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Asynchronous Stochastic Approximation Based
Learning Algorithms for As-You-Go Deployment

of Wireless Relay Networks along a Line
Arpan Chattopadhyay, Avishek Ghosh, and Anurag Kumar

Abstract—We are motivated by the need, in emergency situations, for impromptu (or “as-you-go”) deployment of multihop wireless
networks, by human agents or robots (e.g., unmanned aerial vehicles (UAVs)); the agent moves along a line, makes wireless link
quality measurements at regular intervals, and makes on-line placement decisions using these measurements. As a first step we
have formulated such deployment along a line as a sequential decision problem. In our earlier work, reported in [1], we proposed two
possible deployment approaches: (i) the pure as-you-go approach where the deployment agent can only move forward, and (ii) the
explore-forward approach where the deployment agent explores a few successive steps and then selects the best relay placement
location among them. The latter was shown to provide better performance (in terms of network cost, network performance and power
expenditure), but at the expense of more measurements and deployment time, which makes explore-forward impractical for quick
deployment by an energy constrained agent such as a UAV. Further, since in emergency situations the terrain would be unknown, the
deployment algorithm should not require a-priori knowledge of the parameters of the wireless propagation model. In [1] we, therefore,
developed learning algorithms for the explore-forward approach.

The current paper fills in an important gap by providing deploy-and-learn algorithms for the pure as-you-go approach. We formulate the
sequential relay deployment problem as an average cost Markov decision process (MDP), which trades off among power consumption,
link outage probabilities, and the number of relay nodes in the deployed network. While the pure as-you-go deployment problem
was previously formulated as a discounted cost MDP (see [1]), the discounted cost MDP formulation was not amenable for learning
algorithms that are proposed in this paper. In this paper, first we show structural results for the optimal policy corresponding to the
average cost MDP, and provide new insights into the optimal policy. Next, by exploiting the special structure of the average cost
optimality equation and by using the theory of asynchronous stochastic approximation (in single and two timescale), we develop two
learning algorithms that asymptotically converge to the set of optimal policies as deployment progresses. Numerical results show
reasonably fast speed of convergence, and hence the model-free algorithms can be useful for practical, fast deployment of emergency
wireless networks.

Index Terms—Wireless networks, impromptu network deployment, as-you-go relay placement, relay placement by UAV, Markov
decision process, stochastic approximation.
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1 INTRODUCTION

In emergency situations, such as fires in large buildings
or forests, or houses in a flooded neighbourhood (with-
out electric power and telecom infrastructure), there is a
need to quickly deploy wireless networks for situation
monitoring. Such networks could be deployed by first
responders (e.g., fire-fighters moving through a burning
building [2]), or by robots (e.g., unmanned aerial vehicles
(UAVs) hopping over the rooftops of flooded homes or
flying over a long road [3], [4], [5]), or by forest guards
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along forest trails ([1]).1 Typically, such networks would
have one or more base-stations, where the command and
control would reside, and to which the measurements
from the sensors in the field would need to be routed.
For example, in the case of the fire-fighting example, the
base-station would be in a control truck parked outside
the building. Evidently, in such emergency situations,
there is a need for “as-you-go” deployment algorithms
as there is no time for network planning. As they move
through the affected area, the first-responders would
need to deploy wireless relays, in order to provide routes
for the wireless sensors for situation monitoring.

With the above motivation for quick deployment of
multihop wireless networks, in our work, in the present
and earlier papers ([1], [9], [10]), we have considered the
particular situation of as-you-deployment of relays along

1. See [6] and [7, Section 5] for application of multihop wireless
sensor networks in wildlife monitoring and forest fire detection. [8]
illustrates a future possibility where drones deploy high speed, solar-
powered access points on the roofs of city buildings in order to provide
high speed internet connection. The drone can land on the ground or on
a rooftop for link quality measurements, and can again take off.
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a line, starting from a base-station, in order to connect a
source of data (e.g., a sensor) whose location is revealed
(or is itself placed) only during the deployment process.
Figure 1 depicts our model for as-you-go deployment
along a line, and also illustrates the difference between
planned deployment and as-you-go deployment. As-
you-go deployment along a line is motivated by the need
for quick deployment of relay networks along long forest
trails by humans or mobile robots, and relay network
deployment along a long straight road by human agents
or UAVs. In practice, the location of the data source
would be a-priori unknown, as the deployment agent
would also need to select locations at which to place the
sensors. Yet, as the deployment agent traverses the line,
he or she (or it) has to judiciously deploy wireless relays
so as to end up with a viable network connecting the
data source (e.g., the sensor) to the sink. In a planned
approach, all possible links could be evaluated; in an
as-you-go approach, however, the agent needs to make
decisions based on whatever links can be evaluated as
deployment progresses.

Motivated by the need for as-you-go deployment of
wireless sensor networks (WSNs) over large terrains,
such as forest trails, in our earlier work [1] we had
considered the problem of multihop wireless network
deployment along a line, where a single deployment
agent starts from a sink node (e.g., a base-station), places
relays as the agent walks along the line, and finally
places a source node (e.g., a sensor) where required.
We formulated this problem as a measurement based se-
quential decision problem with an appropriate additive
cost over hops. In order to explore the range of possi-
bilities, we considered two alternatives for measurement
and deployment: (i) the explore-forward approach: after
placing a node, the deployment agent explores several
potential placement locations along the next line seg-
ment, and then decides on where to place the next node,
and (ii) the pure as-you-go approach: the deployment
agent only moves forward, making measurements and
committing to deploying nodes as he goes.

As expected, in [1] we found that the explore-forward
approach yields better performance (in terms of the
additive per hop cost (see [1, Section V]); but, of course,
this approach takes more time for the completion of
deployment. Hence, explore-forward is prohibitive when
soldiers or robots need to quickly deploy a relay network
along a forest trail or along a long road. In addition, a
deployment agent such as a UAV would be limited by its
fuel, and it would be desirable to complete the mission
as quickly as possible, without many fuel consuming
manoeuvres. Thus, pure as-you-go is the only option
for network deployment by UAVs along long roads (see
[3] for practical network deployment along a road by
a UAV). Further, in an emergency situation, the algo-
rithm cannot expect to be given the parameters of the
propagation environment; this gives rise to the need for
deploy-and-learn algorithms.

In [1], although we introduced explore-forward and

Figure 1: A line network connecting a source (e.g., a sensor) to a
sink (e.g., a control centre) via relay nodes. The dots in between
(filled and unfilled) denote potential relay locations, and are
spaced δ meters apart. The deployed network consists of three
relays (dots labeled Relay 1, 2, and 3) placed at three potential
locations. The solid arrows show the multi-hop path from the
source to the sink. The unfilled dots represent locations where
no relay was placed. The dotted arrows represent some other pos-
sible links between pairs of potential locations. In case of planned
deployment, link qualities between all potential location pairs
need to be measured. But, in as-you-go deployment, the agent
only measures the qualities of link from his (or its) current
location to the previously placed nodes.

pure as-you-go approaches, we developed learning al-
gorithms for explore-forward alone. However, with the
above motivation, our current paper fills in an important
gap by proposing online learning algorithms for pure as-
you-go deployment. We mathematically formulate the
problem of pure as-you-go deployment along a line as
an optimal sequential decision problem so as to minimize
the expected average cost per step, where the cost of a
deployment is a linear combination of the sum transmit
power, the sum outage probability and the number of
relays deployed. We formulate the problem as a Markov
decision process (MDP) and obtain the optimal policy
structure. Next, we propose two learning algorithms
(based on asynchronous stochastic approximation) and
prove their asymptotic convergence to the optimal policy
for the long-run average cost minimization problem.
Finally, we demonstrate the convergence rate of the
learning algorithms via numerical exploration.

The new contributions of this paper, in relation to [1], are
discussed in Section 1.2.

1.1 Related Work
Prior work on the problem of impromptu deployment of
WSN consists of mostly heuristic algorithms validated
by experimentation. For example, the authors of [11]
address this problem by studying experimentally the
variation in indoor link quality. The authors of [12] also
took a similar approach. The authors of [13] provide
heuristics for deploying (incrementally) sensors so that
a certain area is covered (e.g., self-deployment of au-
tonomous robot teams). Bao and Lee, in [14], address
the problem of a group of first responders starting from
a base station (e.g., a command center) and placing relay
nodes while walking through a region devoid of commu-
nication infrastructure, in order to stay connected among
themselves as well as with the base station. Liu et al., in
[2], describe a breadcrumbs system meant for firefighters
operating inside a building; this paper is in similar spirit
with ours, but their goal is just to maintain connection
with k previously placed nodes. This work was later
extended by them in [15] which provides a reliable
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multiuser breadcrumbs system. However, all the above
works are based on heuristic algorithms, rather than on
rigorous formulations; hence they do not provide any
provable performance guarantee. A nice survey on rapid
deployment of post-disaster networks is available in [16].
Sensor network deployment by UAVs have also been
studied in literature (see [4], [5]).

In our current paper, we have formulated as-you-
go deployment as an MDP, found structural results for
the optimal policy, and proposed learning algorithms
to solve the sequential decision problems without using
any prior knowledge of the radio propagation parame-
ters. The use of MDP to formulate as-you-go deployment
was first proposed by Mondal et al. in [17]. This work
was later extended by Sinha et al. in [18], where the
authors have provided an algorithm derived from an
MDP formulation, so as to create a multi-hop wireless
relay network between a sink and a source located at
an unknown location, by placing relay nodes along a
random lattice path. However, these papers do not con-
sider spatial variability of wireless link qualities due to
shadowing, which allows them to develop deployment
algorithms that place the next relay based on the distance
from the previously placed relay.

The spatial variation of link qualities due to shadow-
ing requires measurement-based deployment; here the
deployment agent makes placement decision at a given
location based on the link quality to the previously
placed node. Measurement-based as-you-go deployment
was formulated first in [9], and was later extended
in [1]. The authors of [1] have proposed two possible
approaches for deployment along a line: (i) the pure as-
you-go approach and (ii) the explore-forward approach. [1]
has provided MDP formulations and policy structures
for both approaches; transition probabilities of the MDPs
depend on the radio propagation parameters in the
environment, and, in practice, these parameters are not
known to the agent prior to deployment. Hence, [1]
also provides learning algorithms for the explore-forward ap-
proach, that converge asymptotically to the set of optimal
deployment policies as more and more measurements
are made in course of deployment. One of these learning
algorithms was used for actual network deployment (see
[1] and [10]). Design of a two-connected network to
guard against node and link failures was discussed in
[19], but it did not provide any learning algorithm.

We also developed, in [20], as-you-go deployment
algorithms for deploying a multi-relay line network, so
that the end-to-end achievable rate is maximized; but
it was done for an information-theoretic, full-duplex,
multi-relay channel model where the nodes carry out
decode-and-forward relaying. However, devices with
such sophisticated relaying capability is not yet available
for full commercial use. On the other hand, our current
paper designs deployment algorithms for networks car-
rying packetized data, which is common in present day
wireless standards.

1.2 Contributions of this paper, in relation to [1]:

(i) New deploy-and-learn algorithms: Our current paper
provides learning algorithms for the pure as-you-go
approach (Algorithm 2 and Algorithm 3), whereas [1]
provides learning algorithms only for explore-forward.
The learning algorithms are required to discover the
optimal deployment policy as deployment progresses,
for the situation where no prior accurate knowledge on
the statistical nature of radio propagation environment
is available. Learning algorithms for pure as-you-go de-
ployment is an important requirement since the pure as-
you-go deployment approach is more suitable for very
fast deployment over a large region. In fact, the number
of measurements in explore-forward deployment can
be double or triple than that of pure as-you-go ([1,
Section V]) for practical deployment; this makes pure
as-you-go a better choice for emergency network deploy-
ment by soldiers or commandos or energy-constrained
autonomous agents such as robots and UAVs.

Unlike [1], the learning algorithms presented in this
paper make use of asynchronous stochastic approximation,
where different iterates are updated at different time
instants (in the learning algorithms proposed in [1], all
iterates are updated when a new relay is placed). We pro-
vide formal proof for the convergence of our proposed
learning algorithms to the optimal deployment policy
for pure as-you-go deployment; these proofs require a
significant and non-trivial novel mathematical analysis
(compared to [1]) in order to address many technical
issues that arise in the proofs.

In other words, the most important contributions of
the current paper w.r.t. [1], are the newly proposed
learning algorithms for pure as-you-go deployment and
their convergence proofs, which are new to the literature
and addresses the problem of very fast deployment.

Interestingly, one of the learning algorithms proposed
in this paper exhibits a nice separation property between
estimation and control, which is not present in the
learning algorithms presented in [1].

(ii) Average cost MDP formulation: [1] formulates
the pure-as-you deployment problem for a line having a
random length L ∼ Geometric(θ) (mean is 1

θ ), i.e., P(L =
l) = (1−θ)l−1θ where l ∈ {1, 2, · · · ,∞}; the average cost
optimal policy is obtained by taking θ → 0. Clearly, this
requires value iteration to compute the optimal policy
prior to deployment. This also requires the knowledge of
radio propagation parameters, since they determine the
transition probabilities of the MDP. On the other hand,
our present paper establishes the structure of the optimal
policy by using the average cost optimality equation
(see (5)) with necessary modification; it turns out that
such a formulation along with the special structure of
the problem enables us to propose very simple learning
algorithms to find the optimal policy, irrespective of
whether the radio propagation parameters are known
apriori or not. Thus, the average cost MDP formulation
is a precursor to the learning algorithms (Algorithm 2
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and Algorithm 3) presented later in this paper. Some
new interesting properties of the value functions and
the policy structure are also proved in the current paper,
which were not present in [1] because the problem was
formulated as discounted cost MDP in [1].

