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Abstract—We consider a wireless sensor network whose main
function is to detect certain infrequent alarm events, and to
forward alarm packets to a base station, using geographical
forwarding. The nodes know their locations, and they sleep-
wake cycle, waking up periodically but not synchronously. In
this situation, when a node has a packet to forward to the sink,
there is a trade-off between how long this node waits for a
suitable neighbor to wake up and the progress the packet makes
towards the sink once it is forwarded to this neighbor. Hence, in
choosing a relay node, we consider the problem of minimizing
average delay subject to a constraint on the average progress. By
constraint relaxation, we formulate this next hop relay selection
problem as a Markov decision process (MDP). The exact optimal
solution (BF (Best Forward)) can be found, but is computationally
intensive. Next, we consider a mathematically simplified model
for which the optimal policy (SF (Simplified Forward)) turns out
to be a simple one-step-look-ahead rule. Simulations show that
SF is very close in performance to BF, even for reasonably small
node density. We then study the end-to-end performance of SF
in comparison with two extremal policies: Max Forward (MF)
and First Forward (FF), and an end-to-end delay minimising
policy proposed by Kim et al. [1]. We find that, with appropria te
choice of one hop average progress constraint, SF can betuned
to provide a favorable trade-off between end-to-end packetdelay
and the number of hops in the forwarding path.

I. I NTRODUCTION

An important application of wireless sensor networks
(WSN) is dense embedded sensing for the purpose of detecting
certain infrequently occuring events, such as failures in a
large structure, or intrusion into a secure region. Such an
event can occur anywhere in a large WSN, and once an
event is detected, the alarm needs to be rapidly sent to the
sink for further action. In such WSNs, typically the nodes
rely on batteries, or energy harvested from their surroundings,
and, hence, need to be extremely parsimonius in their use
of energy. In order to conserve energy, the nodes operate
in sleep-wake cycles; when a node wakes up it performs
sensing, and also can assist in forwarding any alarm packets
towards the sink. In this paper, we consider the situation in
which the sleep-wake cycles of nodes arenot synchronized.
In such a setting, stateful routing is not possible. Instead, if
the nodes know their own locations and that of the sink, then
it is possible to dynamically select forwarding nodes that are
successively nearer to the sink. This is calledgeographical
routing, and has been widely studied as a simple scalable

approach for routing in sensor networks [2], [3], [4], [5]. For
the purpose of location determination, low cost GPS devices
are now becoming available, and can be incorporated in the
nodes; alternatively, approximate localization algorithms based
on various geometrical principles can also be used (see, for
example, [6], [7]). For a survey on routing and localization,
see [8], [9]. In this paper we assume that nodes know their
exact locations and also the location of the sink.
The relay node selection problem:In geographical forwarding,
in our setting, there arises the problem of optimal relay node
selection, which we now discuss. One approach is that of
greedy forwarding, in which an intermediate node forwards
the packet to its neighbor node that makes maximum progress
towards the sink. This scheme is referred to as Most Forward
within Radius (MFR) ([2], [3]). If the node density is large
such that every node has a neighbor that is closer to the sink
than itself, then the greedy approach can find routes close to
the minimum hop paths. Following a minimum hop path is
beneficial since it reduces the number of times the network
needs to transmit the packet.

However, when the nodes are sleep-wake cycling in an
asynchronous manner there is a trade-off between the delay in
relay node selection and the progress made towards the sink.
For example, if MFR is implemented, then for an intermediate
node to forward the packet to a relay node that makes the
maximum progress towards the sink, the intermediate node
will need to wait for all its neighbors closer to the sink than
itself to wake up. This will result in an increase in the delay
of the alarm that is being forwarded. In fact, a counterpart to
the MFR policy could be the policy that forwards the packet
to the first node that wakes up and is nearer to the sink than
the intermediate node. In this paper we call this latter policy
First Forward (FF), and the MFR policy, simply, Max Forward
(MF).

In this paper we study the above trade-off for the following
one hop relaying problem. A node needs to forward a packet
to the sink. There is a set of neighbors of the node that are
nearer to the sink than the node; theforwarding set. The nodes
are asynchronously sleep-wake cycling according to a certain
model. We seek policies for relay node selection so as to
minimize the delay in determining the relay node, subject toa
constraint on the progress made towards the sink. We assume
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that each node has at least one neighbor that is strictly closer
to the sink than itself so that greedy forwarding will always
find a path to sink. This is a reasonable assumption for large
node densities.
Our contributions:

• The problem of minimizing average one hop delay subject
to a constraint on the average progress made, when
nodes wake up periodically, but not synchronously, is
formulated as a Markov decision problem (MDP), and
solved to yield the optimal policy which we call Best
Forward (BF). See Section IV and Section V.

• In a mathematically simplified setting (i.i.d., exponen-
tially distributed inter-wakeup times) the MDP approach
is used to derive a threshold type policy, called Simplified
Forward (SF). The threshold is a function of the constraint
on progress, and the policy is to transmit to the first
node which wakes up and makes a progress of more
than the threshold. See Section VI. While such a policy
has been proposed heuristically in previous works ([10],
[11]), we have derived it from the MDP formulation and
we show through simulations that the performance of this
policy is close to that of BF. The simulation results are
in Section VII.

