
A

Relay Selection with Channel Probing in Sleep-Wake Cycling
Wireless Sensor Networks

K.P. NAVEEN, Indian Institute of Science
ANURAG KUMAR, Indian Institute of Science

In geographical forwarding of packets in a large wireless sensor network (WSN) with sleep-wake cycling

nodes, we are interested in the local decision problem faced by a node that has “custody” of a packet and

has to choose one among a set of next-hop relay nodes to forward the packet towards the sink. Each relay
is associated with a “reward” that summarizes the benefit of forwarding the packet through that relay. We

seek a solution to this local problem, the idea being that such a solution, if adopted by every node, could

provide a reasonable heuristic for the end-to-end forwarding problem. Towards this end, we propose a local
relay selection problem comprising a forwarding node and a collection of relay nodes, with the relays waking

up sequentially at random times. At each relay wake-up instant the forwarder can choose to probe a relay
to learn its reward value, based on which the forwarder can then decide whether to stop (and forward its

packet to the chosen relay) or to continue to wait for further relays to wake-up. The forwarder’s objective

is to select a relay so as to minimize a combination of waiting-delay, reward and probing cost. The local
decision problem can be considered as a variant of the asset selling problem studied in the operations

research literature. We formulate the local problem as a Markov decision process (MDP) and characterize

the solution in terms of stopping sets and probing sets. We prove results illustrating the structure of the
stopping sets, namely, the (lower bound) threshold and the stage-independence properties. Regarding the

probing sets, we make an interesting conjecture that these sets are characterized by upper bounds. Through

simulation experiments we provide valuable insights into the performance of the optimal local forwarding
and its use as an end-to-end forwarding heuristic.

Additional Key Words and Phrases: Wireless sensor networks, sleep-wake cycling, geographical forwarding,
stopping sets, Markov decision processes, stochastic ordering, asset selling problem.
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1. INTRODUCTION
Consider a wireless sensor network deployed for the detection of rare events, e.g., for-
est fires, human intrusion in border areas, etc. In these networks, since the events
of interest are rare, continuous monitoring by the nodes is unnecessary. Instead, the
nodes can conserve their battery power by sleep-wake cycling, whereby they alternate
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Fig. 1. A snap-shot of a packet being forwarded to the sink node (green hexagon) through a sleep-wake
cycling network. The square node (labeled as forwarder) is the current custodian of the packet. The nodes in
the hatched area are the set of potential relays for the forwarder.

between an ON state and a low power OFF state ([Abrardo et al. 2013; Guo et al. 2009;
Liu et al. 2007]). We are interested in low duty-cycle, asynchronous sleep-wake cycling
where the point processes of wake-up instants of the nodes are not synchronized [Li
et al. 2014; Carrano et al. 2014]. We further consider a setting where the nodes are not
aware of the sleep schedules of their neighbors [Naveen and Kumar 2013; Kim et al.
2011]. Although, it is possible for the nodes to learn their neighbors’ sleep schedules
through an initial configuration phase or while forwarding a packet, but, since the
events are rare, such learned data would become stale for the next forwarding instant
as the nodes’ clocks would have randomly drifted. Moreover, addition of new nodes
(fresh deployment) or deletion of some existing ones (due to battery drainage) will add
to the uncertainty of the times at which the successive neighbors will wake-up.

In such networks, whenever an event is detected, an alarm packet (containing the
event location and a time stamp) is generated and has to be forwarded, through mul-
tiple hops (as illustrated in Fig. 1), to a control center (sink) where appropriate action
could be taken. Although it is possible for multiple nodes to have detected the event,
to avoid flooding, which causes extensive contentions and collisions in the network
(referred to as the broadcast storm problem [Tonguz et al. 2006; Tseng et al. 2002]),
we consider generating only one alarm packet per event. This can be accomplished
by allowing the detecting nodes to collaborate among themselves to choose a packet
generating node [Kumar et al. 2010].

Now, since the network is sleep-wake cycling, a forwarding node (i.e., a node cur-
rently holding the alarm packet) has to wait for its neighbors to wake-up before it can
choose one for serving as the next hop relay. As successive potential relays wake up
(and then go back to sleep), the forwarding node has the sequential decision problem
of selecting one of them to forward the packet through, while balancing the trade-off
between delay in forwarding and some measure of the quality of the relay (e.g., the
progress it make towards the sink [Naveen and Kumar 2010], or the channel quality
to this relay). With this local trade-off in mind, the end-to-end problem become one of
minimizing a combination of total average end-to-end delay and some global metric
such as the average hop count, or the average total transmission power (sum of the
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transmission power used at each hop). Such a global problem can be considered as a
stochastic shortest path problem [Bertsekas and Tsitsiklis 1991], for which the dis-
tributed Bellman-Ford algorithm (e.g., the LOCAL-OPT algorithm proposed by Kim et
al. in [Kim et al. 2011]) can be used to obtain the optimal solution. However, a major
drawback with such an approach is that a pre-configuration phase is required to run
such algorithms, which would involve exchange of several control messages. Further-
more, such global configuration would need to be performed each time there is a change
in the network topology, such as due to node failures, or long time scale variations in
the propagation characteristics.

The focus of our research is instead towards designing simple forwarding rules that
use only the local information available at a forwarding node. In our own earlier work
in this direction [Naveen and Kumar 2010; Naveen and Kumar 2013], we formulated
the local forwarding problem as one of minimizing the one-hop forwarding delay sub-
ject to a constraint on the reward offered by the chosen relay. The reward associated
with a relay is a function of the transmission power and the progress towards the sink
made by the packet when forwarded via that relay. We considered two variations of the
problem, one in which the number of potential relays in the forwarding nodes neigh-
borhood is known [Naveen and Kumar 2010], and the other in which only a probability
mass function of the number of potential relays is known [Naveen and Kumar 2013]. In
each case, we derived the structure of the optimal policy. Further, through simulation
experiments we found that, in some regimes of operation, the end-to-end performance
(i.e., total delay and total transmission power) obtained by applying the solution to the
local problem at each hop is comparable with that obtained by the global solution (i.e.,
the LOCAL-OPT proposed by Kim et al. [Kim et al. 2011]), thus providing additional
support for the approach of utilizing local forwarding rules, albeit suboptimal.

