
MOHAN-ETAL19REDUCED-STATE-OPTIMAL-MEDIUM-ACCESS-CONTROL, TON SUBMISSION, 2 COLUMN 1

Reduced-State, Optimal Scheduling for
Decentralized Medium Access Control of

a Class of Wireless Networks
Avinash Mohan, Member, IEEE, Aditya Gopalan, Member, IEEE, and Anurag Kumar, Fellow, IEEE.

Abstract—Motivated by medium access control for resource-
challenged wireless Internet of Things (IoT) networks, we con-
sider the problem of queue scheduling with reduced queue state
information. In particular, we consider a time-slotted scheduling
model with N wireless links, such that links i and i + 1,
1 ≤ i ≤ N − 1 cannot transmit together. Our aim in this paper is
to study throughput-optimal, and even delay optimal, scheduling
policies that require only the empty-nonempty state of the packet
queues associated with these links (Queue Nonemptiness Based,
or QNB, policies). We focus on Maximum Size Matching (MSM)
policies, and provide an analysis of all the QNB-MSM policies
for N = 3, thereby comparing their performance, and revisiting
a delay optimal scheduling result stated in [1]. Our study shows
that, while scheduling a maximum size matching would seem
intuitive, there are important performance differences between
different QNB-MSM policies. Further, it is not necessary for a
QNB policy to be MSM for it to be throughput optimal. We
develop a new Policy Splicing technique to combine scheduling
policies for small networks to construct throughput-optimal
policies for larger networks, some of which also aim for low
delay. For N = 3 there exists a QNB-MSM policy that is sum-
queue optimal over the entire stability region. We show, however,
that for N ≥ 4, there is no QNB scheduling policy that is sum-
queue length optimal over all arrival rate vectors in the capacity
region.

Our throughput-optimality results rely on two new arguments:
a Lyapunov drift lemma specially adapted to policies that are
queue length-agnostic, and a priority queueing analysis for
showing strong stability. We then extend our results to a more
general class of interference constraints that we call cluster-of-
cliques (CoC) conflict graphs. We consider two types of CoC
networks, namely, Linear Arrays of Cliques (LAoC) and Star-
of-Cliques (SoC) networks. We develop QNB policies for these
classes of networks, study their stability and delay properties, and
propose and analyze techniques to reduce the amount of state
information to be disseminated across the network for scheduling.

Index Terms—Wireless sensor networks, Medium Access Con-
trol (MAC) protocols, resource challenged networks, low delay
wireless scheduling, Internet of Things.

AM (corresponding author) is with the Technion Israel Institute Technol-
ogy. AG and AK are with the Indian Institute of Science, Bangalore. This work
was carried out when the first author was at the Indian Institute of Science.
e-mail: avinashmohan@campus.technion.ac.il,{aditya, anurag}@iisc.ac.in.

This work was presented, in part, at the 13th IEEE International Conference
on Computer Networks (IEEE Infocom, 2018). This research was supported by
the Ministry of Human Resource Development Govt. of India, via a graduate
fellowship for the first author, by Microsoft Research India, by a travel grant
for the first author, by the SERB grant EMR/2016/002503 and the IUSSTF
WAQM 2017 program for the second author, and the Department of Science
and Technology, via a J.C. Bose Fellowship awarded to the third author.

Please note that all appendices are provided in the Supplementary
Material.

I. INTRODUCTION

THe Internet of Things (IoT) paradigm is expected to make
possible applications where vast numbers of devices

coexist on a communication network. A typical example is
a wireless network comprising low-cost sensors that forward
measurements from their locations to a fusion center. Given
the variety of applications supported by, and the ubiquitous
nature of these networks, for IoT solutions to be viable,
the embedded IoT devices will have to cost very little (less
than $1, according to some estimates [2]). Such devices will
be resource challenged, possess very limited communication
and computing capabilities and support little memory. Control
policies for such networks will, perforce, need to be simple
and not result in excessive overheads.

These constraints are starkly different from those encoun-
tered in the transmission of traditional voice and packet data
over wireline or cellular wireless networks. In cellular systems,
for example, most scheduling decisions come from the base
station and hence, control is centralized [3, Chap. 6, 13], but
some Quality of Service (QoS) is expected – low packet delay,
for instance [4], [5]. In contention access systems such as
WiFi, scheduling is distributed but service is best effort [6]
or, at best, differentiated – such as with the “Enhanced Dis-
tributed Channel Access” [7] and the “Enhanced Distributed
Coordination Function” (E-DCF) mechanisms in the IEEE
802.11e standard [8]. In many IoT applications, e.g., condition
monitoring or predictive maintenance, there is a need for low
overhead distributed scheduling (for the earlier reasons) while
also providing QoS.

Consequently, resource allocation techniques developed to
handle services such as file transfer and packet-voice might not
be appropriate for wireless networks of resource challenged
nodes, that need to provide QoS to the applications they are
carrying. Most existing medium access protocols and schedul-
ing algorithms suffer from limitations – the WiFi protocol
and its Differentiated Services version are simple, but do not
really provide any guarantees. Recent standards for the IoT,
such as 6TiSCH on the other hand, come with guarantees but
require a lot of information exchange and central coordination
[9], [10]. Our aim in this paper is to propose decentralized
Medium Access Control (MAC) protocols with a focus on low
packet delay (i.e., latency) and reduced exchange of control
information across the network.

The traditional approach for dynamic resource allocation
has been to use backlog or queue length information to

MOHAN-ETAL19REDUCED-STATE-OPTIMAL-MEDIUM-ACCESS-CONTROL, TON SUBMISSION, 2 COLUMN 2

opportunistically schedule transmissions. One of the seminal
contributions to scheduling in constrained queueing systems
is the work of Tassiulas and Ephremides [11]. These authors
modeled a wireless network as a network of queues with
pair-wise scheduling constraints (corresponding to wireless
interference, half-duplex operation, etc.), and several flows
over the network, each with its ingress queue and egress
queue. A time-slotted model was considered in [11], with
global queue scheduling decisions needing to be made at the
beginning of every slot. Scheduling constraints (such as link
interference or half-duplex constraints) were modelled by pair-
wise scheduling constraints, represented by an interference
graph; queues adjacent in the interference graph cannot be
scheduled in the same slot. With stochastic arrivals to each
flow to be routed from their ingress to egress points, the
authors develop MaxWeight a centralized scheduling algo-
rithm which requires the queue lengths of all nodes in every
scheduling slot and show that it is throughput-optimal, i.e.,
it stochastically stabilizes all queues under any stabilizable
arrival rate.

Attempts to decentralize MaxWeight include approxima-
tions based on message passing between nodes [12], [13],
or using queue lengths to modulate backoff parameters in
Carrier Sense Multiple Access (CSMA) and ALOHA [14],
[15]. Both of these methods, while being throughput-optimal,
suffer from poor delay performance. Another method to reduce
the amount of information required for scheduling is proposed
in [1], where, for two classes of constrained queueing sys-
tems, algorithms relying only on the empty-nonempty state of
queues is proposed and analyzed for delay performance. Our
interest lies in the second half of [1], wherein a scheduling
algorithm is proposed for a system of N parallel queues in
which adjacent queues cannot be served simultaneously. For
such a network, the authors provide a technique to improve the
delay performance of a given scheduling policy (assuming one
exists). For N = 3, the authors provide a policy that is mean
delay optimal over the entire stability region. For N = 4, Ji
et al. [15] provide a policy that heavy-traffic delay optimal. It
is not yet clear if it is possible to extend these algorithms
to general wireless networks while preserving performance
guarantees such as throughput-optimality. In Sec. I-A below,
we explain our contributions in greater detail.

A. Our Contributions and Organization

We consider a system of N wireless links (transmitter-
receiver pairs). Time is slotted and each transmitter has
an independent arrival process of packets embedded at slot
boundaries. Only one packet can be transmitted across a link in
any slot. There are scheduling constraints (link activation con-
straints) that constrain which links can simultaneously transmit
in any slot. Packets that arrive and cannot be immediately
transmitted, wait in a queue at the transmitter1.

When the links are “collocated,” i.e., all links interfere with
each other, only one link can be activated in any slot. In a
collocated network, for stabilizable arrival rates (see Sec. II),

1Activating a link, therefore, is the same as serving its associated queue.
Henceforth, we will use the terms “link” and “queue” interchangeably.

it is known that any policy that transmits a packet from any
nonempty queue is not only stabilizing, but is delay optimal in
the strong sense of stochastically minimising the sum-queues
process (see Defn. IV-A).

We begin with the system model in Sec. II, wherein we
describe the two classes of interference networks considered
in this article: “path-graph networks” (Sec. II-B) and “cluster-
of-cliques” networks (Sec. II-C). We restrict our study to two
subclasses of scheduling policies: Maximum Size Matching
(MSM) policies (Sec. III-A) that serve a set of links with
the largest number of nonempty non-conflicting queues in
every slot, and Queue Nonemptiness based (QNB) policies
that use only the empty-nonempty statuses of network queues
for scheduling (Sec. III-B).

We then provide a complete characterization of the set
of QNB-MSM policies for path-graph networks for the case
with N = 3 queues (Sec. IV). The fact that the policies
we discuss do not require any information about the queues
except their empty-nonempty status helps satisfy our reduced
state information requirement. We establish several interesting
results about (in)stability and delay optimality. Specifically, for
N = 3, we supply a formal proof that there is a delay optimal
policy in the QNB-MSM class of policies, an observation that
had been made in [1]. We find that, for N = 3, one of the QNB-
MSM policies is not even throughput optimal, thus bringing
forth the need for careful design of the scheduler.

In our work, we provide a study of QNB-MSM scheduling
policies (explicitly constructing several such policies along the
way), and show how scheduling policies for larger networks
can be constructed by the novel method of policy splicing.
Continuing with path-graph networks, we propose a “policy
splicing” technique (see Figures 3 and 4) to combine policies
for small networks to construct low delay policies for larger
networks (Sections V and V-D). We use this technique to
propose QNB-MSM scheduling policies for several such net-
works. We also provide an in-depth analysis of delay (Sec. VI),
culminating in a result that shows that there do not exist delay
optimal QNB-MSM policies for such networks with N ≥ 4
queues (Thm. 12).

We then extend our theory of MSM policies to sched-
ule transmissions over cluster-of-cliques constraint networks
(Sec. VII) and also discuss multiple methods to further reduce
the amount of state information that has to be exchanged
across the network to make these protocols amenable to
distributed implementation. We finally use this theory to
propose a throughput-optimal protocol, akin to the QZMAC
protocol [16], wherein scheduling decisions are taken using
only the information about activity on the channel (or lack
thereof) that can be sensed by the nodes and will study its
performance in detail (Sec. VIII). We then present numerical
results (Sec. IX) showing the performance of our proposed
policies, and comparisons with standard, high-overhead state-
based policies such as the MaxWeight-α family [17]. These
simulation studies show that MaxWeight and MaxWeight-α,
while guaranteeing queue stability, can perform poorly in delay
performance in comparison with QNB-MSM policies.

MOHAN-ETAL19REDUCED-STATE-OPTIMAL-MEDIUM-ACCESS-CONTROL, TON SUBMISSION, 2 COLUMN 3

II. THE SCHEDULING PROBLEM: MODELS AND NOTATION

In Sec. II-A, we describe the general network model, and
specify the optimal scheduling problem in Sec. II-A1. Then,
in Sec. II-B and Sec. II-C we restrict the general model to the
cases that we provide results for in the remainder of the paper.

There are several interfering links (transmitter-receiver
pairs), where each transmitting node has a stream of arriving
packets. Time is slotted, and all links are synchronized to the
time slots. In each slot, each scheduled link can transmit one
packet. Packets that are not transmitted remain in the queues.
Thus, we have a discrete time queue scheduling problem that
belongs to the general class introduced in [11]. Note, from the
preceding discussion, that activating a link in a time slot is the
same as serving its associated queue.

A. The General Queue Scheduling Model

We consider a system comprising N queues, where, as
mentioned before, each queue models a radio link in a
wireless network. The leading edges of time slots are indexed
0, 1, 2, · · · . Exogenous arrivals to the queues are embedded at
slot boundaries, t = 0, 1, 2, · · · , with the number of packets
arriving to Queue i at time t being denoted by the random vari-
able Ai(t). Ai(t) is assumed IID2 across time and independent
across queues and is modelled as a Bernoulli random variable
with mean λi i.e., P (Ai(t) = 1) = λi, ∀t ≥ 1. However, we will
remove this restriction to include batch IID arrivals in Sec. VII.
We use Q(t) = [Q1(t), . . . ,QN (t)] to denote the vector of all
queue lengths at time t. The queue length process is embedded
at the beginnings of time slots, so Qi(t), ∀t ≥ 0, is measured
at t+, i.e., just after the arrival. The duration of a slot is
assumed to include packet transmission time, the receive-
transmit turn around time at the receiver, the MAC layer
acknowledgement (ACK) time3, and any scheduling overhead.
Packet transmissions are assumed to take exactly one time slot
and succeed with probability4 1. The random variable, Di(t),
indicating the departure of a packet from Queue i at time t,
is such that Di(t) = 1 if and only if Queue i is scheduled in
slot t and Qi(t) > 0, else Di(t) = 0; here, the departure is
assumed to end just before the leading edge of slot (t + 1),
i.e., at (t + 1)−.

The offered service process to Queue i, {Si(t), t ≥ 0}, is
defined as follows: Si(t) = 1 whenever Queue i is given access
to the channel, so that Di(t) = Si(t)I{Qi (t)>0}, ∀t ≥ 0, 1 ≤
i ≤ N . Depending on the interference constraints, it may be
possible to serve only a subset of queues in a given slot. For
example, (2) gives the constraints for path-graph interference
networks and (4) for Star-of-Cliques networks. The vector
S(t) := [S1(t), . . . , SN (t)] satisfying the interference constraints
is called an activation vector. Thus, for every queue i,

Qi(t + 1) = Qi(t) − Di(t) + Ai(t + 1)
= (Qi(t) − Si(t))+ + Ai(t + 1), ∀t ≥ 0.

2“IID” stands for independent and identically distributed.
3Most wireless systems require a MAC layer acknowledgement to combat

high high packet error rates
4The effects of fading and channel errors are not considered here and are

a subject of future research.

Fig. 1: The basic path-graph interference system with N = 3 communication
links along with the associated packet queues (left) and its conflict graph
(right). The interference constraints are such that physically adjacent queues
cannot be served simultaneously.

Denote by ζ (t) := [I{Q1(t)>0}, . . . , I{QN (t)>0}] the system’s
occupancy vector at time t, i.e., the empty-nonempty state
of each of the N queues. Let V ⊂ {0, 1}N be the set of
all activation vectors. A scheduling policy π := {µ0, µ1, . . . }
decides which queues are allowed to transmit in each slot as a
function of the available history Ht , which comprises the past
states and actions known to the controller, and the current
(known) queue state. Specifically, µt : Ht → V is an N × 1
vector, and Si(t) = µt (i). When the schedule depends only on
state and not on time, the resulting policies are of the form
π = {µ, µ, . . . }, and are said to be stationary. We will focus
on stationary policies in this article.

1) Performance Metric: By stability of the process
{Q(t), t ≥ 0} we will mean that

lim sup
T→∞

1
T

T−1∑
t=0

N∑
i=1
E
(π)
Q(0)Qi(t) < ∞. (1)

This condition is commonly known as strong stability [18].
A policy that ensures (1) is said to be stabilizing, and an
arrival rate vector for which a stabilizing policy exists is said
to be stabilizable. The closure of the set of all stabilizable
rate vectors is called the throughput capacity region of the
network [11], and a policy that is stabilizing for every arrival
rate vector in the interior of this region is called throughput-
optimal (T.O.). The set of arrival rates that are stabilizable
under a given fixed policy is called stability region of the
policy.

B. Path Graph interference networks

The first system we will study in the subsequent sections is
modelled by N parallel queues (see Fig. 1). The scheduling
constraints are the same as the second model in Tassiulas
and Ephremides 1994 [1], namely that Queue i and Queue
i + 1 cannot be served simultaneously for 1 ≤ i ≤ N − 1.
These interference constraints enforce the following rule on
the offered service process S(t), ∀t ≥ 0

Si(t) + Si+1(t) ≤ 1, ∀t ≥ 0, 1 ≤ i ≤ N − 1. (2)

The conflict graph associated with the system is a called path
graph [19], [20]. Standard analysis [11] show that the capacity
region of this network is the set

ΛN :=
{
λ ∈ RN

+ | λi + λi+1 ≤ 1, ∀1 ≤ i ≤ N − 1
}
, (3)

whose interior, Λo
N , is the set of all stabilizable rate vectors.

MOHAN-ETAL19REDUCED-STATE-OPTIMAL-MEDIUM-ACCESS-CONTROL, TON SUBMISSION, 2 COLUMN 4

C. The Cluster-of-Cliques (CoC) graph networks
In the remainder of the paper, we will refer to the con-

flict graph associated with a collocated network, i.e., a fully
connected graph or subgraph, as a clique. The system under
consideration comprises multiple cliques and the exact nature
of the interference relations across cliques are described in
detail below. The number of packets arriving to Queue j in
Clique i at time t is denoted by the random variable Ai, j(t). As
before, Qi, j(t), the backlog of Queue j in Clique i is measured
at t+, t ≥ 0, i.e., just after the arrival. Once again, as before,
for every (i, j),

Qi, j(t + 1) = Qi, j(t) − Di, j(t) + Ai, j(t + 1)
= (Qi, j(t) − Si, j(t))+ + Ai, j(t + 1), ∀t ≥ 0.

Depending on the underlying conflict graph, the CoC net-
works studied in this paper are broadly classified into two
classes

Star-of-Cliques networks (SoC): Consider an interference
graph consisting of a central fully-connected subgraph (central
clique) surrounded by N − 1 cliques (see Fig. 2b). In other
words, the network’s conflict graph consists of N cliques
denoted C1, . . . , CN , and clique Ci consists of Ni vertices –
an arbitrary number of cliques each having arbitrarily many
communication links (queues). Transmissions in C1 interfere
with those in all other cliques while the transmissions in
Ci, i ≥ 2 interfere with those in C1 only. Coming to the
offered service processes, for any two queues Qi, j and Qk,l

in the system, the interference constraints enforce the rule

Si, j(t) + Sk,l(t) ≤ 1, ∀t ≥ 0, if i = k, or i = 1, or k = 1. (4)

Let N ≡
∑N

i=1Ni denote the total number of queues in the
system. The capacity region of this system is given by

Λ
(N)
s :=

λ ∈ RN+
���� N1∑
j=1

λ1, j

+

Ni∑
k=1

λi,k ≤ 1, i ∈ {2, · · · , N}

}
(5)

(the subscript s highlights the fact that this is the Star-of-
Cliques model).

Linear-Array-of-Cliques (LAoC): This system consists of
N cliques C1, C2, · · · , CN , but unlike the SoC model, all
transmissions in Ci−1 interfere with those in Ci, i ∈ {2, · · · , N}
and vice-versa (see Fig. 2a). As in the SoC model, Clique
Ci comprises Ni queues and N ≡

∑N
i=1Ni denotes the

total number of queues in the system. Since transmissions
in adjacent cliques interfere with each other, for the offered
service processes of any two queues Qi, j and Qk,l in the
system, we have

Si, j(t)+ Sk,l(t) ≤ 1, ∀t ≥ 0, if k = i+ 1, ∀1 ≤ i ≤ N − 1. (6)

The capacity region of this system is given by

Λ
(N)
l

:=
λ ∈ RN+

���� Ni∑
j=1

λi, j

+

Ni+1∑
k=1

λi+1,k ≤ 1, i ∈ {1, · · · , N − 1}

}
(7)

(the subscript l highlights the fact that this is the Linear-
Array-of-Cliques model). As before, the vector S(t) :=
[S1(t), . . . , SN(t)] ∈ {0, 1}N is called an activation vector if
it satisfies the constraints in (4) and (6) in the SoC and LAoC
systems, respectively. We now begin our study with path graph
interference networks.

III. SCHEDULING IN PATH GRAPH MODELS

A. Maximum Size Matching (MSM) Policies

The sets of transmitters and receivers can be viewed as
nodes in a bipartite (communication) graph, whose edges
are the links between these transmitters and receivers, see
Fig. 1. The link activation constraints are superimposed on
the bipartite communication graph. With this structure in mind,
and to conform to standard terminology from bipartitite graphs
[21], the following definition holds.

Definition. A policy π is a Maximum Size Matching (MSM)
policy if in every slot the policy schedules the maximum
number of links with nonempty transmitter queues subject to
the interference constraints.