• Finally, we compare the end to end performance (average
delay and hop counts) of the SF policy with the for-
warding policy proposed by Kim et al. [1]. The approach
of Kim et al. aims to achieve minimum average end-to-
end delay, but at the expense of an initial configuration
phase. The SF policy, however, does not need any global
organization phase, and the progress constraint can be
used totunethe end-to-end performance to suitably trade-
off between end-to-end delay and the number of hops
in the forwarding path. These results are reported in
Section VII.

II. RELATED WORK

Zorzi and Rao ([12]) consider a scenario similar to ours:
geographical forwarding in a wireless mesh network in which
the nodes know their locations, and are sleep-wake cycling.
They propose GeRaF (Geographical Random Forwarding), a
distributed relaying algorithm, whose objective is to carry a
packet to its destination in as few hops as possible, by making
as large progress as possible at each relaying stage. Thus, the
objective is similar to the MFR algorithm, mentioned above
([2], [3]). For their algorithm, the authors obtain the average
number of hops (for given source-sink distance) as a function
of the node density. These authors do not consider the trade-
off between relay selection delay and the progress towards the
sink, which is a major contribution of our work.

Liu et al. ([11]) propose a relay selection approach as a
part of CMAC, a protocol for geographical packet forwarding.
With respect to the fixed sink, a nodei has a forwarding
set consisting of all nodes that make progress greater than
r0 (an algorithm parameter). IfY represent the delay until
the first wake-up instant of a node in the forwarding set, and
X is the corresponding progress made, then, under CMAC,

nodei chooses anr0 that minimizes the expected normalized
latency E[ Y

X
]. The Random Asynchronous Wakeup (RAW)

protocol ([10]) also considers transmitting to the first node
to wake up that makes a progress greater than a thresholdTh.
Interestingly, this is also the structure of the optimal policy
provided by one of our Markov decision process formulations.

Kim et al. ([1]) consider a dense WSN in which the
traffic model and sleep-wake cycling are similar to ours. An
occasional alarm packet needs to be sent, from wherever
in the network it is generated, to the sink. The nodes are
asynchronously sleep-wake cycling. The authors develop an
optimal anycast scheme to minimize average end-to-end delay
from any nodei to the sink. The optimization is also done over
sleep-wake cycling patterns and rates. A dynamic program-
ming approach is taken, with the stages being the number of
hops to the sink. While the framework is similar to ours, Kim
et al. do not consider the objective of spatial progress at each
hop, which results in the reduction of hop counts along the
forwarding paths, and thus in the reduction of node energy
utilization. In our work, we have studied the trade-off, at a
typical forwarding stage, between forwarding delay and the
distance that the packet covers in the hop.

Rossi et al. ([13]) consider the problem of geographical
forwarding in a wireless sensor network in which each node
knows its hop distance from the sink. For each link, there is
a link cost (for example, energy cost) for forwarding a packet
over that link. Thus, there are two end-to-end cost criteria
for a forwarding path: the total link cost of the path, and the
number of hops in the path. When a node, sayi, has a packet
to forward to the sink, it has to consider the trade-off between
cost reduction and hop distance reduction; note that cost can
be reduced by forwarding the packet to a neighbor node with
the same hop distance to the sink, but using which the total
link cost could be lower. The information available ati is the
cost to all its neighbors, and the statistics of the costs-to-go
from the neighbors. The major difference in our work is that
we have a sequential decision problemat each stage, since the
costs (wake-up delay) and rewards (progress towards the sink)
are revealed as the nodes wake up, and only the statistics are
known a priori.

Chaporkar and Proutiere ([14]) consider the problem of a
transmitter that needs to transmit over one of several available
channels. The transmitter can probe the channels to determine
channel state information in order to encode its transmis-
sions. The trade-off is between the time taken to probe and
the throughput advantage of finding a good channel. Some
important differences between their model and ours are the
following. In our work the trade-off is between the time taken
to wait for a relay to wake up, and thespatial progress the
relay makes towards the sink. In [14], the transmitter can use
an unprobed channel, whereas in our problem a relay that has
not yet woken up cannot be used. In [14], the transmitter can
probe the channels in an order that it can choose (e.g., the
stochastically best channel first); in our problem the relays
wake up in a random order that is not under the control
of the transmitter. In [14] it is shown that if the use of an
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unprobed channel is not allowed then a one-step-look-ahead
rule is optimal. This is similar to the solution we obtain fora
simplified version of our model. Note that whereas the concern
in [14] is only with one-step relaying, we also study how the
one-step policy performs in terms of end-to-end objectives,
namely, path delay and path hop count.

III. SYSTEM MODEL

A. Node Deployment

N identical sensor nodes are uniformly deployed in the
square region[0, L]2. We takeN to be a Poisson random
variable of rateλL2 where λ is the node density. Letxi,
i = 1, 2, ..., N , be the locations of the nodes. Additionalsource
and sink nodes are placed at fixed locationsx0 = (0, 0) and
xN+1 = (L,L) respectively. Thus including the source and
sink nodes, there are a total ofN + 2 nodes in the disk.rc is
the communication range of each node. Two nodesi andj are
called neighbors if and only if|xi − xj | ≤ rc. The distance
between nodei and sink (N + 1) is Li = |xN+1 − xi|.

