The

normalized system throughput is defined as

Θ = lim
t→∞

T (t)
t

where T (t) is the total successful data transmission duration
without overheads until time t.

Denote by T , the random variable representing the dura-
tion of successful data transmission excluding overheads in
a transmission cycle. Then, by Markov regenerative theory,
we have

Θ =

∑n
na=1 π(na)ET (na)

∑n
na=1 π(na)EX(na)

a.s (9)

where, ET (na) and EX(na) are, respectively, the mean
duration of successful data transmission excluding overheads,
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and the mean duration of the transmission cycle when the
transmission cycle starts in state na. We can write down the
expressions for ET (·) and EX(·) using renewal arguments
similar to those given earlier as follows.

ET (na) =
q(na, 1)Td

1 − (1 − βx)na(1 − βd)n−na
(10)

EX(na) =
1 + q(na, 1)Ts +

∑n
n′

a=2 q(na, n
′
a)Tc

1 − (1 − βx)na(1 − βd)n−na
(11)

for all na = 1, . . . , n. As before, βx = βs if na = 1, and
βx = βc, if na > 1. Also, Ts is the time duration in
a successful transmission cycle from the start of the data
transmission in the medium until the time the medium is idle
again, and the nodes start counting their backoffs (i.e., until
the start of the next transmission cycle), and is given by

Ts = Td+ACK+2× PHY HDR+2To+SIFS+DIFS

and Tc is the time duration in a collision transmission cycle
from the start of the first data transmission in the medium until
the time the nodes start counting their backoffs (i.e., until the
start of the next transmission cycle), and is given by

Tc = Td + PHY HDR+ To + SIFS +DIFS

In the above expressions, To denotes the Rx-to-Tx turnaround
time.

This completes the analysis of the system evolution for
m = 0 and arbitrary n, given βs, βd, βc.

A Generalization of the Analysis in [1]:
Until this point, what has been shown is the procedure to

get the performance measures if the attempt rates, βs, βc, βd

are given. It is an interesting exercise to relate this to what was
done in the well known analysis in [1] (Section III-A). Indeed,
if we set βs = βc = βd = β, i.e., a state independent, constant
attempt rate, we get back from Equation 6, the collision
probability as γ = 1 − (1 − β)n−1, i.e., the same expression
as in the analysis in [1] (Equation 2); details are in the
Supplementary Material. Thus, our analysis can indeed be
viewed as a generalization of the analysis in [1] with state
dependent attempt rates. �

C. Arbitrary Propagation Delay, and n = 2: Analysis of the
SDBA MRP for n = 2 and Arbitrary m, Given βc, βd, and βs

For n = 2 and arbitrary m, {Zu, Tu} is a Markov renewal
process (MRP), the state space of the embedded Markov chain
being {0s, 0c, 1, . . . ,m}. This Markov renewal process model
has m as a parameter, and requires the quantities βc, βd, and
βs, which are not known a priori. We shall explain how
to compute βc, βd, and βs in Section VII-D. Given βc, βd,
and βs, let P be the transition probability matrix of the
embedded Markov chain. Using the assumption of Bernoulli
attempt processes of the nodes, along with observations from
Section VI, one can obtain P ; we provide the details in the
Supplementary Material. It turns out that for positive attempt
rates, the Markov chain is positive recurrent; denote by π, its
unique stationary distribution.

1) Obtaining the Collision Probability, γ, for n = 2, and
Arbitrary m: By symmetry, the long run average collision
probability for both the nodes is the same, which we denote

by γ. As in the previous case, denoting C(t)
�
=

∑2
i=1 Ci(t),

the total number of collisions in the system until time t, and

A(t)
�
=

∑2
i=1 Ai(t), the total number of attempts in the

system until time t, we have

γ = lim
t→∞

C(t)
A(t)

Denote by C and A, respectively, the random variables
representing the number of collisions, and the number of
attempts in the system in a transmission cycle. Then, using
Markov regenerative theory, we have

γ =

∑
k∈{0s,0c,...,m} π(k)EC(k)

∑
k∈{0s,0c,...,m} π(k)EA(k)

a.s (12)

where, EC(k) and EA(k) denote respectively, the expected
number of collisions, and attempts in the system in a transmis-
sion cycle starting with state k, and can be computed by using
certain renewal arguments similar to those used for obtaining
the transition probability matrix P (see the Supplementary
Material), and observing that every collision event results in 2
collisions (and involves 2 attempts, one from each node), and
every success event involves 1 attempt (from the successful
node). We write down the expressions for EC(·) and EA(·)
below.