For example, in a path graph network with N = 7 queues,
if Q(t) = [1, 2, 0, 0, 4, 3, 3], a policy that schedules queues
1, 5 and 7 or 2, 5 and 7 is MSM while a policy that schedules
queues 1, 7 only, is not MSM. It might be expected that the
policy must schedule as many queues as possible to maximise
throughput and minimise delay. Indeed, it is shown in [1]
that any policy defined on such path-graph networks can be
improved into an MSM policy that will provide stochastically
better delay. Interestingly, we show later that even non-MSM
policies can be stabilising.

In this paper, we will refer to Queues 1 and N in a path
graph as the “outer” queues and the other N − 2 queues as
the “inner” queues. The inner queues are, in a sense, more
constrained for scheduling, since they cannot be served in
any slot in which either adjacent queue is scheduled, while
service to Queue 1 depends only on whether Queue 2 is being
served, which makes it less constrained from the perspective
of service.

Lem. 4.1, in [1], defines a class of policies that is more
restrictive than MSM that can be described informally and
succinctly as follows.

1) the policy should be MSM, and
2) the policy should prioritize inner queues over outer

queues while breaking ties.
Specifically, the authors provide a sufficient but not neces-
sary condition for an activation vector to serve the largest
number of nonempty queues in a slot. Recall that ζ (t) =
[I{Q1(t)>0}, . . . , I{QN (t)>0}] and define U(ζ (t)) ⊂ V as the set
of all activation vectors that serve the largest number of queues
in slot t when the occupancy vector is ζ (t). With this, one
simply needs to ensure that in every slot, the policy chooses
activation vectors only from U (ζ) , to ensure that it is MSM.
In fact, we will show that in several interference graphs, ζ (t)
is sufficient not only for stability but also for delay optimality.

Notation: Classes of scheduling policies
• Π(N): the class of all policies.

MOHAN-ETAL19REDUCED-STATE-OPTIMAL-MEDIUM-ACCESS-CONTROL, TON SUBMISSION, 2 COLUMN 5

(a) The conflict graph associated with a Linear-Array-of-Cliques (LAoC)
network. While this is clearly neither fully connected nor a path-graph network,
we will show how to extend ideas from the analysis of path-graph networks to
construct scheduling protocols for such networks.

(b) The conflict graph associated with a Star-of-Cliques (SoC) network. A dotted
line connecting cliques Ci and Cj means that transmissions in the two cliques
cannot take place simultaneously.

Fig. 2: Cluster-of-Cliques networks.

• Γ
(N)
M : the class of all MSM policies.

• Π
(N)
M : the class of all policies that take only the occupancy

vector ζ (t) as input and activate the largest number of
non empty queues in every slot, i.e., MSM policies that
require only the empty or nonempty status of the queues
in the network. We will call the policies that use only
ζ (t) Queue Non-emptiness Based (QNB) policies; see
Sec. III-B.

• Π̃(N): the class of all MSM policies within Π(N)M that
additionally break ties in favour of inner queues (see
condition 2 earlier in this subsection).

Note that Π(N)) Γ(N)M) Π
(N)
M) Π̃(N). Going back to our

7-queue example, when ζ (t) = [1, 1, 0, 0, 1, 1, 1], policies that
choose S(t) = [1, 0, 0, 0, 1, 0, 1] can be in Π(7)M but not in Π̃(7),
while those that choose S(t) = [0, 1, 0, 0, 1, 0, 1] can be in Π̃(7).

B. Queue Nonemptiness-Based (QNB) Scheduling
In the previous subsection we defined “queue nonemptiness

based” policies, i.e., those that require only the knowledge of
the occupancy vector, ζ (t). Clearly, this contains much less
information than the vector Q(t) that MaxWeight requires.
While ζ (t) needs only N bits per slot for encoding, Q(t) may
require an arbitrarily large number of bits per queue per slot,
depending on the buffer size and quantization used. So now,
π = {µ, µ, · · · } with µ : {0, 1}N → V ({0, 1}N , the set of
all activation vectors.

Although it is well-known that fully-connected interfer-
ence graphs admit throughput-optimal, queue nonemptiness-
based scheduling algorithms, (e.g., schedule any nonempty
queue) it is not immediately clear how to stabilize other
interference graphs with reduced state policies. Moreover, it
is not clear if using a reduced state scheduler automatically
ensures delay optimality, since even MaxWeight, which uses
complete knowledge of Q(t) in every slot, is only known to
be asymptotically delay optimal in such networks [22].

We now provide a key sufficient condition for a scheduling
policy, that guarantees throughput-optimality. This result will
form the basis for constructing strongly stable policies that use
only {ζ (t), t ≥ 0}, throughout the remainder of the paper.

Lemma 1. Consider the class of systems described in
Sec. II-B, and define property P as

Di(t) + Di+1(t) = 0 ⇐⇒ Qi(t) +Qi+1(t) = 0, (P)

for all t ≥ 0, and for 1 ≤ i ≤ N − 1. Any policy that satisfies
property P in every slot t, is throughput-optimal.

Remark. Note that condition (P) depends only on the reduced
state ζ (t). In words, (P) reads: “for a pair of neighboring
queues, there is no departure from either of these queues if
and only if both the queues are empty.” One direction is clear:
when both queues are empty there can be no departures. For
example, with N = 4 and ζ (t) = (1, 1, 1, 1), S(t) = (1, 0, 1, 0)
satisfies condition (P), but S(t) = (1, 0, 0, 1) does not.
Also note that extensions of this property for the cluster-of-
cliques system will be discussed and presented in Sec. VII,
when we take up a detailed study of these conflict graphs.
PROOF SKETCH. The proof of Lem. 1 is based on a novel
Lyapunov function L(t) : NN → R+, defined as

L(Q(t)) :=
N−1∑
i=1
(Qi(t) +Qi+1(t))2. (8)

Instead of showing negative drift per queue state, as is common
in the analysis of several MaxWeight-style algorithms, we
provide an averaging argument to show overall negative drift
of the Lyapunov function, and appeal to the telescoping sum
technique to prove strong stability. The proof is deferred to
Sec. XI-D in the supplementary material.

IV. PATH GRAPH CONFLICT MODEL WITH N = 3:
QNB SCHEDULING

In this section, we first completely characterize Π(3)M and
the subclass Π̃(3), and explore stability and delay optimality
for this system. This study will provide some insights into the
nature of MSM policies in general and, more importantly, in
this process, the policies we propose here will act as building
blocks for policies for larger-N systems. Before we embark on
this analysis, we would like to make a few preliminary obser-
vations about Π(3). For the reader’s convenience a glossary of
notation is provided in the supplementary material: XI-B.

Note that with 3 queues, in any given slot t, a policy can
choose either S(t) = [1, 0, 1] which serves Queues 1 and 3,
or [0, 1, 0] which serves Queue 2. So, a queue nonemptiness-
based policy maps every state vector ζ (t), of which there are
8 alternatives, to one of these two activation vectors, giving
us 28 = 256 QNB policies in all. Suppose | A | denotes the
cardinality of set A. It is easily shown that upon imposing the
MSM condition, this number reduces to 4, i.e., |Π(3)M | = 4 in
our techreport [23, Sec. V].

Depending on the mapping from ζ (t) to the activation
vector, we denote the 4 MSM policies π

(3)
TD, π

(3)
BU, π̃

(3)
IQ
, π
(3)
OQ

.
We will follow the scheme below in the remainder of the paper.

MOHAN-ETAL19REDUCED-STATE-OPTIMAL-MEDIUM-ACCESS-CONTROL, TON SUBMISSION, 2 COLUMN 6

• The subscripts “TD” and “BU” stand for “Top-Down”
and “Bottom-Up,” respectively and the reason for this
nomenclature will become apparent shortly.

• A “∼” in the superscript always represents a policy in
Π̃N , regardless of any subscripts. It indicates that these
policies always break ties in favor of inner queues. For
example, in Sec. IV-A, π̃(3)

IQ
∈ Π̃3.

TABLE I: Comparison of S(t) under π(3)TD , π(3)BU , π̃(3)
IQ

and π(3)
OQ

ζ = [ζ1(t), ζ2(t), ζ3(t)] S(t)
π
(3)
TD π

(3)
BU π̃

(3)
IQ

π
(3)
OQ

000 101 101 101 101
001 101 101 101 101
010 010 010 010 010
011 010 101 010 101

100 101 101 101 101
101 101 101 101 101
110 101 010 010 101
111 101 101 101 101

The complete descriptions of all these policies are given in
Table. I. Let us consider each of these policies in turn. In what
follows we will describe and analyze each of these policies in
detail. Notice from the entries corresponding to the rows ζ =
[011] and ζ = [110] that π(3)TD and π

(3)
BU are complementary

policies, and so are π̃(3)
IQ

and π
(3)
OQ

. Specifically, each of these
four policies induces the following priority order, which will
become clear when we consider each of them individually
later:

• π
(3)
TD gives decreasing priority to Queues 1, 2 and 3 in

that order. This policy clearly gives absolute priority to
Queue 1, i.e., serves Queue 1 whenever it is nonempty.
Hence, the subscript “TD,” since this policy, in a sense,
establishes a “Top-Down” priority (thinking of Queue 1
as the “top,” and Queue 3 as the “bottom”),

• π
(3)
BU gives increasing priority to Queues 1, 2 and 3 in

that order,
• π̃

(3)
IQ

gives maximum priority to Queue 2 the inner queue
(check rows in Table. I corresponding to ζ = [011] and
ζ = [110]), while not compromising the MSM property.
This is, of course consistent with the fact that it lies in
the Π̃(3) class where ties are always broken in favor of
inner queues, and

• π
(3)
OQ

prioritizes the two outer queues.

To begin with, we show that π
(3)
TD and π

(3)
BU are T.O.

Both these policies will later be used as building blocks to
construct T.O. policies for larger systems and are therefore
very important to our study.

Theorem 2. π(3)TD and π
(3)
BU are both throughput-optimal.

PROOF SKETCH. The proof of Thm. 2 uses the fact that under
π
(3)
TD , Queues 1 and 2 form a priority queueing system and

are stable. We then show that Queue 3 is served “sufficiently
often” to ensure stability. π(3)BU simply swaps the priorities of
Queues 1 and 3 and its proof proceeds mutatis mutandis. The
complete proof is available in Sec. XI-E.

The rest of this section is organized as follows. In Sec. IV-A
we study the stability and delay performance of π̃(3)

IQ
. We then

analyze the stability of π(3)
OQ

in Sec. IV-B and show that it

is, in fact, unstable. We then study a non-MSM policy π
(3)
IQ

,
and show it to be T.O. This policy is used as a building
block in policies for larger path graph systems later. Finally,
in Sec. IV-D we study a version of the “Flow-in-the-Middle”
problem, an interesting phenomenon commonly observed in
contention access networks, show that path graph networks
also exhibit this behavior and analyze its consequences.

A. Analysis of π̃(3)
IQ

This policy can be restated as follows.
At time t:
1) If Q1(t) > 0 and Q3(t) > 0, then S(t) = [1, 0, 1].
2) Else, if Q2(t) > 0, then S(t) = [0, 1, 0].
3) Else S(t) = [1, 0, 1].
We begin analyzing the policy by proving that it is Through-

put Optimal.

Theorem 3. π̃(3)
IQ

is throughput-optimal.

PROOF SKETCH. The proof of this result involves showing
that π̃(3)

IQ
satisfies (P) in Lem. 1 and is therefore throughput-

optimal. The proof is available in Sec. XI-F.

We next turn to the delay performance of the policy π̃
(3)
IQ

.
Thm. 4.2 in [1] defines a projection operator L : Π(N) →
Γ
(N)
M that takes any policy π ∈ Π(N) and produces an MSM

policy, L(π). It is then shown that the sum queue length with
this MSM policy L(π) is stochastically smaller than with π.
Specifically, if Qπ(t) denotes the backlog induced by some
policy π, then Thm. 4.2 in [1] shows that when the systems
upon which π and L(π) act are started out in the same initial
state and the arrivals have the same statistics, then

N∑
i=1

QL(π)
i (t)

st
≤

N∑
i=1

Qπ
i (t), ∀t ≥ 0, (9)

where st denotes stochastic ordering. Notice that in the above
stochastic ordering relation is required to hold for any arrival
rate vector in the system’s capacity region. Extending this
gives rise to the concept of a Uniformly Delay Optimal Policy
(in the literature, this is also referred to as Sample-Path
Optimality [24], [25]):

Definition. For a path graph interference network with N
queues, a policy π∗ ∈ Π(N) is said to be Uniformly Delay
Optimal if, given any policy π ∈ Π(N), when the systems
upon which π and π∗ act are started out in the same initial
state and with the same arrivals statistics and for every arrival
rate λ ∈ ΛN,

N∑
i=1

Qπ∗

i (t)
st
≤

N∑
i=1

Qπ
i (t), ∀t ≥ 0. (10)

In [1, Remark 2, pp. 353], it is stated that for N = 3 there
is exactly one MSM policy and that, as a result of Thm. 4.2
therein, is also sum queue length optimal (in the stochastic

MOHAN-ETAL19REDUCED-STATE-OPTIMAL-MEDIUM-ACCESS-CONTROL, TON SUBMISSION, 2 COLUMN 7

ordering sense). It is clear, however, that for N = 3 there
are 4 MSM policies. Indeed, the unique MSM policy that
the authors refer to in [1] is π̃(3)

IQ
, which also prioritises inner

queues. However, the projection operator L(·) does not ensure
inner queue prioritisation i.e., does not ensure condition 3 in
Lem. 4.1 therein. Thus using Theorem 4.2 in [1], in the present
context, we can only conclude that that any one of the MSM
policies could be delay optimal. It requires a further step in
the proof to show that π̃(3)

IQ
is, indeed, the unique uniformly

delay optimal policy for N = 3. We proceed to do so below.

Theorem 4. For any policy π ∈ Π(3), let the system backlog
vector at time t be denoted by Qπ(t) and the backlog with
π̃
(3)
IQ

be denoted by Qπ̃
(3)
IQ (t). Also let Qπ(0) = Qπ̃

(3)
IQ (0). Then,

3∑
i=1

Q
π̃
(3)
IQ

i (t)
st
≤

3∑
i=1

Qπ
i (t), ∀t ≥ 0, (11)

where “st” denotes stochastic ordering.

PROOF SKETCH. The proof technique is essentially the same
as that of Thm. 4.2 in [1], except that we make the observation
that a key step in that proof has more general applicability. It
involves constructing a sequence of policies each of which
shows better delay than its predecessor and than a general
policy π. The limit of this sequence of policies is then shown
to uniquely be π̃(3)

IQ
. The proof is deferred to Sec. XI-G.

Remark. Another important consequence of the operator L
satisfying (9) is that whenever a given policy π is throughput-
optimal, so is L(π). Please refer [23, Sec. V] for details.
Directly analyzing the stability and delay properties of the
policies we propose in the sequel is very difficult. We therefore
develop indirect methods to analyze them by first analyzing
nonMSM policies whose behavior can be understood easily,
but that do not show desirable delay properties and study the
proposed policies as modifications (such as projection) of these
simpler policies, with the modifications giving rise to better
delay performance.

B. Analysis of π(3)
OQ

This policy prioritizes the outer queues and can be restated
as follows.

At time t:

1) If either Q1(t) > 0 or Q3(t) > 0, then S(t) = [1, 0, 1].
2) Else S(t) = [0, 1, 0].
It turns out, analogous to the observation by McKeown et al

[26] that this MSM policy is, in fact, not throughput-optimal.

Proposition 5 (MSM but not throughput-optimal). π(3)
OQ

is not
throughput-optimal.

The proof of this result involves constructing an arrival rate
vector for which the offered service rate to one of the queues is
strictly smaller than the arrival rate. It is available in Sec. XI-H
of the Appendix. Once again, this proof technique is important
and we will repeatedly use it in the sequel.

This completes the characterization of Π(3)M .

C. Policies outside Π(3)M
We now propose and analyze a policy that we denote π(3)

IQ
,

and show the rather surprising result that it is throughput-
optimal despite not being MSM. This stability comes from
the fact the policy prioritizes the inner queue. However, since
it is not MSM, its delay performance is not very good (see
the simulation results in Sec. IX). This policy will become
important shortly as a fundamental building block while
constructing policies for larger systems using a novel Policy
Splicing technique.

At time t
1) If Q2(t) > 0, then S(t) = [0, 1, 0],
2) Else S(t) = [1, 0, 1].
Since ζ (t) = [1, 1, 1] 7→ [0, 1, 0], this policy is not MSM.

However, we have

Proposition 6 (A non-MSM but throughput-optimal policy).
π
(3)
IQ

is throughput-optimal.

PROOF. The key tool behind the proof of this result is the
throughput-optimality Lem. 1. It is easily checked that π(3)

IQ
satisfies (P) in every slot and thus, by Lem. 1, is throughput-
optimal.

D. A Randomized Policy: The Flow-in-the-Middle Problem

The “Flow-in-the-Middle” problem, or FIM for short, is a
practical problem faced by all networks that employ CSMA
at the MAC layer. It refers to the situation in which, the
flow (or link) within the interference range of two adjacent
flows, i.e., in the middle (Queue 2, in our model), can
remain starved of service for long periods of time in the
presence of uncoordinated transmissions. This problem has
been studied in detail both analytically and experimentally in
asynchronous continuous-time systems in the literature [27]–
[32]. In this section, we aim to model such a scenario, albeit
in slotted time, and understand whether such a phenomenon
can occur in the network under study, which naturally leads
to the central link (or flow) being starved for extended peri-
ods of time. Recall that the occupancy vector is defined as
ζ (t) :=

[
I{Q1(t)>0}, I{Q2(t)>0}, I{Q3(t)>0}

]
. Consider the policy

ρ
(3)
γ indexed5 by a randomization parameter γ ∈ [0, 1] defined

as follows.
At time t:
• If ζ (t) = [1, 1, 1] or [1, 0, 1], then S(t) = [1, 0, 1].
• Else, if ζ (t) = [1, 1, 0] or [0, 1, 1], then

1) S(t) = [1, 0, 1] w.p. 1 − γ and
2) S(t) = [0, 1, 0] w.p. γ.

• Else, S(t) = ζ (t).
Clearly, this policy is a randomization between the two

3-queue MSM policies π̃
(3)
IQ

and π
(3)
OQ

. A comparison of the

definitions of ρ
(3)
γ , π̃

(3)
IQ

and π
(3)
OQ

clearly shows that ρ
(3)
γ

essentially chooses π̃(3)
IQ

w.p. γ and π
(3)
OQ

w.p. 1 − γ. By this

we mean that in every time slot, π̃(3)
IQ

and π
(3)
OQ

choose their

actions and ρ
(3)
γ then selects the former w.p. γ and the latter

5We use ρ instead of π to highlight the fact that this is a randomized policy.

MOHAN-ETAL19REDUCED-STATE-OPTIMAL-MEDIUM-ACCESS-CONTROL, TON SUBMISSION, 2 COLUMN 8

w.p. 1−γ. In [23, Sec. VI] we analyze this policy and establish
two important results: (i) that ρ(3)γ is unstable for γ ∈ [0, 0.5).
We also conjecture that ρ(3)γ is unstable for all γ ∈ [0, 1) but
are unable to prove this as of now. Simulation results (Sec. IX)
seem to indicate this as well, and (ii) Consider the set of arrival
rates

Λ
(3)
γ :=

{
λ ∈ R3

+

����λ1 + λ2 < γ, λ2 + λ3 < γ

}
. (12)

For every γ ∈ (0, 1], ρ(3)γ stabilizes all rate vectors in Λ(3)γ . It
follows that the stability region of ρ(3)γ ↗ Λ3 as γ ↑ 1.

V. PATH-GRAPH MODELS WITH N > 3: POLICY SPLICING
FOR THROUGHPUT OPTIMAL QNB SCHEDULING

The previous section introduced scheduling policies that rely
only on the empty-nonempty status of queues and examined
the behavior of such policies on a small network. We will use
the knowledge gained therein to now propose such policies
for larger systems while still confining ourselves to path-
graph interference networks. We introduce a “policy splicing”
technique to construct MSM policies for large systems by
splicing together MSM policies for smaller systems.

A. Top-down and Bottom-up scheduling on N queues

Recall the “Top-Down” and “Bottom-Up” policies, π(3)TD and
π
(3)
BU , discussed in Sec. IV.For a general path-graph network

with N queues, the “Top-Down” policy, π(N)TD , which maps an
occupancy vector ζ (t) to an activation vector s(t), is defined
as follows. Before defining the policy, we assume the presence
of two virtual queues, Queue 0 and Queue N + 1, with
Q0(t) = QN+1(t) = s0(t) = sN+1(t) = 0, ∀t ≥ 0. This is
just to facilitate compact writing of the policy. These virtual
queues do not play any actual role in the system. Recall that
if Q(t) = [Q1(t), · · · ,QN (t)] is the queue length vector at
time t, then the occupancy vector at time t is defined by
ζ (t) = [I{Q1(t)>0}, · · · , I{QN (t)>0}]. The π(N)TD policy: At time t
• For j=1:N

1) If ζj(t) = 1 and sj−1(t) = 0, then sj(t) = 1.
2) Else if ζj(t) = 1 and sj−1(t) = 1, then sj(t) = 0.
3) Else if ζj(t) = 0, then sj(t) = 0.