B. The Sleep-Wake Process

To conserve energy, each node performs periodic sleep-
wake cycling. The sleep-wake times of the nodes arenot
synchronized. Since we are interested in studying the delay
incurred in routing due to sleep-wake cycling alone, we neglect
the transmission delay, propagation delay and other overhead
delays. This means that if nodei has a packet to transmit
to its neighboring nodej, theni can transmit immediately at
the instantj wakes up. We model this by taking the time for
which a node stays awake to be zero.

More formally, letTi, i = 1, 2, ..., N + 1 be i.i.d. random
variables which are uniform on[0, T ], whereT is the period
of the sleep wake cycle. Then nodei wakes up at the periodic
instantskT + Ti, k ≥ 0. We define thewaiting time for node
i to wake up at timet as,

Wi(t) = inf{kT + Ti ≥ t : k ≥ 0} − t (1)

C. Forwarding Rules and Assumptions

Forwarding rules dictate the actions a node can take when
it has to transmit. We are interested in decentralized policies
where a node can take decisions only by observing the activ-
ities in its neighborhood (i.e., the disk of radiusrc centered
around the node of interest). In this regard we impose some
restrictions on the network.
Traffic Model:There is a single packet in the network which
is to be routed from the source to sink. At time0, the packet is
given to the source and the routing process begins. The nodes
which get the packet for forwarding are called relay nodes. The
packet traverses a sequence of relay nodes to eventually reach
the sink, at which time the routing ends. Thus there is a single
flow and further the flow consists of only one packet. This set
up is reasonable, because in sensor networks we can assume
that the events are sufficiently separated in time and/or location
so that the flows due to two events do not intersect. To avoid
multiple packet transmission by different nodes detectingthe

same event, the nodes can resolve among themselves to select
one node (say the one closest to the sink), which can then
transmit. Further, the information about an event comprises its
location, and possibly target classification data, which along
with some control bits can be easily incorporated in a single
packet. This justifies the idea to study the performance of a
single packet alone.
Forwarding Set:Each node knows its location and the location
of the sink. Theforwarding setof a node is the set of its
neighbors that are closer to the sink then itself. A relay
node considers forwarding the packet only to a node in its
forwarding set. Each node knows the number of neighbors in
its forwarding set, but is not aware of their locations and wake
times. While in this paper we assume that each node knows the
number of nodes in its forwarding set, it would be desirable
to develop forwarding algorithms that do not require even
this knowledge. We leave this as future work, but in Section
VII-B we provide simulation results on the performance of
our algorithm when the node takes the number of nodes in its
forwarding region to be just the expected number of nodes.

D. Some Notation

To define a forwarding policy more formally, we begin by
setting up some notation. Consider a generic nodei which
gets the packet to forward at some instantt. Let Si = {y :
|y − xi| ≤ rc, |xN+1 − y| < Li}. Si is the set of all points
that are within the communication radius ofi and are strictly
closer to the sink thani (see Fig. 1) (we ignore edge effects
by assuming thatSi ⊂ [0, L]2). If xj ∈ Si then the progress
made byj is Zj = Li − Lj. Let Ni be the number of nodes
in Si. Note thatNi ∼ Poisson(λ|Si|), where|Si| is the area
of the regionSi. Recall that nodei knowsNi and hence we
focus on the event{Ni = K} for someK > 0.

Let the indices of the nodes inSi be arranged asi1, ..., iK ,
such thatWi1 (t) ≤Wi2(t) ≤, ...,≤WiK

(t). The correspond-
ing values of progress areZi1 , Zi2 , ..., ZiK

. For simplicity,
from here on we neglecti in the subscript and simply use
W1(t), ...,WK(t) andZ1, Z2, ..., ZK .

xN+1 xiLi

rc

Si

Fig. 1. xi andxN+1 are the locations of nodei and sink respectively.Li

is the distance between them,rc is the communication radius.Si is the set
of all points that are within the communication radius of node i and closer
to sink thani. Si is the shaded region in the figure.

The locations of each of theseK nodes are uniformly
distributed in the regionSi independent of the others. Hence
the progress made by them arei.i.d. whose distribution is same
asZ. The p.d.f.of Z is supported on[0, rc] and is given by,

fZ(z) =
2(Li − z) cos−1

(

Li
2+(Li−z)2−rc

2

2Li(Li−z)

)

|Si|
(2)
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Where|Si| denotes the area of the regionSi,

|Si| =

∫ rc

0

2(Li − z) cos−1

(

Li
2 + (Li − z)

2
− rc

2

2Li(Li − z)

)

dz

(3)
Let U1 = W1(t) andUk = Wk(t) −Wk−1(t) for 2 ≤ k ≤

K. We refer to{Uk} as theinter-wakeuptimes. These are the
waiting times between the wakeup instants of sucessive nodes
in Si (see Fig. 2). FurtherUk andZk are independent.

(Wk−1(t), Zk−1)

U2 U3U1 Uk

(W3(t), Z3)

0 T
0

(W2(t), Z2)

(Wk(t), Zk)

rc

(W1(t), Z1)

(WK(t), ZK)

Fig. 2. (Wk(t), Zk) represents the wake instant and the progress respec-
tively, made by the Nodeik in Si. These are shown as points in[0, T ]×[0, rc].
Uk is the inter-wakeup time between nodeik and ik−1.