In our earlier work, however, we assume that the gain of the wireless communica-
tion channel between the forwarding node and a relay is a deterministic function of the
distance between the two, whereas, in practice, due to the phenomenon called shadow-
ing, the channel gain at a given distance from the forwarding node is not a constant,
but varies spatially over points at the same distance (the statistical variation being
typically modeled as log normally distributed [Rappaport 2001]). In addition to not
being just a function of distance, the path-loss between a pair of locations has long
term variation with time; in a forest, for example, this would be due to seasonal vari-
ations in the foliage. Therefore, in each instance that a node gets custody of a packet,
the node has to send probe packets to determine the channel gain to relay nodes that
wake up, and thereby “offer” to forward the packet. Such probing incurs additional cost
(for instance, see [Thejaswi et al. 2010] where probing allows the transmitter to obtain
a finer estimate of the channel gain). Hence, “to probe” or “not to probe” can itself be-
come a part of the decision process. In the current work we incorporate these features
(namely, channel probing and the associated power cost) while choosing a relay for
the next hop, leading to an interesting variant of the asset selling problem ([Bertsekas
2005, Section 4.4], [Karlin 1962]), studied in the operations research literature.

We emphasize that in this work we are addressing the problem of resource (in par-
ticular, relay) allocation; this is in contrast to the problem of medium access contention
resolution that arises when several relays contend for the medium simultaneously, as
in [Guo et al. 2009; Kim and Liu 2008; Liu et al. 2007; Zorzi and Rao 2003b]. Such
contention does not arise in our case, since, due to low rate duty-cycling, the relays
wake up sequentially in time rather than simultaneously. Further, in our case since
the events are rare, with only one packet per event being generated, the possibility of
contention between the forwarding nodes of two different alarm packets (e.g., in [Guo
et al. 2009]) is also negligible.
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Outline and Our Contributions: We will first fix the context by describing the math-
ematical model in Section 2, and then proceed to discuss the related work in Sec-
tion 3. Sections 4 and 5 are devoted towards characterizing the structure of the policy,
RST-OPT (ReSTricted-OPTimal), which is optimal within a restricted class of relay
selection policies. In Section 6 we will discuss the globally optimal, GLB-OPT, policy.
Numerical and simulation results are presented in Section 7. Our main technical con-
tributions are the following:

•We first characterize the optimal policy, RST-OPT, in terms of stopping sets, i.e., a
subset of the state space in which the forwarder’s optimal action is to stop and for-
ward the packet. We prove that the stopping sets can be represented in terms of lower
bound thresholds (Theorem 5.3).
•We further prove that the stopping sets are identical across the decision stages (Theo-

rem 5.6 and 5.7). This result can be considered as a generalization of the one-step-look
ahead rule (see the remark following Theorem 5.6).
•Through numerical work on the one-hop problem, we find that the performance of

RST-OPT is close to that of GLB-OPT. This result is useful because, the sub-optimal
RST-OPT is computationally much simpler than GLB-OPT. We have also conducted
simulations to study the end-to-end performance of RST-OPT.

We will finally conclude in Section 8. For the sake of readability we have moved most
of the proofs to the Appendix.

2. SYSTEM MODEL
We will describe the system model in the context of geographical forwarding, also
known as location aware routing, [Akkaya and Younis 2005; Mauve et al. 2001]. In
geographical forwarding it is assumed that each node in the network knows its lo-
cation (with respect to some reference) as well as the location of the sink. Since our
objective is towards designing local forwarding rules, we assume that the forwarding
region (see Fig. 2) of each node is nonempty (i.e., there are no voids in the network).
This assumption can be justified by considering a sufficiently dense network so that the
probability of void-occurrence is negligible. Thus, in this work we do not address the
problem of routing around voids; algorithms such as GPRS (Greedy Perimeter State-
less Routing) [Karp and Kung 2000], GOAFR (Greedy Other Adaptive Face Routing)
[Kuhn et al. 2008], etc., along with protocol proposals [Petrioli et al. 2014] are available
in the literature addressing this issue.

Consider a forwarding node F located at v (see Fig. 2). The sink node is situated at
v0. Thus, the distance between F and the sink is V = ‖ v − v0 ‖ (we use ‖ · ‖ to de-
note the Euclidean norm). The communication region is the set of all locations where
reliable exchange of control messages (transmitted using a low rate robust modulation
technique on a separate control channel) can take place between F and a receiver,
if any, at these locations. In Fig. 2 we have shown the communication region to be
circular, but in practice this region can be arbitrary. The set of nodes within the com-
munication region are referred to as the neighbors.

Let V` = ‖ ` − v0 ‖ represent the distance of a location ` (which is a point in <2)
from the sink. Now define the progress of location ` as Z` = V −V`, which is simply the
difference between the F -to-sink and `-to-sink distances. F is interested in forwarding
the packet only to a neighbor within the forwarding region L, which is defined as

L =
{
` ∈ communication region : Z` ≥ zmin

}
(1)

where, zmin > 0 is the minimum progress constraint (see Fig. 2, where the hatched
area is the forwarding region). The reason for using zmin > 0 in the definition of L
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Fig. 2. The hatched area is the forwarding region L. For ` ∈ L, the progress Z` is the difference between
the forwarder-to-sink and `-to-sink distances.

are: (1) practically this will ensure that a progress of at least zmin is made by the
packet at each hop, and (2) mathematically this condition will allow us to bound the
reward functions (to be defined sooner) to take values within an interval [0, r]. Further,
we assume that L is closed and bounded (the reason for imposing this condition will
become clear in Section 5). Finally, we will refer to the nodes in the forwarding region
as relays.

Sleep-Wake Process: Without loss of generality, we will assume that F receives
an alarm packet at time 0 (from an upstream node; recall Fig. 1), which has to be
forwarded to one of the relays. There are N relays that wake-up sequentially at the
points of a Poisson process of rate 1

τ .1 The wake-up times are denoted, 0 ≤ W1 ≤ · · · ≤
WN . The relay waking up at the instant Wk is referred to as the k-th relay. Let U1 = W1

and Uk = Wk−Wk−1 (k = 2, · · · , N ) denote the inter-wake-up time between the k-th and
the (k − 1)-th relay. Thus, {Uk : k = 1, 2, · · · , N} are i.i.d. (independent and identically
distributed) exponential random variables with mean τ .