It is easy to see that this produces π(3)TD for N = 3, and π(N)BU
is defined similarly. The following important property follows
from the definition.

Proposition 7. π(N)TD and π
(N)
BU are MSM for all N ∈ N.

PROOF. Refer Sec. XI-I in the supplementary material.
Before we venture into proving the throughput-optimality

of π(N)TD and π
(N)
BU , we use these two policies to describe the

policy splicing process (see Fig. 3).

B. Splicing TD and BU policies

Consider a system of 2N−1 queues, N ≥ 1. In Algorithm 1,
we splice the TD and BU policies and construct a scheduling
policy6 π

(2N−1)
SP

on this system. Note: We assume the presence
of the two virtual queues Queue 0 and Queue 2N here as well.

Fig. 3: Illustrating the manner in which the policies π
(N)
TD and π

(N)
BU are

spliced together to form the non-MSM policy π(2N−1)
SP

. Note that the splicing is
consistent in that even though the two sub-policies schedule over overlapping
sections of queues, their decisions do not contradict each other.

Input: Binary occupancy vector ζ(t);
Output: Queue activation vector S(t);
Initialize: j = 1, time= t, S(t) = 0;
if ζN (t) = 1 then

SN (t) = 1, SN−1(t) = 0 and SN+1(t) = 0
else

for j = N − 1 : 1 do
if ζj (t) = 1 and S j+1(t) = 0 then

S j (t) = 1
else

if ζj (t) = 1 and S j+1(t) = 1 then
S j (t) = 0

else
if ζj (t) = 0 then

S j (t) = 0
end

end
end

end
for j = N + 1 : 2N − 1 do

if ζj (t) = 1 and S j−1(t) = 0 then
S j (t) = 1

else
if ζj (t) = 1 and S j−1(t) = 1 then

S j (t) = 0
else

if ζj (t) = 0 then
S j (t) = 0

end
end

end
end

end
Algorithm 1: The spliced policy π

(2N−1)
SP

. The loop corresponding
to j = N − 1 : 1 induces π(N)BU on Queues N through 1, while the latter
loop induces π(N)TD on Queues N through 2N, as depicted in Fig. 3.

Before proceeding to analyze this policy, we first need to make
sure it really is a well-defined policy, i.e., it provides a valid
activation vector for each of the 22N−1 possible occupancy
vectors.

Lemma 8. π(2N−1)
SP

, as defined above, is well-defined.

PROOF. See Sec. XI-K in the supplementary material.
A quick comparison with the definitions of π(N)TD and π

(N)
BU

shows that π(2N−1)
SP

induces the former two policies on the
subsets {N, N + 1, · · · , 2N − 1} and {1, 2, · · · , N} respectively.
The following result follows from the definition of the splicing
process. Recall from Sec. II-B that the capacity region of

6The subscript “SP” refers to the fact that this is a Spliced Policy.

MOHAN-ETAL19REDUCED-STATE-OPTIMAL-MEDIUM-ACCESS-CONTROL, TON SUBMISSION, 2 COLUMN 9

Fig. 4: Illustrating steps 3 and 4 of the general policy splicing process. The
QNB, non-MSM policy π

(2N−1)
SP

is first projected into Π(2N−1)
M to get the

MSM policy π
(2N−1)
M ≡ L

(
π
(2N−1)
SP

)
. Thereafter, π(2N−1)

M is modified to

prioritize inner queues to get π̃(2N−1) ∈ Π̃(2N−1).

a path-graph interference network consisting of N queues is
defined by

ΛN :=
{
λ ∈ RN

+

����λi + λi+1 < 1, 1 ≤ i ≤ N − 1
}
, N ∈ N. (13)

Theorem 9. For every N ∈ N, such that π(N)TD and π
(N)
BU are

throughput-optimal over ΛN , π(2N−1)
SP

is throughput-optimal
over Λ2N−1.

PROOF. See Sec. XI-J in the supplementary material.

Remark. We will discuss the stability of our TD and BU
policies in Sec. V-D. It is important to note that although π(N)TD

and π
(N)
BU are MSM, π(2N−1)

SP
is not. For example, consider an

occupancy vector such that ζN−1(t) = ζN (t) = ζN+1(t) = 1
and ζj(t) = 0, ∀ j ∈ {1, · · · , N − 2} ∪ {N + 2, · · · , 2N − 1},
i.e., the central queue and both adjacent queues are nonempty
and all other queues are empty. Any MSM policy would
produce the activation vector with SN−1(t) = SN+1(t) = 1
and Sj(t) = 0, ∀ j < {N − 1, N + 1}, whereas π(2N−1)

SP
produces

the activation vector with SN (t) = 1 and Sj(t) = 0, ∀ j , N
thereby scheduling one less queue for transmission.

C. Mapping π
(N)
SP

to an MSM policy

To reduce delay, one needs to extract an MSM policy from
this spliced policy. Informally, we project the policy onto the
space Π(N)M of MSM policies using the projection operator
L(·), described in Sec. IV-A and defined in [23, Sec. V.C].
Thereafter, we use some observations based on Condition 2 in
Sec. III-A to improve the delay performance of this projected
MSM policy to finally obtain a policy in Π̃(N). Figures 3 and
4 give a pictorial description of the entire process.

Remark. Another important observation is that π(2N−1)
SP

is also
a stabilizing policy for a system with 2N − k queues, with
1 ≤ k ≤ 2N . One simply needs to begin with a system of
2N−k queues and append k virtual queues that start out empty
and receive no arrivals in any time slot and run π

(2N−1)
SP

on
them. So, the focus of the remainder of this section is proving
the throughput-optimality of the Top-Down and Bottom-Up
priority policies.

To summarise, the general policy splicing process involves
the following steps (see Figures 3 and 4).

General splicing procedure:
1) Proposing Top-Down (TD) and Bottom-Up (BU) poli-

cies for the N-queue system,
2) Splicing them together to produce a non-MSM policy

for the (2N − 1)-queue system,
3) Projecting the spliced policy to get an MSM policy,
4) Modifying this policy to break ties in favor of inner

queues to get a policy with better delay performance
than its MSM predecessor. For example, with N = 5
queues and ζ (t) = [1, 1, 1, 1, 0], policies that choose
S(t) = [1, 0, 1, 0, 0] and S(t) = [0, 1, 0, 1, 0] are both
MSM, but only the latter breaks ties in favor of inner
queues7.

We have already proposed and analyzed two priority poli-
cies for 3-queue path graph networks that we named π(3)TD and
π
(3)
BU . As a quick illustration of the above procedure, in [23,

Sec. VI.A] we explicitly show the entire procedure of how
low delay policies for 2 × 3 − 1 = 5-queue systems can be
constructed from these two 3-queue policies. Due to space
constraints, we are unable to present the details in this paper.

D. Policies for N = 7, 8 and 9 through Policy Splicing

The Top-Down and Bottom-Up policies π(4)TD and π(4)BU will,
as already discussed, be used to develop stabilizing policies
for systems with N = 2×4−1 = 7 queues. An equivalent way
to define the Top-Down policy π

(4)
TD is as below.

At time t:
1) If Q1(t) > 0,

a) If Q3(t) > 0, s(t) = (1, 0, 1, 0).
b) Else8, s(t) = (1, 0, 0, 1).

2) Else, if Q2(t) > 0, S(t) = (0, 1, 0, 1).
3) Else,

a) If Q3(t) > 0 S(t) = (1, 0, 1, 0).
b) Else, S(t) = (1, 0, 0, 1).

Proposition 10. π(4)TD is throughput optimal.

PROOF. Notice that as far as the subsystem
[Q1(t),Q2(t),Q3(t)] is concerned, this policy reduces to
π
(3)
TD . That is, π(4)TD restricted to the first three queues is π(3)TD .

So, that subsystem is strongly stable.
The remainder of the proof of the proposition can be found

in Sec. XI-L in the supplementary material.
It is easy to see that the Bottom-Up policy, π(4)BU , defined

in a symmetric manner, giving highest priority to Queue 4
and lowest to Queue 1, is also T.O. We then define π

(7)
SP

as
described in Sec. 1. Clearly, since π(7)

SP
restricted to Queues 1,

2, 3, 4 is just π(4)BU and restricted to Queues 4, 5, 6, 7 is π(4)TD,

using the fact that both π
(4)
TD and π

(4)
BU are throughput-optimal

and Thm. 9, we conclude that π(7)
SP

is throughput-optimal as
well. However, since π(7)

SP
is not MSM, some modifications are

required to improve delay performance. This simply requires
executing Steps 3 and 4 in the general splicing procedure V-C.

7For further details, see Lem. 19 in the Appendix
8Strictly speaking, from the definition of π(N)TD above, s4(t) should be set

to 1 iff ζ4(t) = 1. But setting s4(t) = 1 when ζ4(t) = 0 doesnt violate
interference constraints since it means that Queue 4 is empty.

MOHAN-ETAL19REDUCED-STATE-OPTIMAL-MEDIUM-ACCESS-CONTROL, TON SUBMISSION, 2 COLUMN 10

In a similar manner we will now show that the top-down
and bottom-up policies for the 5 queue system (π(5)TD and π(5)BU)
are both throughput-optimal, which will immediately yield a
stabilizing policy (π(9)

SP
) for the 9-queue system.

Proposition 11. π(5)TD is throughput-optimal.

PROOF. This analysis closely follows our analysis of π(4)TD .
With π

(5)
TD we only need to prove that Queue 5 receives

“enough” service, since this policy restricted to the first
4 queues is just π

(4)
TD which, as we have just shown, is

throughput-optimal. The remainder of the proof of the propo-
sition can be found in Sec. XI-N.

The analysis of the bottom-up policy (π(5)BU) proceeds in
a symmetric fashion. This means that the 9-queue policy
π
(9)
SP

, that induces π(5)TD on queues 1, 2, 3, 4, and 5 and π
(5)
TD on

queues 5, 6, 7, 8 and 9, is throughput-optimal.

To summarize, in this section, we first proposed a gen-
eral procedure to generate MSM Top-Down and Bottom-Up
priority policies for a system with any N ∈ N queues. We
then showed how these policies can be combined to construct
policies for larger systems and provided a sufficient condition
for such a spliced policy to be throughput-optimal. We then
spliced the TD and BU policies for N = 4 and N = 5
queue systems and constructed stable QNB-MSM policies for
systems with up to N = 9 queues. We now move on to
analyzing the queueing delay performance of these policies.

VI. PATH-GRAPH CONFLICT GRAPHS WITH N > 3: DELAY
WITH QNB POLICIES

We now turn our attention to the vital aspect of delay. We
have already proved, in Thm. 4, that for the system with N = 3
queues, there exists a (unique) uniformly delay-optimal policy,
that we named π̃(3)

IQ
. The natural question to ask in this context

is if one can find a delay optimal queue nonemptiness-based
policy for larger systems as well. In this section, we will
answer this question in the negative.

Theorem 12. For all N ≥ 4, there does not exist any policy
in Π(N)M that is uniformly delay optimal over all of Λo

N .

The proof of this theorem has been omitted due to space
constraints, but we provide a short sketch below. The main
idea is to show that Π(4) does not contain any queue length
agnostic policy that is uniformly delay optimal over the entire
throughput capacity region Λ4 (the complete procedure is
detailed in [23, Sec. IX]). We begin by proving, in Prop. 19 in
[23], that the class of inner-queue prioritising MSM policies,
Π̃(4), does not contain any uniformly delay optimal policy.
Π̃(4) contains four policies which we show to be throughput
optimal by first showing them to be the result of a splicing
procedure involving one of the two priority policies π(3)TD or
π
(3)
BU , and π(3)

IQ
(defined in Sec. IV-C). We then prove a theorem

similar to Thm. 9 to establish throughput optimality. However,
we then show that none of these policies performs uniformly
better (or at least as good as) the others over all of Λ4.

Next, in Prop. 20 therein we show that policies in Π̃(4)

show better delay performance than those in Π(4)M . We already

know from (9) that the delay of any policy in Π(N) can be
improved by projecting it onto Π(N)M . Thus, Prop. 20 in [23],
along with (9), shows that delay optimal policies, when they
exist, must necessarily lie in Π̃(N). This observation, along
with the nonexistence of delay optimal policies in Π̃(4) are
used to prove the claim in Thm. 12.

VII. CLUSTER-OF-CLIQUES INTERFERENCE NETWORKS:
THROUGHPUT OPTIMAL SCHEDULING

We will now show that some of the scheduling policies
developed for path-interference graph networks extend in a
natural manner to policies for the SoC and the LAoC networks.
Notation: We denote policies designed for Star-of-Cliques
networks by “φ” and include an “(S)” in the superscript to
emphasize this. On the other hand, “θ” with and “(L)” in the
superscript specifies an LAoC network policy. We will begin
with centralized scheduling in SoC networks.

A. Scheduling in Star-of-Cliques Networks

Consider the following policy that we denote φ̃
(S)
IC

, which
is motivated by the 3-node path graph policy π̃

(3)
IQ

which we
discussed in Sec. IV-A. Recall that we defined N to be the
total number of queues in the network. In keeping with the
objective of developing queue nonemptiness-based policies, in
every slot, φ̃(S)

IC
maps the occupancy vector ζ (t) ∈ {0, 1}N to

an activation vector s(t) ∈ {0, 1}N . We define φ̃(S)
IC

as follows.
At each time t :
1) If

∏N
m=2

(∑
l∈Cm ζl(t)

)
> 0 serve any nonempty queue in

every clique {Cm, m ≥ 2} having nonempty queues.
2) Else, if

∑
l∈C1 ζl(t) > 0, serve any nonempty queue in C1.

3) Else, serve one nonempty queue (if it exists) in each of
{Cm, m ≥ 2} .

In words, the above policy states that at time t,
• if every peripheral clique has at least one non empty

queue, then serve one non empty queue in each of these
cliques,

• else, if the inner clique has a non empty queue, serve one
non empty queue in that clique,

• else, serve one non empty queue in every peripheral
clique that has a non empty queue.

Proposition 13. φ̃(S)
IC

is throughput-optimal.

PROOF. The main idea behind the proof of this proposition
is to prove a more general version of Property P (which we
defined in Lem. 1 for path-graph networks) and use and use the
total per-clique backlog as inputs to a new Lyapunov function
to prove strong stability. See XI-O for details.

Towards the end of our discussion on queue nonemptiness-
based scheduling for path-graph networks with N = 3 queues
(see Sec. IV-C), we defined a non-MSM policy π(3)

IQ
. Extending

this to the SoC network model gives us a second queue
nonemptiness-based policy φ

(S)
IC

, which we define as follows.
At time t,

1) If
∑

l∈C1 ζl(t) > 0, serve any nonempty queue in C1.
2) Else, serve one nonempty queue (if it exists) in each of
{Cm, m ≥ 2} .

MOHAN-ETAL19REDUCED-STATE-OPTIMAL-MEDIUM-ACCESS-CONTROL, TON SUBMISSION, 2 COLUMN 11

Proposition 14. φ(S)
IC

is throughput-optimal.

PROOF. Once again, the proof of this result rests on proving
the new version of (P) for this policy, followed by Lyapunov
analysis. The proof is available in Sec. XI-T.
Remark. We end this section with some remarks about imple-
mentation and delay performance. From the point of view of
implementation, the latter, φ(S)

IC
is actually easier to implement

than φ̃
(S)
IC

. We discuss this in detail in Sec. VIII which is
completely dedicated to implementation issues. However, φ̃(S)

IC
has its own advantages. With respect to the packet delay, recall
that we had used a stochastic ordering argument to prove
the delay optimality of Policy π̃

(3)
IQ

and later used a similar
technique to show the absence of uniformly delay-optimal
queue nonemptiness-based policies for path-graph networks.
Along similar lines, we compare the delays induced by φ̃

(S)
IC

and φ
(S)
IC

below.

1) Comparison of delay with φ̃
(S)
IC

and φ
(S)
IC

:

Proposition 15 (Stochastic dominance of system backlog).
Let the system backlog at time t ≥ 0 with φ

(S)
IC

and φ̃
(S)
IC

be denoted by Qφ
(S)
IC (t), and Qφ̃

(S)
IC (t) respectively. Then, with

Qφ̃
(S)
IC (0) s

= Qφ
(S)
IC (0), and arrivals to corresponding queues

having the same statistics in both systems,
N∑

m=1

Nm∑
j=1

Q
φ̃
(S)
IC

m, j (t)
st
≤

N∑
m=1

Nm∑
j=1

Q
φ
(S)
IC

m, j (t), ∀t ≥ 0. (14)

PROOF SKETCH. This proof proceeds along the same lines as
the proof of delay optimality of Policy π̃(3) that we presented in
Sec. XI-G. It can be found in Sec. XI-R in the supplementary
material.

We now begin our study of scheduling in LAoC networks,
and return to policies for Star-of-Cliques networks once again
when we shift our focus to decentralized implementation.

B. Scheduling in Linear-Arrays-of-Cliques
The technique we use to propose scheduling policies for

LAoC networks is the policy splicing technique we developed
in Sec. V. The proofs therein cannot be directly used to
assess the stability of policies designed for LAoC networks
since the proofs are designed for Bernoulli arrival processes to
queues and require some more work to be extended to handle
scheduling over cliques: however, one could argue that a clique
can, in essence, be treated as a queue with an arrival process
which is simply the sum of the arrivals to the constituent
queues. For example, Clique C1 in Fig. 2a can be treated as
a single queue with an arrival process that is the sum of the
processes to Queues Q1,1,Q1,2 and Q1,3 therein. The resulting
arrival process to the queue would then be a batch arrival
process with arbitrary batch size (there can be any number
of queues in a clique), and simple extensions of the proofs
supplied hitherto can be shown to suffice.

As before, we begin with Top-Down and Bottom-Up poli-
cies for the 3-clique LAoC and splice them to construct
policies for the LAoC’s with 4 and 5 cliques. Note, once again,
that we place no restrictions on the number of queues within
any clique.

1) Scheduling Policies for Systems with N = 3 Cliques:
The policy θ

(3L)
TD is described as follows.

At time t :
• If

∑N1
j=1 ζ1, j(t) > 0 schedule any non-empty queue in C1.

– If
∑N3

j=1 ζ3, j(t) > 0 schedule any non-empty queue in
C3.

• Else, if
∑N2

j=1 ζ2, j(t) > 0 schedule any non-empty queue in
C2.

• Else schedule any non-empty queue in C3.
In other words, if in slot t
• there is a non-empty queue in C1, then θ

(3L)
TD serves one

non-empty queue in C1 and C3.
• if C1 is empty but C2 has a non-empty queue in it, then
θ
(3L)
TD serves that queue.

• if C1 and C1 are both empty, then θ
(3L)
TD serves any non-

empty queue in C3.

Proposition 16. θ(3L)TD is throughput-optimal.

PROOF. This proof uses the ideas involved in proving the
throughput-optimality of π

(3)
TD and simply extends them to

incorporate batch arrivals. The proof is available in Sec. XI-S.

A similar proof shows that θ(3L)BU is also throughput-optimal.
2) Scheduling Policies for Systems with N = 4 and 5

Cliques: Now, by splicing together θ(3L)TD and θ
(3L)
BU , one can

construct stable policies for the system with 5 cliques and
hence, systems with 4 cliques. The spliced policy, θ(5L)

SP
is

defined as
At time t :
1) If

∑N3
j=1 ζ3, j(t) > 0 then schedule a nonempty queue in C3.

a) If
∑N1

j=1 ζ1, j(t)+
∑N5

j=1 ζ5, j(t) > 0 then schedule any
nonempty queue each in C1 and C5.

2) Else if
∑N2

j=1 ζ2, j(t) ×
∑N4

j=1 ζ4, j(t) > 0 then schedule a
nonempty queue each in C2 and C4.

3) Else if
∑N2

j=1 ζ2, j(t) ×
∑N5

j=1 ζ5, j(t) > 0 then schedule a
nonempty queue each in C2 and C5.

4) Else if
∑N4

j=1 ζ4, j(t) ×
∑N1

j=1 ζ1, j(t) > 0 then schedule a
nonempty queue each in C1 and C4.

5) Else schedule any nonempty queue each in C1 and C5.

Proposition 17. The policy θ
(5L)
SP

is throughput-optimal.

PROOF. See Sec. XI-P.

To summarize, in this section, we studied scheduling in
the Star-of-Cliques and Linear-Array-of-Cliques models that
could occur in IoT-type sensor network applications. Having
characterized the capacity region of such networks, we pro-
posed and analyzed multiple scheduling policies. However,
as mentioned before, these policies depend on being able to
find a nonempty queue in every slot in which the system is
not empty. While disseminating occupancy information across
the network is certainly not as expensive as sharing queue
length information (required by, say, the MaxWeight family of
scheduling algorithms), it raises the question of the existence
of policies can work with even less information. The following
section describes some preliminary attempts at achieving this
goal.