EC(0s) =
βs(1 − βd)qd · 2 + βd(1 − βs)qs · 2 + 2βsβd

1 − (1 − βs)(1 − βd)
(13)

EA(0s) =
βs(1−βd)(1+qd)+βd(1−βs)(1+qs)+2βsβd

1 − (1 − βs)(1 − βd)
(14)

EC(0c) =
2βc(1 − βc)qc · 2 + 2β2

c

1 − (1 − βc)2
(15)

EA(0c) =
2βc(1 − βc)(1 + qc) + 2β2

c

1 − (1 − βc)2
(16)

EC(k) = (1 − βc)kEC(0c)

+
k∑

j=1

(1 − βc)(j−1)βcp
(k)
j · 2 ∀k = 1, . . . ,m

(17)

EA(k) = (1 − βc)kEA(0c)

+
k∑

j=1

(1 − βc)(j−1)βc(1 + p
(k)
j ) ∀k = 1, . . . ,m

(18)

where, we define qd
�
= 1−(1−βd)m, qs

�
= 1−(1−βs)m, and

qc
�
= 1 − (1 − βc)m. This completes the computation of the

average collision probability, γ, given the conditional attempt
rates βd, βs, βc.

2) Obtaining the Normalized System Throughput, Θ, for
n = 2, and Arbitrary m: The normalized system throughput
is defined as

Θ = lim
t→∞

T (t)
t
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where T (t) is the total successful data transmission duration
without overheads until time t.

Denote by T , the random variable representing the dura-
tion of successful data transmission excluding overheads in
a transmission cycle. Then, by Markov regenerative theory,
we have

Θ =

∑
k∈{0s,0c,...,m} π(k)ET (k)

∑
k∈{0s,0c,...,m} π(k)EX(k)

a.s (19)

where, ET (k) and EX(k) are, respectively, the mean duration
of successful data transmission excluding overheads, and the
mean duration of the transmission cycle when the transmission
cycle starts in state k. Letting Td, To, and Δ denote respec-
tively the data packet duration, Rx-to-tx turnaround time, and
propagation delay, we can write down the expressions for
ET (·) and EX(·) using certain renewal arguments as follows.

EX(0s) =
1

1 − (1 − βs)(1 − βd)
[1 + (βsβd + βs(1 − βd)qd

+ βd(1 − βs)qs)Tc + (βs(1 − βd)(1 − qd)
+ βd(1 − βs)(1 − qs))Ts] (20)

ET (0s) =
(βs(1 − βd)(1 − qd) + βd(1 − βs)(1 − qs))Td

1 − (1 − βs)(1 − βd)
(21)

EX(0c) =
1

1 − (1 − βc)2
[1 + (β2

c + 2βc(1 − βc)qc)Tc

+ 2βc(1 − βc)(1 − qc)Ts] (22)

ET (0c) =
2βc(1 − βc)(1 − qc)Td

1 − (1 − βc)2
(23)

EX(k) = (1 − βc)k(k + EX(0c)) +
k∑

j=1

(1 − βc)j−1βc[j

+ (1−p(k)
j )Ts+p(k)

j Tc] ∀k ∈ {1, . . . ,m} (24)

ET (k) = (1−βc)kET (0c)+
k∑

j=1

(1−βc)j−1βc(1−p(k)
j )Td

(25)

where, Ts is the time duration in a successful transmission
cycle from the start of the data transmission in the medium
until the time the medium is idle again, and some node starts
counting its backoff (i.e., until the start of the next transmission
cycle), and is given by

Ts = Td +ACK + 2 × PHY HDR+ 2To + SIFS

+DIFS + 2Δr

and Tc is the time duration in a collision transmission cycle
from the start of the first data transmission in the medium until
the time some node starts counting its backoff (i.e., until the
start of the next transmission cycle), and is given by

Tc = Td + PHY HDR+ To + SIFS +DIFS + Δ

This completes the analysis of the system evolution for
n = 2 and arbitrary m, given βs, βd, βc.

It remains to obtain the state dependent attempt rates βs,
βd, βc for both the cases, namely, (i) m = 0 and arbitrary n,
and (ii) arbitrary m and n = 2. To do this, we shall set up a

Fig. 9. Backoff Cycles for a tagged node, Node 2 in this case. The two time-
lines demonstrate the system evolution over three consecutive transmission
cycles, with Tu,…, Tu+3 being the start and end points of the transmission
cycles. The explanation of the evolution of these timelines is similar to those
in Figures 6 and 7. Denote by T

′ (i)
v , the start of the transmission cycle

following the vth transmission by the tagged node, i, Node 2 in this example.
The interval [T

′ (2)
v , T

′ (2)
v+1 ] is called a backoff cycle of Node 2, since in

this interval, Node 2 completes one full backoff. Note that the tagged node
can have exactly one attempt (backoff completion), and several intermediate
backoff interruptions in a backoff cycle. During each system transmission
cycle [Tu, Tu+1], any node can have at most one backoff segment. Thus the
backoff chosen at the start of a tagged node’s backoff cycle is partitioned into
several backoff segments over a random number of system transmission cycles
during the tagged node’s backoff cycle. Thus, a backoff cycle can encompass
several transmission cycles during which the tagged node was interrupted
(i.e., did not attempt).

system of fixed point equations in βc, βd, and βs by modeling
the evolution at a tagged node. This can, in turn, be solved
iteratively to yield the rates.