The waiting timesW1(t),W2(t), ...,WK(t) are the order
statistics ofK i.i.d. random variables that are uniform on
[0, T ]. The p.d.f.of the k − th order statistics is [15, Chapter
2],

fWk
(u) =

K!uk−1(T − u)K−k

(k − 1)!(K − k)!TK
(4)

for 0 ≤ u ≤ T . Also the jointp.d.f. of the k − th and l − th

order statistics (fork < l) is [15, Chapter 2],

fWk,Wl
(u, v) =

K!uk−1(v − u)l−k−1(T − v)K−l

(k − 1)!(l − k − 1)!(K − l)!TK
(5)

for 0 ≤ u < v ≤ T . Later we will be interested in the
conditionalp.d.f. fUk+1|Wk

for 1 ≤ k ≤ K − 1. Using the
above equations we can write ,

fUk+1|Wk
(u|w) =

fWk,Wk+1
(w,w + u)

fWk
(w)

= (K − k)
(T − w − u)K−k−1

(T − w)K−k
(6)

for 0 ≤ w ≤ T and0 ≤ u ≤ T − w.

E. Single Hop Policy

Decision process begins at the instantt at which node i
gets the packet to forward. This isstage k = 0. The k− th

(k ≥ 1) decision instant is the time at which nodeik wakes
up.
A Single Hop (SH) policy π is a sequence of mappings{µπ

k :
0 ≤ k ≤ K}, whereµπ

0 : {(0, 0)} → {0} and fork ≥ 1 µπ
k :

[0, T ]× [0, rc] → {0, 1}. π should also satisfyµπ
K(w, b) = 1.

The function µπ
k maps the state at stagek to an action

0 (continue) or 1 (stop). Let Dπ(t) andZπ(t) denote the
delay incurred and progress made by nodei using policyπ.
Forwarding rules for nodei, using policyπ are as follows:

• At stage0, nodei has to wait for further nodes to wake
up. We represent this by allowing the onlystateat stage
0 to be0 = (0, 0) and the corresponding action to be to
0 (continue to wait)i.e., µπ

0 (0) = 0.
• If Li ≤ rc, then wait for sink to wake up and transmit to

it. In this case, the delay and progress made areDπ(t) =
WN+1(t) andZπ(t) = Li respectively.

• Otherwise (i.e., if Li > rc), wait for the nodes inSi to
wake up. When nodeik wakes up(1 ≤ k ≤ K), evaluate
p = µπ

k (Wk(t), bk) wherebk = max{Z1, ..., Zk}. If p =
1, then transmit to the nodeiarg max{Z1,...,Zk}. The delay
incurred isDπ(t) = Wk(t) and the progress made is
Zπ(t) = bk. If p = 0, ask the node which makes the
most progress so far to stay awake, put the other node to
sleep and wait for further nodes to wake up.

• The requirementµπ
K(w, b) = 1 in the definition ofπ

ensures that nodei transmits at or before the instant the
last node wakes up.

Since the distribution of{(Wk(t), Zk) : 1 ≤ k ≤ K} are
not dependent on the value oft, the average values ofDπ(t)
andZπ(t) also do not depend ont. Hence to compute these
average values we can, without loss of generality, taket = 0
and useDπ andZπ to simplify the notation.

Let Π represent the class of all SH policies.Note that many
policies are excluded from classΠ. For instance, the policy
which waits for all the nodes to wake up and then transmits
to the one which makes least progress does not belong to
the classΠ. This is because for a policy inΠ, transmission
is allowed only to the node that makes the most progress
so far. We would like to explicitly mention two SH policies
namely Max Forward (MF) and First Forward(FF):
A node usingMax Forward policy will wait for all the nodes
in its forwarding set to wake up and then transmit to the one
which makes most progress. We useπMF to represent this
policy. For this policy,µπMF

k (w, b) = 1 if and only if k = K.
This policy obtains maximum delay and maximum progress
among all other policies in classΠ.
A node usingFirst Forward policy will always transmit to the
node in the forwarding set which wakes up first irrespective of
the progress made by it.πFF is used to represent this policy.
For this policy,µπF F

1 (w, b) = 1. πFF obtains minimum delay
and minimum progress among all the policies in classΠ.

IV. PROBLEM FORMULATION

From here on, without loss of generality we fixT = 1 and
rc = 1. Let PK (whereK ≥ 1) denote the probability law con-
ditioned on the event{Ni = K} i.e., PK(.) = P(.|Ni = K).
Similarly we define the conditional expectationEK . Define
γMF = EK [ZπMF ] andγFF = EK [ZπF F ], average progress
made by the MF and FF policies respectively.
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Our interest in this work are, at a relay nodei with Ni = K,
to minimize the average delay subject to a constraint on the
average progress achieved. More formally the problem is,

min
π∈Π

EK [Dπ] (7)

s.t. EK [Zπ] ≥ γ

whereγ ∈ [0, γMF ].
This formulation embodies the one-step tradeoff between

the need to forward the packet quickly while attempting to
make substantial progress towards the sink. The parameterγ

controls the tradeoff. A largeγ indicates our desire to make
large progress in each step, which will come at a cost of a
large one hop forwarding delay.

To solve the problem in (7), we consider the following
unconstrained problem,

min
π∈Π

EK [Dπ ] − ηEK [Zπ] (8)

Where η > 0. Let πBF (η) (Best Forward) be the optimal
solution for this problem.