MOHAN-ETAL19REDUCED-STATE-OPTIMAL-MEDIUM-ACCESS-CONTROL, TON SUBMISSION, 2 COLUMN 12

Fig. 5: Implementing φ
(S)
IC

using the slot and minislot structures. It is
important to note that the number of minislots is O(1), i.e., does not scale
with the number of communication links the network. This results in constant
scheduling overhead, which is patently desirable.

VIII. SOME REMARKS ON DECENTRALIZED
IMPLEMENTATION

In this section, we discuss several ways in which the policies
developed and analyzed hitherto can be made amenable to
decentralized implementation. QNB policies, by definition,
only require the empty-non empty statuses of queues. While
this vector, ζ (t) by itself can be disseminated across the
network usingN bits9 in many cases this status can be inferred
using a simple hypothesis test and requires no information
exchange between queues. To accomplish this decentralized
state inference, we take the help of what are known as
minislots [16], [33] which we describe in detail, below. Note
that while we focus on SoC networks in this section, we also
address decentralized scheduling in LAoC networks in [23,
Sec. XI.D].
Transmission Sensing: We assume that all nodes transmit
at the same fixed power, and that the maximum internode
distance is such that every node in clique Cj, j ≥ 2 can sense
the power from a transmitting node in (the central) clique C1
and vice versa, as dictated by the interference constraints10.
Suppose a node has been scheduled to transmit in a slot. Then,
whether or not the node actually transmits can be determined
by the other nodes by averaging the received power over a
small time interval (akin to the “Clear Channel Assessment”
or CCA mechanism [34]). For reliable assessment, the interval
will need to be of a certain length, and the distance between
the nodes will need to be limited. As before, we refer to
this activity-sensing interval a minislot (see [16], [33] and
Fig. 5). Decentralized methods of implementing both φ(S)

IC
and

φ̃
(S)
IC

follow from the minislot structure. Define the occupancy
of Queue k in Clique j by ij,k(t) := I{Q j,k (t)>0} , and let
Ij(t) :=

∑
k∈Cj ij,k(t), j ≥ 1, indicate if Clique j has any

nonempty nodes at the beginning of time slot t. We will discuss
implementing φ

(S)
IC

in detail, and do the same for φ̃(S)
IC

in [23,
Sec. XI.C].

A. Decentralized Implementation of φ(S)
IC

At time t,
1) If I1(t) > 0, then one nonempty node from clique C1

is allowed to transmit (see Fig. 5). Nodes in the other

9This could potentially even be reduced to log2(N) bits using network
coding techniques – this is an important direction for future work.

10Obviously, for all 2 ≤ j, k ≤ N, nodes in Cj cannot sense transmissions
in Ck and vice versa.

Fig. 6: The system upon which the policy φ
(S)
CS

is analyzed. Qc (t) is the
central queue which has highest priority. This means that the queue is served
whenever it has packets, i.e., whenever the arrival Ac (t) = 1. This is indicated
by the red arrows that show access to the channel being granted by φ(S)

CS
to

Qc . However, when Qc (t) = 0, φ(S)
CS

enters Step 2 and serves the appropriate
queue in the peripheral cliques, as indicated by the black arrows.

cliques sense this transmission in the first minislot and
refrain from transmitting during that slot.

2) If no power is sensed in the first minislot, it means
I1(t) = 0, and each of the other cliques choose one
nonempty queue (if any) for transmission during that slot.

This, of course, assumes that one is somehow able to
identify a nonempty queue, if one exists, in each clique. So
this implementation is, by itself, centralized within a clique
and decentralized across cliques. We now propose methods to
determine which (nonempty) queue within a clique actually
gets to transmit in either of the two steps above.

One method is for the nodes in a clique to periodically
share occupancy information which could be accomplished
by having a sink node in every clique. The sink node of each
clique periodically aggregates occupancy information from
its nodes and uses it to schedule nonempty queues in some
order. We discuss this towards the end of this section, and in
Sec. VIII-B we propose and analyze a version of φ(S)

IC
that

requires no explicit information exchange between queues.

B. φ(S)
IC

without Occupancy Information: Towards Fully De-
centralized Policies

First consider a clique, say Ci , in isolation. This is, by itself,
a fully connected interference graph. Suppose the nodes in
Ci could determine the backlog of a node in Ci each time
it transmitted a packet11. Then, at the beginning of slot t,
the information common to all nodes in Ci would consist
of the number of slots Vi(t) since node i last transmitted12

and its backlog Qi(t − Vi(t)) at that instant. With this partial
information structure and equal arrival packet rates to the
queues, we have already shown in [16], that exhaustively
serving a nonempty queue minimizes mean delay. With ex-
haustive service, Qi(t − Vi(t)) is always 0, which obviates
the need to transmit queue lengths. When the queue under
service, called the incumbent in the sequel, becomes empty
we have already shown that scheduling node arg maxj∈CiVj(t)
is throughput-optimal, and under certain conditions, also mean
delay optimal. Motivated by this, we define another partial

11The backlog information could be quantized and contained in the packet
header, for example.

12If the node were empty at this instant, it wouldn’t have actually trans-
mitted anything. The others can infer its “emptiness” by sensing no power in
a minislot.

MOHAN-ETAL19REDUCED-STATE-OPTIMAL-MEDIUM-ACCESS-CONTROL, TON SUBMISSION, 2 COLUMN 13

information version φ(S)
CS

, of φ(S)
IC

below under the assumption
that the inner clique C1 has exactly one node, i.e., |C1 | = 1.
We refer to this queue as Queue c (see Fig. 6).

At time t :
1) If I1(t) > 0, then the queue in C1 transmits its packet.

Nodes in the other cliques sense this transmission in
minislot 1 (see Fig. 5) and refrain from attempting any
transmissions.

2) If no power is sensed in minislot 1, every clique Ci, i ≥ 2
does the following

a) The incumbent begins to transmit at the end of
minislot 1 if it is nonempty. The other nodes in Ci
sense this in
minislot 2 and refrain from attempting transmis-
sions.

b) If no power is sensed in minislot 2, then the incum-
bent is empty and arg maxj∈CiVj(t) is now allowed
to transmit.

Adding more minislots reduces chances of slot wastage, but
also reduces system throughput since it increases time wasted
in not actually transmitting a packet. Hence, this parameter
represents a tradeoff between throughput and delay. It is not
clear if this policy is throughput-optimal and we now provide
a formal argument.

Theorem 18. The policy φ
(S)
CS

is throughput-optimal.

PROOF SKETCH. The proof uses a Lyapunov drift argument
and invokes the Foster-Lyapunov theorem to prove that the
system backlog process Q(t) := [Q1(t), · · · ,QN(t)], t ≥ 0 is
positive recurrent. The details of the proof can be found in the
supplementary material in Sec. XI-U.

A couple of remarks before we present numerical results.

Remark. In [23, Sec. XI.D] we discuss how to implement
φ̃
(S)
IC

in a decentralized manner. As mentioned before, an-
other commonly used technique to reduce control traffic for
scheduling is to disseminate state information periodically.
In [23, Sec. XI.A,D] we develop a family

{
Φ
(S)
IC
(T), T ≥ 1

}
of such policies that take scheduling decisions based control
information obtained only every T time slots. We show that the
family is throughput-optimal and also that they display some
interesting delay properties with respect to the dissemination
period, T .

IX. SIMULATION RESULTS

In this section we numerically compare the performance
of the various policies we have proposed and analyzed in the
preceding sections. To begin with, we simulate the mean delay
performances of the policies for the path graph network with
N = 3, discussed in Sec. IV and compare them against the
MaxWeight scheduling policy. To recapitulate, π(3)TD, and π

(3)
BU

are the Top-Down and Bottom-Up policies respectively, π̃(3)
IQ

is the delay optimal policy defined in IV-A and π
(3)
IQ

is the
throughput-optimal non-MSM policy defined in IV-C. In every
slot t ≥ 0, MaxWeight simply serves Queues 1 and 3 if
Q1(t) + Q3(t) > Q2(t) and Queue 2 otherwise. Obviously,
this policy requires more state-information than any of the

others. We simulate these policies when the arrival processes
to the three queues are independent Bernoulli processes of
rates s × [0.25, 0.74, 0.25], s ∈ [0, 1), i.e., the inner queue has
a high arrival rate, and s×[0.74, 0.25, 0.74], i.e., the outer two
queues have the high arrival rates. The results are shown in
Figures 7a and 7b. As claimed in Thm. 4, π̃(3)

IQ
performs best,

showing in mean delay of up to 30% less than MaxWeight
near s = 1 (in fact, the reduction in delay becomes more
pronounced as s approaches 1) and 38% less than π(3)TD . Notice
that in both plots MaxWeight does not perform as well as π̃(3)

IQ
showing that it does not prioritize the middle queue frequently
“enough.”

Moving on, although we have proved our stability results
with Bernoulli arrival processes, we now provide a simulation
study which suggests that these results seem to hold for
more general arrival processes. Also note that the stochastic
ordering proof of Thm. 4, i.e., the delay optimality of policy
π̃
(3)
IQ

, being a sample path optimality argument, does not
take into account the fact that the arrival processes to the
queues are Bernoulli. It is, hence, equally valid for other types
of arrival processes as well. Our simulations bear out this
fact. Once again, we simulate our policies on the 3-queue
path-interference graph with Markovian arrival processes as
described below. The arrivals to every queue form a two-
state stationary discrete-time Markov chain (DTMC), i.e.,
{Ai(t), t ≥ 1} forms a DTMC. As before, Ai(t) = 1 refers
to the arrival of a packet into Queue i and Ai(t) = 0 refers
to no arrivals. Fig. 8 shows the transition probability diagram
of a generic two-state DTMC. For Queue j, the stationary
probability of the arrival being in State i, i ∈ {0, 1} is given
by ξi, j ; obviously, ξ0, j + ξ1, j = 1, ∀ j ∈ {1, 2, 3}. Suppose the
transition probabilities of the process for Queue j are given
by P{Aj(t + 1) = 1|Aj(t) = 0} = pj , and P{Aj(t + 1) =
0|Aj(t) = 1} = qj . From basic Markov chain theory, we
know that ξ1, j =

p j

p j+qj
, ξ0, j =

qj

p j+qj
and for every t ≥ 1,

EAj(t) = ξ1, j = λj .
Both plots (Figures 9a and 9b) bear out the fact that even

with non-Bernoulli arrivals, π̃(3)
IQ

shows the best delay perfor-
mance beating the closest competitor by at least 34%. Again,
in both plots we see that MaxWeight performs about just as
well as the Top-Down and Bottom-Up policies, suggesting that
it does not prioritize the inner queue “enough.” We now move
on to the performance of the randomized policy ρ

(3)
γ , indexed

by the randomization parameter γ ∈ [0, 1]. In Sec. IV-D we
derived an inner bound on the set of arrival rates that the policy
can stabilize for a given γ, its stability region13, and showed
that Λ(3)γ ↗ Λ3 as γ ↑ 1. The plot in Fig. 10, simulated
with γ = 0.5, 0.55, and 0.6 help corroborate our analysis.
However, the plots also suggest that the inner bound Λ(3)γ is
actually not very tight. Further study is required to establish
better bounds on this region.

Moving on to larger path graphs, recall that in Sec. V-C
we proposed a policy-splicing procedure to derive low delay
QNB-MSM scheduling policies for path graphs with arbitrary
number of queues. We demonstrate the performance of these
policies in Table II, where we compare our proposed policies

13See Sec. II-A for details.

MOHAN-ETAL19REDUCED-STATE-OPTIMAL-MEDIUM-ACCESS-CONTROL, TON SUBMISSION, 2 COLUMN 14

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Total arrival rate (pkts/slot)

0

5

10

15

20

25

30

35

40

45

D
e
la

y
 (

s
lo

ts
)

Comparison of the performance of various policies on the 3 queue path graph

(3)
BU

(3)
TD

MaxWt
(3)
IQ

~ (3)
IQ

(a) Delay performance of the policies π̃(3)
IQ
, π
(3)
IQ

, MaxWeight, π(3)TD and

π
(3)
BU along the trajectory λ(s) = s × [0.25, 0.74, 0.25], s ∈ [0, 1], in the

capacity region Λ3.

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Total arrival rate (pkts/slot)

0

5

10

15

20

25

D
e

la
y

 (
s

lo
ts

)

Comparison of the performance of various policies over the 3 queue path graph

(3)
BU

(3)
TD

MaxWt
(3)
IQ

~ (3)
IQ

(b) Delay performance of the policies π̃(3)
IQ
, π
(3)
IQ

, MaxWeight, π
(3)
TD and

π
(3)
BU along the trajectory λ(s) = s × [0.74, 0.25, 0.74], s ∈ [0, 1], in the

capacity region Λ3.

Fig. 7: Simulation results for the path-graph network with N = 3 for Bernoulli packet arrival processes. The mean delay performances of all deterministic
policies discussed in Sec. IV are shown in Figures (a) and (b), and compared with the MaxWeight scheduling policy [11].

Fig. 8: The transition probability diagram of the Markovian arrival process.
If, in slot t, the arrival process was in State 0, i.e., A(t) = 0, then in slot t+1,
A(t + 1) = 1 with probability p and A(t + 1) = 0 with probability 1 − p.

with the benchmark MaxWeight (MW) and a third policy that
is based on a popular scheduler called the “MaxWeight-α”
scheduler. This last policy, that we denote by L(MWα), is an
MSM policy, obtained by using the operator L (see Sec. IV-A)
to project a modification of MaxWeight (MW) called MWα

onto Γ(N)M . The MWα policy, studied in [35] and [17], is
essentially MW with all queue lengths raised to their αth

powers, with α > 0. This policy has been observed to show
smaller sum queue lengths (than MW) with smaller α [36].

The table shows that our proposed policies do outperform
MaxWeight in all cases14. Note that the arrival rate vectors
have not been shown in Table II due to space constraints.
We have reported the vectors in Sec. XI-V of the Appendix.
Recall that the analysis of throughput optimality was limited
to N = 9 queue systems. In Row 3, we perform the splicing
procedure (Sec. V-C) to produce a QNB-MSM policy for a
system with N = 15 queues and show that it outperforms both
the benchmark policies. Finally, Row 1 of the table shows
an arrival rate vector for which our proposed queue length-
agnostic policy does worse and L(MWα) shows the smallest
sum queue length. In light of Thm. 12, this should not be
entirely surprising. Moreover, the loss in performance is small.

We move on to simulations of the policies proposed for
the second class of conflict graphs discussed in this article,
namely, Cluster-of-cliques graphs. The first, shown in Fig. 11,
is a Star-of-Cliques (SoC) networks comprising 4 cliques and
a total of 6 queues. The second network is the LAoC network

14The construction of the QNB-MSM policy in the first row which, by our
nomenclature, is denoted π̃(5), is discussed in depth in [23] and serves as a
good example to illustrate the general splicing process discussed in V-C.

Mean sum queue length (packets)
Bernoulli arrivals

Number of QNB-MSM MaxWeight L(MWα)

queues (N)
(
π̃(N)

)
4 45.963 57.302 43.508
5 61.537 88.243 75.642

15 76.72 107.88 92.100

TABLE II: Path graph interference models with N = 4, 5 and 15. Comparison
of sum queue length with Bernoulli arrivals, under the proposed QNB MSM
policies with MaxWeight and L(MWα) with α = 0.01. Details about the
arrival rate vectors can be found in Sec. XI-V of the Appendix.

shown in Fig. 2a. It consists of 4 cliques and a total of 9
queues. Table III shows the result of simulating φ̃, θ̃(5L) (the
projected version of θ(5L)

SP
, defined in Sec. VII-B) and MW on

these networks. We see that the proposed policies consistently
perform better than the benchmarks.

The result for the SoC networks is, in particular, quite
interesting, since one expects that situations may arise wherein
only two of the three peripheral cliques and C1 are nonempty.
In such a case, φ̃ would serve C1, giving up the chance to
serve both the peripheral nonempty cliques simultaneously and
remove 2 packets from the system in a single slot, which is
what MW might have attempted, if the queues therein were
large enough. If, for example, in some slot t, C2 is empty,
while Q1,1(t) = 1, Q3,1(t) = 5 and Q4,1(t) = 2, φ̃ still serves
only Q1,1 (1 packet transmitted) while MaxWeight serves both
Q3,1 and Q4,1 (2 packets transmitted). Why φ̃ still performs
better requires more investigation and will be a focus of our
future work.

X. CONCLUSION AND FUTURE WORK

In this paper, we began by studying the scheduling of
transmissions over a class of noncollocated interference net-
works that we called “path-graph interference networks.” We
provided sufficient conditions for queue nonemptiness based
(QNB) policies to be throughput-optimal over these networks.
We then provided a complete characterization of the class of

MOHAN-ETAL19REDUCED-STATE-OPTIMAL-MEDIUM-ACCESS-CONTROL, TON SUBMISSION, 2 COLUMN 15

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

50

100

150

200

250

300

350

Total arrival rate (pkts/slot)

D
e
la

y
 (

s
lo

ts
)

Comparison of delay performance of various policies over the 3−queue path graph network

~
π

(3)

IQ

π
(3)

IQ

MaxWt

π
(3)

TD

π
(3)

BU

(a) Delay performance of the policies π̃(3)
IQ
, π
(3)
IQ

, MaxWeight, π(3)TD and

π
(3)
BU along the trajectory λ(s) = s × [0.25, 0.74, 0.25], s ∈ [0, 1], in the

capacity region Λ3.

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

20

40

60

80

100

120

140

160

180

200
Comparison of delay performance of various policies over the 3�queue path graph network

Total arrival rate (pkts/slot)

D
e

la
y

 (
s

lo
ts

)

~
π

(3)

IQ

π
(3)

IQ

maxWt

π
(3)

TD

π
(3)

BU

(b) Delay performance of the policies π̃(3)
IQ
, π
(3)
IQ

, MaxWeight, π
(3)
TD and

π
(3)
BU along the trajectory λ(s) = s × [0.74, 0.25, 0.74], s ∈ [0, 1], in the

capacity region Λ3.

Fig. 9: Simulation results for the path-graph network with N = 3 for Markovian packet arrival processes. For all plots, and every i ∈ {1, 2, 3} the transition
probabilities of the arrival process (see Fig. 8) are chosen as follows pi = 0.10, and qi = (

1
λi
− 1)pi .

0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94
0

50

100

150

200

250

300

Total arrival rate (pkts/slot)

D
e
la

y
 (

s
lo

ts
)

Performance of the ρ
(3)

γ
 policy for various values of the randomization parameter γ

γ = 0.5

γ = 0.55

γ = 0.6

Fig. 10: Illustrating the loss of stability due to the ”Flow-in-the-Middle”
problem discussed in Sec. IV-D. We compare the delay performance of the
policy ρ

(3)
γ along the trajectory λ(s) = s × [0.74, 0.25, 0.74], s ∈ [0, 1], in

the capacity region Λ3. For every s ≤ 1, the arrival rate vector lies within the
interior of Λ3 and is, hence, stabilizable. The policies can be seen to render
the system unstable much before the system load parameter s hits 1.

Fig. 11: The Star-of-Cliques (SoC) network used to study the performance of
φ̃. Simulation results are reported in Table III.

maximum size matching-QNB (MSM-QNB) policies on path-
graphs with 3 queues and showed that this class contains
stable, delay-optimal and even unstable policies. We then
saw how priority policies for smaller path-graphs can be
combined to construct QNB policies for larger networks. Next,

Cluster of Cliques Mean sum queue length (packets)
Network QNB-MSM MaxWeight

Star of Cliques (Fig. 11) 45.535 57.861
Linear Array of Cliques (Fig. 2a) 245.038 309.450

TABLE III: Comparison of sum queue length under the proposed Cluster
of Cliques policies, and MaxWeight acting on the networks in Fig. 2a and
Fig. 11. Details about the arrival rate vectors can be found in Sec. XI-V of
the Appendix.

we showed that policies so constructed are not MSM, but
can be made MSM using a projection operator. We also
showed how the delay properties of these MSM policies can be
further improved by using certain observations of the nature of
scheduling policies in Π̃(N). We then showed that there cannot
exist QNB policies that are uniformly delay optimal over the
entire capacity region, for any path graph network with N ≥ 4
links.

Motivated by wireless networks commonly used for IoT-
type applications, we introduced a new class of interfer-
ence networks, called the “Cluster-of-Cliques” networks and
studied two subclasses, namely, the Star-of-Cliques and the
Linear-Arrays-of-Cliques networks. We then constructed QNB
scheduling policies for both these classes, studied their stabil-
ity and delay properties, and also developed a T.O. protocol
that requires no explicit exchange of even occupancy informa-
tion Our simulation results showed that the QNB policies we
have developed perform better than existing scheduling poli-
cies that require complete knowledge of the system backlog
in every slot.