D. Obtaining the State Dependent Attempt Rates:
a Fixed Point Approach

In Sections VII-B and VII-C, we assumed Bernoulli attempt
processes with state dependent rates for all nodes in modeling
the system evolution (to obtain the performance measures,
given the attempt rates). We next show how to determine
the state dependent attempt rates. Analogous to the approach
in [2], we consider a tagged node whose successive backoffs
are sampled from uniform distributions with the given backoff
parameters, whereas the other nodes attempt in Bernoulli
processes with state dependent rates. With this model, we aim
to determine the attempt rate of the tagged node in each of
the states. This results in a system of fixed point equations,
akin to the modeling in [1] and [2].

Let the tagged node be Node i, and identify embedding
instants T ′ (i)

v in this process as explained in Figure 9, where
the transmission cycle break-points Tu, . . . are shown, along
with the epochs T ′ (2)

v . . . for Node 2 (the tagged node). After
each such epoch, the tagged node samples a new backoff, using
its current backoff stage Sv. We associate with each T

′ (i)
v ,

three states: (i) Sv ∈ {0, 1, . . . ,K}, Node i′s new backoff
stage, (ii) Xv ∈ {0s, 0c,±1, . . . ,±m}, Node i′s relative
misalignment w.r.t the other nodes at T ′ (i)

v , where Xv = +k
means Node i will start backoff at T ′ (i)

v + k, and Xv = −k
means Node i starts backoff at T ′ (i)

v , while all the others
start at T ′ (i)

v + k. Observe that Sv > 0 ⇒ Xv �= 0s, since a
successful transmission by Node i would have reset Sv to zero.
(iii) Nv ∈ {1, . . . , n}, number of nodes (including the tagged
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Node i) that attempted in the just concluded transmission
cycle.

For n = 2 and arbitrary m, Nv is completely determined
by Xv (e.g., Xv = 0s ⇒ Nv = 1), thus reducing the state
space. On the other hand, for m = 0 and arbitrary n, Xv is
completely determined by Nv (e.g., Nv > 1 ⇒ Xv = 0c),
thus again reducing the state space.

Notice from Figure 9 that transmission cycles are common
to the entire system, whereas backoff cycles are defined
for each node. Each backoff cycle of a node comprises
one or more transmission cycles of the system. The backoff
cycle of a tagged node can comprise several successful trans-
missions and/or collisions by the other nodes, and ends at the
end of a transmission cycle in which the tagged node transmits.

Continuing the earlier list of approximation steps in our
analysis approach, we have:

(A3) Node i samples its successive back-offs from a uniform
distribution, as in the standard. When a new backoff cycle
starts for Node i, if Xv = 0s, the other nodes, conditioned
on being in backoff, attempt independently in each slot with
probability βd until the end of the first transmission cycle
within this backoff cycle. If Xv �= 0s, Nv − 1 of the nodes,
conditioned on being in backoff, attempt independently in each
slot with probability βc, and the remaining n − Nv nodes,
conditioned on being in backoff, attempt independently in each
slot with probability βd until the end of the first transmission
cycle within this backoff cycle. �

(A4) If Node i is interrupted within a backoff cycle due to
attempts by na other nodes (1 ≤ na ≤ n − 1), thus freezing
its backoff (see Figure 9), then in the next transmission cycle
within this backoff cycle, Node i resumes its residual backoff
countdown, all the n− 1 − na nodes (excluding Node i) that
did not attempt in the previous transmission cycle attempt
independently in each slot with probability βd, conditioned
on being in backoff, while the na nodes that attempted in the
previous transmission cycle attempt with probability βc or βs

(depending on whether the previous transmission cycle ended
in collision or success, i.e., whether na > 1 or na = 1) in
each slot, conditioned on being in backoff. �

In Sections VII-E and VII-F we show how to obtain the
state dependent attempt rates of the tagged node. In order
to emphasize the fixed point nature of the analysis, the state
dependent rates of the tagged node are also denoted as βd, βs,
and βc.