(iii) Additional measurements to facilitate learning:
The pure-as-you go approach considered in our current
paper is not exactly the same as that described in [1].
In [1], the agent makes a link quality measurement from
the current location to the immediate previous node that
he had placed. On the contrary, in the pure as-you-
go approach described in our present paper, the agent
measures link qualities from the current location to all
previously placed nodes that are located within a certain
distance. This is done to facilitate learning the optimal
policy. The exact reason behind using this variation of
pure as-you-go deployment will be explained in Sec-
tion 4.1.

(iv) Bidirectional traffic: In Section 2.5, we explain
how the deployment algorithms presented in this paper
can be adapted to the case where each link in the
network has to carry data packets in both directions.

1.3 Organization

The rest of the paper is organized as follows. The system
model has been described in Section 2. MDP formula-
tion for pure-as-you deployment has been provided in
Section 3. The learning algorithms have been proposed
in Section 4 and Section 5. Convergence speed of the
learning algorithms are demonstrated numerically in
Section 6, after which the conclusion follows. The proofs
of all theorems are provided in the appendices available
as supplementary material.

2 SYSTEM MODEL

In this section, we describe the system model assumed in
this paper. It has to be noted that the system model and
notation used in this paper are similar in many aspects
to those of [1]; a significant difference in the system
model will be found in the deployment procedure as
described in Section 2.2 (deployment process), and in
Section 2.5 (bi-directional traffic). The channel model
(Section 2.1), traffic model (Section 2.4) and deployment
objective (Section 2.3) subsections are almost similar to
the respective sections in [1]; but we describe the system
model here in detail to make this paper self-contained.

We assume that the line (i.e., the road or the forest trail
along which the network is deployed) is discretized into
steps (starting from the sink), each having length δ. The
points located at distances {kδ}k∈{1,2,3,··· } are called po-
tential locations; the agent is allowed to place nodes only
at these potential locations. As the single deployment
agent walks along the line, at each potential location, the
agent measures the link quality from the current location
to the previously placed nodes that are within a certain
distance from the current location; placement decisions
are made based on these measurements.

After deployment, as shown in Figure 1, the sink is
called Node 0, and the relays are enumerated as nodes
{1, 2, 3, · · · } as we move away from the sink. A link
whose transmitter is Node i and receiver is Node j is
called link (i, j).

2.1 Wireless Channel Model

We consider a wireless channel model where, for a
link (i.e., a transmitter-receiver pair) with length r and
transmit power γ, the received power of a packet (say
the k-th packet) is given by:

Prcv,k = γc

(
r

r0

)−η
HkW (1)

Here c is the path-loss at a reference distance r0, and η
is the path-loss exponent. The fading random variable
seen by the k-th packet is Hk (e.g., Hk is exponentially
distributed for Rayleigh fading); it takes independent
values over different coherent times. W denotes the
shadowing random variable that captures the (random)
spatial variation in path-loss. In this paper, W is assumed
to take values from a set W , and we denote by g(w) the
probability mass function or probability density function
of W , depending on whetherW is countable or uncount-
able. We assume that the transmit power of each node
comes from a discrete set, S := {P1, P2, · · · , PM}, where
the power levels are arranged in ascending order.

Shadowing becomes spatially uncorrelated if the trans-
mitter or receiver is moved by a certain distance that
depends on the sizes of the scatterers in the environment
(see [21]). It was shown experimentally that, in a forest-
like environment, shadowing has log-normal distribu-
tion (i.e., log10W ∼ N (0, σ2) where σ is the standard
deviation of log-normal shadowing) and the shadowing
decorrelation distance can be as small as 6 meters (see
[10]). In this paper, we assume that the step size δ is
chosen to be more than the shadowing decorrelation
distance; this allows us to assume that the shadowing at
any two different links in the network are independent.

The k-th packet is said to see an outage in the link
if Prcv,k ≤ Prcv−min, where Prcv−min is a threshold
depending on the modulation scheme and the properties
of the receiving node. For example, Prcv−min can be
chosen to be −88 dBm for the TelosB “motes” (see
[22]), and −97 dBm for iWiSe motes (see [23]). For a
link with length r, transmit power γ and shadowing
realization W = w, the outage probability is denoted
by Qout(r, γ, w); it is increasing in r and decreasing in γ,
w. Qout(r, γ, w) = P(Prcv,k ≤ Prcv−min) depends on the
fading statistics; if H is exponentially distributed with
mean 1 (i.e., for Rayleigh fading), then Qout(r, γ, w) =

P(γc( rr0 )−ηwH ≤ Prcv−min) = 1 − e−
Prcv−min( r

r0
)η

γcw . The
outage probability of a randomly chosen link (with given
r and γ) is a random variable, with the randomness
coming from shadowing W . Outage probability can be
measured by sending a large number of packets over a
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link and calculating the fraction of packets with received
power less than Prcv−min.

2.2 Pure As-You-Go Deployment Process

After placing a relay, the agent starts measuring the link
qualities from the next B locations one by one (the value
of B is fixed prior to deployment). At any given loca-
tion, the agent uses the measurements from the current
location to make a placement decision; the agent does
not make measurements from all of those B locations in
order to place a new relay.

At any given location, the agent measures
the link qualities from the given location to all
previously placed nodes that are within Bδ distance
from the current location; see Figure 2. Let us
assume that the agent is standing at a distance
kδ from the sink. Let Ik := {r ∈ {1, 2, · · · , B} :
a relay was placed at a distance (k − r)δ from the sink}}.
Then, the agent at this location will measure the
outage probabilities {Qout(r, γ, wr)}γ∈S,r∈Ik (wr is the
realization of shadowing in a link of length r steps).

However, at each location, only the link quality to the
immediately previous node is used to decide whether to
place a relay there or to move on to the next step. If the
decision is to place a relay, then the agent also decides
which transmit power γ ∈ S to use at that particular
node. If the decision is not to place a relay, the agent
moves to the next step. In this process, if he reaches
B steps away from the previous relay, or if the source
location is encountered, then he must place a node there.

It is important to note that, while the measurement to
the immediately previous node is used to make a place-
ment decision, other measurements made in this process
provide useful information about the statistical char-
acteristics of the radio propagation environment (more
precisely, the probability distribution of Qout(r, γ, ·) for
r ∈ {1, 2, · · · , B}, γ ∈ S), and those measurements are
used to learn the optimal deployment policy as described
in Section 4 and Section 5. But if the radio propagation
parameters (such as η and σ) are exactly known, i.e.,
if the probability distribution of Qout(r, γ, ·) is known
exactly, then these additional measurements will not be
required (since shadowing is i.i.d. across links, these
measurements will not provide any information about
the link quality between the current location and the
immediately previous node); this situation has been
explored in Section 3, where measurement is made only
to the previously placed relay node.

Choice of B: In general, the choice of B depends on
the constraints and requirements for the deployment.
Large B results in better performance at the expense
of more measurements. One can simply choose B to
be the largest integer such that, the probability that a
randomly chosen wireless link with length Bδ respects
a certain outage constraint, is larger than some pre-
specified target. This will make sure that the probability
of obtaining a workable link is small in case the agent

Figure 2: Illustration of pure as-you-go deployment with
learning for B = 4. Here the deployment agent has already
placed Relay 1 and Relay 2, and the corresponding inter-relay
distances are U1 and U2. The placed relays use transmit powers
Γ1 and Γ2, thereby achieving outage probabilities Q(1,0)

out and
Q

(2,1)
out (in the links shown by solid arrows). After placing

Relay 2, the agent measured the link qualities from the next
location to the sink, Relay 1 and Relay 2 (since B = 4) and
the algorithm advised him not to place a node there. Then the
deployment agent moved to the next location (which is at a
distance of 2δ from Relay 2) and measured the link qualities
to Relay 1 and Relay 2 (but not to the sink since B = 4). In this
snap-shot of the deployment process, the agent is evaluating the
next location at r = 3δ distance from Relay 2 (see the dotted
arrows). Since B = 4, the agent measures the link qualities
from the current location to both Relay 1 and Relay 2; this
corresponds to I6 = {3, 4} (see Section 2.2 for the definition
of I6), since the distances to Relay 2 and Relay 1 from the
current location are 3δ and 4δ respectively. Based on these
measurements, the deployment agent will decide whether to
place a relay at r = 3δ or not, and the transmit power of the
node in case the decision is to place; if the decision is not to
place a relay here, then a relay must be placed at the next
location (since B = 4), and the agent would be at a distance
of Bδ from the last placed relay (i.e., Relay 2).

reaches a location that is more than Bδ distance away
from the previously placed node.

2.3 Network Cost Minimization Objective

We first define the cost that we use to evaluate the
performance of any deployment policy. A deployment
policy π takes as input the distance of the current
location of the agent from the previous relay and the link
quality to the previously placed node, and provides the
placement decision for that location and transmit power
(if the decision is to place a relay) as output.

We denote the number of relays placed up to x steps
from the sink by Nx, and let us define N0 = 0. Since
deployment decisions are based on measurements of
(random) outage probabilities, {Nx}x≥1 is a random
process.

After the deployment is over, let us denote by Γi
the transmit power used by node i, and by Q

(i,i−1)
out the

outage probability over the link (i, i− 1) (see Figure 2).
Note that, Γi and Q

(i,i−1)
out are random variables since

shadowing between various potential location pairs are
random variables, whose exact realization is known only
after measurement. Given the measurement values (i.e.,
the information available to the deployment agent) and
the deployment policy, one can find the exact realizations
of Γi and Q

(i,i−1)
out .

The expected cost of the deployed network up to xδ
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distance is given by a sum of hop costs as follows:

Eπ(

Nx∑
i=1

Γi + ξout

Nx∑
i=1

Q
(i,i−1)
out + ξrelayNx) (2)

which is the expectation (under policy π) of a linear
combination of the sum power

∑Nx
i=1 Γi, the sum outage∑Nx

i=1Q
(i,i−1)
out , and the number of relays Nx. For small

outage probabilities, the sum-outage
∑Nx
i=1Q

(i,i−1)
out is

approximately equal to the probability that a packet sent
from the point x to the sink encounters an outage along
the path (see also Section 2.4 for a better understanding
of the outage cost in light of the traffic model). The sum
power

∑Nx
i=1 Γi is proportional to the battery depletion

rate in the network, in case wake-on radios are used (see
[1, Section II] for a detailed discussion).

The multipliers ξout ≥ 0 and ξrelay ≥ 0 capture the
emphasis we place on

∑Nx
i=1Q

(i,i−1)
out or Nx. A large value

of ξout will aim for deployment with smaller end-to-
end expected outage. ξrelay can be viewed as the cost
of placing a relay.

Since the distance L to the source from the sink is
not known prior to deployment, we simply assume that
L = ∞. This assumption is practical when the distance
of the source from the sink is large (e.g., deployment
along a long forest trail). L = ∞ is also equivalent to
the scenario where deployment is done serially along
multiple trails in a forest, provided that the radio prop-
agation environment in various trails are statistically
identical; we deploy serially along multiple lines but use
this formulation to minimize the per-step cost averaged
over all the lines.

Next, we define the optimization problems that we
seek to address in this paper.

2.3.1 The Unconstrained Problem
We seek to solve the following problem:

inf
π∈Π

lim sup
x→∞

Eπ
∑Nx
i=1(Γi + ξoutQ

(i,i−1)
out + ξrelay)

x
(3)

where Π is the set of all possible placement policies. We
formulate (3) as an average cost MDP.

2.3.2 The Constrained Problem
(3) is the relaxed version of the following constrained
problem:

inf
π∈Π

lim sup
x→∞

Eπ
∑Nx
i=1 Γi

x

s.t. lim sup
x→∞

Eπ
∑Nx
i=1 Q

(i,i−1)
out

x
≤ q,

and lim sup
x→∞

EπNx
x
≤ N (4)

Here we seek to minimize the mean power per step
subject to constraints on the mean outage per step and
the mean number of relays per step.

It turns out that (3) is the relaxed version of the con-
strained problem (4), with ξout and ξrelay as the Lagrange

multipliers. The constrained problem can be solved by
solving the unconstrained problem, under proper choice
of the Lagrange multipliers. The following theorem tells
us how to choose the Lagrange multipliers ξout and ξrelay
(see [24], Theorem 4.3):

Theorem 1: For the constrained problem (4), if there
exists a pair ξ∗out ≥ 0, ξ∗relay ≥ 0 and a policy π∗ such that
π∗ is the optimal policy of the unconstrained problem (3)
under (ξ∗out, ξ

∗
relay), and if the constraints in (4) are met

with equality under the policy π∗, then π∗ is an optimal
policy for the constrained problem (4) as well. �

2.4 Traffic Model
Motivated by our prior work reported in [17], [18], [9],
[1], we assume that the traffic in the network is so light
that there is only one packet in the network at a time;
this model is called the “lone packet model” (or the zero
traffic model). This model results in collision-free trans-
missions, since there are no simultaneous transmissions
in the network. As a result, we can easily write down
the communication cost in the line network as a sum of
hop costs (Section 2.3).

It has been formally shown that network design under
the lone packet model may be necessary for designing
a network with positive traffic carrying capability (see
[25, Section II]). We can easily adapt the result of [25,
Section II] to show that, for a finite line network, if a
target end-to-end packet delivery probability has to be
achieved under positive traffic, then it is necessary to
achieve that target under lone packet traffic. Now, the
end-to-end packet error rate under lone packet traffic is
approximately equal to the sum outage; this justifies the
sum outage cost in (3) and the outage constraint in (4).
Network design for a given positive traffic rate is left for
future research.

In a line network, if interference-free communication
is achieved via multi-channel access and frequency reuse
after several hops, then the traffic model essentially
becomes lone packet. There have been recent efforts
to use multiple channels available in 802.15.4 radio in
WSN; see [26], [27], [28], [29].

The lone packet traffic model is realistic for WSNs
carrying low duty cycle measurements, or just an oc-
casional alarm packet. For example, recently developed
passive infra-red (PIR) sensor platforms can detect and
classify human or animal intrusion ([30]); such sensors
deployed in a forest generate very low data. The paper
[6, Section 3.2] uses 1.1% duty cycle for a multi-hop
WSN for wildlife monitoring; the sensors gather data
from RFID collars tied the animals, and generate light
traffic. Very light traffic model is also realistic for condi-
tion monitoring/industrial telemetry applications ([31]),
where infrequent measurements are taken. Very light
traffic model is also common in machine-to-machine
communication ([32]). The paper [33, Table 1, Table 3]
illustrate sensors with small sampling rate and sampled
data size; it shows several bytes per second data rate
requirement for habitat monitoring.