Channel Model: Let P`(t) denote the transmission power required by F at time
t ≥ 0 to achieve an SNR (signal to noise ratio) constraint of Γ at some location `,
whose distance from F is more than dref (far-field reference distance beyond which
the following expression will hold). We will consider the following standard model for
P`(t) [Kumar et al. 2008; Tse and Viswanath 2005]:

P`(t) =
ΓN0

G`(t)

(
D`

dref

)ξ
(2)

where, D` = ‖ `− v ‖ is the distance between F and `, G`(t) is the random component
of the channel gain between F and ` at time t, N0 is the receiver noise variance, and
ξ is the path-loss attenuation factor. We will assume that dref ≤ zmin so that P`(t) in
(3) is the power required for any ` ∈ L. Also, for simplicity we will use Γ′ to denote
ΓN0d

ξ
ref .

Although G`(t) along with the path-loss, (D`/dref )
ξ, constitutes the gain of the chan-

nel at time t, for simplicity we will refer to G`(t) itself as the channel gain between F
and the location `. We will assume that the channel gain process {G`(t) : t ≥ 0} is
stationary and i.i.d. across `. We will further assume that the channel coherence time
is large so that the channels gains remain unchanged over the entire duration of the

1A practical approach for sleep-wake cycling is the asynchronous periodic process, where each relay i wakes
up at the periodic instants Ti + kT with {Ti} being i.i.d. (independent and identically distributed) uniform
on [0, T ] [Kim et al. 2011; Naveen and Kumar 2013]. Now, for large N if T scales with N such that N

T
→ 1

τ
,

then the aggregate point process of relay wake-up instants converges to a Poisson process of rate 1
τ

[Cinlar
1975], thus justifying our Poisson process assumption.
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decision process, i.e., in physical layer wireless terminology, we have a slowly varying
channel. Thus, if G` denotes the random variable whose distribution is same as the
marginal distribution of {G`(t)}, then the marginal random variable of {P`(t)},

P` =
Γ′

G`
D`

ξ, (3)

is a representation of the power required to forward the packet to a relay at `, irrespec-
tive of the time at which the relay was probed during the decision process. Hence, in
the sequel we will remove the time variable from our notation and work only with the
marginal random variables.

Remark: Regarding the channel gains being i.i.d., since the randomness in the chan-
nel is spatially correlated across relays [Agrawal and Patwari 2009], if two locations `
and u are very close then the corresponding gains, G` and Gu, will not be independent;
a minimum separation between the receivers is required for the gains to be statisti-
cally independently. Thus, our assumption of independence between the channel gains
across the relays requires that the relays should not be close to each other, or, equiv-
alently, the relay density should not be large. We will assume that this physical prop-
erty holds, and, thus, proceed with the technical assumption that the channel gains
are i.i.d.

Reward Structure: Finally, combining progress, Z`, and power, P`, we define the
reward associated with a location ` ∈ L as,

R` =
Za`

P
(1−a)
`

=
Za`

(Γ′Dξ
` )

(1−a)
G

(1−a)
` , (4)

where a ∈ [0, 1] is used to trade-off between Z` and P`. The reward varying inversely
with P` is clear because it is advantageous to use low power to get the packet across;
R` increasing with Z` promotes progress towards the sink while choosing a relay for
the next hop. The channel gains, {G`}, are non-negative; we will further assume that
they are bounded above by gmax. These conditions along with Z` ≥ zmin (which implies
that D` ≥ zmin) and L is bounded (so that Z` ≤ zmax for all ` ∈ L) will provide the
following upper bound for the reward functions {R` : ` ∈ L}:

r =
zamax

(Γ′zξmin)(1−a)
g(1−a)
max .

Thus, the reward values lie within the interval [0, r].
Let F` represent the c.d.f. (cumulative distribution function) of R` (or, strictly speak-

ing the marginal distribution of R`(t)), and

F =
{
F` : ` ∈ L

}
(5)

denote the collection of all possible reward distributions. From (4), note that, given a
location ` it is only possible to know the reward distribution F`. To know the exact
reward R`, F has to transmit probe packets to learn the channel gain G` (we will
formalize probing very soon).

Remark: The motivation for using the particular reward in (4) comes from our prior
work [Naveen and Kumar 2013] where we have observed that the solution to our local
problem, obtained using the above reward structure, provides an end-to-end perfor-
mance (in terms of end-to-end delay vs. total power) that is comparable with the per-
formance of the globally optimal solution proposed by [Kim et al. 2011]. However, it is
important to note that all our analysis in the subsequent sections will follow through
for more general functions of the channel gain, as long as the corresponding distribu-
tion set F satisfies the total stochastic ordering property discussed below.
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Definition 2.1 (Stochastic Ordering). Given two distributions F` and Fu, F` is
stochastically greater than Fu, denoted as F` ≥st Fu, if 1 − F`(r) ≥ 1 − Fu(r), for all r.
Equivalently [Stoyan 1983], F` ≥st Fu if and only if for every non-decreasing function
f : < → <, E`[f(R`)] ≥ Eu[f(Ru)] where the distributions of R` and Ru are F` and Fu,
respectively. �

Definition 2.2 (Total Stochastic Ordering). F is said to be totally stochastically or-
dered if any two distributions from F are stochastically ordered. Formally, for any
F`, Fu ∈ F either F` ≥st Fu or Fu ≥st F`. Further, if there exists a distribution Fm ∈ F
such that for every F` ∈ F we have F` ≥st Fm then we say that F is totally stochasti-
cally ordered with a minimum distribution. �

The following result will be useful in our analysis later.

LEMMA 2.3. The set of reward distributions F in (5), is totally stochastically or-
dered with a minimum distribution.

PROOF. The channel gains, {G` : ` ∈ L}, being identically distributed will be essen-
tial to show that F is totally stochastically ordered. Existence of a minimum distribu-
tion will require the assumption we had made earlier (in Section 2) that L is compact
(closed and bounded). The complete proof is available in Appendix A.3.