In short, MaxWeight and policies based on it (such as
MaxWeight-α) have been known to suffer from two major
implementation issues, namely (i) disseminating queue length
information across the network (or reporting it to some central-
ized scheduling entity), and (ii) finding the maximum weight
independent set (MWIS), which for general conflict graphs,
is famously an NP-hard problem. However, in the context of
the current article, the latter problem is simplified. In fact,
there exist dynamic programming approaches to solve the
MWIS problem in linear time for path graphs. The outstanding
issue in computing schedules, therefore, is one of information
dissemination. Our work provides rigorous theoretical evi-
dence that suggests that once the MWIS problem is simplified,
detailed queue length information is (almost) irrelevant.

Future work will include extending these throughput-
optimality results to non-Bernoulli arrival processes, and prov-
ing the throughput-optimality of π

(N)
TD and π

(N)
BU for general

N-queue path graph networks15. Finally, we would also like

15The main bottleneck in the stability proofs appears to be combinatorial in

MOHAN-ETAL19REDUCED-STATE-OPTIMAL-MEDIUM-ACCESS-CONTROL, TON SUBMISSION, 2 COLUMN 16

to explore such reduced state information based scheduling
policies for more general conflict graphs and the existence of
graphs that do not permit stable QNB scheduling policies.

REFERENCES

[1] L. Tassiulas and A. Ephremides, “Dynamic scheduling for minimum
delay in tandem and parallel constrained queueing models,” Annals of
Operations Research, vol. 48, no. 4, pp. 333–355, 1994.

[2] M. Honrubia, “Industrial iot is booming thanks to a
drop in sensor prices,” 2017, https://www.ennomotive.com/
industrial-iot-sensor-prices/.

[3] E. Dahlman, S. Parkvall, and J. Skold, 4G: LTE/LTE-advanced for
mobile broadband. Academic press, 2013.

[4] M. Alasti, B. Neekzad, J. Hui, and R. Vannithamby, “Quality of service
in wimax and lte networks [topics in wireless communications],” IEEE
Communications Magazine, vol. 48, no. 5, 2010.

[5] M. Lohstroh, H. Kim, J. C. Eidson, C. Jerad, B. Osyk, and E. A. Lee,
“On enabling technologies for the internet of important things,” IEEE
Access, vol. 7, pp. 27 244–27 256, 2019.

[6] Z.-n. Kong, D. H. Tsang, B. Bensaou, and D. Gao, “Performance anal-
ysis of ieee 802.11 e contention-based channel access,” IEEE Journal
on selected areas in communications, vol. 22, no. 10, pp. 2095–2106,
2004.

[7] H. Wu, X. Wang, Q. Zhang, and X. Shen, “Ieee 802.11e enhanced
distributed channel access (edca) throughput analysis,” in 2006 IEEE
International Conference on Communications, vol. 1, 2006, pp. 223–
228.

[8] H. Zhu and I. Chlamtac, “Performance analysis for ieee 802.11 e edcf
service differentiation,” IEEE Transactions on wireless Communications,
vol. 4, no. 4, pp. 1779–1788, 2005.

[9] D. Dujovne, T. Watteyne, X. Vilajosana, and P. Thubert, “6tisch:
deterministic ip-enabled industrial internet (of things),” IEEE Commu-
nications Magazine, vol. 52, no. 12, pp. 36–41, 2014.

[10] D. Dujovne, L. Grieco, M. Palattella, and N. Accettura, “6tisch on-the-
fly scheduling draft-dujovne-6tisch-on-the-fly-04,” IETF 6TiSCH WG,
2015.

[11] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” Automatic Control, IEEE Transactions on,
vol. 37, no. 12, pp. 1936–1948, 1992.

[12] S. Sanghavi, D. Shah, and A. S. Willsky, “Message passing for maximum
weight independent set,” IEEE Transactions on Information Theory,
vol. 55, no. 11, pp. 4822–4834, 2009.

[13] E. Modiano, D. Shah, and G. Zussman, “Maximizing throughput in
wireless networks via gossiping,” in ACM SIGMETRICS Performance
Evaluation Review, vol. 34, no. 1. ACM, 2006, pp. 27–38.

[14] L. Jiang and J. Walrand, “Approaching throughput-optimality in dis-
tributed csma scheduling algorithms with collisions,” Networking,
IEEE/ACM Transactions on, vol. 19, no. 3, pp. 816–829, 2011.

[15] S. Rajagopalan, D. Shah, and J. Shin, “Network adiabatic theorem:
an efficient randomized protocol for contention resolution,” in ACM
SIGMETRICS Performance Evaluation Review, vol. 37, no. 1. ACM,
2009, pp. 133–144.

[16] A. Mohan, A. Chattopadhyay, and A. Kumar, “Hybrid MAC protocols
for low-delay scheduling,” in Mobile Ad Hoc and Sensor Systems
(MASS), 2016 IEEE 13th International Conference on. IEEE, 2016,
pp. 47–55.

[17] D. Shah et al., “Heavy traffic analysis of optimal scheduling algorithms
for switched networks,” Annals of Applied Probability, 2007.

[18] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Synthesis Lectures on Commu-
nication Networks, vol. 3, no. 1, pp. 1–211, 2010.

[19] J. L. Gross and J. Yellen, Graph theory and its applications. CRC
press, 2005.

[20] R. Diestel, “Graph theory. 2005,” Grad. Texts in Math, vol. 101, 2005.
[21] B. Bollobás, Modern graph theory. Springer Science & Business Media,

2013, vol. 184.
[22] S. T. Maguluri, R. Srikant, and L. Ying, “Heavy traffic optimal resource

allocation algorithms for cloud computing clusters,” Performance Eval-
uation, vol. 81, pp. 20–39, 2014.

nature. Specifically, several of the 2N realizations of ζ(t) needed checking to
establish stability. The proof for general N will, therefore, require a suitable
counting argument that can reduce the number of realizations that need to be
checked.

[23] A. Mohan, A. Gopalan, and A. Kumar, “Reduced-state, optimal schedul-
ing for decentralized medium access control of wireless data collec-
tion networks,” Tech. Rep., July 2019 https://drive.google.com/open?id=
1zhXdE3TWRMtwrowBrVuem9CzfXrAZrmC.

[24] S. Hariharan and N. B. Shroff, “On sample-path optimal dynamic
scheduling for sum-queue minimization in trees under the k-hop inter-
ference model,” IEEE/ACM Transactions on Networking, vol. 24, no. 4,
pp. 2458–2471, 2015.

[25] ——, “On sample-path optimal dynamic scheduling for sum-queue
minimization in forests,” IEEE/ACM Transactions on Networking (TON),
vol. 22, no. 1, pp. 151–164, 2014.

[26] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achiev-
ing 100% throughput in an input-queued switch,” IEEE Transactions on
Communications, vol. 47, no. 8, pp. 1260–1267, 1999.

[27] M. Garetto, T. Salonidis, E. W. Knightly, et al., “Modeling per-
flow throughput and capturing starvation in csma multi-hop wireless
networks.” in Infocom, 2006.

[28] C. Chaudet, I. G. Lassous, E. Thierry, and B. Gaujal, “Study of the
impact of asymmetry and carrier sense mechanism in ieee 802.11 multi-
hops networks through a basic case,” in Proceedings of the 1st ACM
international workshop on Performance evaluation of wireless ad hoc,
sensor, and ubiquitous networks. ACM, 2004, pp. 1–7.

[29] B. Nardelli, J. Lee, K. Lee, Y. Yi, S. Chong, E. W. Knightly, and
M. Chiang, “Experimental evaluation of optimal csma,” in INFOCOM,
2011 Proceedings IEEE. IEEE, 2011, pp. 1188–1196.

[30] A. Warrier, S. Janakiraman, S. Ha, and I. Rhee, “Diffq: Practical differ-
ential backlog congestion control for wireless networks,” in INFOCOM
2009, IEEE. IEEE, 2009, pp. 262–270.

[31] S. T. Maguluri, “Optimal scheduling algorithms for ad hoc wireless
networks,” 2011.

[32] X. Wang and K. Kar, “Throughput modelling and fairness issues in
csma/ca based ad-hoc networks,” in INFOCOM 2005. 24th Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings IEEE, vol. 1. Ieee, 2005, pp. 23–34.

[33] I. Rhee, A. Warrier, M. Aia, J. Min, and M. L. Sichitiu, “Z-MAC: a
hybrid MAC for wireless sensor networks,” IEEE/ACM Transactions on
Networking (TON), vol. 16, no. 3, pp. 511–524, 2008.

[34] P. Kinney, “The 802.15.4 CCA method,” Project: IEEE P802.15 Working
Group for Wireless Personal Area Networks (WPANs), Submitted: Nov
14, 2001.

[35] A. L. Stolyar et al., “Maxweight scheduling in a generalized switch:
State space collapse and workload minimization in heavy traffic,” The
Annals of Applied Probability, vol. 14, no. 1, pp. 1–53, 2004.

[36] I. Keslassy and N. McKeown, “Analysis of scheduling algorithms that
provide 100% throughput in input-queued switches,” in Proceedings
of the Annual Allerton Conference on Communication Control and
Computing, vol. 39, no. 1. The University; 1998, 2001, pp. 593–602.

[37] V. M. G. Fayolle and M. Menshikov, Topics in the Constructive Theory
of Countable Markov Chains. Cambridge University Press, 1995.

Avinash Mohan (S.M.’16-M’17) obtained his Ph.D. degree from the Indian
Institute of Science, Bangalore, and the M.Tech. degree from the Indian
Institute of Technology (IIT) Madras, both in Electrical Communication
Engineering. He is currently a Postdoctoral Fellow at the Technion-Israel Insti-
tute of Technology, Haifa. His research interests include resource allocation
in wireless communication networks, stochastic control and reinforcement
learning.

Aditya Gopalan is an Assistant Professor and INSPIRE Faculty Fellow at
the Indian Institute of Science, Electrical Communication Engineering. He
received the Ph.D. degree in electrical engineering from The University of
Texas at Austin, and the B.Tech. and M.Tech. degrees in electrical engineering
from the Indian Institute of Technology Madras. He was an Andrew and Erna
Viterbi Post-Doctoral Fellow at the Technion-Israel Institute of Technology.
His research interests include machine learning and statistical inference,
control, and algorithms for resource allocation in communication networks.

Anurag Kumar (B.Tech., Indian Institute of Technology (IIT) Kanpur;
PhD, Cornell University, both in Electrical Engineering) was with Bell Labs,
Holmdel, N.J., for over 6 years. Since then he has been on the faculty of the
ECE Department at the Indian Institute of Science (IISc), Bangalore; he is at
present the Director of the Institute. His area of research is communication
networking, and he has recently focused primarily on wireless networking. He
is a Fellow of the IEEE, the Indian National Science Academy (INSA), the
Indian National Academy of Engineering (INAE), and the Indian Academy
of Sciences (IASc). He was an associate editor of IEEE Transactions on
Networking, and of IEEE Communications Surveys and Tutorials.

https://www.ennomotive.com/industrial-iot-sensor-prices/
https://www.ennomotive.com/industrial-iot-sensor-prices/
https://drive.google.com/open?id=1zhXdE3TWRMtwrowBrVuem9CzfXrAZrmC
https://drive.google.com/open?id=1zhXdE3TWRMtwrowBrVuem9CzfXrAZrmC

MOHAN-ETAL19REDUCED-STATE-OPTIMAL-MEDIUM-ACCESS-CONTROL, TON SUBMISSION, 2 COLUMN 17

XI. APPENDIX

A. Glossary of Acronyms
• BU: Bottom-up
• CoC: Cluster-of-Cliques
• CSMA: Carrier Sense Multiple Access
• D.O.: Uniformly Delay Optimal (see Defn. IV-A).
• IID: Independent and Identically Distributed
• IoT: Internet of Things
• LAOC: Linear-Array-of-Cliques
• MAC: Medium Access Control
• MSM: Maximum Size Matching
• MW : The MaxWeight algorithm defined in [11].
• MWα : The MaxWeight-α algorithm defined in [35]
• MWIS: Maximum Weight Independent Set
• QNB: Queue Nonemptiness Based (policy)
• SoC: Star-of-Cliques
• T.O.: Throughput Optimal
• TD: Top-down.

B. Glossary of Notation
1) I{CONDITION}: the indicator function, which evaluates to

1 whenever CONDITION is true, and 0 otherwise.
2) ζ (t) : the occupancy vector or nonemptiness vector at

time t, defined as ζ (t) =
[
I{Q1(t)>0}, · · · , I{QN (t)>0}

]
.

3) V : is the set of all activation vectors. Clearly, in a
system of N queues, V ({0, 1}N due to interference
constraints.

4) ΛN : The capacity region of a path graph interference
network with N queues (communication links).

5) σ (X) : The sigma algebra generated by the random
variable X .

6) Π(N): the class of all scheduling policies defined on path
graphs.

7) Γ(N)M : the class of all Maximum Size Matching (MSM)
policies.

8) Π(N)M : the class of all policies that take only the oc-
cupancy vector ζ (t) as input and activate the largest
number of non empty queues in every slot, .i.e., MSM
policies that require only the empty or nonempty status
of the queues in the network.

9) Π̃(N): the class of all MSM policies within Π(N)M that
additionally break ties in favour of inner queues (see
condition 2).

10) | A |: represents the cardinality of set A.
11) Geo(λ)/Geo(µ)/1 queue: A queue with a Bernoulli

arrival process whose interarrival periods are geometri-
cally distributed with mean λ, and whose service times
are IID and geometrically distributed with mean µ.

12) π
(N)
TD and π

(N)
BU : Top-Down and Bottom-Up policies for

path graph networks with N queues.
13) π

(2N−1)
SP

: The policy obtained by splicing π(N)TD and π
(N)
BU .

This policy is not MSM.
14) {π̃(4)i , 1 ≤ i ≤ 4} : These are the four policies within the

class Π̃(4) that are both MSM and break ties in favor of
the inner queues, i.e., Queues 2 and 3.

15) π
(4)
T I : The policy on 4-queue path graphs obtained by

splicing π
(3)
TD and π

(3)
IQ

, the Top-Down and Bottom-Up

policies on 3-queue path graphs. Since it is not obtained
by splicing Top-Down and Bottom-Up policies, we do
not give it the subscript “SP.”

16) N : The total number of queues in an Linear Array of
Cliques (LAoC) or Star-of-Cliques (SoC) network.

17) φ
(S)
IC

: The policy defined on Star-of-Cliques (SoC)
networks that prioritizes the inner clique over all the
peripheral cliques. It is defined in Sec. VII-A.

18) φ̃
(S)
IC

The “S” in the superscript stands for SoC network,
and “IC” in the subscript shows that they prioritize the
inner clique, i.e., C1. It is defined in Sec. VII-A.

19) θ
(3L)
TD and θ

(3L)
BU : Top-Down and Bottom-Up policies

defined over LAoC networks with 3 cliques. Here, the
“L” in the superscript stands for LAoC network.
Remark. Throughout Sec. VII, φ will always represent
a policy for SoC networks and θ for LAoC network.

20) φ
(S)
IC
(T) : The version of φ(S)

IC
defined, once again for

SoC networks, that requires knowledge of the vector ζ
only every T time slots.

21) φ
(S)
CS

: that, like the QZMAC protocol in [16], takes
scheduling decisions based solely on the information
gathered by sensing the channel for activity. Obviously,
the “CS” in the subscript stands for channel sensing.

C. Throughput Optimality of Queue Nonemptiness-based
Scheduling in Fully Connected Graphs

The proof of Thm. 1, i.e., throughput-optimality of policies
satisfying property P, proceeds via a Lyapunov argument.
The sole purpose of this this subsection is to provide some
intuition to the reader about how we came to construct the
Lyapunov function used therein. This subsection, therefore, is
not necessary to understand the proof and may be skipped
without loss of continuity.

Consider stabilizing a collocated network of N queues
described by a Fully Connected interference graph. Here the
capacity region consists of all rate vectors λ ∈ RN

+ that
satisfy

∑N
i=1 λi < 1. Any policy that schedules a nonempty

queue in every slot (if there exists one) is T.O. To see this,
define Q(t) :=

∑N
i=1 Qi(t), A(t + 1) =

∑N
i=1 Ai(t + 1) and

D(t) :=
∑N

i=1 Di(t) and consider the Lyapunov Function

L(Q(t)) :=

(
N∑
i=1

Qi(t)

)2

= Q2(t). (15)

Using the fact that for any three non negative reals x, y, z,
((x − y)+ + z)2 ≤ x2 + y2 + z2 − 2x(y − z), we see that

Q2(t + 1) ≤ Q2(t) + D2(t) + A2(t) − 2Q(t) (D(t) − A(t)) .

Hence, the expected single slot drift becomes

E

[
L(Q(t + 1)) − L(Q(t)) | Q(t) = q

]
†1
≤ E

[
D2(t) + A2(t) | q

]
− 2qE

[
D(t) − A(t) | q

]
†2
= 1 + N2 − 2q

(
E

[
D(t) | q

]
−

N∑
i=1

λi

)
, (16)

MOHAN-ETAL19REDUCED-STATE-OPTIMAL-MEDIUM-ACCESS-CONTROL, TON SUBMISSION, 2 COLUMN 18

where in †1, q = [q1, · · · , qN], and q =
∑N

i=1 qi . In †2 we
have used the fact that D(t) ≤ 1 since at most one queue
can be served per slot, A(t) ≤ N since at most one packet
can arrive in each of the N queues in a slot, and because

arrivals are independent of the current system state, E
[
A(t) |

q
]
= EA(t) =

∑N
i=1 λi . Since the policy schedules a non empty

queue in every slot,

E

[
D(t) | q

]
= I{Q(t)>0}, i.e.,

E

[N∑
i=1

Di(t) | q
]
= I{

∑N
i=1 Qi (t)>0} (17)

Taking expectations on both sides of (16), we see that

EQ2(t + 1) − EQ2(t) ≤ 1 + N2 − 2E
(
Q(t)I{Q(t)>0}

)
−EQ(t)

(
N∑
i=1

λi

)
,

and since Q(t) ≥ 0, ∀t, E
(
Q(t)I{Q(t)>0}

)
= EQ(t). Setting

ε = 1 −
∑N

i=1 λi (ε > 0 by stability considerations) we get

EQ2(t + 1) − EQ2(t) ≤ 1 + N2 − 2εEQ(t). (18)

Summing the above over t = 0, 1, · · · ,T − 1, we get

EQ2(T) − EQ2(0) ≤ T(1 + N2) − 2ε
T−1∑
t=0
EQ(t). (19)

A little bit of algebra shows that

1
T

T−1∑
t=0
EQ(t) ≤

1 + N2

2ε
+
EQ2(0)

2εT

⇒ lim sup
T→∞

1
T

T−1∑
t=0
EQ(t) < ∞,

which implies strong stability. In the sequel, we will call this
rather standard technique [18] of showing strong stability, the
telescoping sum method. As a precursor to the proof of Lem. 1,
observe that this class of policies satisfies property P in the

lemma, i.e., (P) since E
[
D(t) | q

]
= I{Q(t)>0} means that∑N

i=1 Di(t) = 0 ⇐⇒
∑N

i=1 Qi(t) = 0.

D. Proof of Lem. 1

We define a Lyapunov function L(t) : NN → R+ as

L(Q(t)) :=
N−1∑
i=1
(Qi(t) +Qi+1(t))2 (20)

With a slight abuse of notation, we denote L(Q(t)) simply by
L(t). Using the Lyapunov drift argument and the telescoping
sum method used in Sec. XI-C, we now show how property
P ensures strong stability of the system when the arrivals lie

in Λo. To simplify notation, we denote Di(t) and Ai(t + 1) by
Di and Ai respectively, for every i and let Q = [Q1, . . . ,QN].

E [L(t + 1) − L(t) | Q(t) = Q]

=

N−1∑
i=1
E

[
(Qi − Di + Ai +Qi+1 − Di+1 + Ai+1)

2

−(Qi +Qi+1)
2 | Q(t) = q

]
∗
≤

N−1∑
i=1

[
(Qi +Qi+1)

2 + 1 + 4 − 2(Qi +Qi+1)

(E [Di + Di+1 | Q] − λi − λi+1) − (Qi +Qi+1)
2
]

=

N−1∑
i=1

[
5 − 2(Qi +Qi+1)

(E [Di + Di+1 | Q(t) = Q] − λi − λi+1)

]
, (21)

where in inequality ∗, firstly, we have used the fact that for
any 3 reals x, y, z, (x − y + z)2 ≤ x2 + y2 + z2 − 2x(y − z)
and set x = qi + qi+1, y = Di + Di+1 and z = Ai + Ai+1. We
then use the fact that Di + Di+1 ≤ 1 in any time slot due to
the scheduling constraints and since all arrivals are Bernoulli,
Ai + Ai+1 ≤ 2, for all 1 ≤ i ≤ N − 1. Taking expectation on
both sides of Eqn. (21), and thus removing conditioning, we
get

E [L(t + 1) − L(t)] ≤
N−1∑
i=1

[
5 − 2E ((Qi +Qi+1)

× E [Di + Di+1 | Q(t)])

+2(λi + λi+1)E (Qi +Qi+1)

]
(22)

We now use the fact that the policy satisfies property P, to see
that E [D1 + D2 | Q(t)] = I{Qi+Qi+1>0}, w.p.1, and the fact that
for any non negative random variable Z, E

(
ZI{Z>0}

)
= EZ,

whereby,

E ((Qi +Qi+1)E [Di + Di+1 | Q(t)]) = E(Qi +Qi+1).