7

We assume that data packets traverse the network in a
hop-by-hop fashion, without skipping any intermediate
relay. Later we will explain in Section 3.4 why we do
not consider the possibility of relay skipping in this
paper; the reason is increased computational complexity
without a very significant gain in network performance.

2.5 Extension to Bi-Directional Traffic Flow
Let us consider the situation where the traffic is still
lone packet, but a packet can flow towards either di-
rection along the line network with equal probabili-
ties. In such cases, one can define the cost of link
(i, i−1) as Γi,forward+Γi−1,reverse+ξoutQ

(i,i−1,forward)
out +

ξoutQ
(i−1,i,reverse)
out + ξrelay, where Γi,forward is the trans-

mit power used from node i to node (i − 1), and
Γi−1,reverse is the transmit power used from node (i −
1) to node i. Similar meanings apply for the outage
probabilities Q

(i,i−1,forward)
out and Q

(i−1,i,reverse)
out , under

transmit power levels Γi,forward and Γi−1,reverse, re-
spectively. It has to be noted that the shadowing be-
tween two potential locations in forward and reverse
directions, Wforward and Wreverse, may not necessarily
be independent. But the shadowing random variable
pair (Wforward,Wreverse) ∈ R2

+ between two potential
locations have a joint distribution, and this pair assumes
independent and identically distributed (i.i.d.) value in
R2

+ if either the transmitter or the receiver is moved
beyond the shadowing decorrelation distance (which is
smaller than the step size δ). Hence, with this new link
cost, our formulation (3) can easily be adapted to deploy
a network carrying bi-directional traffic. In the process
of deployment, the agent has to measure link qualities
in both forward and reverse directions in such situation.
The action at each step is to decide whether to place a
relay; if the decision is to place a relay, then the agent
also decides the transmit power levels used in that link
along the forward and the reverse directions.

Since the design for bi-directional traffic carrying net-
work is mathematically equivalent to the design for
unidirectional traffic carrying network, we will consider
only unidirectional traffic for the rest of this paper.

3 FORMULATION FOR KNOWN PROPAGATION
PARAMETERS
Throughout this section, we will assume that we seek
to solve the unconstrained problem given in (3), and
that the radio propagation parameters (such as η and
the standard deviation σ for log-normal shadowing) are
known prior to deployment. We formulate the problem
as an average cost MDP, and develop a threshold policy
for deployment. In the process, we also discover some
interesting properties of the value function, which do not
follow from the discounted cost formulation.

Note that, we assume throughout this section that
measurement only to the immediately previous node is
used to make a placement decision at any given location.
Measurement to more than one previous nodes will be
used later in order to develop the learning algorithms.

3.1 Markov Decision Process (MDP) Formulation
When the deployment agent is r steps away from the
previous node (r ∈ {1, 2, · · · , B}), the agent measures
the outage probabilities {Qout(r, γ, w)}γ∈S on the link
from the current location to the previous node,2 where
w is the realization of shadowing in that link. Then the
algorithm decides whether to place a relay there, and
also the transmit power γ ∈ S in case it decides to place
a relay. We formulate the problem as an average cost
MDP with state space {1, 2, · · · , B}×W , where a typical
state is of the form (r, w), 1 ≤ r ≤ B,w ∈ W . If r ≤ B−1,
the action is either to place a relay and select a transmit
power, or not to place. If r = B, the only feasible action
is to place and select a transmit power γ ∈ S. If a relay is
placed at state (r, w) and if a transmit power γ is chosen
for it, then a hop-cost of γ + ξoutQout(r, γ, w) + ξrelay is
incurred.3

A deterministic Markov policy π is a sequence of
mappings {µk}k≥1 from the state space to the action
space. The policy π is called a stationary policy if µk = µ
for all k. Given the state (i.e., the measurements), the
policy provides the placement decision.

3.2 Optimal Policy Based on Average Cost Optimal-
ity Equation
We will first derive the structure of an optimal policy
based on the average cost optimality equation (ACOE).
Let λ∗ (or λ∗(ξout, ξrelay)) be the optimal average cost per
step for the unconstrained problem (3) under the pure
as-you-go deployment approach, and let v∗(r, w) be the
differential cost for the state (r, w), where 1 ≤ r ≤ B and
w ∈ W . The average cost optimality equation for our
MDP is as follows (by the theory of [34, Chapter 4], for
the case of finite W , and by the theory developed in [35,
Chapter 5], when W is a Borel subset of the real line):

v∗(r, w) = min

{
min
γ∈S

(γ + ξoutQout(r, γ, w)) + ξrelay − λ∗

+
∑
w′

g(w′)v∗(1, w′),−λ∗ +
∑
w′

g(w′)v∗(r + 1, w′)

}
∀1 ≤ r ≤ B − 1

v∗(B,w) = min
γ∈S

(γ + ξoutQout(B, γ, w)) + ξrelay − λ∗

+
∑
w′

g(w′)v∗(1, w′) (5)

where g(w) was defined (in Section 2.1) to be the prob-
ability mass function or probability density function of
shadowing W .

The ACOE (5) can be explained as follows. When the
state is (r, w), the deployment agent can either place or
may not place a relay. If he places a relay, he will incur
a stage cost of minγ∈S(γ + ξoutQout(r, γ, w)) + ξrelay and

2. Note that, for the time being, we will ignore the measurements
made to other nodes from the set Ik .

3. We have taken (r, w) as a typical state for the sake of simplicity
in representation; for the channel model given by (1), we can also take
(r, {Qout(r, γ, w)}γ∈S) as a typical state, since the cost of an action
depends on the state (r, w) only via the outage probabilities.
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the next (random) state is (1,W ′), where W ′ has p.m.f.
or p.d.f. g(w′). If he does not place, then he incurs 0 cost
at that step and the next state is (r + 1,W ′). When at
state (B,w), he can only place a relay and incur a cost of
minγ∈S(γ+ξoutQout(B, γ,w))+ξrelay at that stage and the
next (random) state is (1,W ′). Note that, minγ∈S appears
in the single-stage cost because choice of transmit power
of the placed node is also a part of the action, and a
transmit power is chosen so that the single-stage cost
for a placed relay is minimized.

Note that, by multiplying both sides of (5) with g(w)
and taking summation over w, we obtain the following:

V (r) = EW min

{
min
γ∈S

(γ + ξoutQout(r, γ,W )) + ξrelay − λ∗

+V (1),−λ∗ + V (r + 1)

}
∀1 ≤ r ≤ B − 1

V (B) = EW min
γ∈S

(γ + ξoutQout(B, γ,W )) + ξrelay − λ∗ + V (1)

(6)

where V (r) =
∑
w g(w)v∗(r, w)∀1 ≤ r ≤ B. Now, it is

easy to see that if any V (·) satisfies (6), then V (·) + c for
any constant number c also satisfies (6). Hence, we can
put V (1) = λ∗ in (6) and obtain:

V (r) = EW min

{
min
γ∈S

(γ + ξoutQout(r, γ,W )) + ξrelay ,

V (r + 1)− V (1)

}
∀1 ≤ r ≤ B − 1

V (B) = EW min
γ∈S

(γ + ξoutQout(B, γ,W )) + ξrelay (7)

Remark: Let c(r,W ) := minγ∈S(γ+ ξoutQout(r, γ,W )) +
ξrelay be the (random) cost incurred if we place a relay at
a distance r from the previous relay. (7) shows the criteria
for optimality to be V (r) = EW min{c(r,W ), V (r + 1) −
V (1)} for r ≤ B − 1 and V (B) = EW c(B,W ). We
will see in Algorithm 1 that, by solving this system of
(nonlinear) equations, one can find the optimal policy;
there is no need to compute the differential cost for each
state explicitly. Also, (7) will be particularly useful when
we develop online deploy-and-learn algorithms in later
sections, using the theory of stochastic approximation.

Theorem 2: There exists a unique vector V ∗ =
[V ∗(1), V ∗(2), · · · , V ∗(B)]T satisfying (7). Also, V ∗(r) ≥
rV ∗(1) for all r ∈ {1, 2, · · · , B−1} and V ∗(r) is increasing
in r.

Proof: See Appendix A.

3.2.1 Policy Structure
Algorithm 1 specifies the optimal decision when the
agent is r steps away from the previously placed node
and the shadowing realization from the current location
to the previously placed node is w.

Theorem 3: The policy given by Algorithm 1 is optimal
for the unconstrained problem in (3). The threshold
cth(r) is increasing in r.

Proof: From (5), the optimal policy is to place a relay
at state (r, w) if the cost of placing is less than the cost
of not placing. Hence, the policy structure follows from

Input: ξout, ξrelay, V ∗.
Output: Placement decision at each step.
Pre-compute: The threshold values
cth(r) := V ∗(r + 1)− V ∗(1) for all 1 ≤ r ≤ B − 1.
Initialization: r = 1 (distance from the previous
node)
while 1 ≤ r ≤ B do

Measure Qout(r, γ, w)∀γ ∈ S;
if r ≤ B − 1 and
minγ∈S(γ + ξoutQout(r, γ, w)) + ξrelay ≤ cth(r)
then

Place a new relay and use transmit power
arg minγ∈S(γ + ξoutQout(r, γ, w));

Move to next step and set r = 1;
else if r ≤ B − 1 and
minγ∈S(γ + ξoutQout(r, γ, w)) + ξrelay > cth(r)
then

Do not place a relay and move to next step;
r = r + 1;

else
Place a new relay (since r = B);
Use transmit power
arg minγ∈S(γ + ξoutQout(B, γ,w));

Move to next step;
Set r = 1.

end
end

Algorithm 1: OptAsYouGo Algorithm

equations (5), (6) and (7). cth(r) is increasing in r since
V ∗(r + 1) is increasing in r.

We denote the optimal policy given by Algorithm 1 by
π∗(ξout, ξrelay).

3.3 Some properties of the optimal cost
Let us consider a sub-class of stationary deployment
policies (parameterized by V , ξout ≥ 0 and ξrelay ≥ 0)
where V ∗(·) in Algorithm 1 is replaced by any vector
V . Under this sub-class of policies, let us denote by
(Uk,Γk, Q

(k,k−1)
out ), k ≥ 1, the sequence of inter-node

distances, transmit powers and link outage probabilities
(see Figure 2). Since shadowing is i.i.d. across links, the
deployment process probabilistically restarts after each
relay placement. Hence, (Uk,Γk, Q

(k,k−1)
out ), k ≥ 1, is an

i.i.d. sequence. Let Γ(V , ξout, ξrelay), Qout(V , ξout, ξrelay)
and U(V , ξout, ξrelay) denote the mean power per link,
mean outage per link and mean placement distance
(in steps) respectively, under this sub-class of poli-
cies. We denote by Γ

∗
(ξout, ξrelay), Q

∗
out(ξout, ξrelay) and

U
∗
(ξout, ξrelay) the optimal mean power per link, the

optimal mean outage per link and the optimal mean
placement distance (in steps) respectively, under Algo-
rithm 1, where V ∗ is used instead of any general V .

Now, the optimal mean power per step, the optimal
mean outage per step, and the optimal mean number of
relays per step are given by Γ

∗
(ξout,ξrelay)

U
∗
(ξout,ξrelay)

, Q
∗
out(ξout,ξrelay)

U
∗
(ξout,ξrelay)

and 1
U
∗
(ξout,ξrelay)

(by the Renewal-Reward theorem).
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Theorem 4: The optimal average cost per step for prob-
lem (3), λ∗(ξout, ξrelay), is concave, increasing and Lips-
chitz continuous in ξout ≥ 0, ξrelay ≥ 0.

Proof: See Appendix A.
Theorem 5: V ∗ = (V ∗(1), V ∗(2), · · · , V ∗(B)) is Lips-

chitz continuous in (ξout, ξrelay).
Proof: See Appendix A.

Theorem 6: For a given ξout, the mean number of relays
per step under Algorithm 1, 1

U
∗
(ξout,ξrelay)

, decreases
with ξrelay. Similarly, for a given ξrelay , the optimal mean
outage per step, Q

∗
out(ξout,ξrelay)

U
∗
(ξout,ξrelay)

, decreases with ξout.
Proof: The proof is exactly same as the proof of [1,

Theorem 5].

3.4 A note on the objective function in (3)

Even though the deployment policy developed in this
section uses only the measurements made to the im-
mediately previous placed node in order to make a
placement location, we will see in subsequent sections
that measurements to all placed relay nodes located
within B steps from the current location of the agent will
be used for on-line learning of the optimal deployment
policy. A question that naturally arises is whether we
can do better with the additional measurements (when
the propagation parameters are known and the optimal
policy can be computed prior to deployment); this might
require skipping some already placed relay nodes after
the deployment is over. The possibility of relay skipping
was considered in [9]; in the current paper, we briefly
describe a similar formulation in our context and explain
why we rule out the possibility of relay skipping.

Let us consider deployment up to x steps. After the
deployment is over, we construct a directed acyclic graph
over the deployed nodes (including the sink) as follows.
Links are all directed edges from each node to every
node with smaller index and located within a distance
of B steps. Hence, if i and j are two nodes with i > j
and

∑i
k=j+1 Uk ≤ B, there is a link (i, j) between them.

Consider all directed acyclic paths from node Nx to the
sink over this graph. Let us denote by p any arbitrary
directed acyclic path, and by E(p) the set of (directed)
links of the path p. We also define Px := {p : (i, j) ∈
E(p) =⇒ Nx ≥ i > j ≥ 0,

∑i
k=j+1 Uk ≤ B}. Let us

denote a generic link (edge) on this graph by e, and the
transmit power and outage probability on edge e by Γ(e)

and Q
(e)
out.