Relay Locations: We will assume that each of the N relays is randomly and mu-
tually independently located in the forwarding region L. Formally, let L1, L2, · · · , LN
denote the random relay locations, that are i.i.d. uniform over the forwarding set L
(this assumption holds if the nodes are deployed according to a spatial Poisson pro-
cess). Let L denote the uniform distribution over L so that the distribution of Lk is L
(for k = 1, 2, · · · , N ).

Remark: For the sake of motivating the model we assume that the location distribu-
tion L is uniform. However, our analysis holds good for any other distribution.

Sequential Decision Problem: At time 0, F only knows that there are N relays
in its forwarding set L, but does not a-priori know their locations, Lk, nor their channel
gains, GLk . When the k-th relay wakes up, we assume that its location Lk is revealed2,
using which (in (4)) the distribution FLk of the reward RLk can be known (since the
channel gain distribution is known). However, if F wishes to learn the exact reward
value RLk , it has to estimate the channel gain GLk . This is accomplished by transmit-
ting additional probe packets, incurring a power cost of δ ≥ 0 units. Thus, when the
k-th relay wakes up (referred to as stage k), given the set of previously probed and
unprobed relays (i.e., the history), the following actions are available to F :

• s: stop and forward the packet to a relay with the maximum reward (best relay)
among the probed relays; with this action the decision process ends.
• c: continue to wait for the next relay to wake-up (average waiting time is τ ); with this

action the decision process enters stage k + 1.
• p: probe a relay from the set of all unprobed relays (provided there is at least one

unprobed relay). The probed relay’s channel gain, and hence its reward value is then
revealed, allowing F to update the best relay. After probing, the decision process is
still at stage k and F has to again decide upon an action.

Remark: Note that, we are allowing F to forward the packet only to a probed relay.
This is because, knowing the channel gain (since probing reveals the channel gain),

2which can be accomplished by including the location information Lk within a control packet (sent using a
low rate robust modulation technique, and hence, assumed to be error free) transmitted by the k-th relay
upon waking up
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F can then choose an appropriate power level (using (2)) for its transmission. Al-
though, using advanced adaptive coding techniques it may be possible to transmit to
an unprobed relay, but for simplicity we do not consider this option. Moreover, imple-
menting such coding algorithms at the memory-constrained wireless nodes would be
difficult in practice. Further, for the sake of analysis, we neglect the time taken for the
exchange of control packets and the time taken to probe a relay to learn its channel
gain. We argue that this is reasonable for very low duty cycling networks, where the
average inter-wake-up time is much larger than the time taken for probing and for the
exchange of control packets.

At stage k, let bk denote the reward of the best relay, and Fk be the vector of reward
distribution of the unprobed relays, i.e., formally,

bk = max
{
RLi : i ≤ k, relay i has been probed

}
, (6)

Fk =
(
FLi : i ≤ k, relay i is unprobed

)
. (7)

We will regard (bk,Fk) to be the state of the system at stage k. Note that, it is possible
that until stage k no relay has been probed, in which case bk = −∞, or all the relays
are probed so that Fk is empty. Whenever Fk is empty we will represent the state as
simply bk. Now we can define a forwarding policy π as follows:

Definition 2.4. A policy π is a sequence of mappings (µ1, µ2, · · · , µN ) where,

• for k = 1, 2, · · · , N − 1, µk(bk,Fk) ∈ {s, c,p} and µk(bk) ∈ {s, c}, and
• µN (bN ,FN ) ∈ {s,p} and µN (bN ) ∈ s.

Note that the action to continue is not available at the last stage N . Let Π denote the
set of all policies. �

Remark: Thus, we are considering a scenario where the forwarder can base its deci-
sion by retaining (or recalling) the best probed relay (see (6)). This property will enable
us to prove an additional structural result (in Section 5.2) that the optimal policy is
characterized by stage independent thresholds, which is not possible if recalling is not
allowed. However, for the latter case, the threshold property of the optimal policy (in
Section 5.1) can still be deduced so that a threshold policy remains to be optimal, al-
though it would be stage dependent. We will remark more on this in Section 5.2.

Now, for a policy π ∈ Π, the delay incurred, denoted D, is the time until a relay is
chosen. Let R denote the reward offered by the chosen relay. Further, let M denote
the total number of relays that were probed during the decision process. Then, recall-
ing that δ is the probing cost, δM represents the total cost of probing. We would like
to think of (R − δM) as the effective reward achieved using policy π. Then, denoting
E[·] to be the expectation operator conditioned on using policy π, the problem we are
interested in is the following:

Minimizeπ∈Π

(
Eπ[D]− η

(
Eπ[R]− δEπ[M ]

))
, (8)

where η > 0 is the coefficient used to tradeoff between delay and effective reward.
Note that, the coefficients η and δ in the above objective function will enable us to

tradeoff between the various quantities (namely delay, reward and probing cost). For
instance, a small value of η would result in an objective function which gives more
weight to the delay term, Eπ[D]. Hence, the forwarding node, in view of minimizing
delay, would simply probe and transmit to the relay that wakes up first, irrespective of
its reward value. On the other hand, if η is large, the objective would be more in favor
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of minimize the effective reward, (Eπ[R]− δEπ[M ]). Thus, now the forwarder, targeting
for a relay with a good reward value, would end up waiting for more relays to wake-up,
while probing every relay if the probing cost δ is small, or cautiously probing only good
relays if δ is large. Hence, a range of tradeoff can be obtained by varying η and δ, which
is in general captured by the objective function in (8). We will discuss these tradeoffs
in more detail while presenting the numerical results in Section 7.

Restricted Class Π: Recall that the state at stage k is of the form (bk,Fk) where Fk
is the set of all unprobed relays. The size of Fk can vary from 0 (if all the k relays that
have woken up thus far have been probed) to k (if none have been probed). Further,
suppose the size of Fk is m (0 < m ≤ k) then Fk ∈ Fm (the m times Cartesian product
of F) since the reward distribution of each unprobed relay can be any distribution
from F . Thus, the set of all possible states at stage k is large. Hence, for analytical
tractability, we first consider (in Sections 4 and 5) solving the problem in (8) over a
restricted class of policies, Π ⊆ Π, where a policy is restricted to take decisions keeping
only up to two relays awake − one the best among all probed relays and other the best
among the unprobed ones. Thus, the decision at stage k is based on (bk, Hk) where Hk

is the stochastically greatest distribution in Fk. Later in Section 6 we will discuss the
optimal policy within the unrestricted class of policies Π.