E. Zero Propagation Delay (m = 0), Arbitrary n:
Computation of the Attempt Rates for the SDBA
MRP Approximation

Under assumptions (A3)-(A4), observe that for m = 0 and
arbitrary n, the process {(Sv, Nv), T

′ (i)
v } is a Markov renewal

process (MRP), with the state space of the embedded Markov
chain being {0, . . . ,K} × {1, . . . , n}. This Markov renewal
process has as its parameters the attempt rates of the nodes
other than the tagged node, i.e., βs, βd, andβc.

It can be shown that the embedded Markov chain has
a unique stationary distribution, denoted by ψ. We provide
the detailed derivation of this stationary distribution in the

Supplementary Material. We discuss next, how we can com-
pute the state dependent attempt rates of the tagged node,
βd, βc and βs, given ψ, and the attempt rates of the nodes
other than the tagged node, i.e., βd, βc and βs.

Recall that βs and βc are the mean attempt rates of a node
in a transmission cycle after it resumes backoff following a
successful transmission, and a collision, respectively, while βd

is the mean attempt rate of a node in a transmission cycle after
it resumes backoff following an interruption. Thus, observe
that in a backoff cycle of a tagged node, the contributions to βs

and βc come from only the first transmission cycle within the
backoff cycle, whereas the remainder (if any) of the backoff
cycle contributes towards βd.

1) Computation of βd: Looking at the backoff evolution
of the tagged Node i (see Figure 9), we can define βd more
formally as

βd = lim
t→∞

∑N(t)
k=1 1{Node i interrupted in backoff cycle k}

∑N(t)
k=1 Br,k

where, N(t) is the number of backoff cycles until time t, and
Br,k is the residual backoff to be counted by Node i from
the point of first interruption until its backoff completion in
backoff cycle k provided that it was interrupted; Br,k = 0
if Node i was not interrupted in backoff cycle k. It suffices
to count the residual backoff from first interruption to backoff
completion since the node does not sample any fresh backoff in
between, and any intermediate interruption will find the node
counting parts of the same residual backoff. Thus, the denomi-
nator is the total residual backoff counted by Node i until time
t after being interrupted. The numerator is the total number
of attempts made by Node i until time t upon completion of
its residual backoff countdown after interruptions. Note that
by our definition of backoff cycles, each backoff cycle must
end with an attempt by Node i; the indicator function simply
tracks whether the attempt followed an interruption or not.

Denote by Br, the random variable representing the residual
backoff counted by Node i from the point of first interrup-
tion until its backoff completion in a backoff cycle. Then,
by Markov Regenerative theory,

βd =

∑
(s,na) ψ(s, na)PI(s, na)

∑
(s,na) ψ(s, na)EBr(s, na)

a.s (26)

where, PI(s, na) is the probability that Node i is interrupted
when the backoff completion cycle starts in state (s, na), and
EBr(s, na) is the mean residual backoff counted by Node i
from its first interruption until its backoff completion in a
backoff cycle that started with state (s, na); they can be
computed as follows.

Computation of PI(·, ·):
When the backoff cycle starts in state (s, na), we know

from (A3) that during the first transmission cycle within this
backoff cycle, (na−1) nodes will attempt w.p. βc in each slot,
and the remaining (n−na) nodes (that did not attempt in the
previous cycle) will attempt w.p. βd in each slot. Suppose
Node i samples a backoff of l slots uniformly from [1,Ws].
Then, Node i will be interrupted if at least one of the other
nodes attempts within the first (l−1) slots. This happens with
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probability 1−((1−βc)na−1(1−βd)n−na)l−1. Thus, we have

PI(s, na) =
1
Ws

Ws∑

l=1

[
1 − ((1 − βc)na−1(1 − βd)n−na)l−1

]

(27)

for all s ∈ {0, . . . ,K}, na ∈ {1, . . . , n}.
Computation of EBr(s, na):
Consider a backoff cycle starting with state (s, na). Suppose

Node i samples (uniformly from {1, 1, . . . ,Ws}) a backoff of
l slots. As was explained earlier, to interrupt Node i, at least
one other node must make an attempt by slot l − 1. Suppose
one or more of the other nodes make an attempt at slot w,
1 ≤ w ≤ l−1; this happens with probability ((1−βc)na−1(1−
βd)n−na)w−1(1 − (1 − βc)na−1(1 − βd)n−na). In this case,
the residual backoff of Node i is (l− w). Thus, we have, for
any s ∈ {0, . . . ,K}, and na ∈ {1, . . . , n},

EBr(s, na) =
1
Ws

Ws∑

l=1

l−1∑

w=1

(l − w)

× ((1 − βc)na−1(1 − βd)n−na)w−1

× (1 − (1 − βc)na−1(1 − βd)n−na) (28)