Let us consider the following problem:

min
π∈Π

lim sup
x→∞

Eπ
(

minp∈Px
∑
e∈E(p)

(
Γ(e) + ξoutQ

(e)
out

)
+ ξrelayNx

)
x

(8)

We call
∑
e∈E(p)

(
Γ(e) + ξoutQ

(e)
out

)
the length of the path

p, and minp∈Px
∑
e∈E(p)

(
Γ(e) + ξoutQ

(e)
out

)
the length of

the shortest path.
Formulation of problem (8) as an MDP will require

as the typical state the distance of all nodes located
within B steps from the current location, the realization
of shadowing to all these nodes (through the measured
outage probabilities), and the lengths of the shortest
paths from all these nodes to the sink. A similar situation
was considered in [9]. It turns out that the state space
becomes very large (the number of all possible lengths
of shortest paths grows to ∞ as x → ∞, even when
the set W of possible values of shadowing is finite), and
the policy computation becomes numerically intensive;
but the numerical results of [9] show that the margin of
performance improvement achieved via this formulation
(instead of the formulation used earlier in this section)
is not significant. Hence, in this paper, we only consider
formulation (3) and proceed with it.

4 OPTASYOUGOLEARNING: LEARNING WITH
DEPLOYMENT FOR GIVEN MULTIPLIERS

Note that, for any given values of ξout and ξrelay, the
optimal policy given by Algorithm 1 can be completely
specified by the vector V ∗. But, the computation of V ∗

requires the agent to solve a system of nonlinear equa-
tions (which is computationally intensive), and these
nonlinear equations can be specified only when the
channel model parameters (e.g., path-loss exponent η
and standard deviation σ for log-normal shadowing)
are known apriori. However, in practice, these param-
eters may not be available prior to deployment. Under
this situation, the deployment agent has to learn the
optimal policy as deployment progresses, and use the
corresponding updated policy at each step to make a
placement decision. In order to address this requirement,
we propose an algorithm which will maintain a running
estimate of V ∗, and update this estimate at each step
(using new measurements made at each step). Using
the theory of Asynchronous Stochastic Approximation
(see [36]), we show that, as the number of deployed
relays goes to infinity, the running estimate converges
to V ∗ almost surely. From (7) (and the notation de-
fined immediately after (7)), we see that the optimal
V ∗ is the unique real zero of the system of equations:
EW min{c(r,W ), V (r+1)−V (1)}−V (r) = 0 for r ≤ B−1
and EW c(B,W ) − V (B) = 0. We use asynchronous
stochastic approximation so that the iterates {V (k)}k≥0

converge asymptotically to this unique zero.

4.1 OptAsYouGoLearning Algorithm
Suppose that the deployment agent is standing
k steps away from the sink node. At the k-
th step, the agent makes a placement decision
and then performs a learning operation. Let us
recall the deployment process (see Section 2.2 and
Figure 2) and notation: Ik := {r ∈ {1, 2, · · · , B} :
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a relay was placed at a distance (k − r)δ from the sink}}.
For the learning operation, Ik ⊂ {1, · · · , B} denotes
the set of the values of r for which links from the
current location to the placed relay r steps backwards
are measured, and for which V (r) is updated, when
the agent is at a distance kδ from the sink. Clearly,
for each k ≥ 1, Ik is a random set. Let us denote by
V (k) the estimate of V ∗ after an update (i.e., a learning
operation) is made at the k-th step from the sink. At
step k (after a placement decision is made), V (k−1)(r)
for r ∈ Ik is updated to V k(r), and it is not updated
for r /∈ Ik (which means that V (k)(r) = V (k−1)(r) for
r /∈ Ik). Let us define ν(r, k) :=

∑k
i=1 I{r ∈ Ii} the

number of times the estimate of V ∗(r) is updated up to
the k-th step.

Note that, Algorithm 1 requires the agent to measure
link quality only to the previous node, whereas the
learning algorithm presented in this section involves link
quality measurement to more than one previous nodes
(unlike our prior paper [1]). This is necessary because, if
we make measurement only to last relay, then, depending
on the initial estimate V (0), there could arise a situation
that the inter-relay distance never equals to B steps in the
entire deployment process, which implies that V (0)(B) will
never be updated, thereby converging to an unintended policy.
Making measurements to all previously placed nodes located
at distance less than Bδ from the current location ensures that
lim infk→∞

ν(r,k)
k > 0 almost surely, which is required for the

convergence proof.
The OptAsYouGoLearning algorithm is provided in

Algorithm 2.
Theorem 7: Under Algorithm 2, V (k)(r) → V ∗(r) al-

most surely for all 1 ≤ r ≤ B.
Proof: See Appendix B.

Discussion of Algorithm 2:

(i) The basic idea: From (7) (and the notation defined
immediately after (7)), we see that the optimal V ∗

is the unique real zero of the system of equations:
EW min{c(r,W ), V (r + 1) − V (1)} − V (r) = 0 for
r ≤ B − 1 and EW c(B,W ) − V (B) = 0. We use
asynchronous stochastic approximation so that the
iterates converge asymptotically to this unique zero.

(ii) Asynchronous stochastic approximation: In standard
stochastic approximation techniques, all iterates are
updated at the same time. However, the pure as-
you-go deployment scheme does not allow the de-
ployment agent to update all iterates at each step.
Since only a subset Ik ⊂ {1, · · · , B} of iterates can
be updated at step k, we have to use asynchronous
stochastic approximation.

(iii) The proof of Theorem 7 exhibits a nice separa-
tion between the estimation and control. In other
words, the iterates will asymptotically converge to
V ∗ (and the policy will converge to the optimal
policy) even when the placement decisions are not
made according to the proposed threshold policy
(but the measurement and update scheme should

Input: ξout, ξrelay, and a decreasing positive
sequence {a(n)}n≥1 such that

∑∞
n=1 a(n) =∞,∑∞

n=1 a
2(n) <∞.

Output: Placement decision at each step.
Initialization: r′ = 1 (distance from the previous
node), k = 1 (distance of the current location from
the sink), initial estimate V (0).
while 1 ≤ r′ ≤ B do

Find Ik := {r ∈ {1, 2, · · · , B} :
relay placement at (k − r)δ distance from sink}};

Find ν(r, k) :=
∑k
i=1 I{r ∈ Ii}∀r ∈ {1, 2, · · · , B} ;

Measure Qout(r, γ, wr)∀γ ∈ S, r ∈ Ik;
if r′ ≤ B − 1 and
minγ∈S(γ + ξoutQout(r

′, γ, wr′)) + ξrelay ≤
−V (k−1)(1) + V (k−1)(r′ + 1) then

Place a new relay and use transmit power
arg minγ∈S(γ + ξoutQout(r

′, γ, wr′));
Do the following updates:

V (k)(r)

= V (k−1)(r) + a(ν(r, k))I{r ∈ Ik}
[

min

{
min
γ

(γ +

ξoutQout(r, γ, wr)) + ξrelay,−V (k−1)(1)

+V (k−1)(r + 1)

}
− V (k−1)(r)

]
,∀1 ≤ r ≤ B − 1

V (k)(B)

= V (k−1)(B) + a(ν(B, k))I{B ∈ Ik}
[

min
γ

(γ +

ξoutQout(B, γ, wB)) + ξrelay − V (k−1)(B)

]
(9)

Move to next step and set r′ = 1;
else if r′ ≤ B − 1 and
minγ∈S(γ + ξoutQout(r

′, γ, wr′)) + ξrelay >
−V (k−1)(1) + V (k−1)(r′ + 1) then

Do not place, do the same updates as (9);
Move to next step and do r′ = r′ + 1;

else
Place a new relay (since r′ = B);
Use transmit power
arg minγ∈S(γ + ξoutQout(B, γ,wB));

Do the same updates as (9);
Move to next step and set r′ = 1.

end
k=k+1;

end
Algorithm 2: OptAsYouGoLearning Algorithm

be unchanged); but it may not yield the optimal
cost for problem (3) since we do not use the optimal
policy at each stage. However, this nice separation
property will not hold in next section when we vary
ξout and ξrelay in order to solve the constrained
problem (4).

(iv) Note that, since the state space of the MDP in Sec-
tion 3 is large (potentially infinite and even uncount-
able), it will not be easy to use traditional Q-learning
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algorithms. In fact, all the state action-pairs in a Q-
learning algorithm need to repeat comparably often
over infinite time horizon to guarantee the desired
convergence, but this may not happen in case of
infinite state space (arising out of infinite W). On
the other hand, Algorithm 2 provides a learning al-
gorithm with provable convergence guarantee while
having only B number of iterates.

5 OPTASYOUGOADAPTIVELEARNING FOR
THE CONSTRAINED PROBLEM
In Section 4, we provided a deploy-and-learn algorithm
for given ξout and ξrelay . However, Theorem 1 tells us
how to choose the Lagrange multipliers ξout and ξrelay
(if they exist) in (3) in order to solve the constrained
problem (4). But we need to know the radio propagation
parameters (e.g., η and σ) in order to compute a pair
(ξ∗out, ξ

∗
relay) that satisfies the condition given in Theo-

rem 1. In practice, these parameters may not be known.
Hence, we provide a sequential placement algorithm
such that, as deployment progresses, the placement
policy (updated at each step) converges to the set of
optimal policies for the constrained problem (4). We
modify the OptAsYouGoLearning algorithm so that a
running estimate (V (k), ξ

(k)
out, ξ

(k)
relay) gets updated at each

step, and asymptotically converges to the set of opti-
mal (V ∗(ξout, ξrelay), ξout, ξrelay) tuples. This algorithm is
based on two time-scale stochastic approximation (see
[37, Chapter 6]).

5.1 Some Useful Notation and Assumptions
In this subsection, we will introduce some assumptions
and notation (these were provided in [1, Section VII], but
are repeated here for completeness).

Definition 1: We denote by γ∗ the optimal mean power
per step for problem (4), for a given constraint pair
(q,N). The set K(q,N) is defined as follows:

K(q,N) :=

{
(V ∗(ξout, ξrelay), ξout, ξrelay) :

Γ
∗
(ξout, ξrelay)

U
∗
(ξout, ξrelay)

= γ∗,
Q
∗
out(ξout, ξrelay)

U
∗
(ξout, ξrelay)

≤ q

1

U
∗
(ξout, ξrelay)

≤ N, ξout ≥ 0, ξrelay ≥ 0

}
�

Note that, the pair (q,N) can be infeasible. For exam-
ple, if N = 1

B (i.e., inter-node distance is B) and q <
EWQout(B,PM ,W )

B (PM is the maximum available transmit
power), the outage constraint cannot be satisfied while
meeting the constraint on the mean number of relays per
step, even by using the maximum transmit power PM .
K(q,N) is empty if (q,N) is infeasible. In this paper, we

assume that K(q,N) is non-empty (i.e., (q,N) is a feasible
pair), which is true for feasible pairs of K(q,N):

Assumption 1: q and N are such that there exists
at least one pair ξ∗out ≥ 0, ξ∗relay ≥ 0 such that
(V ∗(ξ∗out, ξ

∗
relay), ξ∗out, ξ

∗
relay) ∈ K(q,N). �

Assumption 2: The probability density function (p.d.f.)
of the shadowing random variable W is continuous over
(0,∞); i.e., P(W = w) = 0 for any w ∈ (0,∞) (e.g., log-
normal shadowing). �

Theorem 8: Under Assumption 2 and Algorithm 1, the
optimal mean power per step Γ

∗
(ξout,ξrelay)

U
∗
(ξout,ξrelay)

, the opti-
mal mean placement rate 1

U
∗
(ξout,ξrelay)

and the optimal

mean outage per step Q
∗
out(ξout,ξrelay)

U
∗
(ξout,ξrelay)

, are continuous in
(ξout, ξrelay).

Proof: See Appendix C.
Remark: Theorem 8 implies that there is no need to do

any randomization among deterministic policies (unlike
[38]) in order to meet the constraints with equality.

5.2 OptAsYouGoAdaptiveLearning Algorithm

The basic idea behind this algorithm (Algorithm 3; see
next page) is to vary ξ

(k)
out and ξ

(k)
relay at a much slower

rate than V (k), as if ξ(k)
out and ξ

(k)
relay are varied in an outer

loop and V (k) is varied in an inner loop. If the outage in
a newly created link is larger than the budgeted outage
for a link with that length, then ξout is increased with the
hope that subsequent links will have smaller outage; the
opposite is done in case the outage in a newly created
link is smaller. On the other hand, if a newly created link
is shorter than 1

N
, then ξrelay is increased, otherwise it

is decreased.
Notation in Algorithm 3: Λ[0,A1](x) denotes the projec-

tion of x on the interval [0, A1]. Let the power, outage
and link length of the new relay (if placed) at the k-th
step be ΓNk , Q(Nk,Nk−1)

out and UNk (recall that Nk is the
number of nodes placed up to the k-th step). Note that,
I{Nk = Nk−1 + 1} is the indicator that a relay is placed
at the k-th step.

Theorem 9: Under Assumption 1, Assumption 2
and under proper choice of A1 and A2, we have
(V (k), ξ

(k)
out, ξ

(k)
relay) → K(q,N) almost surely for

Algorithm 3.
Proof: See Appendix C.

We complete the proof in four steps. First, we show
that the difference between V (k) and V ∗(ξ

(k)
out, ξ

(k)
relay)

converges to 0 almost surely. This proves the desired
convergence in the faster timescale. Next, we pose the
slower timescale iteration as a projected stochastic ap-
proximation iteration (see [39, Equation 5.3.1]). Next, we
show that the slower timescale iteration satisfies some
conditions given in [39] (see [39, Theorem 5.3.1]). Finally,
we argue (using Theorem 5.3.1 of [39]) that the slower
timescale iterates converge to the set of stationary points
of a suitable ordinary differential equation.