Lemma 1:For a givenγ in problem (7), suppose there is
an ηγ such thatEK [ZπBF (ηγ )] = γ, thenπBF (ηγ) is optimal
for the problem in (7) as well.

Proof: SinceπBF (ηγ) is optimal for the problem in (8),

EK [DπBF (ηγ)] − ηγEK [ZπBF (ηγ)] ≤

EK [Dπ] − ηγEK [Zπ], for all π ∈ Π

i.e., EK [DπBF (ηγ)] ≤ EK [Dπ] − ηγ(EK [Zπ] − γ)

Therefore for anyπ such thatEK [Zπ] ≥ γ, we have

EK [DπBF (ηγ)] ≤ EK [Dπ]

In the subsequent sections we focus on solving the problem
in (8).

V. OPTIMAL POLICY FOR THE EXACT MODEL

To solve the problem in (8), we develop it in a Markov
Decision Process (MDP) framework [16].X = [0, 1]2

⋃

{ψ}
is the state space (recall thatT = 1 and rc = 1). ψ is the
terminating state.C = {0, 1} is the control space where1 is
for stopand0 is for continue. A small change to theπ defined
earlier in section (III-E), is the inclusion ofψ in the domain
of µπ

k . Let (wk, bk) be the state at stagek wherebk is the best
(maximum) progress made by the nodes waking up until stage
k i.e., bk = max{Z1, ..., Zk}. Conditioned on being in state
(wk, bk) at stagek, transition to the next state depends onwk

throughUk+1 whosep.d.f. is fUk+1|Wk
(.|wk) (Equation (6)).

The other disturbance componentZk+1, is independent of the
(wk, bk). p.d.f. of Zk+1 is fZ (Equation (2)). We define the
conditional expectation,

E(Wk=wk)[.] = EK [.|Wk = wk]

Then using expression (6) we can write,

E(Wk=wk)[Uk+1] =
1 − wk

K − k + 1
(9)

Initial states0 = 0 and initial actiona0 = 0 always. Therefore
the next state iss1 = (U1, Z1) and the cost incurred at stage
0 is g0(0, 0) = U1. If ak ∈ C is the action taken at stage
1 ≤ k ≤ K − 1, then the next statesk+1 is,

sk+1 =

{

(wk + Uk+1,max{Zk+1, bk}) if ak = 0
ψ if ak = 1

and the one step cost function is,

gk((wk, bk), ak) =

{

Uk+1 if ak = 0
−ηbk if ak = 1

(10)

If the state at stagek is ψ thensk+1 = ψ andgk(ψ, ak) = 0
irrespective ofak. Also if sK is the state of the system at the
last stage, there is a cost of termination,gK(sK) given as,

gK(sK) =

{

0 if sK = ψ

−ηbK otherwise

The total average cost incurred with policyπ is,

Jπ(0) = EK

[

K−1
∑

k=0

gk(sk, µ
π
k (sk)) + gK(sK)

]

The expectation in the cost function above is taken over the
joint distribution of{(Uk, Zk) : 1 ≤ k ≤ K}. Note that,

Jπ(0) = EK [Dπ] − ηEK [Zπ]

Therefore the optimal cost is,

J∗(0) = min
π
Jπ(0) = JπBF (η)(0)

Let Jk(w, b) be the optimal cost to go when the system is
in state(w, b) at stage1 ≤ k ≤ K. When the stage isK (i.e.,
all the nodes have woken up), then invariably transmission has
to happen. Therefore,

JK(w, b) = −ηb

= −ηmax{b, φK(w, b)} (11)

where, we defineφK(w, b) = 0 for all (w, b). Next when there
is one more node to wake up (i.e., stage isK − 1) then both
actions,aK−1 = 1 andaK−1 = 0 are possible. Therefore,

JK−1(w, b) = min
{

−ηb,E(WK−1=w) [UK+

JK(w + UK ,max{b, ZK})]}

The terms in themin expression are the costs whenaK−1 = 1
(stop) andaK−1 = 0 (continue) respectively. Using the
expression forJK in (11) we obtain,

JK−1(w, b)

= min
{

−ηb,E(WK−1=w) [UK − ηmax{b, ZK,

φK(w + UK ,max{b, ZK})}]}

= −ηmax{b, φK−1(w, b)} (12)

where,

φK−1(w, b) = E(WK−1=w)[max{b, ZK , φK(w + UK ,

max{b, ZK})} −
UK

η
] (13)
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The following lemma is obtained easily.
Lemma 2:For every 1 ≤ k ≤ K − 1, the following

equations holds,

Jk(w, b) = −ηmax{b, φk(w, b)} (14)

where,

φk(w, b) = E(Wk=w)[max{b, Zk+1, φk+1(w + Uk+1,

max{b, Zk+1})} −
Uk+1

η
] (15)

Proof: Suppose for some2 ≤ k ≤ K − 1 equations (14)
and (15) holds, then following similar lines which was used
to obtain (12) and (13) (just replaceK by k) we can show
that (14) and (15) holds fork − 1 as well. Since we have
already shown that these equations hold fork = K − 1, from
induction argument we can conclude that it holds for every
1 ≤ k ≤ K − 1.
The structure of the optimal policy is given in the following
corollary.