3. RELATED WORK
Although the motivation for our work comes from the context of geographical forward-
ing in WSNs, related literature on the local decision problem can be found from other
topics as well, e.g., the problem of channel probing in wireless networks, and the asset
selling problem studied by the operations research community. In this section we will
discuss related work from all these topics.

Geographical forwarding and routing in wireless networks: The problem of
choosing a next-hop relay usually arises in the context of geographical forwarding.
As mentioned earlier, geographical forwarding [Akkaya and Younis 2005; Mauve et al.
2001] is a forwarding technique where the prerequisite is that the nodes know their re-
spective locations as well as the sink’s location. The method of geographical forwarding
was already envisioned in the 80’s in the context of routing in packet radio networks
(PRNs) [Takagi and Kleinrock 1984; Hou and Li 1986]. One of the simplest geographi-
cal forwarding technique is the greedy algorithm where each node forwards to a neigh-
bor in its communication region which makes maximum progress towards the sink.
This greedy algorithm is referred to as the MFR (Max Forward within Radius) rout-
ing in [Takagi and Kleinrock 1984]. Akin to MFR is the NFP (Nearest with Forward
Progress) proposed in [Hou and Li 1986] where a node with a positive progress, and
closest to the transmitting node is chosen. A generalization of MFR and NFP routing
is to randomly choose any neighbor which makes a positive progress towards the sink
[Nelson and Kleinrock 1984].

More recently, there is work which considers applying geographical forwarding for
routing in sleep-wake cycling networks [Hao et al. 2012] is a recent survey on this topic
which includes some of the work we will discuss below (this survey paper includes one
of our prior work on the topic [Naveen and Kumar 2010] in its list of references).

Authors in [Liu et al. 2007] propose a protocol named CMAC (Convergent MAC),
using which a forwarding node chooses a relay whose normalized latency (which is the
expected ratio of one-hop delay and progress) is more than a threshold r0, where r0

is chosen so as to minimize the expected latency. The Random Asynchronous Wakeup
(RAW) protocol in [Paruchuri et al. 2004] also (heuristically) considers transmitting to
the first node to wake-up that makes a progress of greater than a threshold. Interest-
ingly, such a threshold policy is optimal for our basic model (see [Naveen and Kumar
2013, Section 6],[Naveen and Kumar 2010]).
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Zorzi and Rao in [Zorzi and Rao 2003b] study a time slotted system where nodes
follow geometric sleep-wake patterns, i.e., a node is active in a slot with probability
p. For a greedy scheme, referred to as GeRaF (Geographical Random Forwarding),
where a forwarding node chooses the awake neighbor closest to the sink, the authors
obtain its multi-hop performance in terms of the average number of hops required as a
function of distance to the sink. Energy and latency performance of GeRaF is studied
by the same authors in [Zorzi and Rao 2003a]. In contrast to GeRaF, ExOR [Biswas
and Morris 2005] uses a metric called ETX (Estimated Transmission Time), which
is an estimate of the number of transmissions required to reach the destination, to
choose a next-hop relay. Alternatively, the authors in [Ghadimi et al. 2014] propose
an opportunistic routing algorithm (referred to as ORW) that uses EDC (Expected
Number of Duty Cycled Wakeups) metric instead for forwarding; a version of ORW is
studied in [So and Byun 2014] where in-network aggregation of packets is performed
before forwarding. However, in all these work, including others [Ozen and Oktug 2014;
Guo et al. 2009], the main focus is on the design of MAC for resolving contention,
that could arise when multiple relays become active simultaneously. Such contentions
do not arise in our model since we are assuming a low duty-cycle sleep-wake cycling
network (so that the probability of more than one relay waking up simultaneously
is very low, and hence can be safely neglected). Thus, ours is instead a problem of
resource (in particular, relay) allocation (or acquisition) that arises when a collection
of resources become available sequentially in time.

Application of control theory [Bertsekas 2005; Puterman 1994] for the problem of
routing in sleep-wake cycling networks can also be found in the literature [Kim et al.
2011; Kim and Liu 2008]. However, as already mentioned in the introduction, the one
of Kim et al. [Kim et al. 2011] is based on the Bellman-Ford algorithm, and hence re-
quires a global pre-configuration phase for offline computation of an optimal forward-
ing policy. The algorithm in [Kim and Liu 2008] requires a central entity to choose
a next-hop relay. Although the authors in [Kim and Liu 2008] propose a distributed
implementation, but this requires a “priority update” phase where each node has to
compute its priority to each of its neighboring node. In contrast to the above work, our
algorithm is completely online, with the forwarding node deciding, as and when the
relays wake-up, whether or not to forward to a relay. Also, we have incorporated an
additional “probe” action into our formulation, which is not considered in any of the
above work.

Channel probing in wireless networks: From practical standpoint, testbed ex-
periments involving WSNs ([Kumar et al. 2010; Bhattacharya et al. 2013]) require
estimating link quality measurements using known signals (probe packets), before the
nodes can exchange any useful data. Thus, channel probing is an inherent feature of
the wireless system. In wireless networks, models with channel probing are gener-
ally studied in the context of channel selection [Chaporkar and Proutiere 2008; Chang
and Liu 2007]. For instance, the authors in [Chaporkar and Proutiere 2008] study the
following problem: a transmitter, aiming to maximize its throughput, has to choose
a channel for its transmissions, among several available ones. The transmitter, only
knowing the channel gain distributions, has to send probe packets to learn the ex-
act channel state information (CSI). Probing many channels yields a channel with a
good gain but reduces the effective time for transmission within the channel coher-
ence period. The problem is to obtain optimal strategies to decide when to stop probing
and to transmit. An important difference with our work is that, in [Chaporkar and
Proutiere 2008; Chang and Liu 2007], all the channel gain distributions are known a
priori while in our present paper the reward distributions are revealed as and when
the relays wake-up. We will discuss more about the work in [Chaporkar and Proutiere
2008] in Section 6.
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Thejaswi et al. in [Thejaswi et al. 2010] consider a model where, initially only a
coarse estimate of the channel gain is available to the transmitter, and the transmitter
can choose to probe the channel a second time to get a finer estimate of the gain (and
hence the rate at which it can transmit). The objective is to optimize the trade-off
between the throughput gain obtained from the more accurate rate estimation and
the resulting additional delay. The authors pose the problem as an optimal stopping
problem and show that the optimal policy is characterized by two rate thresholds, such
that it is optimal to probe if and only if the initial rate estimate lies between these
thresholds. The thresholds are stage dependent, which is a consequence of the horizon
length of their stopping problem being infinite. In general, for a finite horizon stopping
problem the optimal policy would be stage dependent. For our problem, despite being
a finite horizon one, we are able to show that certain stopping sets are identical across
stages. This is due to the fact that we allow the best probed relay to stay awake.