It is to be noted that while the proof to some extent
follows the outline of the proof of [1, Theorem 12],
significantly new nontrivialities arise in our work as
compared to the proof of [1, Theorem 12]. For example,
we had to prove the boundedness of the faster timescale
iterates separately, since the asynchronous updates in the
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Input: Two positive numbers A1 and A2

appropriately chosen, two decreasing positive
sequences {a(n)}n≥1 and {b(n)}n≥1 such that∑∞
n=1 a(n) =∞,

∑∞
n=1 a

2(n) <∞,
∑∞
n=1 b(n) =∞,∑∞

n=1 b
2(n) <∞ and limn→∞

b(b nB c)
a(n) = 0.

Output: Placement decision at each step.
Initialization: r′ = 1 (distance from the previous
node), k = 1 (distance of the current location from
the sink), initial estimates V (0), ξ(0)

out, ξ
(0)
relay.

while 1 ≤ r′ ≤ B do
Find Ik := {r ∈ {1, 2, · · · , B} :
relay placed at (k − r)δ distance from sink}};

Find ν(r, k) :=
∑k
i=1 I{r ∈ Ii}∀r ∈ {1, 2, · · · , B};

Measure Qout(r, γ, wr)∀γ ∈ S, r ∈ Ik;
if r′ ≤ B − 1 and
minγ∈S(γ + ξ

(k−1)
out Qout(r

′, γ, wr′)) + ξ
(k−1)
relay ≤

−V (k−1)(1) + V (k−1)(r′ + 1) then
Place a new relay and use transmit power
arg minγ∈S(γ + ξ

(k−1)
out Qout(r

′, γ, wr′));
Do the following updates:

V (k)(r) = V (k−1)(r) + a(ν(r, k))I{r ∈ Ik, r < B}[
min

{
min
γ

(γ + ξ
(k−1)
out Qout(r, γ, wr)) + ξ

(k−1)
relay ,

−V (k−1)(1) + V (k−1)(r + 1)

}
− V (k−1)(r)

]
V (k)(B) = V (k−1)(B) + a(ν(B, k))I{B ∈ Ik}[

min
γ

(γ + ξ
(k−1)
out Qout(B, γ,wB)) + ξ

(k−1)
relay

−V (k−1)(B)

]
ξ

(k)
out =

[
ξ

(k−1)
out + b(Nk)I{Nk = Nk−1 + 1}(

Q
(Nk,Nk−1)
out − qUNk

)]A1

0

ξ
(k)
relay =

[
ξ

(k−1)
relay + b(Nk)I{Nk = Nk−1 + 1}(

1−NUNk
)]A2

0

(10)

Move to next step and set r′ = 1;
else if r′ ≤ B − 1 and
minγ∈S(γ + ξ

(k−1)
out Qout(r

′, γ, wr′)) + ξ
(k−1)
relay >

−V (k−1)(1) + V (k−1)(r′ + 1) then
Do not place, and perform updates as in (10);
Move to next step and set r′ = r′ + 1;

else
Place a new relay (since r′ = B);
Use power
arg minγ∈S(γ + ξ

(k−1)
out Qout(B, γ,wB));

Do the same updates as (10);
Move to next step and set r′ = 1.

end
k=k+1;.

end
Algorithm 3: OptAsYouGoAdaptiveLearning

faster timescale do not allow us to mimic the proof of [1,
Theorem 12]. Similarly there are many other steps which
require significant novel additional mathematical analy-
sis compared to [1, Theorem 12]. Hence, in this proof,
we proved intermediate results wherever necessary, and
skipped some steps if they follow from the proof of [1,
Theorem 12].

Choice of A1 and A2: A1 and A2 need to be chosen
carefully, otherwise the iterates (ξ

(k)
out, ξ

(k)
relay) may con-

verge to undesired points on the boundary of [0, A1] ×
[0, A2]. In general, a stationary point on the boundary of
[0, A1]× [0, A2] may not correspond to a point in K(q,N).
Hence, we borrow a scheme from [1] for choosing A1

and A2 which ensures that, if (ξ′out, ξ
′
relay) is a stationary

point of the o.d.e., then (V ∗(ξ′out, ξ
′
relay), ξ′out, ξ

′
relay) ∈

K(q,N). The number A1 has to be chosen so large that,
for all u ∈ {1, 2, · · · , B}, we will have P(arg minγ∈S(γ +
A1Qout(u, γ,W )) = PM ) > 1− κ for some small enough
κ > 0. We also need the condition that Q

∗
out(A1,0)

U
∗
(A1,0)

≤ q.
The number A2 has to be chosen so large that, for any
ξout ∈ [0, A1], we will have U

∗
(ξout, A2) > 1

N
(when

1
N

< B). The numbers A1 and A2 have to be chosen
so large that there exists at least one pair (ξ′out, ξ

′
relay)

for which (V ∗(ξ′out, ξ
′
relay), ξ′out, ξ

′
relay) ∈ K(q,N). �

Discussion of Algorithm 3:

(i) Two timescales: The update scheme (10) is based
on two-timescale stochastic approximation (see [37,
Chapter 6]). Since limn→∞

b(b nB c)
a(n) = 0, we can say

that ξout and ξrelay are adapted in a slower timescale,
and V is updated in a faster timescale, as if ξout and
ξrelay are updated in a slow outer loop, and, V is
updated in an inner loop.

(ii) Structure of the iteration: The slower timescale iter-
ation involves updating ξout and ξrelay based on
whether the corresponding constraints are violated
in a link (after placing a relay); if a constraint is
violated by a newly created link, then the corre-
sponding Lagrange multiplier is increased to coun-
terbalance it in subsequent node placements. The
goal is to meet both constraints with equality (if
possible) in the long run.

(iii) Asymptotic behaviour of the iterates: If q >
EWQout(B,P1,W )

B ; we will have ξ
(k)
out → 0; here the

policy places all the relays at the B-th step and
uses the smallest power P1 at each node. If the
constraints are not feasible, then either ξ(k)

out → A1

or ξ(k)
relay → A2 or both happens.

Simulation results show that K(q,N) has only one tuple
in case the pair (q,N) is feasible. �

5.3 Asymptotic Performance of Algorithm 3

Though Algorithm 3 induces a nonstationary policy,
Theorem 9 states that the sequence of policies generated
by Algorithm 3 converges to the set of optimal stationary,
deterministic policies for the constrained problem (4).
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Let πoaygal denote the (nonstationary) deployment policy
induced by Algorithm 3.

Theorem 10: Under Assumption 1, Assumption 2 and
proper choice of A1 and A2, we have:

lim sup
x→∞

Eπoaygal
∑Nx
i=1 Γi

x
= γ∗

lim sup
x→∞

Eπoaygal
∑Nx
i=1 Q

(i,i−1)
out

x
≤ q, lim sup

x→∞

EπoaygalNx
x

≤ N

Proof: The proof is similar to [1, Theorem 13].

6 CONVERGENCE SPEED OF LEARNING AL-
GORITHMS: A SIMULATION STUDY
In this section, we provide a simulation study for the
convergence rate of Algorithm 2 and Algorithm 3.

6.1 Parameter Values Used in the Simulation
For simulation, we consider a deployment environment
similar to that considered in [1, Section VIII]. The details
of the simulation environment are provided below.

We assume that deployment is done with iWiSe motes
([23]) equipped with 9 dBi antennas. S, the set of trans-
mit power levels, is taken to be {−18,−7,−4, 0, 5} dBm,
which is a subset of available transmit power levels
for iWiSe motes. Under the channel model as given by
(1), our measurements in a forest-like environment gave
η = 4.7 and c = 100.17 (i.e., 1.7 dB); the experimental
details can be found in [10]. From the statistical analysis
of the measurement data, we also showed that shadow-
ing W follows log-normal distribution in such a forest-
like environment; W = 10

Y
10 with Y ∼ N (0, σ2), where

σ = 7.7 dB was obtained from our data analysis. Shad-
owing decorrelation distance was calculated as 6 meters;
hence we consider deployment with δ = 20 meter. The
fading turned out to be Rayleigh fading.

Outage is defined to be the event when a packet is
received at a power level below Prcv−min = 10−9.7 mW
(i.e., −97 dBm); for a commercial implementation of
IEEE 802.15.4, received power −97 dBm results in a 2%
packet loss probability for 127 byte packets for iWiSe
motes (obtained from measurements).

We choose B in the following way. We define a link
to be workable if it has an outage probability less than
3%. B is chosen to be the largest integer such that the
probability of finding a workable link of length Bδ is
greater than 20%, under 5 dBm transmit power. For the
parameters η = 4.7 and σ = 7.7 dB, and 5 dBm transmit
power, B turned out to be 5.

It is important to note that, the radio propagation
parameters (e.g., η and σ) and modeling assumptions
(e.g., log-normal shadowing) are obtained and validated
using field data collected via extensive measurements
in a forest-like environment; the details of these exper-
iments can be found in [10]. Hence, in this paper, we
evaluate our algorithms only via MATLAB simulation of
an environment that has radio propagation model and
parameters obtained from experiments in [10]. This is

done by generating random channel gains in MATLAB,
for the wireless links that need to be measured in course
of the deployment process.

The performance variation of OptAsYouGo algorithm
with (ξout, ξrelay) has been demonstrated numerically in
[1, Section V, Appendix C], which comply with Theo-
rem 4 and Theorem 6.

6.2 OptAsYouGoLearning for Given Multipliers
Here we study the rate of convergence for OptAsY-
ouGoLearning with ξout = 125, ξrelay = 2. Let us assume
that the propagation environment, in which deployment
is being carried out, is characterized by the parameters
given in Section 6.1 (i.e., η = 4.7, σ = 7.7 dB etc.). The
optimal average cost per step, under these parameter
values, is λ∗ = V ∗(1) = 1.85 (computed numerically).4

We numerically study the performance of the follow-
ing three types of algorithms: (i) η and σ are known prior
to deployment (the agent uses the fixed optimal policy
with ξrelay = 2 and ξout = 125 in this case), (ii) the agent
has imperfect estimates of η and σ deployment, and
OptAsYouGoLearning is used to update the policy as
deployment progresses, and (iii) the agent has imperfect
estimates of η and σ deployment, but the corresponding
suboptimal policy is used along the infinite line without
any update. We use the abbreviations OAYGL and OAYG
for OptAsYouGoLearning and Optimal Algorithm for
As-You-Go deployment (i.e., Algorithm 1), respectively.
Also, following the terminology in [1], we use the ab-
breviation FPWU for “Fixed Policy without Update.”

Next, we formally explain the various cases consid-
ered in our simulations:

(i) OAYG: Here the agent knows η = 4.7, σ = 7.7 dB
prior to deployment, and uses Algorithm 1 with
ξout = 125, ξrelay = 2.

(ii) OAYGL Case 1: Here the true η = 4.7 and σ =
7.7 dB are unknown to the deployment agent. But
the agent has an initial estimate η = 5, σ = 8 dB.
Hence, he starts deploying using a V (0) which is
optimal for these imperfect estimates of η and σ, and
ξout = 125, ξrelay = 2. He updates the policy using
the OptAsYouGoLearning algorithm as deployment
progresses.

(iii) OAYGL Case 2: This is different from OAYGL
Case 1 only in the aspect that here deployment starts
with the optimal policy for η = 4, σ = 7 dB.

(iv) FPWU Case 1: Here the true η and σ are unknown
prior to deployment, and the agent has an initial
estimate η = 5, σ = 8 dB. The agent computes
V ∗ for these imperfect initial estimates and ξout =
125, ξrelay = 2, and uses this policy throughout
the deployment process without any update. This
case will demonstrate the gain in performance by

4. These values of ξout and ξrelay are chosen because they can
produce reasonable values of placement rate, mean power per step
and mean outage per step, which can be used in practical networks.
However, these values are chosen only for illustration purposes, and
the choice will vary depending on the requirement for deployment.
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Figure 3: Convergence speed of OptAsYouGoLearning (OAYGL) with the number of steps, k. In the legends, “OAYG” refers to
the values that are obtained if Algorithm 1 is used; these are the target values for OptAsYouGoLearning.

updating the policy under OptAsYouGoLearning,
w.r.t. the case where the suboptimal policy is used
throughout the deployment process.

(v) FPWU Case 2: It differs from FPWU Case 1 only in
the aspect that here the agent has initial estimates
η = 4, σ = 7 dB.

For simulation of OAYGL, we chose a(k) = 120
k . We

simulated 2000 independent network deployments (i.e.,
2000 sample paths of the deployment process) with Op-
tAsYouGoLearning, and estimated (by averaging over
2000 deployments) the expectation of V (k)(1), mean

power per step (i.e.,
∑Nk
j=1 Γj

k ), mean outage per step (i.e.,∑Nk
j=1Q

(j,j−1)
out

k ) and mean placement distance (i.e., k
Nk

),
in the part of the network between the sink node to
the k-th step. The results are summarized in Figure 3.
Asymptotically the estimates are supposed to converge
to the values provided by OAYG.

Observations: We observe that the estimate of
E(V (k)(1)) approaches the optimal cost λ∗ = V ∗(1) =
1.85 (for the actual propagation parameters), as k in-
creases, and gets to within 10% of the optimal cost by
the time where k = 35 to 40 (within a distance of
800 meters), while starting with two widely different
initial guesses of the propagation parameters. The es-

timates of mean power per step, mean outage per step
and mean placement distance also converges very fast
to the corresponding values achieved by OAYG. It also
shows that, if the performance of the initial imperfect
policy (FPWU) is significantly different than that of
OAYG, then OptAsYouGoLearning will provide closer
performance to OAYG, as compared to FPWU (see the
mean placement distance plot).

Note that, even though Theorem 7 guarantees al-
most sure convergence, the convergence speed will vary
across sample paths. But here we demonstrate speed of
convergence after averaging over 2000 sample paths.