Corollary 3: The optimal policyπBF (η) is of the following
form,

µ
πBF (η)
k (w, b) =

{

1 if b ≥ φk(w, b)
0 otherwise

(16)

for 1 ≤ k ≤ K. WhereφK(w, b) = 0 for all (w, b) ∈ S and
for 1 ≤ k ≤ K − 1, φk(w, b) is given in equation (15). �

Remarks: The optimal policy requires threshold functions
{φk} which are computionally intensive. For our later numer-
ical work in Section (VII), we discretize the state space into
104 equally spaced points and use the approximate values of
the functionsφk, 1 ≤ k ≤ K − 1 at these discrete points.

VI. OPTIMAL POLICY FOR A SIMPLIFIED MODEL

The random variables{Uk : 1 ≤ k ≤ K} are identi-
cally distributed [15, Chapter 2] (but not independent). Their
commonc.d.f. is FUk

(u) = 1 − (1 − u)K . From Fig. 3 we
observe that thec.d.f. of {Uk : 1 ≤ k ≤ K} is close to that
of the c.d.f. of an exponential random variable of parameter
K and the approximation becomes better for large values of
K. This motivates us to consider asimplified modelwhere
{Uk : 1 ≤ k ≤ K} are distributed asExponential(K). Further
in our simplified model we take these random variables to be
independent.

For the simplified model, the cost function (similar to (10))
when the system is in state(w, b) at stage1 ≤ k ≤ K − 1 is,

gk((wk, bk), ak) =

{

Uk+1 if ak = 0
−ηbk if ak = 1

(17)

We observe that due to thei.i.d. inter-wake time assumption
the cost function is not dependent on the value ofwk. Also
we need not consider conditioning onWk = wk unlike in
the previous section since thep.d.f.of Uk+1 does not depend
on wk. Hence, the optimal policy for this model is going to
be independent ofwk for eachk. So we simplify the state
space by ignoring the values ofwk for eachk, i.e., the state
space isX̄ = [0, 1]

⋃

{ψ}. Control spaceC and the other
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Fig. 3. Thec.d.f.’s FUk
andFY whereY ∼ Exponential(K) are plotted

for (a) K = 5 and (b)K = 15.

disturbance componentZk remain the same. Since the state
space is different, we make a small change to the definition
of policy π by allowingµπ

k : X̄ → C. The state transition and
cost functions remain same as in the previous section with
(w, b) replaced byb. Let πSF (η) represent the optimal policy
for this model.

Let Jk(b) be the optimal cost to go at stagek when the
state isb. Then, for allb ∈ [0, 1],

JK(b) = −ηb (18)

Next when the stage isK − 1, for b ∈ [0, 1],

JK−1(b) = min{−ηb,EK [UK + JK(max{b, ZK})]}

= min{−ηb,EK [UK − ηmax{b, ZK}]}

= −ηmax{b, β1(b)} (19)

whereβ1 is a function, which forb ∈ [0, 1] is given by,

β1(b) = EK [max{b, ZK}] −
EK [UK ]

η

= EK [max{b, Z}]−
1

ηK
(20)

Here we have made use of the fact thatEK [UK ] = 1
K

and
ZK ∼ Z. The p.d.f. of Z is given in (2). Evidently, at
stageK − 1, the optimal action is to stop and transmit the
packet ifb ≥ β1(b) and to continue otherwise. The following
results aboutβ1(b) can easily be obtained. A detailed proof is
provided in the report [17].

Lemma 4:

1) β1 is continuous, increasing and convex inb.
2) If β1(0) < 0, thenβ1(b) < b for all b ∈ [0, 1].
3) If β1(0) ≥ 0, then there is a uniqueαη such that

β1(αη) = αη.
4) If β1(0) ≥ 0, thenβ1(b) < b for b ∈ (αη, 1] andβ1(b) >

b for b ∈ [0, αη).

�

If β1(0) < 0, then defineαη = 0. Otherwiseαη is defined by
β1(αη) = αη. Then

µ
πSF (η)
K−1 (b) =

{

1, if b ≥ αη

0, otherwise
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We proceed to evaluateJK−2.

JK−2(b)

= min{−ηb,EK [UK−1 + JK−1(max{b, ZK−1})]}

= min{−ηb,EK [UK−1 − ηmax{b, ZK−1,

β1(max{b, ZK−1})}]}

= −ηmax{b, β2(b)} (21)

where,

β2(b) = EK [max{b, Z, β1(max{b, Z})}]−
1

ηK
(22)

Lemma 5:β2(b) ≥ β1(b) for any b ∈ [0, 1]. In particular,
if b ≥ αη thenβ2(b) = β1(b).

Proof: The first part follows easily because
EK [max{b, Z}] ≤ EK [max{b, Z, β1(max{b, Z})}].

Next, if b ≥ αη then from Lemma 4,max{b, Z} ≥
β1(max{b, Z}), so that max{b, Z, β1(max{b, Z})} =
max{b, Z}. Therefore,

β2(b) = EK [max{b, Z}]−
1

ηK

Lemma 6:For every1 ≤ k ≤ K − 2 the following holds,

Jk(b) = −ηmax{b, βK−k(b)} (23)

where,

βK−k(b) = EK [max{b, Z, βK−(k+1)(max{b, Z})}]−
1

ηK

and has the property,βK−k(b) ≥ βK−(k+1)(b) for any b ∈
[0, 1]. In particular, ifb ≥ αη thenβK−k(b) = β1(b).