2) Computation of βs: Looking at the backoff evolution of
the tagged Node i, we can define βs more formally as

βs = lim
t→∞

∑Ns(t)
k=1 1{Node i was not interrupted in backoff cycle k}

∑Ns(t)
k=1 Bs,k

where, Ns(t) is the number of backoff cycles until time t that
start with the state (0, 1) (implying that Node i was successful
in the previous transmission cycle), and Bs,k is the backoff
counted by Node i in the transmission cycle that started along
with backoff cycle k; in other words, Bs,k is the backoff
counted by Node i until it gets interrupted, or completes its
backoff, whichever is earlier. Thus, the denominator is the total
backoff counted by Node i until time t, in those transmission
cycles that followed a successful transmission by Node i.
Similarly, the numerator is the total number of attempts by
Node i until time t in those transmission cycles that followed
a successful transmission by Node i.

Denote by Bs, the random variable representing the backoff
counted by Node i in the first transmission cycle within
a backoff cycle starting in state (0, 1). Then, by Markov
regenerative theory, it follows that

βs =
1 − PI(0, 1)
EBs(0, 1)

a.s. (29)

where, EBs(0, 1) is the mean time spent in backoff by Node i
until it gets interrupted, or completes its backoff in the backoff
cycle starting in state (0, 1), and can be computed as follows.

Suppose Node i samples (uniformly from {1, . . . ,W0}) a
backoff of l slots. To interrupt Node i, at least one of the
other nodes must attempt within slot (l − 1). Now there are
two possibilities:

1. None of the other nodes attempt up to slot (l− 1). Then
Node i does not get interrupted, and its backoff count is l.
This happens with probability (1 − βd)(n−1)(l−1).

2. One or more of the other nodes attempt at slot w,
1 ≤ w ≤ l − 1. Then, Node i is interrupted, and its backoff
counted until interruption is w. This happens with probability
(1 − βd)(n−1)(w−1)(1 − (1 − βd)n−1).

Combining all of these together,

EBs(0, 1) =
1
W0

W0∑

l=1

[
(1 − βd)(n−1)(l−1)l

+
l−1∑

w=1

w(1−βd)(n−1)(w−1)(1 − (1 − βd)n−1)
]

(30)

3) Computation of βc: Looking at the backoff evolution of
the tagged Node i, we can define βc more formally as

βc = lim
t→∞

∑Nc(t)
k=1 1{Node i was not interrupted in backoff cycle k}

∑Nc(t)
k=1 Bc,k

where, Nc(t) is the number of backoff cycles until time t
that start with states other than (0, 1) (implying that Node i
encountered a collision in the previous transmission cycle),
and Bc,k is defined as the backoff counted by Node i in the
transmission cycle that started along with backoff cycle k;
in other words, Bc,k is the backoff counted by Node i until
it gets interrupted, or completes its backoff, whichever is
earlier. Thus, the denominator is the total backoff counted
by Node i until time t, in those transmission cycles that
followed a collision by Node i. Similarly, the numerator
is the total number of attempts by Node i until time t
in those transmission cycles that followed a collision by
Node i.

Denote by Bc, the random variable representing the backoff
counted by Node i in the first transmission cycle following
a collision involving Node i. Then, by Markov regenerative
theory, it follows that

βc =

∑
(s,na) �=(0,1) ψ(s, na)(1 − PI(s, na))
∑

(s,na) �=(0,1) ψ(s, na)EBc(s, na)
a.s (31)

where, EBc(s, na) is the mean time spent in backoff by
Node i until it gets interrupted, or completes its backoff in the
backoff cycle starting in state (s, na), and can be computed as
follows.

Suppose Node i samples (uniformly from {1, . . . ,Ws}) a
backoff of l slots. As explained earlier, to interrupt Node i,
at least one of the other nodes must make an attempt by
slot l − 1. Now, there are two possibilities:

1. None of the other nodes attempt up to slot (l − 1).
Node i does not get interrupted, and its backoff count is l.
This happens with probability ((1−βc)na−1(1−βd)n−na)l−1.