Asset selling problem: Let us recall the objective in (8). Suppose the probing cost
δ = 0, then (8) will reduce to minimizing (Eπ[D] − ηEπ[R]). Further, when δ = 0, since
there is no advantage in not probing, an optimal policy is to always probe relays as they
wake-up so that their reward value is immediately revealed to F . Alternatively, if F
is not allowed to exercise the option to not-probe a relay, then again the model reduces
to the case where the relay rewards are immediately revealed as and when they wake-
up. We have studied this particular case of our relay selection problem (which we will
refer to as the basic relay selection model) in our earlier work [Naveen and Kumar
2013, Section 6],[Naveen and Kumar 2010], and this basic model can be shown to be
equivalent to a basic version of the asset selling problem [Bertsekas 2005, Section 4.4],
[Karlin 1962] studied in the operations research literature.

The basic asset selling problem comprises a seller (with some asset to sell) and a
collection of buyers who are arriving sequentially in time. The offers made by the
buyers are i.i.d. If the seller wishes to choose an early offer, then he can invest the
funds received for a longer time period. On the other hand, waiting could yield a better
offer, but with the loss of time during which the sale-proceeds could have been invested.
The seller’s objective is to choose an offer so as to maximize his final revenue (received
at the end of the investment period). Thinking of the offer of a buyer as analogous to
the reward of a relay, the seller’s objective of maximizing revenue is equivalent to the
forwarder’s objective of minimizing a combination of delay and reward.

Over the years, several variants of the basic problem have been studied. For in-
stance, Kang in [Kang 2005] has considered a model where a cost has to be paid to
recall the previous best offer; further, the previous best offer can be lost at the next
time instant with some probability. In [David and Levi 2004], David and Levi consider
a model in which the offers arrive at the points of a renewal process. Variants with un-
known offer (or reward) distribution, or one where a parameter of the offer distribution
is unknown have been studied in [Albright 1977; Rosenfield et al. 1983]. However, in
the above models, unlike in our case, the reward value is immediately revealed upon
an offer arrival. Further, they do not incorporate an additional probe action like in our
model.

One model that is close to ours is that of Stadje [Stadje 1997], where only some
initial information about an offer (e.g., the average size of the offer) is revealed to
the decision maker upon its arrival. In addition to the actions, stop and continue, the
decision maker can also choose to obtain more information about the offer by incurring
a cost. The optimal policy is characterized by stage independent thresholds, which is
again due to, as in [Thejaswi et al. 2010], the problem horizon length being infinite.
Recall that ours is a finite horizon problem.

In the present work we generalize the basic model in a different direction, by intro-
ducing an additional probe action and an associated (positive) probing cost (i.e., δ > 0
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case) into the model, so that a relay’s reward value (equivalently, buyer’s offer value) is
now not revealed to the forwarder (equivalently, seller) for free. Instead the forwarder
can choose to probe a relay to know its reward value after incurring an additional cost
of δ. To the best of our knowledge, the particular model we study here is not available
in the asset selling problem literature.

4. RESTRICTED CLASS Π: AN MDP FORMULATION
Confining to the restricted class Π, in this section we will formulate the problem in
(8) as a Markov decision process. This will require us to first discuss the one-step
cost functions and state transitions before proceeding to write the Bellman optimality
equations.

4.1. One-Step Costs and State Transitions
The decision instants or the decision stages are the times at which the relays wake-up.
Thus, there are N decision stages indexed by k = 1, 2, · · · , N . Recall that for any policy
in the restricted class Π, the decision at stage k is based on (bk, Hk), where bk is the
best reward so far and Hk ∈ Fk is the best reward distribution with Fk being the set
of reward distributions of all the unprobed relays so far. As mentioned earlier, if no
relay has been probed until stage k then bk = −∞. On the other hand, if all the relays
have been probed, in which case Fk is empty, then we will denote the state as simple
bk. Hence, the state space can be written as,

X = [0, r] ∪
{

(b, F`) : b ∈ {−∞} ∪ [0, r], ` ∈ L
}
∪ {t}

where t is the cost-free termination state. We will use (b, F`) to denote a generic state
at stage k.

Now, at stage k = 1, 2, · · · , N − 1, given that the state is (b, F`), if F ’s decision is
to stop then the decision process enters t, with F incurring a termination cost of −ηb
(recall from (8) that η > 0 is the trade-off parameter). On the other hand, if the action is
to continue then F will first incur a waiting cost of Uk+1 (the time until the next relay
wakes up) and then, when the (k + 1)-th relay wakes-up (whose reward distribution
is FLk+1

), F chooses between the two unprobed relays − one the previous relay with
reward distribution F`, and other the new one with distribution FLk+1

− so that the
state at stage k + 1 will be either (b, F`) or (b, FLk+1

). The best reward value continues
to be b since no new relay has been probed during the state transition.

Alternatively, F could choose the action to probe the available unprobed relay
(whose reward distribution is F`) incurring a cost of ηδ (recall that δ is the probing
cost). After probing, the decision process is still considered to be at stage k with the
new state being b′ = max{b, R`}, where R` is the reward value of the just probed relay
(thus the distribution of R` is F`). F has to now further decide whether to stop (incur-
ring a one-step cost of −ηb′ and enter t), or continue (in which case the one-step cost is
Uk+1 and the next state is (b′, FLk+1

)).
Summarizing the above we can write the one-step cost, when the state at stage k is

(b, F`), as

gk

(
(b, F`), ak

)
=

{ −ηb if ak = s
Uk+1 if ak = c
ηδ if ak = p.