Proof: Proof is along the lines used to obtain Equations
(21), (22) and Lemma 5.

Corollary 7: The policyπSF (η) is of the following form,
µ

πSF (η)
K (b) = 1 and

µ
πSF (η)
k (b) =

{

1 if b ≥ αη

0 otherwise
(24)

for 1 ≤ k ≤ K − 1. �

Remarks:The policy is a simple one-step-look-ahead rule
where at eachk (1 ≤ k ≤ K − 1) the policy compares
the cost of stopping atk (Cs = −ηb) with the cost of
continuing for one more step and then stopping atk + 1
(Cc = 1

K
− ηEK [max{b, Z}]). The policy is to stop if

Cs ≤ Cc (simplification yields, stop ifb ≥ αη), continue
otherwise. The policy is to transmit to the first node which
makes a progress of more thanαη. If all the nodes, make
progress of less thanαη then transmit to the node whose
progress is maximum at the instant the last node wakes up.

VII. S IMULATION RESULTS

A. One Hop Performance

We apply the policiesπBF (η) and πSF (η) to the actual
model and obtain average progress and average one hop delay
for Li = 10 andK = 5. Expressions for the average values for
policiesπSF (η), πFF andπMF are available in the detailed
technical report [17]. Since it is difficult to obtain similar
analytical expressions for policyπBF (η), we have performed
simulations to obtain these values. In Figs. 4(a) and 4(b) we
plot the average values as a function ofη. The minimum and
maximum values of average delay and progress are achieved
by πFF and πMF respectively. From the figures we can
observe that for values ofη less thanηo = 1

EK [Z]K the
performance ofπSF (η) is same asπFF . This is because forη
less thanηo, we haveβ1(0) < 0, and therefore the threshold
used isαη = 0 which is same as that used byπFF .

By using a large value ofη, a node will value progress
more and will end up waiting for better nodes to wake up thus
incurring a large delay as well. Hence, delay and progress for
both the policies (πBF and πSF ) are increasing withη. We
can conclude from Lemma 1, that for each policy, BF or SF,
and a givenη, the corresponding delay value is the minimum
that can be obtained using that policy, subject to a constraint
on progress equal to the progress value obtained for thatη.
These corresponding average delay vs. average progress values
are shown in Fig. 4(c), forK = 3, 5 and 15. Each point on
the curve for eachK corresponds to a different value ofη,
which increases along the curves as shown. We see that the
performance of theSF policy is close to that of the optimal
BF policy, even for small values ofK. The wayη serves to
trade-off one hop progress and delay is clearly shown by these
curves.

B. End to End Performance

Although our policies have been developed for one-hop op-
timality, it is interesting to study their end-to-end performance
if they were used, heuristically, at each hop. We compare
the end-to-end performance of our policy with the work of
Kim et al. [1] who have developed end-to-end delay optimal
geographical forwarding in a setting similar to ours. We first
give a brief description of their work. They minimize, for a
given network, the average delay from any node to the sink
when each nodei wakes up asynchronously with rateri. They
show that periodic wake up patterns obtain minimum delay
among all sleep-wake patterns with the same rate. A relay node
with a packet to forward, transmits a sequence of beacon-ID
signals. They propose an algorithm called LOCAL-OPT [18]
which yields, for each neighborj of node i, an integerh(i)

j

such that ifj wakes up and listens to theh− th beacon signal
from nodei and if h ≤ h

(i)
j , then j will send an ACK to

receive the packet fromi. Otherwise (ifh > h
(i)
j ) j will go

back to sleep. Aconfiguration phaseis required to run the
LOCAL-OPT algorithm.

As before, we fixrc = 1 andT = 1 sec. Each node wakes
up periodically with rate1

T
but asynchronously. To make a fair
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Fig. 4. One Hop Performance: (a): Average one hop progress asa function ofη for various policies. The plots are forLi = 10 and K = 5. Maximum
and minimum progress are achieved byπMF and πF F respectively. (b): Average one hop delay as a function ofη for various policies. The plots are for
Li = 10 and K = 5. Maximum and minimum delay are achieved byπMF andπF F . (c): Average one hop delay vs. the corresponding average one hop
progress for the class of policiesπBF andπSF are plotted forK = 3, 5 and15. The parameterη controls the delay-progress trade-off. Each point on the
curve corresponds to a different value ofη which increases along the direction shown.

comparision with the work of Kim et al. we introduce beacon-
ID signals of durationtI = 5 msecand packet transmission
duration of tD = 30 msec. We fix a network by placingN
nodes randomly in[0, L]2 whereL = 10. N is sampled from
Poisson(λL2) whereλ = 5. Additional source and sink nodes
are placed at locations(0, 0) and (L,L) respectively. Further
we have considered a network where the forwarding set of
each node is non-empty. The wake times of the nodes are
sampled independently fromUniform([0,1]). Description of
the policies that we have implemented is given below.
πSF : We fix γ as a network parameter. Each relay node
chooses an appropriateη (in other words, chooses an appro-
priate thresholdαη) such that the average one hop progress
made using the policyπSF (η) is equal toγ. Note thatη
depends on nodei (i.e., on the values ofLi andK). At a
relay nodei if γ is less (greater) than the average progress
made byπFF (πMF ) then we allow nodei to use πFF