2. One or more of the other nodes attempt at slot w, 1 ≤
w ≤ (l − 1). Then, Node i is interrupted, and its backoff
count until interruption is w. This happens with probability
((1−βc)na−1(1−βd)n−na)w−1(1−(1−βc)na−1(1−βd)n−na).
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Combining these together, we have, for any na ∈
{2, . . . , n}, and any s ∈ {0, . . . ,K},

EBc(s, na) =
1
Ws

Ws∑

l=1

[
l((1 − βc)na−1(1 − βd)n−na)l−1

+
l−1∑

w=1

w((1 − βc)na−1(1 − βd)n−na)w−1

× (1 − (1 − βc)na−1(1 − βd)n−na)
]

(32)

4) A System of Fixed Point Equations: Equations 26-32
along with the expressions for the stationary probabilities
ψ(s, na) (derived in the Supplementary Material) form a
system of vector fixed point equations in (βd, βc) (observe
from Eqns. 27 and 30 that βs is a deterministic func-
tion of βd alone), which can be solved using an itera-
tive procedure until convergence to obtain the attempt rates
βd, βs, and βc. For the case of m = 0 and arbitrary
n, this completes the characterization of the SDBA MRP,
that serves as our approximation to the detailed MRP in
Section VI-B.

5) Computation of the Average Attempt Rate, β, Over All
Backoff Time: The backoff cycle analysis can be used to obtain
the long run average attempt rate, β, averaged over all backoff
time (irrespective of system state). This is the quantity that was
used in the fixed point approximation proposed in [1] and [2];
see Section III-A.

To obtain β, note that each backoff cycle contains exactly
one attempt by the tagged node, and the backoff counted
by the tagged node in the entire backoff cycle contributes
towards β. In a backoff cycle starting in state (s, na),
the mean backoff counted by the tagged node is clearly
(Ws + 1)/2. Thus, using Markov regenerative analysis,
we have

β =
1

∑
(s,na) ψ(s, na)Ws+1

2

(33)

F. Arbitrary Propagation Delay m, n = 2: Computation of
the Attempt Rates for the SDBA MRP Approximation

Under assumptions (A3)-(A4), observe that for n = 2
and arbitrary m, the process {(Sv, Xv), T

′ (i)
v } is a Markov

Renewal process (MRP) with state space of the embedded
Markov chain being {0, . . . ,K} × {0s, 0c,±1, . . . ,±m}.

1) Transition Structure of the Embedded Markov Chain
for n = 2 and Arbitrary m: Let Q denote the tran-
sition probability matrix of the embedded DTMC at the
epochs T

′ (i)
v . We denote by Ws, the contention win-

dow size for backoff stage s, s ∈ {0, 1, . . . ,K}. Denote
the tagged node as Node i, and the only other node as
Node j.

Let QI [(s2, x2)|(s1, x1)] (respectively,
PnI [(s2, x2)|(s1, x1)]) be the probability that Node i
is (respectively, is not) interrupted in a backoff cycle starting
in state (s1, x1), and its backoff completion results in state
(s2, x2).

Then, we can write, for any s ∈ {0, . . . ,K}, any x ∈
{0s, 0c,±1, . . . ,±m}, and any x′ ∈ {0c,±1, . . . ,±m},

Q((s, x), (0, 0s)) = PnI [(0, 0s)|(s, x)] +QI [(0, 0s)|(s, x)]
(34)

Q((s, x), ((s + 1)mod(K + 1), x′))
= PnI [((s+ 1)mod(K + 1), x′)|(s, x)]

+QI [((s+ 1)mod(K + 1), x′)|(s, x)]
(35)

All other entries in Q are zero; since we embedded after trans-
missions of the tagged node, there are only two possibilities:
success or collision of the tagged node’s transmission.

Computation of the probabilities QI [(·, ·)|(·, ·)], and
PnI [(·, ·)|(·, ·)] involves certain renewal arguments, along with
the assumption of Bernoulli attempt process at Node j,
and the uniform backoff process of Node i; we leave the
details to the Supplementary Material. It turns out that the
Markov chain is positive recurrent for non-zero attempt rates.
Denote by ψ, the unique stationary distribution of this Markov
chain. We next proceed to obtain the mean attempt rates
βd, βs, and βc; the procedure is along the same lines as in
Section VII-E.

2) Computation of βd for n = 2, Arbitrary m: If the back-
off cycle starts in the state (s, x), let PI(s, x) be the probability
of the tagged node’s back-off cycle being interrupted by a
success of the other node. If such an interruption occurs,
let Br(s, x) be the residual back-off time of the tagged
node (in this back-off cycle) after the interruption (note that
Br(s, x) = 0 if an interruption does not occur). For example,
in Figure 9, the backoff counted by Node 2 (tagged node) after
the interruption until its backoff completion in the backoff
cycle [T ′

v, T
′
v+1] contributes towards βd. With these observa-

tions, using Markov regenerative analysis, we have (see [16]
for details).