6.3 OptAsYouGoAdaptiveLearning

Now we will demonstrate the performance of OptAsY-
ouGoAdaptiveLearning (Algorithm 3) for deployment
over a finite distance under an unknown propagation
environment. We again assume that the true propagation
parameters are given by η = 4.7, σ = 7.7 dB. For these
parameters, under the choice ξrelay = 2 and ξout = 125,
the optimal average cost per step will be λ∗ = 1.85,
which can be achieved by OAYG (Algorithm 1). OAYG
in this case will yield a mean placement distance of
2.285 steps, a mean outage per step of 0.0101

2.285 = 0.0044,
and a mean power per step of 0.423 mW.



15

Figure 4: Convergence speed of OptAsYouGoAdaptiveLearning (OAYGAL) with the number of steps, k. In the legends, “OAYG”
refers to the values that are obtained if Algorithm 1 is used; these are the target values for OptAsYouGoAdaptiveLearning.
Evolution of ξ(k)

out and ξ
(k)
relay are shown for a longer time, since they converge slowly to their respective target values.

Now, let us suppose that we need to solve the con-
strained problem in (4) with the targets q = 0.0044
and N = 1

2.285 , but the true η and σ of the environ-
ment are unknown to us. Hence, we need to employ
OptAsYouGoAdaptiveLearning (we use the abbreviation
OAYGAL for it); as compared to OptAsYouGoLearning,
we need to make an additional choice of ξ(0)

out and ξ
(0)
relay.

We consider the following cases in our simulations:
(i) OAYG: This is same as in Section 6.2

(ii) OAYGAL Case 1: Here the true η = 4.7 and σ =

7.7 dB are unknown to the deployment agent. But
the agent has an initial estimate η = 5, σ = 8 dB.
Hence, he starts deploying using a V (0) which is
optimal for these imperfect estimates of η and σ,
and ξ

(0)
out = 100, ξ(0)

relay = 3. He updates the policy
using the OptAsYouGoAdaptiveLearning algorithm
as deployment progresses.

(iii) OAYGAL Case 2: This is same as OAYGAL Case 1,
except that the agent starts deploying using a policy
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corresponding to the wrong initial estimate η = 4,
σ = 7 dB (under ξ(0)

out = 100, ξ(0)
relay = 3).

(iv) FPWU Case 3: Here the agent uses ξout = 100,
ξrelay = 3, and uses the corresponding optimal
policy for the imperfect estimates η = 5, σ = 8 dB,
throughout the deployment process.

(v) FPWU Case 4: This is similar to FPWU Case 3;
the only difference is that the optimal policy for
the imperfect estimates η = 4, σ = 7 dB is used
throughout deployment.

For simulation of OAYGAL, we chose the step sizes
as follows. We took a(k) = 1

k0.55 , b(k) = 100
k0.8 for

the ξout update and b(k) = 1
k0.8 for the ξrelay update

(however, both ξout and ξrelay are updated in the same
timescale). We simulated 2000 independent network de-
ployments (i.e., 2000 sample paths of the deployment
process) with OptAsYouGoLearning, and estimated (by
averaging over 2000 deployments) the expectations of
V (k)(1), mean power per step, mean outage per step
mean placement distance, ξ(k)

out and ξ
(k)
relay , in the part of

the network between the sink node to the k-th step. The
results are summarized in Figure 4 (see previous page).

Observations: Under OAYGAL Case 1 the estimates
of the expectations of V (2000)(1), ξ(2000)

out , ξ(2000)
relay , mean

power per step up to the 2000th step, mean outage per
step up to the 2000th step, and mean placement distance
over 2000 steps are 1.8479, 124.89, 2.01, 0.4222, 0.04403
and 2.2852, whereas the corresponding target values are
1.85, 125, 2, 0.4223, 0.00441 and 2.2857, respectively. Sim-
ilarly, for OAYGAL Case 2 also, the quantities converge
close to the target values. In practice, the performance
metrics are reasonably close to their respective target
values within 100 steps (i.e., 2 kms).

FPWU Case 3 and FPWU Case 4 either violate some
constraint or uses significantly higher per-step power
compared to OAYG. But, by using OptAsYouGoAdap-
tiveLearning, we can achieve mean power per step close
to the optimal while (possibly) violating the constraints
by small amount. However, performance of OAYGAL is
significantly closer to the target compared to FPWU. �

The speed of convergence will depend on the choice
of a(k) and b(k), of ξ(0)

out, ξ
(0)
relay and the initial estimates of

η and σ. However, optimizing convergence speed over
step size sequences is left for future research.

7 CONCLUSION

In this paper, we have formulated the problem of pure-
as-you-go deployment along a line, under a very light
traffic assumption. The problem was formulated as an
average cost MDP, and its optimal policy structure was
studied analytically. We also proposed two learning
algorithms that asymptotically converge to the corre-
sponding optimal policies. Numerical results have been
provided to illustrate the speed of convergence of the
learning algorithms.

While this paper provides an interesting set of results,
it can be extended or modified in several ways: (i) One

can attempt to develop deployment algorithms for 2
dimensional regions, where multiple agents cooperate
to carry out the deployment. (ii) One can also attempt
to develop deployment algorithms that can provide
theoretical guarantees on the data rate supported by
the deployed networks (instead of assuming that the
traffic is lone packet). (iii) The optimization of the rate of
convergence for the learning algorithms by proper choice
of the step sizes is also a challenging problem. We leave
these issues for future research endeavours.
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APPENDIX A
FORMULATION FOR KNOWN PROPAGATION PA-
RAMETERS

Proof of Theorem 2: From (7), V (B) is unique for
fixed ξout and ξrelay. Hence, we can say that V (B) is
a continuous and decreasing function of V (1). Now, let
us assume that V (r + 1) is continuous and decreasing
in V (1) for some r, 1 ≤ r ≤ B − 1. Let us recall (7)
for V (r). Since V (r + 1) is continuous and decreasing
in V (1) by our induction hypothesis, it is evident from
(7) that V (r) is also continuous and decreasing in V (1).
Proceeding in this way, we can write V (1) = φ(V (1))
where φ(·) is continuous and decreasing in V (1). But
V (1) is continuous and strictly increasing in V (1). Hence,
V (1) = φ(V (1)) has a unique fixed point V ∗(1). Now,
from (7), V (B−1) is unique since V (1) = V ∗(1) is unique
and V (B) is unique. Proceeding backwards in this way,
we can show that we have a unique V ∗(r) for all r.

Now, from (7), we find that V ∗(r) ≤ −V ∗(1)+V ∗(r+1),
i.e., V ∗(r+1) ≥ V ∗(r)+V ∗(1) for all r ∈ {1, 2, · · · , B−1}.
Also, V ∗(1) = λ∗ > 0 and it is unique. This proves the
second part of the theorem. �

Proof of Theorem 4: Let us denote the mean power
per link, mean outage per link and mean placement
distance (in steps) under a stationary policy π by Γπ ,
Qout,π and Uπ . Then, by Renewal-Reward Theorem, we

have λ∗(ξout, ξrelay) = infπ
Γπ+ξoutQout,π+ξrelay

Uπ
. The nu-

merator is affine and increasing in ξout and ξrelay , and the
denominator is independent of ξout and ξrelay. Hence,
λ∗(ξout, ξrelay) is concave, increasing in ξout and ξrelay ,
since the pointwise infimum of increasing affine func-
tions of (ξout, ξrelay) is increasing and jointly concave
in (ξout, ξrelay). Now, any increasing, concave function
is continuous. Hence, λ∗(ξout, ξrelay) is continuous in
(ξout, ξrelay). Also, it is easy to see that λ∗(ξout, ξrelay)
is Lipschitz in each argument with Lipschitz constant 1.

Proof of Theorem 5: By Theorem 4, V ∗(1) := λ∗

is Lipschitz continuous in (ξout, ξrelay). By (7), V ∗(B)
is Lipschitz continuous in (ξout, ξrelay). Hence, by (7),
V ∗(B − 1) is also Lipschitz continuous in (ξout, ξrelay).
Thus, by using backward induction, we can show that
V ∗(r) is Lipschitz continuous in (ξout, ξrelay) for all
1 ≤ r ≤ B.

APPENDIX B
OPTASYOUGOLEARNING: LEARNING WITH
PURE AS-YOU-GO DEPLOYMENT, FOR GIVEN
LAGRANGE MULTIPLIERS
Proof of Theorem 7: We can rewrite (9) as follows:

V (k)(r) = V (k−1)(r) + a(ν(r, k))I{r ∈ Ik}
[
fr(V

(k−1)) +Mk(r)

]
(11)

where, for all 1 ≤ r ≤ B − 1

fr(V
(k−1)) = EW

[
min

{
min
γ

(γ + ξoutQout(r, γ,W )) + ξrelay ,

−V (k−1)(1) + V (k−1)(r + 1)

}
− V (k−1)(r)

]

Mk(r) =

[
min

{
min
γ

(γ + ξoutQout(r, γ, wr)) + ξrelay ,

−V (k−1)(1) + V (k−1)(r + 1)

}
− V (k−1)(r)

]
− fr(V (k−1))

and

fB(V (k−1)) = EW
[

min
γ

(γ + ξoutQout(B, γ,W )) + ξrelay − V (k−1)(B)

]

Mk(B) =

[
min
γ

(γ + ξoutQout(B, γ, wB)) + ξrelay − V (k−1)(B)

]
−fB(V (k−1))

Let Mk := (Mk(1), · · · ,Mk(B)). Let us denote the σ-
field Fk := σ(V i, Ii,M i, i ≤ k − 1); it is the information
available to the deployment agent before making any de-
cision at the k-th step. Clearly, the update equations fall
under the category of Asynchronous Stochastic Approx-
imation algorithms (see [36]). In order to see whether
V (k) → V ∗ almost surely, we will first check whether
the five assumptions mentioned in [36] are satisfied.

Checking Assumption 1 of [36]: For each r, 1 ≤ r ≤ B,
V (r) gets updated at least once in every B steps. Hence,
lim infk→∞

ν(r,k)
k ≥ 1

B > 0 almost surely. Hence, the
assumption is satisfied.

Checking Assumption 2 of [36]: If we choose
{a(k)}k≥1 to be a bounded, decreasing sequence with∑
k a(k) = ∞ and

∑
k a

2(k) < ∞, this condition will be
satisfied.

Checking Assumption 3 of [36]: Not applicable to
our problem since before updating V (k) the deployment
agent knows V (k−1).

Before checking the other two conditions, we will
establish a lemma. Let us consider the following system
of o.d.e-s:

V̇t(r) = κt(r)fr(V t) ∀r ∈ {1, 2, · · · , B} (12)

where κt(r) ∈ (0, 1] for all r and t. By Theorem 2,
this system of o.d.e-s has an unique stationary point
V ∗(ξout, ξrelay).

Lemma 1: V ∗(ξout, ξrelay) is a globally asymptotically
stable equilibrium for the system of o.d.e-s (12). Also,
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V = 0 is a globally asymptotically stable equilibrium
for (12) when γ, ξout and ξrelay are replaced by 0 in the
definition of fr(V ) for all r ∈ {1, 2, · · · , B}.

Proof: Note that, by Theorem 2, V ∗(ξout, ξrelay) is the
unique stationary point for (12). Now, the proof for this
lemma follows from similar line of arguments as in the
appendix of [40] (which uses results from [41] and [42]).

Checking Assumption 4 of [36]: It is easy to see that
fr(V ) is Lipschitz in V for each r; this satisfies Assump-
tion 4(i). Let us consider the ODE (12) with 0 < κt(r) ≤ 1
corresponds to the relative rate at which V (r) is updated.
By Lemma 1, V ∗(ξout, ξrelay) is a globally asymptotically
stable equilibrium for the system of o.d.e-s (12). Hence,
Assumption 4(ii) is satisfied.

Consider the functions fr(cV )
c , c ≥ 1 for all r. Clearly,

limc→∞
fr(cV )
c = min{0,−V (1) + V (r + 1)} − V (r) for

r 6= B, and limc→∞
fB(cV )

c = −V (B). Note that fr(cV )
c

for all r and limc→∞
fr(cV )
c all are continuous in V , and

fr(cV )
c is decreasing in c. Hence, by Theorem 7.13 of [43],

convergence of fr(cV )
c over compacts is uniform. Hence,

Assumption 4(iii) is satisfied.
Consider the ODE: V̇t(r) = κt(r)(min{0,−Vt(1)+Vt(r+

1)} − Vt(r)) for r 6= B and V̇t(B) = κB(t)(−Vt(B)).
Clearly, by the second part of Lemma 1, there is a unique
globally asymptotically stable equilibrium V = 0. Hence,
Assumption 4(iv) is satisfied.

Checking Assumption 5 of [36]: It is easy to see that,
{Mk}k≥1 is a Martingale difference sequence adapted to
Fk. Hence, Assumption 5(i) is satisfied.

Now,

|Mk+1(r)| ≤ 2

∣∣∣∣(min{PM + ξout + ξrelay ,−V (k)(1)

+V (k)(r + 1)} − V (k)(r)

)∣∣∣∣
and

|Mk+1(B)| ≤
∣∣∣∣(PM + ξout + ξrelay − V (k)(B)

)∣∣∣∣
Hence, ||Mk+1|| ≤ C0(1 + ||V (k)||) for some C0 > 0.

Hence, Assumption 5(ii) is satisfied. Now, by [36, Theo-
rem 3], V (k) → V ∗. �

APPENDIX C
OPTASYOUGOADAPTIVELEARNING WITH CON-
STRAINTS ON OUTAGE PROBABILITY AND RE-
LAY PLACEMENT RATE

C.1 Proof of Theorem 8
Let us denote by g(r, γ), r ∈ {1, 2, · · · , B}, γ ∈ S the
joint distribution of (Uk,Γk) under Algorithm 2. For
the time being, let us assume that g(r, γ) is continu-
ous in (ξout, ξrelay). Then, the mean placement distance
U
∗
(ξout, ξrelay) =

∑B
r=1

∑
γ∈S rg(r, γ), and the mean

power per link Γ
∗
(ξout, ξrelay) =

∑B
r=1

∑
γ∈S γg(r, γ) are

both continuous in (ξout, ξrelay).