This means that

E ((Qi +Qi+1) (E [Di + Di+1 | Q(t)] + (λi + λi+1)))

= εiE(Qi +Qi+1),

where εi = 1 − λi − λi+1. Note that from the definition of Λo,
εi > 0, ∀1 ≤ i ≤ N − 1. Substituting this in Eqn. (22), we get

E [L(t + 1) − L(t)]

≤ 5(N − 1) − 2
N−1∑
i=1

εiE [Qi(t) +Qi+1(t)] ,

†
≤ 5(N − 1) − 2

N−1∑
i=1

εE [Qi(t) +Qi+1(t)] ,

= 5(N − 1) − 2εEQ1(t) − 4ε
N−2∑
i=2
EQi(t) − 2εEQN (t),

MOHAN-ETAL19REDUCED-STATE-OPTIMAL-MEDIUM-ACCESS-CONTROL, TON SUBMISSION, 2 COLUMN 19

where in inequality †, ε := min1≤i≤N−1 εi . Since ε > 0,
−4ε

∑N−2
i=2 EQi(t) < −2ε

∑N−2
i=2 EQi(t). Using this, we get

E [L(t + 1) − L(t)] ≤ 5(N − 1) − 2ε
N∑
i=1
EQi(t). (23)

Using the telescoping sum technique (see [18]) it can now be
shown that the process {Q(t), t ≥ 0}, is strongly stable.

E. Proof of Thm. 2

Queues 1 and 2 form a priority queue and π
(3)
TD serves the

pair of queues 1 and 2 whenever either of them is nonempty.
So, π(3)TD satisfies Property P for i = 1 (specifically, Eqn. (P)),
which means that the process {[Q1(t),Q2(t)], t ≥ 0}, is
strongly stable. Further, since Queue 1 receives the highest
priority, as soon as a packet arrives it is served and leaves the
system at the end of the slot. Consequently, Queue 1 behaves
like a Geo(λ1)/D/1 queue, with service time being exactly
one slot. This also means that by starting out with Q1(0) ≤ 1,
in any time slot, Queue 1 has at most 1 packet, which is
the arrival during that slot, i.e., Qi(t) = Ai(t), ∀t ≥ 1. Also,
P{Qi(t) > 0} = λ1.

Queues 1 and 2 form a priority queueing system. This
means that the packet at the Head of Line (HOL) position in
Queue 2 is served whenever Q1(t) = 0. Since Q1(t) = A1(t),
P{Q1(t) = 0} = 1 − λ1 independently of Q2(t). Moreover, the
arrivals to Queue 1 are Bernoulli with mean λ1, which means
that the service time B2 of every packet in Queue 2 is IID
and geometrically distributed with mean 1

1−λ1
. Specifically,

B2 ∼ Geo(1
1−λ1
). This means that Queue 2 behaves like

a (refer glossary XI-B for an explanation of this notation)
Geo(λ1)/Geo(1

1−λ1
)/1 queue, and since λ2 < (1 − λ1), Queue

2 is stable. Furthermore, {[Q1(t),Q2(t)], t ≥ 0} forms an
aperiodic, irreducible positive recurrent DTMC. This means
that there exists a steady state probability measure on Queue
2’s backlog such that,

lim
t→∞

P{Q2(t) = 0} = 1 − λ2EB2

= 1 −
λ2

1 − λ1
. (24)

From the definition of π(3)TD we see that Queue 3 is scheduled
for service whenever either Queue 1 is nonempty or when both
Queue 1 and Queue 2 are empty. Specifically, the choice of
the activation set is completely governed by the backlogs of
queues 1 and 2 and does not depend on Queue 3 at all. This
means the service given to Queue 3 in every slot is independent
of its backlog in that slot. Suppose we begin both Queue 1
and Queue 2 in their steady state distributions,

P{S3(t) = 1} = P{Q1(t) > 0} + P{Q1(t) = 0,Q2(t) = 0}
= λ1 + P{Q2(t) = 0}P{Q1(t) = 0 | Q2(t) = 0}
∗1
= λ1 +

(
1 −

λ2
1 − λ1

)
P{A1(t) = 0 | Q2(t) = 0}

∗2
= λ1 +

(
1 −

λ2
1 − λ1

)
(1 − λ1)

= 1 − λ2 > λ3. (25)

Equality ∗1 uses Eqn. (24) and ∗2 uses the fact that external
arrivals to Queue 2 in a slot are independent of the backlog of

Queue 2 in that slot. To show that Queue 3 is strongly stable,
define L : N→ R+ as L(Q3(t)) = Q2

3(t).

E

[
L(t + 1) − L(t)

]
= E[Q2

3(t + 1) −Q2
3(t)]

= E[
(
(Q3(t) − S3(t))

+ + A3(t + 1)
)2
−Q2

3(t)]
?3
≤ 2 − 2EQ3(t)E[S3(t) − A3(t + 1)]
= 2 − 2EQ3(t) (1 − λ2 − λ3)
?4
= 2 − 2δEQ3(t) (26)

In ?3, we have once again used the fact that for any four
non negative reals w, x, y and z, with w ≤ (x − y)+ + z, w2 ≤
x2 + y2 + z2 − 2x(y − z), with w = Q3(t + 1), x = Q3(t), y =
S3(t) and z = A3(t + 1). Further, S3(t) ≤ 1 and A3(t + 1) ≤ 1.
Finally, in ?4, δ = 1 − λ2 − λ3 > 0 by capacity constraints.
This shows that Queue 3 is also strongly stable, and since

lim sup
T→∞

1
T

t−1∑
t=0

3∑
i=1
E
π
(3)
TD

Qi(t)

≤ lim sup
T→∞

1
T

t−1∑
t=0
E
π
(3)
TD

Q1(t) + lim sup
T→∞

1
T

t−1∑
t=0
E
π
(3)
TD

Q2(t)

+ lim sup
T→∞

1
T

t−1∑
t=0
E
π
(3)
TD

Q3(t),

the system is also strongly stable under this policy. The other
policy π

(3)
BU simply swaps the priorities of Queues 1 and 3,

and its proof proceeds as before, mutatis mutandis.

F. Proof of Thm. 3

Since, by definition, for any Queue i, Di(t) = Si(t)I{Qi (t)>0},
Q1(t) + Q2(t) = 0 always means D1(t) + D2(t) = 0. To show
the converse, we consider several cases
• Q1(t) > 0 and Q2(t) > 0 means that either in step 2 or

3 of MSM, on of these queues will get scheduled and
either D1(t) = 1 or D2(t) = 1.

• Q1(t) = 0 and Q2(t) > 0 means that MSM schedules
Queue 2 in step 2, and D2(t) = 1.

• Q2(t) = 0 and Q1(t) > 0 means that MSM schedules
Queue 1 in either step 1 or step 3, depending on the
length of Queue 3, whereby D1(t) = 1.

Following the same logic, we state a similar result for D2(t)+
D3(t). This means that π̃(3)

IQ
satisfies property P, and from

Lem. 1, π̃(3)
IQ

is T.O.

G. Proof of Thm. 4

We adapt the technique used in Lem. 4.2 of [1] to prove this
result16. The main idea is to construct a sequence {π′

k
, k ≥ 0}

of intermediate policies such that the backlog in every queue
converges sample path-wise to that of π̃(3)

IQ
which means that

for every t ≥ 0,

lim
k→∞

Q
π′
k

l
(t) = Q

π̃
(3)
IQ

l
(t), 1 ≤ l ≤ 3, (27)

16The reader should note that there is a typo in [1] that labels two results
as Lem 4.1. Here, we refer to the latter as 4.2 to avoid confusion.

MOHAN-ETAL19REDUCED-STATE-OPTIMAL-MEDIUM-ACCESS-CONTROL, TON SUBMISSION, 2 COLUMN 20

over every sample path. Each policy in the sequence π′
k

is
designed to provide smaller sum queue length than its prede-
cessor π′

k−1 and the chosen policy π. Towards this end, we first
couple arrivals to the systems on which π̃(3)

IQ
,
{
π′
k
, k ≥ 0

}
and

π act (by assumption, the initial conditions are equal, i.e., on
every sample path Qπ(0) = Qπ̃

(3)
IQ (0) = Qπ′

k (0) = Q, ∀k ≥ 0,
where Q ∈ N3 is some generic queue length vector). We then
define π′0 as follows. In slot 0, π′0 follows π̃(3)

IQ
which means the

activation vectors chosen by the two policies are the same. In
other words, sπ′0 (0) = sπ̃

(3)
IQ (0), with the superscripts denoting

the policy. We now show that at t = 1, the following conditions
are satisfied by Qπ′0 (1) and Qπ(1). In Condition 4 below, the
indices jk are as defined in Lem. 19.

1) Q
π′0
l
(t) ≤ Qπ

l
(t) + 1 for 1 ≤ l ≤ N . Here, N = 3.

2) If Q
π′0
l
(t) = Qπ

l
(t)+1 and l < N then Q

π′0
l+1(t) = Qπ

l+1(t)−
1.

3) If Q
π′0
l
(t) = Qπ

l
(t)+1 and l > 1 then Q

π′0
l−1(t) = Qπ

l−1(t)−1.

4) If j1 = 1, j2 = N and N is odd, then Q
π′0
1 (t) ≤ Qπ

1 (t) and

Q
π′0
3 (t) ≤ Qπ

3 (t).
The first condition is obvious since at most one packet can
depart from a queue in a slot and since arrivals to the two
systems are coupled. For the second condition observe that
since arrivals are coupled, Q

π′0
l
(1) = Qπ

l
(1) + 1 ⇒ Q

π′0
l
(0) =

Qπ
l
(0) = Ql , 0, and sπ

l
(0) = 1 while s

π′0
l
(0) = 0, i.e., Queue l

was not empty at 0, and π served it while π′0 did not. This is
because if either the queue was empty at time 0 or both the
policies served it, the 1 packet mismatch would never have
occurred. We now have two cases.
• l = 1 ⇒ Q2(0) , 0, and, Q3(0) = 0, since by the

definition, π̃(3)
IQ

ignores the extreme queues when they
are nonempty only when Queue 2 is nonempty and
Q1(t) · Q3(t) = 0. Hence, π′0 serves Queue 2 in slot 0
while π does not, resulting in Q

π′1
2 (0) = Qπ

2 (0) − 1.
• l = 2 ⇒ Q1(0) , 0 and Q3(0) , 0, since by definition,
π̃
(3)
IQ

ignores Queue 2 queues when it is nonempty only
when both Queue 1 and Queue 3 are nonempty. In this
case π′0 serves Queue 1 and Queue 3 in slot 0 while π

does not, resulting in Q
π′1
1 (1) = Qπ

1 (1) − 1 and Q
π′0
3 (1) =

Qπ
3 (1) − 1.

The third condition is explained in a similar manner and
follows easily from symmetry. When j1 = 1 and j2 = 3, all
three queues are nonempty and π′ serves both. This proves
the fourth condition. When these 4 conditions hold, the sum
backlog with π′ is not larger than with π due to the following
reason. When all queues are initially nonempty (meaning
Ql(0) > 0, 1 ≤ l ≤ 3), this is true from condition 4. When
only two adjacent queues are nonempty, conditions 2 and 3,
as the case may be, ensure this. When only queues 1 and 3 are
nonempty, π̃(3)

IQ
and hence, π′0 serve both of them. The case

with only one nonempty queue at t = 0 is trivial. Thus,
3∑
i=1

Q
π′0
i (1) ≤

3∑
i=1

Qπ
i (1).

For t ≥ 1, the definition of π′0 and the rest of the proof of
how the above inequality is ensured at every t ≥ 0 is the same

as in [1] and will not be repeated. For every k ≥ 0, π′
k+1 is

defined as the policy that follows π
(3)
OQ

over slots 0, 1, . . . , k
and over k + 1, . . . , is defined as in [1] so as to satisfy

3∑
i=1

Qπk+1
i (t) ≤

3∑
i=1

Qπk
i (t), ∀t ≥ 0, ∀k ≥ 1. (28)

Again, by construction, it is clear that

lim
k→∞

Q
π′
k

i (t)
s
= Q

π̃
(3)
IQ

i (t), ∀t ≥ 0, 1 ≤ i ≤ N, (29)

where s
= means over every sample path (and is stronger

than “a.s.”). Eqn. 28 together with Eqn. 29 give us 11. This
completes the proof.

H. Proof of Prop. 5

Consider real numbers ε and δ, such that δ > 0, 0 < ε <
0.5 and ε + δ ≤ 0.5. Let λ = [0.5 − ε − δ, 0.5 + ε, 0.5 −
ε − δ]. Clearly, λ ∈ Λo. At time t, define the event S2 :=
{Queue 2 is served in slot t} and let Q(t) = [q1, q2, q3].

P{S2 = 1} = P{S2 = 1 | q1 + q3 > 0}P{q1 + q3 > 0}
+P{S2 = 1 | q1 + q3 = 0}P{q1 + q3 = 0}.

≤ 0 · P{q1 + q3 > 0} + 1 · P{q1 + q3 = 0}
= 1 − P{q1 + q3 > 0}
= 1 − P{q1 > 0 or q3 > 0}
≤ 1 − P{A1(t) > 0 or A3(t) > 0}
= P{A1(t) = A3(t) = 0} = (1 − (0.5 − ε − δ))2

= (0.5 + ε + δ)2 (30)

If x := (0.5+ ε) = λ2, to prove the instability of π(3)
OQ

one only
needs to solve the nonlinear program (31) below. That will
establish that P{S2(t) = 1} < λ2, and hence prove that Queue
2 is unstable.

Find (x + δ)2 < x,

s.t . δ > 0,
x > 0.5,
x < 1,

x + δ ≤ 1. (31)

The problem above is easily solved, for example, by x = 0.75,
from which we conclude that π(3)

OQ
is unstable.

I. Proof of Prop. 7

1) Brief Digression: A Sufficient Condition for MSM Poli-
cies : Before stating the proof of the theorem, we would like
to restate Lem. 4.1 in [1] for the reader’s convenience. We will
be invoking this result in multiple proofs later in the paper. It
is important to note that the lemma below is only a sufficient
condition for a policy to be MSM.

Given an occupancy vector ζ, let k = k(ζ) be the
twice the number of runs of nonempty queues, and j1 =
j1(ζ), . . . , jk = jk(ζ), the nonempty queues that mark the
beginnings (j{odd subscript }) and ends (j{even subscript }) of

MOHAN-ETAL19REDUCED-STATE-OPTIMAL-MEDIUM-ACCESS-CONTROL, TON SUBMISSION, 2 COLUMN 21

Fig. 12: Figure depicting how runs of non empty queues are num-
bered. Here, N = 7 and since ζ = [0, 1, 1, 0, 1, 1, 1]T , S(ζ) =
{[0, 1, 0, 0, 1, 0, 1]T , [0, 0, 1, 0, 1, 0, 1]T }. There are two runs of nonempty
queues, the first beginning at Queue 2 and ending at Queue 3, and the second
beginning at Queue 5 and ending at Queue 7. Hence, j1 = 2, j2 = 3, j3 =
5 and j5 = 7. Notice that odd subscripts indicate the beginning of these runs,
while even subscripts indicate their ends.

the nonempty runs, or the two extreme queues (Queues 1 and
N). Fig. 12 illustrates this numbering scheme. Clearly,
• If j > jk or j < j1 Queue j is empty,
• If j2m−1 ≤ j ≤ j2m, m = 1, 2, . . . , k2 , Queue j is nonempty,

and
• If j2m ≤ j ≤ j2m+1, m = 1, 2, . . . , k2 −1, Queue j is empty.

Lemma 19. (Lem. 4.1 in [1]) S(t) ∈ S(ζ (t)) if
1) Odd-length run condition: If j2m − j2m−1 is even, then

for all j2m−1 ≤ j ≤ j2m,

Sj(t) =

{
1 if j − j2m−1 is even,
0 otherwise,

m = 1, . . . , k/2.
2) Even-length run condition: If j2m − j2m−1 is odd, then

any one of the following 3 conditions must be satisfied
a) For every j2m−1 ≤ j ≤ j2m,

Sj(t) =

{
1 if j − j2m−1 is even,
0 otherwise,

b) For every j2m−1 ≤ j ≤ j2m,

Sj(t) =

{
1 if j − j2m−1 is odd,
0 otherwise,

or,
c) There exists an l such that

Sj(t) =

1 if j − j2m−1 is even and j2m−1 ≤ j < l,

or j2m − j is even and j2m ≥ j > l + 1,
0 otherwise,

m = 1, . . . , k/2.
3) Inner queues priority condition: If j1 = 1,

Sj(t) =

{
1 if j2 − j is even, j1 ≤ j ≤ j2,

0 otherwise,

and similarly for the case with j2 = N .

It is easily seen that condition 3 above is not necessary, and
any S that satisfies the first two will automatically exist in
S(ζ).

Lem. 19 gives a sufficient condition for an activation vector
to be of maximum size. We will now show that in every slot
t, the activation vector s(t) that π(N)TD produces satisfies this
condition, thereby establishing that the policy is MSM.

We now show that Conditions 1 and 2 in the Lemma are
both satisfied in every time slot, by the activation vector
produced by π

(N)
TD .

1) When j2m− j2m−1 is even, i.e., we have an odd length run
of nonempty queues: By definition of the indices, this
means that Queue (j2m−1) − 1 is empty since a run of
nonempty queues begins with j2m−1, which from Condi-
tion 3 in the definition of π(N)TD ensures that sj2m−1−1(t) =
0, which means that sj2m−1−1(t) = 1 from Condition 1.
Thereafter, since all queues between Queues j2m−1 and
j2m (including these two) are nonempty, the policy
alternates between Conditions 1 and 2, scheduling ev-
ery alternate queue and thus satisfying Condition 1 in
Lem. 19.

2) When j2m − j2m−1 is odd, i.e., we have an even length
run of nonempty queues: Once again π

(N)
TD schedules

every alternate queue within this run starting with
Queue j2m−1, and in the process, satisfies Condition 2a
in Lem. 19.

Since this holds true in every slot, the policy is MSM.

J. Proof of Thm. 9

The policy π
(2N−1)
SP

is formed by splicing together π(N)TD and
π
(N)
BU . This means that π(2N−1)

SP
restricted to Queues 1 to N

is π
(N)
BU and restricted to Queues N to 2N − 1 is π

(N)
TD . The

throughput-optimality of π(N)TD and π
(N)
BU means that for every

λ ∈ ΛN ,

lim sup
T→∞

1
T

t−1∑
t=0

2N−1∑
i=N

E
π
(N)
TD

Qi(t) < ∞, and (32)

lim sup
T→∞

1
T

t−1∑
t=0

N∑
i=1
E
π
(N)
BU

Qi(t) < ∞. (33)

Notice in particular the indices of the inner summations in the
above inequalities. Now, for every λ ∈ Λ2N−1 define λ1:N =
[λ1, · · · , λN] and λN :2N−1 = [λN, · · · , λ2N−1] and notice that
by the definition of ΛN , λ1:N ∈ ΛN and λN :2N−1 ∈ ΛN, which
means that (32) and (33) are still separately true. The proof
concludes when we observe that

lim sup
T→∞

1
T

t−1∑
t=0

2N−1∑
i=1
E
π
(2N−1)
SP

Qi(t)

≤ lim sup
T→∞

1
T

t−1∑
t=0

2N−1∑
i=N

E
π
(N)
TD

Qi(t)

+ lim sup
T→∞

1
T

t−1∑
t=0

N∑
i=1
E
π
(N)
BU

Qi(t)

< ∞

MOHAN-ETAL19REDUCED-STATE-OPTIMAL-MEDIUM-ACCESS-CONTROL, TON SUBMISSION, 2 COLUMN 22

K. Proof of Lem. 8

We know that π(N)TD and π(N)BU they produce a single activation
vector s(t) ∈ {0, 1}N for every ζ (t) ∈ {0, 1}N . We have also
seen that π(2N−1)

SP
induces π(N)BU on Queues 1 through N , and

π
(N)
TD on Queues N through 2N−1. Given any occupancy vector

for the new system ζ (t) ∈ {0, 1}2N−1 notice that π(N)BU maps
coordinates 1 through N to a single activation vector and π(N)TD
maps coordinates N through 2N − 1 to a single activation
vector, with a non-conflicting overlap at Queue N . Thus, every
ζ (t) ∈ {0, 1}2N−1 gets mapped to a unique activation vector
s(t) ∈ {0, 1}2N−1, resulting in an admissible policy.