βd =

∑
(s,x) ψ(s, x)PI (s, x)

∑
(s,x) ψ(s, x)EBr(s, x)

a.s (36)

For all s ∈ {0, 1, . . . ,K}, and for all x ∈
{0s, 0c,±1, . . . ,±m},

PI(s, x) =
1
Ws

Ws∑

l=m−x+2

[1 − (1 − βx)(l−(m−x+1))] (37)

EBr(s, x) =
1
Ws

Ws∑

l=m−x+2

l−(m−x+1)∑

w=1

(1 − βx)w−1

× βx(l − (w +m− x)) (38)

with βx = βd if x = 0s, and βx = βc otherwise.
3) Computation of βs: The definition of βs concerns only

those transmission cycles immediately following a successful
transmission by the tagged node, i.e., the first transmission
cycle within each backoff cycle (of the tagged node) starting
in state (0, 0s). For example, in Figure 9, the transmission
cycle starting at T ′ (i)

v+1 will contribute towards βs of Node 2
(the tagged node). Let Bs(0, 0s) denote the backoff counted
by the tagged node in such a transmission cycle. If the tagged
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node makes an attempt in this first transmission cycle (thus
ending the backoff cycle without getting interrupted), then
that attempt counts towards βs. With these observations,
we have (see [16]),

βs =
1 − PI(0, 0s)
EBs(0, 0s)

a.s. (39)

EBs(0, 0s) =
1
W0

(m+ 1)(m+ 2)
2

+
1
W0

W0∑

l=m+2

[(1 − βd)(l−m−1)l

+
l−(m+1)∑

w=1

(1 − βd)w−1βd(w +m)] (40)

4) Computation of βc: The definition of βc concerns only
those transmission cycles immediately following a collision
by the tagged node, i.e., the first transmission cycle within
each backoff cycle (of the tagged node) starting in state
(s, x) �= (0, 0s). For example, in Figure 9, the transmission
cycle starting at T ′ (i)

v will contribute towards βc of Node 2
(the tagged node). Let Bc(s, x) denote the backoff counted by
the tagged node in such a transmission cycle. If the tagged
node makes an attempt in this first transmission cycle (thus
ending the backoff cycle without getting interrupted), then
that attempt counts towards βc. With these observations,
we have (see [16]),

βc =

∑
(s,x) �=(0,0s)

ψ(s, x)(1 − PI(s, x))∑
(s,x) �=(0,0s)

ψ(s, x)EBc(s, x)
a.s (41)

For any x ∈ {0s, 0c,±1, . . . ,±m}, and any s ∈ {0, . . . ,K},

EBc(s, x) =
1
Ws

m−x+1∑

l=1

l+
1
Ws

Ws∑

l=m−x+2

[(1−βc)l−(m−x+1)l

+
l−(m−x+1)∑

w=1

(1−βc)w−1βc(w +m− x)] (42)

5) A System of Fixed Point Equations: Equations 36-42
together form a system of vector fixed point equations in
(βd, βc) (it can be observed that βs is a deterministic function
of βd alone), which can be solved using an iterative procedure
until convergence to obtain the attempt rates βd, βs, and βc.

6) Computation of the Average Attempt Rate, β, Over All
Backoff Time: The backoff cycle analysis can be used to obtain
the long run average attempt rate, β, averaged over all backoff
time (irrespective of system state).

To obtain β, note that each backoff cycle contains exactly
one attempt by the tagged node, and the backoff counted by
the tagged node in the entire backoff cycle contributes towards
β. In a backoff cycle starting in state (s, x), the mean backoff
counted by the tagged node is clearly (Ws +1)/2. Thus, using
Markov regenerative analysis, we have

β =
1

∑
(s,x) ψ(s, x)Ws+1

2

(43)

Fig. 10. Zero propagation delay m = 0, comparison of SDBA MRP
analysis with simulation for various n; backoff sequence (K = 7, b0 = 1,
bk = 3kb0). Note that βs = 1 since b0 = 1.

G. Discussion on the Existence and Uniqueness
of the Fixed Point

Theorem 1: 1. There exists a fixed point for the system of
equations 26-32 in the set C = [1/WK , 1] × [1/WK , 1].

2. There exists a fixed point for the system of equa-
tions 36-42 in the set C = [1/WK , 1] × [1/WK , 1].

Proof: The proof follows from Brouwer’s fixed point
theorem. See the techreport [16] for details.

We do not have proof of uniqueness of the fixed point.
However, in our numerical experiments, the iterations always
converged to the same solutions (within a tolerance of 10−8)
even when starting with different initial values.

VIII. MODEL VALIDATION THROUGH SIMULATIONS

To validate our analytical model, we performed extensive
simulations with a wide range of the number of nodes, n (for
m = 0 case), and the propagation delay, m (for n = 2 case).