(πMF ) to forward. When a nodej wakes up and if it hears
a beacon signal fromi, it waits for the ID signal and then
sends an ACK signal containing its location information. If
the progress made byj is more than the threshold, theni
forwards the packet toj (packet duration istD = 30 msec).
If the progress made byj is less than the threshold, theni
asksj to stay awake if its progress is the maximum among
all the nodes that have woken up thus far, otherwisei asksj
to return to sleep. If more than one node wakes up during the
same beacon signal, then contentions are resolved by selecting
the one which makes the most progress among them. In the
simulation, this happens instantly (as also for the Kim et al.
algorithm that we compare with); in practice this will require
a splitting algorithm; see, for example, [19, Chapter 4.3].We
assume that withintI = 5 msecall these transactions (beacon
signal, ID, ACK and contention resolution if any) are over.
πFF andπMF can be thought of as special cases ofπSF with
thresholds of0 and1 respectively.
π̂SF : This is same asπSF except that here a relay node does
not knowK, but estimatesits value as⌊λ|Si|⌋ nodes where

16 18 20 22 24 26 28 30 32 34
4

6

8

10

12

14

16

18

Average Hop Count

A
ve

ra
ge

 T
ot

al
 D

el
ay

 

 

πSF

π̂SF

πF F

πMF

Kim et al.

γ

Fig. 5. End-to-end performance: Plot of average end-to-enddelay vs. average
end-to-end hop count when the one hop optimal policy for the progress
constraintγ is used at each hop. The operating points of the policiesπF F ,
πMF and Kim et al. are also shown in the figure. Each point on the curve
corresponds to a different value ofγ which increases along the direction
shown.

|Si| is the area of the regionSi (Equation (3)). If there is no
eligible node even after theT

tI
− th beacon signal (one case

when this is possible is when the actual number of nodesK

is less than⌊λ|Si|⌋ and none of the nodes make a progress of
more than the threshold) theni will select one which makes
the maximum progress among all nodes.
Kim et al.: We run the LOCAL-OPT algorithm [18] on the
network and obtain the valuesh(i)

j for each pair(i, j) wherei
andj are neighbors. We use these values to route from source
to sink in the presence of sleep wake cycling. Contentions, if
any, are resolved (instantly, in the simulation) by selecting a
nodej with the highesth(i)

j index.
In Fig. 5 we plot average total delay vs. average hop count

for different policies for fixed node placement, while the
averaging is over the wake times of the nodes. Each point
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on the curve is obtained by averaging over 1000 transfers of
the packet from the source node to the sink. As expected,
Kim et al. achieves minimum average delay. In comparision
with πFF , Kim et al. also achieves smaller average hop count.
Notice, however that usingπSF policy and properly choosing
γ, it is possible to obtain hop count similar to that of Kim et
al., incurring only slightly higher delay.

The advantage ofπSF over Kim et al. is that there isno
need for a configuration phase. Each relay node has to only
compute a threshold that depends on the parameterγ which
can be set as a network parameter during deployment. A more
interesting approach would be to allow the source node to set
γ depending on the type of application. For delay sensitive
applications it is appropriate to use a smaller value ofγ so that
the delay is small, whereas, for energy constrained applications
(where the network energy needs to conserved) it is better to
use largeγ so that the number of hops (and hence the number
of transmissions) is reduced. For other applications, moderate
values ofγ can be used.γ can be a part of the ID signal so
that it is made available to the next hop relay.

Another interesting observation from Fig. 5 is that the
performance of̂πSF is close to that ofπSF . In practice it might
not be reasonable to expect a node to know the exact number of
relays in the forwarding set.̂πSF works with average number
of nodes instead of the actual number. For small values ofγ

both the policiesπSF and π̂SF , most of the time, transmit to
the first node to wake up. Hence the performance is similar
for small γ. For largerγ, we observe that the delay incurred
by π̂SF is larger.

VIII. S UMMARY AND FUTURE WORK

The problem of optimal relay selection for geographical for-
warding was formulated as one of minimizing the forwarding
delay subject to a constraint on progress. The simple policy
(SF) of transmitting to the first node that wakes up and makes
a progress of more than a threshold was found to be close
in performance to the optimal policy. We then compared the
end-to-end performance (average delay and average hop count)
of using SF at each relay node enroute to the sink with that
of the policy proposed by Kim et al. [1], which is designed
to achieve minimum average end-to-end delay. However, the
delay obtained by the policy in [1] is only a little smaller
than that obtained by the FF policy. Further, by using the
SF policy with a appropriateγ, performance very close to
that of the policy in [1] can be obtained without the need
for an initial global configuration phase. We note thatπSF

is self-configuring; each node takes decisions based only on
local information. The end-to-end performance obtained can
be tuned by the use of a single parameterγ. For a smallγ we
obtain low end-to-end delay but the number of hops is large
and vice versa.

In this work we have assumed that each node knows the
number of neighbors in its forwarding set. We had given a
heuristic policyπ̂SF when the actual number of forwarding
neighbors is not known. In future work we aim to obtain opti-
mal forwarding policies by relaxing this assumption. Also,the

use of a one-hop optimal policy for end-to-end forwarding isa
heuristic. In future work we propose to directly formulate the
end-to-end problem and derive optimal policies. In addition,
we could also include aspects such as the relay’s link quality
in our formulation.
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