L. Proof of Prop. 10

Before we prove the stability of π
(4)
TD , we will need the

following two lemmas.

Lemma 20. Let A and B be two independent random vari-
ables, with A taking values in {0, 1, 2, · · · } and B taking values
in {0, 1}. Define Z := (A − B)+. Then,

EZ = EA − P {B = 1} (1 − P {A = 0}) . (34)

PROOF. Let pk = P {A = k} , k ≥ 0, and q = P {B = 1} .
Then, P {Z = 0} = P {A = 0} + P {A = 1, B = 1} = p0 + p1q,
and for all k ≥ 1,

P {Z = k} = P {A = k, B = 0} + P {A = k + 1, B = 1}
= pk(1 − q) + pk+1q. (35)

Hence,

EZ =

∞∑
k=1

kP {Z = k}

=

∞∑
k=1

k (pk(1 − q) + pk+1q)

= (1 − q)
∞∑
k=1

kpk + q
∞∑
k=1
(k + 1 − 1) pk+1

= (1 − q)EA + q
∞∑
k=1
(k + 1) pk+1 − q

∞∑
k=1

pk+1

= (1 − q)EA + q (EA − p1) − q (1 − p1 − p0)

= EA − q (1 − p0) . (36)

Lemma 21. Under the policy π
(3)
TD,

lim
t→∞

P {Q1(t) = 0,Q2(t) = 0,Q3(t) = 0} =

(1 − λ1)

(
1 −

λ2
1 − λ1

) (
1 −

λ3
1 − λ2

)
. (37)

PROOF. We have already shown that the policy π
(3)
TD is

throughput-optimal. From this we see that
• the vector-valued process {[Q1(t),Q2(t),Q3(t)] , t ≥ 0} is

strongly stable, under π
(3)
TD and hence, also a positive

recurrent DTMC.
• Recall that while si(t) is used to indicate if service is

“offered” to Queue i at time t, Di(t) indicates if a packet

actually leaves Queue i at the end of that slot, i.e., Di(t) =
si(t)I{Qi (t)>0}. The proof of throughput-optimality of π(3)TD
(Thm. 2) already showed that when Queues 1 and 2 are
started out in their steady state distributions,

P {s3(t) = 1} = 1 − λ2. (38)

So, assume queues 1, 2 and 3 are started out in their steady
state distributions. Since Q3(t+1) = (Q3(t) − s3(t))++A3(t+1),
using the fact that Queue 3 is in steady state and Lem. 20, we
see that

EQ3(t + 1) = EQ3(t)

−P {s3(t) = 1} (1 − P {Q3(t) = 0}) + λ3,

⇒ 1 − P {Q3(t) = 0} =
λ3

P {s3(t) = 1}
,

⇒ P {Q3(t) = 0} = 1 −
λ3

1 − λ2
, in the steady state. (39)

Next, note that under π(3)TD, the system17 transmits a packet
whenever it is nonempty, i.e., it never so happens that the
system is nonempty in a slot and none of the queues is served
in that slot. Secondly, the system transmits two packets in a
slot iff both queues 1 and 3 are nonempty.

Now, define, for all t ≥ 0, Q(t) := Q1(t) + Q2(t) + Q3(t),
and A(t) := A1(t) + A2(t) + A3(t). Then, following the above
argument,

Q(t + 1) = Q(t) − I{Q(t)>0} − I{Q1(t)>0,Q3(t)>0} + A(t + 1). (40)

Note that the mean arrival rate to the three queue subsystem
is EA(t) = λ1 + λ2 + λ3. Taking expectation on both sides of
the above equation and letting t →∞, we get

lim
t→∞
EQ(t + 1) = lim

t→∞
EQ(t) − lim

t→∞
P {Q(t) > 0}

− lim
t→∞

P {Q1(t) > 0,Q3(t) > 0}

+λ1 + λ2 + λ3.

⇒ lim
t→∞

P {Q(t) > 0} = − lim
t→∞

P {Q1(t) > 0,Q3(t) > 0}

+λ1 + λ2 + λ3.
†
= − lim

t→∞
P {A1(t) = 1} P {Q3(t) > 0}

+λ1 + λ2 + λ3

= −
λ1λ3

1 − λ2
+ λ1 + λ2 + λ3

= 1 −
(
(1 − λ1)

(
1 −

λ2
1 − λ1

)
×

(
1 −

λ3
1 − λ2

))
.

We now continue with the proof of Prop. 10. From the
definition of π(4)TD, we see that Queue 4 is offered service under
one of the following conditions.
• Queue 1 is nonempty and Queue 3 is empty
• Queue 1 is empty and Queue 2 is nonempty
• Queues 1, 2 and 3 are all empty.

17In this proof, by “system,” we mean the 3 queues system.

MOHAN-ETAL19REDUCED-STATE-OPTIMAL-MEDIUM-ACCESS-CONTROL, TON SUBMISSION, 2 COLUMN 23

Let us now compute the probability that Queue 4 is offered
service in a slot, under the assumption that queues 1, 2 and 3
are started out in stationarity.

P {s4(t) = 1} = P {Q1(t) > 0,Q3 = 0} + P {Q1(t) = 0,Q2(t) > 0}
+ P {Q1(t) = 0,Q2(t) = 0,Q3(t) = 0}
?
= λ1

(
1 −

λ3
1 − λ2

)
+

(
(1 − λ1)

λ3
1 − λ2

)
+

(
(1 − λ1)

(
1 −

λ2
1 − λ1

) (
1 −

λ3
1 − λ2

))
= 1 − λ3

> λ4

In equality ?, we used the result of Lem. 21. Now, using the
same drift argument as in the proof of throughput-optimality
of π(3)TD on Q4(t), we see that the policy is throughput-optimal.

M. Analyzing the priority policies in greater detail

We will now make a few more observations about π(3)TD

and π
(4)
TD . In what follows, we will drop the time index and

represent Qi(t) by Qi to simplify notation.

P {Q3 > 0,Q1 = 0,Q2 > 0} = P {Q3 > 0,Q2 > 0}
×P {Q1 = 0|Q3 > 0,Q2 > 0}

= (1 − λ1)P {Q3 > 0,Q2 > 0}
(41)

Next, recall that under π(4)TD , Queue 4 is offered service (i.e.,
s4 = 1) whenever either Queue 3 is empty, or when Queue 3
is nonempty, but Queue 1 is empty and Queue 2 is non empty.
Additionally, from Eqn. 41 we gather that P {s4(t) = 1} = 1−
λ3. Hence,

P {s4(t) = 1} = 1 − λ3

= P {Q3 = 0}
+P {Q3 > 0,Q1 = 0,Q2 > 0}

†a
=

(
1 −

λ3
1 − λ2

)
+(1 − λ1)P {Q3 > 0,Q2 > 0}

⇒ P {Q3 > 0,Q2 > 0} =
1

1 − λ1

(
1 − λ3 −

(
1 −

λ3
1 − λ2

))
=

1
1 − λ1

λ3

(
1

1 − λ2
− 1

)
=

λ2
1 − λ1

·
λ3

1 − λ2
= P {Q2 > 0} · P {Q3 > 0} , (42)

where equality †a above comes from Eqn. (39). Next,

(1 − λ1)

(
1 −

λ2
1 − λ2

)
= P {Q1 = 0,Q2 = 0}

= P {Q1 = 0,Q2 = 0,Q3 > 0}
+P {Q1 = 0,Q2 = 0,Q3 = 0}

†b
= (1 − λ1)P {Q2 = 0,Q3 > 0}

+(1 − λ1)

(
1 −

λ2
1 − λ1

) (
1 −

λ3
1 − λ2

)

⇒ P {Q2 = 0,Q3 > 0} =

(
1 −

λ2
1 − λ1

)
λ3

1 − λ2
= P {Q2 = 0} · P {Q3 > 0} ,

(43)

where, in equality †b we have made use of Lem. 21. Next,

P {Q2 = 0,Q3 = 0} = P {Q1 > 0,Q2 = 0,Q3 = 0}
+P {Q1 = 0,Q2 = 0,Q3 = 0}

= λ1P {Q2 = 0,Q3 = 0}

+(1 − λ1)

(
1 −

λ2
1 − λ1

) (
1 −

λ3
1 − λ2

)
,

(44)

which means that

(1 − λ1)P {Q2 = 0,Q3 = 0} = (1 − λ1)

(
1 −

λ2
1 − λ1

) (
1 −

λ3
1 − λ2

)
⇒ P {Q2 = 0,Q3 = 0} =

(
1 −

λ2
1 − λ1

) (
1 −

λ3
1 − λ2

)
= P {Q2 = 0} · P {Q3 = 0} . (45)

Finally,

P {Q2 > 0,Q3 = 0} = 1 − (P {Q2 > 0,Q3 > 0}
+P {Q2 = 0,Q3 > 0}) + P {Q2 = 0,Q3 = 0}

= 1 −
(

λ2
1 − λ1

·
λ3

1 − λ2
+

(
1 −

λ2
1 − λ1

)
·

λ3
1 − λ2

+

(
1 −

λ2
1 − λ1

) (
1 −

λ3
1 − λ2

))
= 1 −

(
λ3

1 − λ2
+ 1 −

λ2
1 − λ1

−
λ3

1 − λ2

+
λ2

1 − λ1

λ3
1 − λ2

)
=

λ2
1 − λ1

(
1 −

λ2
1 − λ1

)
= P {Q2 > 0} · P {Q3 = 0} . (46)

From Eqn. (42), Eqn. (43), Eqn. (45) and Eqn. (46) and we
see that the random variables I{Q1>0}, I{Q2>0} and I{Q3>0}
are independent, for every t ≥ 0 under the condition that
the initial queue length vector [Q1(0),Q2(0),Q3(0)] follows
the steady state distribution, which always exists since π(3)TD is
throughput-optimal.

Remark. Since the top-down priority policies π
(3+k)
TD , for all

k ≥ 0 induce π(3)TD on queues 1, 2 and 3, this independence is
always true in steady state.

N. Proof of Prop. 11

Recall that under the top-down policies, Queue 1 receives
highest priority and is served whenever it is non empty,
followed by Queue 2 and so on. π(5)TD offers service to Queue
5 (i.e., s5(t) = 1) iff the following conditions are satisfied
• Q1 > 0 and Q3 > 0
• Q1 > 0, Q3 = 0, and Q4 = 0,
• Q1 = 0, Q2 > 0, and Q4 = 0,
• Q1 = 0, Q2 = 0, and Q3 > 0 and

MOHAN-ETAL19REDUCED-STATE-OPTIMAL-MEDIUM-ACCESS-CONTROL, TON SUBMISSION, 2 COLUMN 24

• Q1 = 0, Q2 = 0, Q3 = 0 and Q4 = 0.
So,

P {s5(t) = 1} = P {Q1 > 0, Q3 > 0}
+P {Q1 = 0, Q2 = 0, Q3 > 0}
+P {Q1 > 0, Q3 = 0, Q4 = 0}
+P {Q1 = 0, Q2 > 0, Q4 = 0}
+P {Q1 = 0, Q2 = 0, Q3 = 0, Q4 = 0}

†c
= λ1

λ3
1 − λ2

+ (1 − λ1)

(
1 −

λ2
1 − λ1

)
λ3

1 − λ2
+P {Q1 > 0, Q3 = 0, Q4 = 0}
+P {Q1 = 0, Q2 > 0, Q4 = 0}
+P {Q1 = 0, Q2 = 0, Q3 = 0, Q4 = 0} ,(47)

where in equality c we have used the independence results of
Sec.XI-M. Now, consider the subsystem comprising queues 1,
2 and 4 under this policy and call this subsystem Q124. Since
π
(5)
TD restricted to the first 4 queues is essentially π

(4)
TD , the

top-down policy for the 4 queue system, and since Thm. 10
already showed that π

(4)
TD is throughput-optimal, Q124 is a

stable subsystem and has a steady state distribution which
is simply a marginal of the distribution of the 4 queue system
with Queue 3’s coordinate summed out.

The arrival rate to Q124 is λ1 + λ2 + λ4. Also, under π(4)TD

and hence π(5)TD , the Q124 transmits
• At least 1 packet in slots with

– Q1 > 0, or
– Q1 = 0, Q2 > 0, or
– Q1 = 0, Q2 = 0, Q3 = 0 and Q4 > 0, and

• 2 packets in slots with
– Q1 > 0, Q3 = 0, and Q4 > 0, or
– Q1 = 0, Q2 > 0, and Q4 > 0.

Assume Q124 is started out in its steady state. Let Q(t) =∑
i∈Q124 Qi(t), and A(t) =

∑
i∈Q124 Ai(t), for all t ≥ 0. Conse-

quently,

Q(t + 1) = Q(t) − I{Q1(t)>0} − I{Q1(t)=0,Q2(t)>0}

−I{Q1(t)=0,Q2(t)=0,Q3(t)=0,Q4(t)>0}

−I{Q1(t)>0,Q3(t)=0,Q4(t)>0}

−I{Q1(t)=0,Q2(t)>0,Q4(t)>0} + A(t + 1)
EQ(t + 1) − EQ(t) = −P{Q1(t) > 0}

−P{Q1(t) = 0,Q2(t) > 0}
−P {Q1(t) = 0,Q2(t) = 0,
Q3(t) = 0,Q4(t) > 0}
−P{Q1(t) > 0,Q3(t) = 0,Q4(t) > 0}
−P{Q1(t) = 0,Q2(t) > 0,Q4(t) > 0}
+EA(t + 1),

which, using the fact that EQ(t + 1) − EQ(t) = 0 in the steady
state and that EA(t + 1) = λ1 + λ2 + λ4, gives us

P{Q1(t) = 0,Q2(t) = 0,Q3(t) = 0,Q4(t) > 0}
+P{Q1(t) > 0,Q3(t) = 0,Q4(t) > 0}
+P{Q1(t) = 0,Q2(t) > 0,Q4(t) > 0}

= λ1 + λ2 + λ4 − P{Q1(t) > 0} − P{Q1(t) = 0,Q2(t) > 0}

= λ1 + λ2 + λ4 − λ1 − (1 − λ1)
λ2

1 − λ1
= λ4. (48)

Notice that

P{Q1(t) = 0,Q2(t) = 0,Q3(t) = 0,Q4(t) > 0}
+P{Q1(t) > 0,Q3(t) = 0,Q4(t) > 0}
+P{Q1(t) = 0,Q2(t) > 0,Q4(t) > 0}
+P{Q1(t) = 0,Q2(t) = 0,Q3(t) = 0,Q4(t) = 0}
+P{Q1(t) > 0,Q3(t) = 0,Q4(t) = 0}
+P{Q1(t) = 0,Q2(t) > 0,Q4(t) = 0}
= P{Q1(t) = 0,Q2(t) = 0,Q3(t) = 0}
+P{Q1(t) > 0,Q3(t) = 0}
+P{Q1(t) = 0,Q2(t) > 0}.

Using Eqn. 48 on the first three terms on the LHS of the above
equation and invoking the independence results in Sec. XI-M
on the RHS, we get

λ4 + P{Q1(t) = 0,Q2(t) = 0,Q3(t) = 0,Q4(t) = 0}
+P{Q1(t) > 0,Q3(t) = 0,Q4(t) = 0}
+P{Q1(t) = 0,Q2(t) > 0,Q4(t) = 0}

= (1 − λ1)

(
1 −

λ2
1 − λ1

) (
1 −

λ3
1 − λ2

)
+ λ1

(
1 −

λ3
1 − λ2

)
+(1 − λ1)

λ2
1 − λ1

,

which means that,

P{Q1(t) = 0,Q2(t) = 0,Q3(t) = 0,Q4(t) = 0}
+P{Q1(t) > 0,Q3(t) = 0,Q4(t) = 0}
+P{Q1(t) = 0,Q2(t) > 0,Q4(t) = 0}

= (1 − λ1)

(
1 −

λ2
1 − λ1

) (
1 −

λ3
1 − λ2

)
+ λ1

(
1 −

λ3
1 − λ2

)
+(1 − λ1)

λ2
1 − λ1

− λ4.

Substituting this on the RHS of Eqn. 47, we get

P {S5(t) = 1} = λ1
λ3

1 − λ2
+ (1 − λ1)

(
1 −

λ2
1 − λ1

)
λ3

1 − λ2

+ λ1

(
1 −

λ3
1 − λ2

)
+ (1 − λ1)

(
1 −

λ2
1 − λ1

) (
1 −

λ3
1 − λ2

)
+ (1 − λ1)

λ2
1 − λ1

− λ4

= λ1 + (1 − λ1)

(
1 −

λ2
1 − λ1

)
+ (1 − λ1)

λ2
1 − λ1

− λ4

= 1 − λ4

> λ5.

Thus, both π(5)TD and π(5)BU , the top-down and bottom-up policies
are stable.

MOHAN-ETAL19REDUCED-STATE-OPTIMAL-MEDIUM-ACCESS-CONTROL, TON SUBMISSION, 2 COLUMN 25

O. Proof of Prop. 13

We extend our initial idea of Property P to prove this
proposition as follows. For all 1 ≤ m ≤ N, define Qm(t) :=∑

j∈Cm Qm, j(t), and Dm(t) :=
∑

j∈Cm Dm, j(t). As in the proof
of sufficiency of Property P, the idea is to prove that φ̃ satisfies
the following version of the property, which immediately leads
to strong stability. For all 2 ≤ m ≤ N,

D1(t) + Dm(t) = 0 ⇐⇒ Q1(t) +Qm(t) = 0, ∀t ≥ 0. (49)

Let m ≥ 2 in the sequel. By the definition of the departure
processes {Di(t), i ≥ 1}, in every slot t ≥ 0, Q1(t)+Qm(t) = 0
always means D1(t) + Dm(t) = 0. To show the converse, we
consider several cases

• Q1(t) > 0 and Qm(t) > 0 means that in one of the 3
steps of the definition of φ̃, one of the queues in either
of these cliques will get scheduled and either D1(t) = 1
or Dm(t) = 1.

• Q1(t) > 0 and Qm(t) = 0 means that φ̃ schedules a
nonempty queue in C1 in step 2, and D1(t) = 1.

• Q1(t) = 0 and Qm(t) > 0 means that φ̃ schedules
a nonempty queue in Cm in either step 1 or step 3,
depending on whether the other cliques have nonempty
queues. In either case, Dm(t) = 1.

The proof of sufficiency of Property P can now be extended
using the Lyapunov function defined below to show that φ̃ is
indeed throughput-optimal.

L(Q(t)) :=
N∑

m=2
(Q1(t) +Qm(t))2 (50)

P. Proof of Prop. 17

The policy θ
(5L)
SP

is formed by splicing together θ(3L)TD and
θ
(3L)
BU . This means that θ(5L)

SP
restricted to Queues 1 to 3 is

θ
(3L)
BU and restricted to Queues 3 to 5 is θ(3L)TD . The throughput-

optimality of θ(3L)TD and θ
(3L)
BU means that for every λ ∈ Λ(5)

l
(defined in (7)),

lim sup
T→∞

1
T

t−1∑
t=0

5∑
i=3

Ni∑
j=1
E
θ
(3L)
TD

Qi, j(t) < ∞, and (51)

lim sup
T→∞

1
T

t−1∑
t=0

3∑
i=1

Ni∑
j=1
E
θ
(3L)
BU

Qi, j(t) < ∞. (52)

Now, as in Thm. 9, for every λ ∈ Λ(5)
l

we define two new
arrival rate vectors λ1:3 = [λ1, λ2, λ3] and λ3:5 = [λ3, λ4, λ5]
and note that by the definition of the set Λ(N)

l
, λ1:3 and λ3:5 are

both in Λ(3)
l

, which means that (51) and (52) are still separately
true. We conclude the proof by observing that

lim sup
T→∞

1
T

t−1∑
t=0

5∑
i=1

Ni∑
j=1
E
φ
(5)
SP

Qi, j(t)

≤ lim sup
T→∞

1
T

t−1∑
t=0

5∑
i=3

Ni∑
j=1
E
θ
(3L)
TD

Qi, j(t)

+ lim sup
T→∞

1
T

t−1∑
t=0

3∑
i=1

Ni∑
j=1
E
θ
(3L)
BU

Qi, j(t)

< ∞

Q. Throughput-optimality of Φ(S)
IC
(T)

The proof consists of two parts. We will first prove that
Φ
(S)
IC
(T) specialized to a single collocated network, i.e., a single

clique is throughput-optimal and then use a new version of
property P to complete the proof for our “star-of-cliques”
interference graphs (of the type shown in Fig. 2b).
Suppose the system only knows ζ (t) ∈ {0, 1}N , at times
t = 0,T, 2T, · · · . Arrivals in the k th frame are not served in
the k th frame. We denote by ψT , the scheduling policy that,
during kT, kT + 1, . . . ,KT +T − 1, serves every queue known
to be nonempty at kT until either

1) The next frame, i.e., k + 1 begins, or
2) All packets queued in the system until the beginning

of slot kT have been served. In this case the system
obviously idles until the next frame begins.