Now, by Renewal-Reward Theorem,

λ∗(ξout, ξrelay) =
Γ
∗
(ξout, ξrelay) + ξoutQ

∗
out(ξout, ξrelay) + ξrelay

U
∗
(ξout, ξrelay)

Since λ∗(ξout, ξrelay) is continuous in (ξout, ξrelay)
(by Theorem 4), we conclude that Q

∗
out(ξout, ξrelay) is

continuous in ξout and ξrelay. Hence, Γ
∗
(ξout,ξrelay)

U
∗
(ξout,ξrelay)

,
Q
∗
out(ξout,ξrelay)

U
∗
(ξout,ξrelay)

and 1
U
∗
(ξout,ξrelay)

are continuous in
(ξout, ξrelay). �

Now, the proof of the theorem is completed by the
following lemma.

Lemma 2: Under Assumption 2, g(r, γ) is continuous
in (ξout, ξrelay).

Proof: We will first prove the result for r ≤ B − 1.
Let us fix an r ∈ {1, · · · , B − 1} and any γ ∈ S . We will
only show that g(r, γ) is continuous in ξout; the proof for
continuity of g(r, γ) w.r.t. ξrelay will be similar.

Let us consider a sequence {ξn}n≥1 such that ξn →
ξout. Let us denote the joint probability distribution
of (Uk,Γk) by gn(r, γ), if Algorithm 1 is used with
ξn as the cost for unit outage. We will show that
limn→∞ gn(r, γ)→ g(r, γ).

Define the sets Er,γ′ =

{
wr : γ + ξoutQout(r, γ, wr) <

γ′ + ξoutQout(r, γ
′, wr)

}
and Eu =

{
wu : minγ∈S(γ +

ξoutQout(u, γ, wu)) > −ξrelay − V ∗(1) + V ∗(u + 1)

}
for

all 1 ≤ u ≤ r.
Let us define E = ∩γ′ 6=γEr,γ′ ∩u≤r−1 Eu ∩ Er, where Er

is the set complement of Er.
Now, g(r, γ) = P(E) = E(IE), where I denotes the

indicator function. The expectation is over the joint
distribution of (W1,W2, · · · ,Wr) (shadowing random
variables from r locations).

Now, for any γ′ 6= γ, we have P
(
γ +

ξoutQout(r, γ,Wr) = γ′ + ξoutQout(r, γ
′,Wr)

)
= 0,

and P
(

minγ∈S(γ + ξoutQout(u, γ,Wu)) = −ξrelay −

V ∗(1) + V ∗(u + 1)

)
= 0 for all u ≤ r; these two

assertions follow from Assumption 2 and from the
continuity of Qout(r, γ, w) in w. Hence, we can safely
assume the following:
• Er,γ′ has the same expression as Er,γ′ except that the
< sign is replaced by > sign.

• Eu has the same expression as Eu except that the >
sign is replaced by < sign.

Let E(n)
r,γ′ , E

(n)
u and E(n) be the sets obtained by re-

placing ξout by ξn in the expressions of the sets Er,γ′ ,
Eu and E respectively (also V ∗ has to be replaced by
the corresponding optimal V (n,∗)). Clearly, we can make
similar claims for E(n)

r,γ′ , E
(n)
u .

Now, if we can show that E(IE(n))→ E(IE), the lemma
will be proved, because g(r, γ) = P(E) = E(IE).
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Claim 1: limn→∞ IE(n)
u
→ IEu , and limn→∞ IE(n)

r,γ′
→

IEr,γ′ almost surely, for γ′ 6= γ.
Proof: Suppose that, for some value of wu, IEu(wu) =

1, i.e., minγ∈S(γ+ξoutQout(u, γ, wu)) > −ξrelay−V ∗(1)+
V ∗(u+ 1). Now, V ∗(1) and V ∗(u+ 1) are continuous in
(ξout, ξrelay) for all 1 ≤ u ≤ r (see Theorem 5). Hence,
there exists an integer n0 large enough, such that for all
n > n0, we have minγ∈S(γ+ξnQout(u, γ, wu)) > −ξrelay−(
V (n,∗)(1) +V (n,∗)(u+ 1)

)∣∣∣∣
ξout=ξn

, i.e., IE(n)
u

(wu) = 1 for

all n > n0. Hence, IE(n)
u

(wu) → IEu(wu) if IEu(wu) = 1.
For the case IEu(wu) = 0, we can have similar arguments.
This proves the first part of the claim, and second part
can be proved by similar arguments.

Now, IE(n) =
∏
γ′ 6=γ IE(n)

r,γ′

∏
u≤r−1 IE(n)

u
× I

E(n)
r

. By

Claim 1, IE(n) → IE almost surely as n → ∞. Hence, by
Dominated Convergence Theorem, we have E(IE(n)) →
E(IE).

We can prove the same statement for r = B in a similar
method; but we need to define E = ∩γ′ 6=γEB,γ′∩u≤B−1Eu.

Hence, the lemma is proved.

C.2 Proof of Theorem 9
We denote the shadowing in the link between the poten-
tial locations located at distances iδ and jδ from the sink
node, by the random variable Wi,j . The sample space Ω
is defined to be the collection of all ω such that each ω
corresponds to a fixed realization {wi,j : i ≥ 0, j ≥ 0, i >
j, 1 ≤ i−j ≤ B} of shadowing that could be encountered
in the deployment process over infinite horizon. Let F
be the Borel σ-algebra on Ω. We also define a sequence

of sub-σ fields Fk := σ

(
Wi,j : i ≥ 0, j ≥ 0, k ≥ i > j, 1 ≤

i−j ≤ B
)

; Fk is increasing in k, and captures the history

of the deployment process up to kδ distance.
Let us recall the outline of the proof of Theorem 9 in

Section 5.2.

C.2.1 The Faster Time-Scale Iteration of V (k)

Let us denote by V ∗(ξout, ξrelay) the value of V ∗, for
given ξout and ξrelay. Let us also define a(k) :=
maxr∈Ik a(ν(r, k)).

Using the first order Taylor series expansion of
the function Λ[0,A1](·), and using the fact that
Λ[0,A1](ξ

(k−1)
out ) = ξ

(k−1)
out (since ξ

(k−1)
out ∈ [0, A1]), we

rewrite the update equation (10) as (13). Now, for the
update equation for ξrelay in (13), we can write:

lim
β↓0

Λ[0,A2]

(
ξ
(k−1)
relay + β(1−NUNk )

)
− ξ(k−1)

relay

β

= (1−NUNk )I{0 < ξ
(k−1)
relay < A2}

+ (1−NUNk )+I{ξ(k−1)
relay = 0}

− (1−NUNk )−I{ξ(k−1)
relay = A2}

where y+ = max{y, 0} and y− = −min{y, 0}. We can
write similar expression for the ξ

(k)
out update. Since out-

age probabilities and placement distances are bounded
quantities, and since Nk ≥ b kB c and limk→0

b(b kB c)
a(k) = 0,

we have:

lim
k→∞

(
b(Nk)

a(k)

(
lim
β↓0

(
Λ[0,A1]

(
ξ
(k−1)
out + β(Q

(Nk,Nk−1)
out

−qUNk )

)
− ξ(k−1)

out

)
/β +

o(b(Nk))

b(Nk)

))
= 0

Similar claim can be made for ξrelay update.
Lemma 3: Under Algorithm 3, the faster timescale it-

erates {V (k)}k≥1 are almost surely bounded.
Proof: Note that, (13) combines the faster and slower

timescale iterations in a single timescale where the step
size is a(n). We will now use the theory from [44,
Section 3] to prove this lemma.

Note that, the R.H.S. of the faster timescale iteration
in (13) is Lipschitz continuous in both faster and slower
timescale iterates. Hence, the first part of [44, Assump-
tion 2.1] is satisfied.

[44, Assumption 2.2] can be checked, using similar
arguments as in checking [36, Assumption 5(ii)] in the
proof of Theorem 7.

Also,
∑∞
n=1 a(n) ≥

∑∞
n=1 a(n) =∞ and

∑∞
n=1 a

2(n) ≤∑∞
n=1 a

2(b nB c) <∞, which satisfies [44, Assumption 2.3].
Checking [44, Assumption 2.4]: Let us consider

the following set of o.d.e. (similar to what
we considered in the proof of Theorem 7):
V̇t(r) = κt(r)fr(V t, ξout(t), ξrelay(t)) for r ∈ {1, 2, · · · , B},
ξ̇out(t) = 0 and ξ̇relay(t) = 0 (recall the
interpretation of κt(r) from Appendix B). Note that,
limc→∞

fr(cV ,cξout,cξrelay)
c = EW min{ξoutQout(r, γ,W ) +

ξrelay,−V (1) + V (r + 1)} − V (r) for r 6= B, and
limc→∞

fB(cV ,cξout,cξrelay)
c = ξoutEWQout(B, γ,W ) +

ξrelay − V (B). Note that fr(cV )
c for all r and

limc→∞
fr(cV ,cξout,cξrelay)

c all are continuous in
(V , ξout, ξrelay), and fr(cV ,cξout,cξrelay)

c is decreasing
in c. Hence, by Theorem 7.13 of [43], convergence of
fr(cV ,cξout,cξrelay)

c over compacts is uniform. Hence, one
part of [44, Assumption 2.4] is proved. Next, by similar
analysis done while checking [36, Assumption 4] in the
proof of Theorem 7 (using Lemma 1), we can verify the
second part of [44, Assumption 2.4].

Hence, using similar analysis as in [44, Section 3, The-
orem 11] (adapted to the case of asynchronous stochastic
approximation), we can claim that ||V (k)|| ≤ C∗(1 +

ξ
(k)
out + ξ

(k)
relay) for all k ≥ 1, for some C∗ > 0. Now,

since the slower timescale iterates are bounded in our
problem, the faster timescale iterates are also bounded.
This completes the proof of Lemma 3.

Lemma 4: For Algorithm 3, we have
(V (k), ξ

(k)
out, ξ

(k)
relay) → {(V ∗(ξout, ξrelay), ξout, ξrelay) :

(ξout, ξrelay) ∈ [0, A1] × [0, A2]} almost surely, i.e.,
limk→∞ ||V (k) − V ∗(ξ(k)

out, ξ
(k)
relay)|| = 0 almost surely.

Proof: Note that, the functions fr(V , ξout, ξrelay) =
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V (k)(r) = V (k−1)(r) + a(k)
a(ν(r, k))

a(k)
I{r ∈ Ik}

[
min

{
min
γ

(γ + ξ
(k−1)
out Qout(r, γ, wr)) + ξ

(k−1)
relay ,−V

(k−1)(1) + V (k−1)(r + 1)

}
− V (k−1)(r)

]
,

∀1 ≤ r ≤ B − 1

V (k)(B) = V (k−1)(B) + a(k)
a(ν(r,B))

a(k)
I{B ∈ Ik}

[
min
γ

(γ + ξ
(k−1)
out Qout(B, γ, wB)) + ξ

(k−1)
relay − V

(k−1)(B)

]

ξ
(k)
out = ξ

(k−1)
out + I{Nk = Nk−1 + 1}

(
b(Nk) lim

β↓0

Λ[0,A1]

(
ξ
(k−1)
out + β(Q

(Nk,Nk−1)
out − qUNk )

)
− ξ(k−1)

out

β
+ o(b(Nk))

)

= ξ
(k−1)
out + I{Nk = Nk−1 + 1}a(k)

b(Nk)

a(k)

(
lim
β↓0

Λ[0,A1]

(
ξ
(k−1)
out + β(Q

(Nk,Nk−1)
out − qUNk )

)
− ξ(k−1)

out

β
+
o(b(Nk))

b(Nk)

)

ξ
(k)
relay = ξ

(k−1)
relay + I{Nk = Nk−1 + 1}

(
b(Nk) lim

β↓0

Λ[0,A2]

(
ξ
(k−1)
relay + β(1−NUNk )

)
− ξ(k−1)

relay

β
+ o(b(Nk))

)

= ξ
(k−1)
relay + I{Nk = Nk−1 + 1}a(k)

b(Nk)

a(k)

(
lim
β↓0

Λ[0,A2]

(
ξ
(k−1)
relay + β(1−NUNk )

)
− ξ(k−1)

relay

β
+
o(b(Nk))

b(Nk)

)
(13)

EW
[

min

{
minγ(γ + ξoutQout(r, γ,W )) + ξrelay,−V (1) +

V (r+1)

}
−V (r)

]
and fB(V , ξout, ξrelay) = EW

[
minγ(γ+

ξoutQout(B, γ,W )) + ξrelay − V (B)

]
are Lipschitz con-

tinuous in all arguments (by Theorem 5), and the col-
lection of o.d.e. V̇ r(t) = κt(r)fr(V (t), ξout, ξrelay) for
all r ∈ {1, 2, · · · , B} (see [37, Theorem 2, Chapter 7]
and the proof of Theorem 7 for an interpretation of
κt(r)) has a unique globally asymptotically stable equi-
librium V ∗(ξout, ξrelay) for any ξout ≥ 0, ξrelay ≥ 0 (see
Lemma 1 in the proof of Theorem 7). Also, by Theorem 5,
V ∗(ξout, ξrelay) is Lipschitz continuous in ξout and ξrelay.
On the other hand, by Lemma 3 and the projection in the
slower timescale, the iterates are almost surely bounded.

Hence, by a similar argument as in the proof
[37, Lemma 1, Chapter 6], and by Theorem 7,
(V (k), ξ

(k)
out, ξ

(k)
relay) converges to the internally chain tran-

sitive invariant sets of the collection of o.d.e. given
by V̇r(t) = κt(r)fr(V (t), ξout, ξrelay) for all r ∈
{1, 2, · · · , B}, ξ̇out(t) = 0, ξ̇relay(t) = 0 (where V (t) :=

{V1(t), V2(t), · · · , VB(t)}). Hence, (V (k), ξ
(k)
out, ξ

(k)
relay) →

{(V ∗(ξout, ξrelay), ξout, ξrelay) : (ξout, ξrelay) ∈ [0, A1] ×
[0, A2]} and limk→∞ ||V (k) − V ∗(ξ(k)

out, ξ
(k)
relay)|| = 0.