For each test case, we used the method of simulating the
detailed Markov renewal model, described in Section VI-B, for
reasons explained in that section. Throughout the simulations,
we use the following parameter values: data packet length
1028 bytes, Rx-to-tx turnaround time To = 10 μs, PHY
rate of 2 Mbps for data packets, and 1 Mbps for control
packets. Length of ACK packets, SIFS and DIFS are as in
the IEEE 802.11b standard.

To obtain the various measures, namely, γ, βd, βs, βc from
the simulations, we use their respective definitions introduced
in Sections VII-B and VII-E.

The results for the case of m = 0 are summarized
in Figure 10. For brevity, we have relegated the βc plots to
the Supplementary Material.

Observations:
1) The SDBA MRP analysis predicts the collision probabil-

ity within an error of about 10% compared to simulations. The
mean field analysis, on the other hand, is grossly inaccurate
in all the test cases, providing best-case errors of 20-25%.
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Fig. 11. Scenario (b) in Figure 3, Δ = Δr , varying m; default backoff
parameters of IEEE 802.11b. Comparison of the SDBA MRP analysis against
simulations.

2) The SDBA MRP analysis also predicts the throughput
within an error of at most 2-3%.

3) The errors in the SDBA MRP analysis compared to
simulations are at most 10-14% in predicting the attempt rates,
βd, βs, and βc. For all test sequences, the qualitative trends
in the attempt rates as a function of n are captured by the
analysis.

4) The collision probability, γ, increases with the number
of nodes, n, as expected.

5) The normalized system throughput, Θ, decreases with
increasing n, since collision probability increases.

6) βs � βd, i.e., the attempt rate is skewed in favor of
the successful node, a reflection of the short term unfairness
property.

7) On an Ubuntu 12.04 platform with 8 GB RAM, i5 proces-
sor (clock speed up to 3.2 GHz, 6 MB cache), the running time
of the SDBA MRP analysis is several seconds, and that of the
stochastic simulation is of the order of several minutes; no
multicore optimization was used. It takes up to several hours
to run the Qualnet simulation, especially when the short term
unfairness is severe. �

For the large propagation delay case, we performed exten-
sive simulations on the topology depicted in Scenario (b),
Figure 3, with saturated transmit queues; we assumed equal
propagation delay Δ among all nodes (i.e., Δr = Δ), and
varied Δ across simulations. We used the default backoff
parameters of IEEE 802.11b.

Figure 11 summarizes the results. For brevity, we have rele-
gated the βc and β plots to the Supplementary Material. Note
that while collision probabilities depend only on m = �Δ

σ �,
the propagation delay in integer multiples of slots (see
Section VI), throughput depends on the actual ratio Δ

σ , since
it involves computing the actual lengths of the transmission
cycle, and the data duration.

Observations:
1. The relative errors in the approximate analysis compared

to simulations are at most 8%, 2-4%, and 2-3% respectively in

predicting the collision probability, attempt rates, and through-
put, thus validating the accuracy of the analysis. Also, the trend
of the collision probability as a function of m is captured well
by the approximate analysis.

2. As m increases, βs monotonically increases, βd, and βc

monotonically decrease. An intuition behind this follows from
the intuitive explanation of the short term unfairness property
provided in the discussion at the end of Section V-A.

3. At higher m, βs � βd, which is a reflection of the short
term unfairness property demonstrated in Section V-A.

4. As m increases, the collision probability γ increases at
first, but then gradually flattens out. This is due to the opposing
effects on γ of increasing m and stochastically increasing
contention window size.

Applications of the Approximate Analysis: Some interesting
applications of the approximate SDBA MRP analysis are
(i) quantifying the extent of short term unfairness, (ii) tuning
slot duration for throughput maximization, and (iii) tuning the
backoff sequence to maximize system throughput subject to
fairness constraints. Details of these are in the techreport [16].

IX. CONCLUSION

We have considered a class of single-hop networks with
saturated, IEEE 802.11 DCF based transmitters and their
receivers, where the systems exhibit short term unfairness.
Examples show that short term unfairness arises for several
classes of backoff sequences, as well as when the propagation
delays among the nodes are large compared to the slot dura-
tion. In these cases, the standard fixed point analysis (or simple
extensions thereof) does not predict the system performance
well. We concluded from these examples that the inability of
the standard fixed point model to capture the performance in
such cases is due to the state-independent attempt rate assump-
tion. We then developed a novel computationally tractable, yet
accurate, approximate analysis using state-dependent Bernoulli
attempt processes with a small number of additional para-
meters, yielding an overall Markov renewal process (SDBA
MRP). Our analysis is numerically quite accurate, and captures
the qualitative trends in collision probability and throughput.
In addition to providing a tool for performance prediction, our
analysis will also be useful for MAC parameter selection for
particular performance profiles.
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