Since only one queue can be served in any slot, the capacity
region of this system is

{
λ ∈ RN

+ |
∑N

i=1 λi < 1
}
. In what

follows, we will analyze the process {q(k), k ≥ 0}, where
q(k) := Q(kT).

Lemma 22. Under ψT , for any λ inside the capacity region,

• the process {q(k), k ≥ 0, } is strongly stable, i.e., ψT is
throughput-optimal, and

• mean packet delay under ψT is linear in T which means
that there exists an α ∈ R+, such that

EψT

N∑
i=1

Qi(kT) ≤ αT, ∀k ≥ 0. (53)

PROOF. Let Ai[x, y] denote the number of arrivals to Queue i
over the slots x, x+1, . . . , y. Since the arrivals are all Bernoulli,
Ai[x, y] is a Binomial(y − x + 1,Λi) random variable. Denote
the total system backlog at kT by q(k) :=

∑N
i=1 qi(k) and total

arrival to the system during the k th frame by A(k + 1) :=∑N
i=1 Ai[kT + 1, k(T + 1)]. It is then easy to see that

q(k + 1) = (q(k) − T)+ + A(k + 1), (54)

since ψT serves the network until all q(k) packets leave, if
q(k) < T , or exactly T packets depart (this happens when the

MOHAN-ETAL19REDUCED-STATE-OPTIMAL-MEDIUM-ACCESS-CONTROL, TON SUBMISSION, 2 COLUMN 26

k th frame begins with at least T packets in the network). With
this we get,

EψT
[
q2(k + 1) − q2(k) | q(k) = q

]
≤ q2 + (N2 + 1)T2

− 2qT

(
1 −

N∑
i=1
Λi

)
,

= q2 + (N2 + 1)T2 − 2εq,

where ε :=
(
1 −

∑N
i=1 Λi

)
> 0. Taking expectations on both

sides of the above equation, we get

EψT
[
q2(k + 1) − q2(k)

]
≤ EψT q2(k) + (N2 + 1)T
− 2εEψT q(k),

EψT

N∑
i=1

Qi(kT)
?
≤
(N2 + 1)

2ε
T, (55)

⇒ lim sup
k→∞

1
kT

k−1∑
l=0
EψT

N∑
i=1

Qi(lT) < ∞, (56)

In inequality ?, we have used the fact that EψT q2(k + 1) ≥ 0.
In particular, Eqn. 56 shows that the system is strongly stable
under ψT and setting α = (N

2+1)
2ε , and using Little’s theorem

along with Eqn. (55) we see that mean packet delays are linear
in T .

The proof of throughput-optimality of Φ(T) follows by
using the above lemma with the (N − 1) queue lengths[(∑

j∈C1 Q j(t) +
∑

j∈Ck Q j(t)
)
, 2 ≤ k ≤ N

]
. It also means

that delay with Φ(T) increases linearly in T .

R. Proof of Prop. 15

This proof proceeds along the same lines as the proof
of delay optimality of Policy π̃

(3)
IQ

that we presented in

Sec. XI-G.φ(S)
IC

and φ̃ differ only when every peripheral clique
has a nonempty queue and behave identically otherwise.
Verifying the conditions required to establish sample pathwise
and hence, stochastic ordering are very similar to our proof of
delay-optimality of π̃(3)

IQ
and will not be repeated.

S. Proof of Prop. 16

Let Qi(t) :=
∑Ni

j=1 Qi, j(t) be the total backlog of Clique i,
i.e., Ci , at the beginning of time slot t and let the total arrival
rate to Ci be denoted by λi :=

∑
j∈Ci λi, j =

∑Ni

j=1 λi, j . Define
Q1,2(t) := Q1(t)+Q2(t). Notice that Clique 1 is scheduled for
service in every slot in which any queue in it has a packet and
whenever C1 is not scheduled, C2 is scheduled provided it is
non empty. So, we have that

Q1,2(t + 1) = Q1,2(t) − I{Q1,2(t)>0} + A1,2(t + 1), (57)

where A1,2(t+1), t ≥ 0 is the total number of arrivals to C1 and
C2 at the beginning of slot t+1, and EA1,2(t+1) = λ1+λ2. It is
easy to show that Cliques 1 and 2 are stable under this policy
(a simple sum of queue length squares Lyapunov function
suffices), which means that there exists a stationary distribution
for the process {Q1,2(t), t ≥ 0}. Now, from (7) with N = 3

cliques, we know that λ1+λ2 < 1. Taking expectation on both
sides of the equation in steady state, we get

EQ1,2(t + 1) = EQ1,2(t) − P
{
Q1,2(t) > 0

}
+ λ1 + λ2,

⇒ P
{
Q1,2(t) = 0

}
= 1 − λ1 − λ2 (58)

So, since a non empty queue in C3 is served in every slot in
which either
• there is a non empty queue in C1, or
• there are no non empty queues in C1, or C2.

With this we see that the offered service process to Clique 3,
i.e., {SC3 (t), t ≥ 0} satisfies

P{SC3 (t) = 1} = λ1 + (1 − λ1 − λ2)

= 1 − λ2 > λ3. (59)

Notice that P{SC3 (t) = 1} is independent of Q3(t). Hence,
repeating the drift argument from Thm. 2 that showed the
throughput-optimality of π(3)TD on Q3(t), we see that C3 is also
stable which means that θ(3L)TD is throughput-optimal.

T. Proof of Prop. 14

We first show that φ(S)
IC

satisfies Eqn. 49 at every t ≥ 0.
Thereafter, the analysis in the proof of φ̃(S)

IC
using the same

Lyapunov function as in Eqn. (50) can be used to establish
strong stability. Let m ≥ 2 in the sequel. By the definition
of the departure processes {Di(t), i ≥ 1}, in every slot t ≥ 0,
Q1(t) +Qm(t) = 0 always means D1(t) + Dm(t) = 0. To show
the converse, we consider several cases
• Q1(t) > 0⇒ D1(t) = 1.
• Q1(t) = 0 and Qm(t) > 0 means that φ(S)

IC
schedules

a nonempty queue in Cm in step 1 or step 2 ensuring
Dm(t) = 1.

The proof now uses the same Lyapunov function as XI-O and
proceeds along the same lines.

U. Proof of Thm. 18

We begin by first analyzing the service processes to different
queues under φ(S)

CS
. This will yield important insights into how

the stability proof should proceed.
a) Service Processes under φ

(S)
CS

:: For the purposes
of this proof, we relabel the queue in the central clique as
Qc(t) and assume that the peripheral cliques are numbered
C1, · · · , CN . Clearly, since the central clique gets maximum
priority and Queue c, the only queue in this clique, is served
whenever it is nonempty, it behaves as a Geo/D/1 queue
with service time equal to 1 slot. We now move on to queues
in the peripheral cliques. WLOG we consider clique C1 and
Q1,1 in it and note that every clique is running an exhaustive
service policy locally. Fig. 13 shows a sample path of the
queue length-evolution process Q1,1(t). Note that Queue c is
served in every slot in which there is an arrival to it and
that due to the Bernoulli nature of the arrival processes, the
interarrival duration is Geometric with mean 1

1−λc . A packet in
Q1,1 that reaches the Head-of-Line (HOL) position therefore
sees a service duration that is Geometric with mean 1

1−λc . This,
of course, is true for every queue in the peripheral cliques.

MOHAN-ETAL19REDUCED-STATE-OPTIMAL-MEDIUM-ACCESS-CONTROL, TON SUBMISSION, 2 COLUMN 27

1) Glossary II:
∗ V(t) : The (N × 1)-dimensional vector containing infor-

mation about the number of slots since each of the queues
in the SoC network over which φ

(S)
CS

is defined, was last
served before time slot t.

∗ ∆ : The length of a server vacation in the proof of
throughput-optimality of φ(S)

CS
, once again, in Sec. XI-U1.

∗ I(·) : index of the queue currently having channel access.
∗ n : the slot in which Queue I(n) begins transmission.
∗ n + 1 : the slot in which channel access is granted to the

next peripheral queue.
∗ ml : instant at which the l th (Vacation + Busy Period)

begins.
∗ RI (n) : the number of (Vacation + Busy Period)’s for

Queue I(n).
∗ λc : packet arrival rate at the central queue, i.e., Queue c.
∗ ni, i ≥ 0 : instants at which busy periods of Queue I(n)

begin. Clearly, n0 = n.
Once Q1,1 becomes empty, the rest of the clique does not
necessarily obtain this knowledge in that same slot. It depends
on whether the central clique is empty or not. For example,
in slot m0 in Fig. 13, Q1,1 has become empty, but Queue c
has received an arrival which means that it is Queue c that is
served, power is sensed in minislot 1 itself, and the protocol
φ
(S)
CS

never enters Step 2b. The other queues in C1 don’t know
if Q1,1 is empty and so, in the next slot in which Queue c is
empty, it is Q1,1 that is given channel access and if, by then it
has received any arrivals, it begins another busy period. This
is what happens in Fig. 13 until instant m1 and this entire
process repeats resulting in a random number of busy periods
of Q1,1 until the instant when both Queue c and Q1,1 are
found empty. This happens in slot nRI (n)

in the figure. At this
instant, φ(S)

CS
enters Step. 2b and the queue with the largest

Vi takes over. Notice that there are several portions labelled
“Vacation” in the figure. A Vacation is the duration between
a peripheral queue becoming empty and the first time since
then that it is granted channel access since the central queue
is empty. The durations of these vacations are also distributed
Geometric with mean 1

1−λc . To summarize, the service to a
peripheral queue under φ(S)

CS
consists of a random number of

(Busy Period + Vacation) durations.
The proof will focus on analyzing φ(S)

CS
restricted to a single

clique and this analysis will be extended later to show that
the entire star-of-cliques system is stable. For now, WLOG,
we focus on clique C1. Clearly, the queue length vector
process Q(t) under φ(S)

CS
is a DTMC. We prove the throughput-

optimality of φ(S)
CS

using a drift argument for the queue length
vector process Q(n) which is Q(t) sampled at instants n ≥ 0
when a new peripheral queue is granted channel access (see
Fig. 13). We define the following quantities
• n : the slot in which Queue I(n) (here Q1,1) begins

transmission.
• I(n) : the queue having channel access
• n + 1 : the slot in which channel access is granted to the

next peripheral queue in C1.
• ml : instant at which the l th (Vacation + Busy Period)

begins.

• RI (n) : the number of (Vacation + Busy Period)’s for
Queue I(n), here Q1,1.

• λc : packet arrival rate at Queue c.
• ni, i ≥ 0 : instants at which busy periods of Queue I(n)

begin. Clearly, n0 = n.

Note: For the reader’s convenience we provide another short
glossary (apart from the one in Sec. XI-B) containing the
definitions of some of the important quantities used in the
proof in Sec. XI-U1 below.
PROOF. Denote by ρj the load on Queue j, i.e., ρj = λjEB =
λj

1
1−λc , and by ρ =

∑N1
j=1 ρj the total load on the clique. The

interference constraints dictate that ρ < 1. Let b = EB = 1
λc

Define ∆ = inf {m > m0 |Ac(m) = 0} − m0, i.e., the duration
after m0 until the slot without any arrival to Queue c (the
central queue). Note that the vacation may be of length 0
slots as well, since when the busy period of Queue I(n) ends,
Queue c could be empty. Therefore, ∀k ≥ 0 P{∆ = k} =
λkc (1 − λc), and the mean of ∆ is

E∆ =
∞∑
k=0

kλkc (1 − λc) =
λc

1 − λc
(60)

EAj(∆) = E
(
E

[
Aj(∆) | ∆

])
= E

(
λjE∆

)
= λc

λj

1 − λc
= λcρj (61)

Now, notice that

Q j(n1) =

Q j(n) + Aj

(
GI (n)

(
QI (n)(n)

))︸ ︷︷ ︸
arrivals to Queue j during busy period of Queue I (n)

+Aj(∆)︸ ︷︷ ︸
arrivals during the subsequent vacation

, for j , I(n)

Aj(∆), for j = I(n).
(62)

Using (61) and (62), we get

bE
[
Q j(n1)|Q(n)

]
≤ bQ j(n) + bQI (n)(n)

ρj

1 − ρI (n)
+ bλcρj

E

N1∑
j=1

bQ j(n1)|Q(n)
 ≤

N1∑
j=1

bQ j(n) +
(
ρ − ρj

1 − ρI (n)
− 1

)
bQI (n)(n)

+bλcρ

?
=

N1∑
j=1

bQ j(n) + hI (n) (ρ − 1) bQI (n)(n)︸ ︷︷ ︸
strictly negative

+bλcρ, (63)

where in equality ? we have defined hI (n) =
1

1−ρI (n) . Also
observe the fact that on the R.H.S of (63), (ρ − 1) is strictly
negative, by capacity constraints. Similarly,

E

N1∑
j=1

bQ j(n2)|Q(n)
 = E

E

N1∑
j=1

bQ j(n2)

����Q(n1),Q(n)
︸ ︷︷ ︸

σ(Q(n))⊂σ(Q(n1),Q(n))

����Q(n)

MOHAN-ETAL19REDUCED-STATE-OPTIMAL-MEDIUM-ACCESS-CONTROL, TON SUBMISSION, 2 COLUMN 28

Fig. 13: A sample path illustrating the service process to one of the peripheral queues, here, Q1,1. Even with one queue in the central clique the resulting
service process to peripheral queues is found to be quite complex. Note that here, I (n) = Q1,1, in Clique 1, while I (n + 1) = Q1,2 since it was chosen in
Step 2b in the definition of φ(S)

CS
.

†
= E

E

N1∑
j=1

bQ j(n2)

����Q(n1)

����Q(n)

E

N1∑
j=1

bQ j(n2)|Q(n)

?1
≤ E

N1∑
j=1

bQ j(n1)

����Q(n)
+hI (n) (ρ − 1) bE

[
QI (n)(n1)

����Q(n)] + bλcρ

=
©«
N1∑
j=1

bQ j(n)

+hI (n) (ρ − 1) bQI (n)(n) + bλcρ
)

+
(
hI (n) (ρ − 1) bλcρI (n)

)
+ bλcρ,

=

N1∑
j=1

bQ j(n) + 2bλcρ

+ (ρ − 1) bhI (n)

(
QI (n) + ρI (n)

)︸ ︷︷ ︸
strictly negative

.

Proceeding similarly,

E

N1∑
j=1

bQ j(nk)|Q(n)
 =

N1∑
j=1

bQ j(n) + kbλcρ

+ (ρ − 1) bhI (n)

(
QI (n)

+(k − 1)ρI (n)
)
, ∀k ≥ 1. (64)

Equality † follows from the Markovian nature of the evolution
of the queue-length vector, and we have used (63) and the fact
that I(n1) = I(n) in inequality ?1. Let us now compute the
mean number of secondary busy periods which will inform
the choice of k in (64) while computing the conditional drift
between instants n and n + 1. The visit to Queue I(n) ends
when it receives 0 arrivals during a vacation. Let the number
of vacations during a visit to Queue I(n) be RI (n).

P
(
RI (n) = k

)
=

k∏
l=1

P
(
A(l)
I (n)
(∆) > 0

)
×P

(
A(k+1)
I (n)
(∆) = 0

)
, ∀k ≥ 0.

(65)

But all the A(l)
I (n)
(∆) are iid and

P
(
A(l)
I (n)
(∆) = 0

)
=

∞∑
k=0

P
(
A(l)
I (n)
(∆) = 0

����∆ = k
)

=

∞∑
k=0
(1 − λI (n))kλc(1 − λc)k

=
1 − λc

1 − (1 − λI (n))λc
, (66)

Which gives us

ERI (n) =
λcλI (n)

1 − λc
+ 1 (67)

Now, using (67) in (64), we get

E

N1∑
j=1

bQ j(nRI (n)
)|Q(n)

 =

N1∑
j=1

bQ j(n) +
(
λcλI (n)

1 − λc
+ 1

)
bλcρ

+ (ρ − 1) bhI (n)

×

(
QI (n) +

(
λcλI (n)

1 − λc

)
ρI (n)

)
,

from which we get the conditional drift as

E

N1∑
j=1

bQ j(n + 1) −
N1∑
j=1

bQ j(n)|Q(n)

= E

N1∑
j=1

bQ j(nRI (n)
) −

N1∑
j=1

bQ j(n)|Q(n)

≤

(
λcλI (n)

1 − λc
+ 1

)
bλcρ

+ (ρ − 1) bhI (n)

(
QI (n) +

(
λcλI (n)

1 − λc

)
ρI (n)

)
< −ε,

for large enough QI (n). Invoking the Foster-Lyapunov theorem
[37] we see that the chain Q(n) is positive recurrent. This
process can be used repeatedly to show that each of the
N1 DTMCs

{
QnN1+K

}∞
n=0 is positive recurrent for K =

0, 1, · · · ,N1 − 1. Finally, this same procedure can be repeated
for each peripheral clique Ci, 1 ≤ i ≤ N, to show that φ(S)

CS
is

throughput-optimal.

MOHAN-ETAL19REDUCED-STATE-OPTIMAL-MEDIUM-ACCESS-CONTROL, TON SUBMISSION, 2 COLUMN 29

V. Simulation Details

Here we provide the arrival rate vectors for:
• Path graph network simulations in Table II

1) N = 4 queues: λ = [0.49, 0.49, 0.49, 0.49]
2) N = 5 queues: λ = [0.15, 0.049, 0.95, 0.049, 0.15]
3) N = 15 queues:

λ = [0.80, 0.15, 0.15, 0.15, 0.15, 0.8, 0.049,

0.95, 0.049, 0.8, 0.15, 0.15, 0.15, 0.15, 0.80]

• Cluster of Cliques simulations in Table III

1) Star-of-Cliques network:
λ = [0.3, 0.3, 0.3, 0.09, 0.9, 0.9]

2) Linear-Array-of-Cliques:
λ = [0.1, 0.1, 0.1, 0.049, 0.65, 0.3, 0.049, 0.0, 0.0]

	Introduction
	Our Contributions and Organization

	The Scheduling Problem: Models and Notation
	The General Queue Scheduling Model
	Performance Metric

	Path Graph interference networks
	The Cluster-of-Cliques (CoC) graph networks

	Scheduling in Path Graph Models
	Maximum Size Matching (MSM) Policies
	Queue Nonemptiness-Based (QNB) Scheduling

	Path Graph Conflict Model with N=3:QNB Scheduling
	Analysis of (3)IQ
	Analysis of (3)OQ
	Policies outside (3)M
	A Randomized Policy: The Flow-in-the-Middle Problem

	Path-Graph Models with N > 3: Policy Splicing for Throughput Optimal QNB Scheduling
	Top-down and Bottom-up scheduling on N queues
	Splicing TD and BU policies
	Mapping (N)SP to an MSM policy
	Policies for N=7, 8 and 9 through Policy Splicing

	Path-Graph Conflict Graphs with N>3: Delay with QNB Policies
	Cluster-of-Cliques Interference Networks: Throughput Optimal Scheduling
	Scheduling in Star-of-Cliques Networks
	Comparison of delay with (S)IC and (S)IC

	Scheduling in Linear-Arrays-of-Cliques
	Scheduling Policies for Systems with N=3 Cliques
	Scheduling Policies for Systems with N=4 and 5 Cliques

	Some Remarks on Decentralized Implementation
	Decentralized Implementation of (S)IC
	(S)IC without Occupancy Information: Towards Fully Decentralized Policies

	Simulation Results
	Conclusion and Future work
	References
	Biographies
	Avinash Mohan (S.M.'16-M'17)
	Aditya Gopalan
	Anurag Kumar

	Appendix
	Glossary of Acronyms
	Glossary of Notation
	Throughput Optimality of Queue Nonemptiness-based Scheduling in Fully Connected Graphs
	Proof of Lem. 1
	Proof of Thm. 2
	Proof of Thm. 3
	Proof of Thm. 4
	Proof of Prop. 5
	Proof of Prop. 7
	Brief Digression: A Sufficient Condition for MSM Policies

	Proof of Thm. 9
	Proof of Lem. 8
	Proof of Prop. 10
	Analyzing the priority policies in greater detail
	Proof of Prop. 11
	Proof of Prop. 13
	Proof of Prop. 17
	Throughput-optimality of (S)IC(T)
	Proof of Prop. 15
	Proof of Prop. 16
	Proof of Prop. 14
	Proof of Thm. 18
	Glossary II

	Simulation Details