Remark: Lemma 4 does not guarantee the convergence
of the slower timescale iterates.

C.2.2 The slower timescale iteration
We will pose the slower timescale update as a projected
stochastic approximation (see [39, Equation 5.3.1]). In
order to do that and to avoid complicated notation, for
the rest of this appendix we will denote by V (k), ξ(k)

out

and ξ(k)
relay the values of the corresponding variable after

placing the k-th relay and performing the update (ear-
lier they were defined to be the iterates after a decision
is made at the k-th step). Let us also recall the definition
of the functions Qout(·, ·, ·), Q

∗
out(·, ·), U(·, ·, ·), U

∗
(·, ·).

Let us define the functions Q
′
out(V

(k−1), ξ
(k−1)
out , ξ

(k−1)
relay )

and U
′
(V (k−1), ξ

(k−1)
out , ξ

(k−1)
relay ) to be the mean link outage

and mean length of the k-th link that is created by
Algorithm 3 (using the two-timescale update) starting
with V (k−1), ξ(k−1)

out and ξ
(k−1)
relay (which are obtained by

the algorithm after placing the (k − 1)-st relay and and
doing the learning/update operation; note that, these
quantities are obtained after placing (k − 1) nodes and
not at the (k − 1)-th step).

The difference between U
′
(V (k−1), ξ

(k−1)
out , ξ

(k−1)
relay ) and

U(V (k−1), ξ
(k−1)
out , ξ

(k−1)
relay ) can be explained as follows.

U(V (k−1), ξ
(k−1)
out , ξ

(k−1)
relay ) is the mean length of the k-th link

where no quantity is updated in the process of measurements
made to create the k-th link; hence, U(V (k−1), ξ

(k−1)
out , ξ

(k−1)
relay )

is the mean placement distance of a stationary policy which
is similar to Algorithm 1 except that ξout, ξrelay and V ∗

are replaced by ξ
(k−1)
out , ξ

(k−1)
relay and V (k−1) respectively.

On the other hand, U
′
(V (k−1), ξ

(k−1)
out , ξ

(k−1)
relay ) is the mean

length of the k-th link created under Algorithm 3 (with
(V (k−1), ξ

(k−1)
out , ξ

(k−1)
relay ) as starting parameters), where the

iterates are updated at each step between placement of the
(k − 1)-th node and the k-th node.

Let us denote by G the set [0, A1]× [0, A2], defined by
the following constraints:

−ξout ≤ 0, ξout ≤ A1,−ξrelay ≤ 0, ξrelay ≤ A2 (15)

Clearly, projection onto the set G is nothing but coordinate
wise projection.

We rewrite the slower timescale iteration in (10) as
(14) (note the definitions of the functions f1(ξout, ξrelay),
f2(ξout, ξrelay), g1(V , ξout, ξrelay), g2(V , ξout, ξrelay),
l1(V , ξout, ξrelay) and l2(V , ξout, ξrelay) in (14)). The
random variables M

(k)
1 and M

(k)
2 are two zero mean

Martingale difference noise sequences w.r.t. Fk−1

(information available up to the (k − 1)-st placement
instant); this happens due to i.i.d. shadowing across
links.

(14) has the form of a projected stochastic approximation
(see [39, Equation 5.3.1]). In order to show the desired conver-
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ξ
(k)
out = ΛG

(
ξ
(k−1)
out + b(k)

(
Qout(Uk,Γk,WUk )− qUk

))
= ΛG

(
ξ
(k−1)
out + b(k)

(
Q
∗
out(ξ

(k−1)
out , ξ

(k−1)
relay )− qU∗(ξ(k−1)

out , ξ
(k−1)
relay )︸ ︷︷ ︸

:=f1(ξ
(k−1)
out ,ξ

(k−1)
relay

)

+Qout(V
(k−1), ξ

(k−1)
out , ξ

(k−1)
relay )− qU(V (k−1), ξ

(k−1)
out , ξ

(k−1)
relay )− f1(ξ

(k−1)
out , ξ

(k−1)
relay )︸ ︷︷ ︸

:=g1(V (k−1),ξ
(k−1)
out ,ξ

(k−1)
relay

)

+Q
′
out(V

(k−1), ξ
(k−1)
out , ξ

(k−1)
relay )− qU ′(V (k−1), ξ

(k−1)
out , ξ

(k−1)
relay )−

(
Qout(V

(k−1), ξ
(k−1)
out , ξ

(k−1)
relay )− qU(V (k−1), ξ

(k−1)
out , ξ

(k−1)
relay )

)
︸ ︷︷ ︸

:=l1(V (k−1),ξ
(k−1)
out ,ξ

(k−1)
relay

)

+Qout(Uk,Γk,WUk )− qUk −
(
Q
′
out(V

(k−1), ξ
(k−1)
out , ξ

(k−1)
relay )− qU ′(V (k−1), ξ

(k−1)
out , ξ

(k−1)
relay )

)
︸ ︷︷ ︸

:=M
(k)
1

))

= ΛG

(
ξ
(k−1)
out + b(k)

(
f1(ξ

(k−1)
out , ξ

(k−1)
relay ) + g1(V (k−1), ξ

(k−1)
out , ξ

(k−1)
relay ) + l1(V (k−1), ξ

(k−1)
out , ξ

(k−1)
relay ) +M

(k)
1

))
ξ
(k)
relay = ΛG

(
ξ
(k−1)
out + b(k)

(
1−NUk

))
= ΛG

(
ξ
(k−1)
relay + b(k)

(
1−NU∗(ξ(k−1)

out , ξ
(k−1)
relay )︸ ︷︷ ︸

:=f2(ξ
(k−1)
out ,ξ

(k−1)
relay

)

+ 1−NU(V (k−1), ξ
(k−1)
out , ξ

(k−1)
relay )− f2(ξ

(k−1)
out , ξ

(k−1)
relay )︸ ︷︷ ︸

:=g2(V (k−1),ξ
(k−1)
out ,ξ

(k−1)
relay

)

+ 1−NU ′(V (k−1), ξ
(k−1)
out , ξ

(k−1)
relay )−

(
1−NU(V (k−1), ξ

(k−1)
out , ξ

(k−1)
relay )

)
︸ ︷︷ ︸

:=l2(V (k−1),ξ
(k−1)
out ,ξ

(k−1)
relay

)

+ 1−NUk −
(

1−NU ′(V (k−1), ξ
(k−1)
out , ξ

(k−1)
relay )

)
︸ ︷︷ ︸

:=M
(k)
2

))

= ΛG

(
ξ
(k−1)
relay + b(k)

(
f2(ξ

(k−1)
relay , ξ

(k−1)
relay ) + g2(V (k−1), ξ

(k−1)
relay , ξ

(k−1)
relay ) + l2(V (k−1), ξ

(k−1)
out , ξ

(k−1)
relay ) +M

(k)
2

))
(14)

gence of the iterates in (14), we will use [39, Theorem 5.3.1];
this requires us to check five conditions from [39], which is
done in the next subsection. �

C.2.3 Checking the five conditions from [39]

We will first present a lemma that will be useful for
checking one condition.

Lemma 5: Under Assumption 2, the quan-
tities Γ(V , ξout, ξrelay), Qout(V , ξout, ξrelay) and
U(V , ξout, ξrelay) are continuous in V , ξout and ξrelay.

Proof: The proof is similar to that of Theorem 8.
Now, we will check conditions A5.1.3, A5.1.4, A5.1.5,

A5.3.1. and A5.3.2 from [39].
Checking Condition A5.1.3: We need f1(·, ·) and f2(·, ·)

to be continuous functions; this holds by Theorem 8. �
Checking Condition A5.1.4: This condition is satisfied

by the choice of the sequence {b(k)}k≥1. �
Checking Condition A5.1.5: This condition

requires that limk→∞ g1(V (k−1), ξ
(k−1)
out , ξ

(k−1)
relay ) =

0, limk→∞ g2(V (k−1), ξ
(k−1)
out , ξ

(k−1)
relay ) = 0,

limk→∞ l1(V (k−1), ξ
(k−1)
out , ξ

(k−1)
relay ) = 0 and

limk→∞ l2(V (k−1), ξ
(k−1)
out , ξ

(k−1)
relay ) = 0 almost surely.

We can find a probability 1 subset of the sample
space Ω, such that for any sample path in this subset
the conclusions of Lemma 3 and Lemma 4 hold. Take
one such sample path ω. By Lemma 3, for this sam-
ple path ω, we can find a compact subset C ⊂ RB

such that (V (k), ξ
(k)
out, ξ

(k)
relay) lies inside the compact set

C × [0, A1]× [0, A2] for all k ≥ 1 along this sample path.
By Lemma 5 and the fact that continuous functions

are uniformly continuous over compact sets, we
can say that Qout(V , ξout, ξrelay), Γ(V , ξout, ξrelay)
and U(V , ξout, ξrelay) are uniformly continuous
over the compact set C × [0, A1] × [0, A2]. Now, the
Euclidean distance between (V (k), ξ

(k)
out, ξ

(k)
relay) and

(V ∗(ξ
(k)
out, ξ

(k)
relay), ξ

(k)
out, ξ

(k)
relay) converges to 0 along

the sample path ω. Hence, by uniform continuity,
we can say that limk→∞ |Qout(V (k), ξ

(k)
out, ξ

(k)
relay) −

Qout(V
∗(ξ

(k)
out, ξ

(k)
relay), ξ

(k)
out, ξ

(k)
relay)| = 0

and limk→∞ |U(V (k), ξ
(k)
out, ξ

(k)
relay) −
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U(V ∗(ξ
(k)
out, ξ

(k)
relay), ξ

(k)
out, ξ

(k)
relay)| = 0 along this sample

path ω. Hence, limk→∞ g1(V (k−1), ξ
(k−1)
out , ξ

(k−1)
relay ) = 0 and

limk→∞ g2(V (k−1), ξ
(k−1)
out , ξ

(k−1)
relay ) = 0 almost surely.

On the other hand, since C is bounded, we can say that
{V (k)}k≥1 is bounded for the chosen ω. In a similar way
as in the proof of Theorem 8, in case of Lemma 5 we can
show that g(r, γ) is continuous in V , ξout and ξrelay . Now,
between the placement of the (k − 1)-st relay and k-th
relay, at each step, g(r, γ) for all r ∈ {1, 2, · · · , B}, γ ∈ S
can change at most by an amount K∗a(k − 1 − B)
(for a suitable constant K∗ > 0), and hence we
can claim that limk→∞ |U

′
(V (k−1), ξ

(k−1)
out , ξ

(k−1)
relay ) −

U(V (k−1), ξ
(k−1)
out , ξ

(k−1)
relay )| = 0,

limk→∞ |Q
′
out(V

(k−1), ξ
(k−1)
out , ξ

(k−1)
relay ) −

Qout(V
(k−1), ξ

(k−1)
out , ξ

(k−1)
relay )| = 0. Hence, we obtain

that limk→∞ l1(V (k−1), ξ
(k−1)
out , ξ

(k−1)
relay ) = 0 and

limk→∞ l2(V (k−1), ξ
(k−1)
out , ξ

(k−1)
relay ) = 0.

Also, g1(V (k), ξ
(k)
out, ξ

(k)
relay), g2(V (k), ξ

(k)
out, ξ

(k)
relay),

l1(V (k), ξ
(k)
out, ξ

(k)
relay) and l2(V (k), ξ

(k)
out, ξ

(k)
relay) are uniformly

bounded across k ≥ 1, since the outage probabilities
and placement distances are bounded quantities.

Hence, this condition is satisfied.
Checking Condition A5.3.1: This condition is easy to

check, and done in [1, Appendix E, Section C4]. �
Checking Condition A5.3.2: This condition is easy to

check, and done in [1, Appendix E, Section C4]. �

C.2.4 Finishing the Proof of Theorem 9
Consider the function h(ξout, ξrelay) :=(
f1(ξout,ξrelay)

U
∗
(ξout,ξrelay)

,
f2(ξout,ξrelay)

U
∗
(ξout,ξrelay)

)
=

(
Q
∗
out(ξout,ξrelay)

U
∗
(ξout,ξrelay)

−

q, 1
U
∗
(ξout,ξrelay)

−N
)

and the map:

ΛG(h(ξout, ξrelay))

= lim
0<β→0

ΛG

(
(ξout, ξrelay) + βh(ξout, ξrelay))

)
− (ξout, ξrelay)

β

(16)

Lemma 6: If (ξout, ξrelay) ∈ [0, A1] × [0, A2] is

a zero of ΛG

(
f1(ξout,ξrelay)

U
∗
(ξout,ξrelay)

,
f2(ξout,ξrelay)

U
∗
(ξout,ξrelay)

)
, then

(V ∗(ξout, ξrelay), ξout, ξrelay) ∈ K(q,N), provided that A1

and A2 are chosen using the procedure described in
Section 5.

Proof: The proof is similar to the proof of [1,
Lemma 9, Appendix E, Section C5].

Now, by using similar arguments as in
[1, Appendix E, Section C5] and using [39,
Theorem 5.3.1], We can show that the iterates
(ξ

(k)
out, ξ

(k)
relay) will converge almost surely to the set

of stationary points of the o.d.e. (ξ̇out(t), ξ̇relay(t)) =

ΛG

(
f1(ξout(t),ξrelay(t))

U
∗
(ξout(t),ξrelay(t))

,
f2(ξout(t),ξrelay(t))

U
∗
(ξout(t),ξrelay(t))

)
.

Using this result and using Lemma 4 and Lemma 6, we
obtain that (V (k), ξ

(k)
out, ξ

(k)
relay) → K(q,N) almost surely,

where kδ can be the distance from the sink or k can be
the index of a placed relay node (the result holds for
both interpretations of k). This completes the proof of
Theorem 9. �
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