The next state, X ′, is given by

X ′ =

{ t if ak = s
(b, F`) or (b, FLk+1

) if ak = c
max{b, R`} if ak = p.
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We have used X ′ to denote the next state instead of Xk+1 because, if ak = p then the
system is still at stage k. Only when the action is s or c the system transits to the stage
k + 1.

Next, if the state at stage k is b (states of this form occur after probing the available
unprobed relay; recall the above expressions when ak = p), then

gk(b, ak) =

{
−ηb if ak = s
Uk+1 if ak = c,

and the next state is

Xk+1 =

{
t if ak = s

(b, FLk+1
) if ak = c.

The action to probe is not available whenever the state is b.
At the last stage N , action c is not available, so that

gN (b, F`) =

{
−ηb if ak = s
ηδ if ak = p,

with the system entering t if ak = s, otherwise (i.e., if ak = p) the state transits to
max{b, Rk}. Finally, gN (b) = −ηb. Note that for a policy π, the expected sum of all the
one-step costs starting from stage 1, plus the average waiting time for the first relay,
E[U1] = τ ,3 will equal the total cost in (8).

4.2. Cost-to-go Functions and the Bellman Equation
Let Jk, k = 1, 2, · · · , N , represent the optimal cost-to-go function at stage k. Thus,
Jk(b) and Jk(b, F`) denote the cost-to-go, depending on whether there is, or is not an
unprobed relay. For the last stage, N , we have, JN (b) = −ηb, using which we obtain,

JN (b, F`) = min
{
− ηb, ηδ + E`

[
JN (max{b, R`})

]}
= min

{
− ηb, ηδ − ηE`

[
max{b, R`}

]}
, (9)

where E`[·] denotes the expectation with respect to (w.r.t.) R` whose distribution is F`.
The first term in the min-expression above is the cost of stopping and the second term
is the expected cost of probing and then stopping (recall that action c is not available
at the last stage N ). Next, for stages k = 1, 2, · · · , N − 1, denoting the expectation w.r.t.
the distribution, L, of the location, Lk+1, of the next relay by EL[·], we have

Jk(b) = min
{
− ηb, τ + EL

[
Jk+1(b, FLk+1

)
]}
, (10)

and

Jk(b, F`) = min
{
− ηb, ηδ + E`

[
Jk(max{b, R`})

]
,

τ + EL
[

min{Jk+1(b, F`), Jk+1(b, FLk+1
)}
]}
. (11)

The first term in both the min-expressions above is the cost of stopping. The middle
term in (11) is the expected cost of probing, with ηδ being the one-step cost and the
remaining term being the future cost. The last term in both expressions is the expected
cost of continuing, with τ representing the mean waiting time until the next relay

3Since invariably a relay has to be chosen, every policy has to wait for at least the first relay to wake-up, at
which instant the decision process begins. Thus, U1 need not be accounted for in the total cost incurred by
any policy.
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wakes up. The future cost-to-go in the last term of (11) can be understood as follows.
When the state at stage k = 1, 2, · · · , N − 1 is (b, F`) and, if F decides to continue, then
the reward distribution of the next relay is FLk+1

. Now, given the distributions F` and
FLk+1

, if F is asked to retain one of them, then it is optimal to go with the distribution
that fetches a lower cost-to-go from stage k + 1 onwards, i.e., it is optimal to retain
F` if Jk+1(b, F`) ≤ Jk+1(b, FLk+1

), otherwise retain FLk+1
.4 Later in this section we will

show that, given two distributions, F` and Fu, if F` is stochastically greater than Fu
(recall Definition 2.1) then Jk+1(b, F`) ≤ Jk+1(b, Fu) so that it is optimal to retain the
stochastically greater distribution (Lemma 4.2-(i)).

First, for simplicity let us introduce the following notation. For k = 1, 2, · · · , N − 1,
let Ck represent the cost of continuing:

Ck(b) = τ + EL
[
Jk+1(b, FLk+1

)
]

(12)

Ck(b, F`) = τ + EL
[

min{Jk+1(b, F`), Jk+1(b, FLk+1
)}
]
. (13)

For k = 1, 2, · · · , N , the cost of probing, Pk, is given by

Pk(b, F`) = ηδ + E`
[
Jk(max{b, R`})

]
. (14)

From (12) and (13) it is immediately clear that Ck(b, F`) ≤ Ck(b) for any F` (` ∈ L). This
inequality should be intuitive as well, since F can expect to accrue a better cost if, in
addition to a probed relay, it also possesses an unprobed relay. It will be useful to note
this inequality as a lemma.

LEMMA 4.1. For k = 1, 2, · · · , N − 1 and any (b, F`) we have Ck(b, F`) ≤ Ck(b).

PROOF. As discussed just before the Lemma statement, the inequality follows easily
from the expressions of these costs; recall (12) and (13).

Finally, using the above cost notation, the cost-to-go functions in (10) and (11) can
be written as, for k = 1, 2, · · · , N − 1,

Jk(b) = min
{
− ηb, Ck(b)

}
(15)

Jk(b, F`) = min
{
− ηb, Pk(b, F`), Ck(b, F`)

}
. (16)

4.3. Ordering Results for the Cost-to-go Functions
We will examine how the cost-to-go functions Jk(b) and Jk(b, F`) behave as functions of
F` and the stage index k. Consider two relays at locations ` and u. If the corresponding
reward distributions, F` and Fu, are such that F` ≥st Fu (recall Definition 2.1) then
F can expect that probing the relay at ` would yield a better reward value than the
relay at u. Thus, F would prefer the stochastically greater reward distribution F`,
over Fu. Extending this observation, it is reasonable to expect that F can accrue lower
expected costs (total, continuing and probing costs) if the unprobed reward distribution
available at stage k is F` than if it is Fu. We will formally prove this result next. Also,
we will show that, if the state remains the same, the expected cost at stage k is less
than that at stage k + 1, i.e., Jk(x) ≤ Jk+1(x) for any state x. This again should be
intuitive because, starting from stage k, F has the option to observe an additional

4Formally one has to introduce an intermediate state of the form (b, F`, FLk+1
) at stage k+1 where the only

actions available are, choose F` or FLk+1
. Then Jk+1(b, F`, FLk+1

) = min{Jk+1(b, F`), Jk+1(b, FLk+1
)},

which, for simplicity, we are directly using in (11).
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relay than if it were to start from stage k + 1; with more resources available, and with
these being i.i.d., F is expected to achieve a lower cost. We will state these two results
in the following lemma.

LEMMA 4.2.

(i) For k = 1, 2, · · · , N−1, if F` ≥st Fu then Ck(b, F`) ≤ Ck(b, Fu), (and including k = N )
Pk(b, F`) ≤ Pk(b, Fu) and Jk(b, F`) ≤ Jk(b, Fu).

(ii) For k = 1, 2, · · · , N − 2, Ck(b) ≤ Ck+1(b) and Ck(b, F`) ≤ Ck+1(b, F`), (and including
k = N − 1) Pk(b, F`) ≤ Pk+1(b, F`) and Jk(b, F`) ≤ Jk+1(b, F`).

PROOF. To prove (i) we first show that the various costs are non-increasing func-
tions of b. We then complete the proof using the definition of stochastic ordering (Def-
inition 2.1). Part (ii) follows from induction. Details of the proof is available in Ap-
pendix A.1.

5. RESTRICTED CLASS Π: STRUCTURAL RESULTS
We begin by defining, at stage k = 1, 2, · · · , N − 1, the stopping set Sk as

Sk =
{
b : −ηb ≤ Ck(b)

}
. (17)

From (15) it follows that the stopping set Sk is the set of all states b (states of this form
are obtained after probing at stage k) where it is better to stop than to continue.

Similarly, for a given distribution F` we define the stopping set S`k as, for k =
1, 2, · · · , N − 1,

S`k =
{
b : −ηb ≤ min{Pk(b, F`), Ck(b, F`)}

}
. (18)

Using (16) the set S`k has to be interpreted as, for a given distribution F`, the set of
b such that whenever the state at stage k is (b, F`) it is better to stop than to either
probe or continue. Note that when b = −∞ it is never optimal to stop; hence, both
these stopping sets are subsets of [0, r]. Finally, stopping sets can also be defined for
k = N as, SN = [0, r] (since, at the last stage N , for any b the only action available is to
stop), and

S`N =
{
b : −ηb ≤ Pk(b, F`)

}
. (19)

The following set inclusion properties easily follow from the definition of these sets
and the properties of the cost functions in Lemma 4.1 and Lemma 4.2.

LEMMA 5.1.

(i) For k = 1, 2, · · · , N and for any F` we have S`k ⊆ Sk.
(ii) For k = 1, 2, · · · , N , if F` ≥st Fu then S`k ⊆ Suk .

(iii) For k = 1, 2, · · · , N − 1 we have Sk ⊆ Sk+1, and for any F`, S`k ⊆ S`k+1.

PROOF. Recall the definition of the stopping sets from (17) and (18). Part (i) fol-
lows from Lemma 4.1. Parts (ii) and (iii) are due to Parts (i) and (ii) of Lemma 4.2,
respectively.

Discussion: The above results can be understood as follows. Whenever an unprobed
relay (say with reward distribution F`) is available, F can be more stringent about
the best reward values, b, for which it chooses to stop. This is because, F can now
additionally choose to probe F` possibly yielding a better reward than b. Thus, unless
the best reward b is already good (so that there is no gain in probing F`), F will not
choose to stop. Hence, we have S`k ⊆ Sk (Part (i)). Next, if F` ≥st Fu then since probing
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Fig. 3. Illustration of the threshold property: the vertical lines are the reward axis, with each line corre-
sponding to a different stage. The stopping sets are represented by marking their thresholds on the respec-
tive vertical lines.

F` has a higher chance of yielding a better reward, the stopping condition is more
stringent if the reward distribution of the available unprobed relay is F` than Fu.
Hence, the corresponding stopping sets are ordered as in Part (ii) of the above lemma,
i.e., S`k ⊆ Suk . Finally, whenever there are more stages to-go, F can be more cautious
about stopping since it has the option to observe more relays. This suggests that Sk ⊆
Sk+1 and S`k ⊆ S`k+1 (Part (iii)).

From our above discussion, the phrase “F being more stringent about stopping,”
suggests that it may be better to stop for larger values of b. Equivalently, this would
mean that the stopping sets are characterized by thresholds, beyond which it is optimal
to stop. This is exactly our first main result (Theorem 5.3). Later we will prove a more
interesting result (Theorem 5.6 and 5.7) where we show that the stopping sets are
stage independent, i.e., Sk = Sk+1 and S`k = S`k+1. In the following sub-sections we will
work the details of these two results.

5.1. Stopping Sets: Threshold Property
To prove the threshold structure of the stopping sets the following key lemma is re-
quired where we show that the increments in the various costs are bounded by the
increments in the cost of stopping.

LEMMA 5.2. For k = 1, 2, · · · , N − 1 (for Part (ii), k = 1, 2, · · · , N ), for any F`, and
for b2 > b1 we have

(i) Ck(b1)− Ck(b2) ≤ η(b2 − b1),
(ii) Pk(b1, F`)− Pk(b2, F`) ≤ η(b2 − b1)

(iii) Ck(b1, F`)− Ck(b2, F`) ≤ η(b2 − b1).

PROOF. Available in Appendix A.2.

THEOREM 5.3. For k = 1, 2, · · · , N and for b2 > b1,

(i) If b1 ∈ Sk then b2 ∈ Sk.
(ii) For any F`, if b1 ∈ S`k then b2 ∈ S`k.

PROOF. Since SN = [0, r], Part (i) trivially holds for k = N . Next, for k = 1, 2, · · · , N−
1, using Lemma 5.2-(i) we can write,

−ηb2 ≤ −ηb1 − Ck(b1) + Ck(b2).

Since b1 ∈ Sk, from (17) we know that −ηb1 ≤ Ck(b1), using which in the above expres-
sion we obtain−ηb2 ≤ Ck(b2) implying that b2 ∈ Sk. Part (ii) can be similarly completed
using Parts (ii) and (iii) of Lemma 5.2.

Discussion: Thus, the stopping sets Sk and S`k can be characterized in terms of lower
bounds αk and α`k, respectively, as illustrated in Fig. 3 (see the vertical line correspond-
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ing to the stage index k). Also shown in Fig. 3 is the threshold, αuk , corresponding to a
distribution Fu ≤st F`. From Lemma 5.1-(i) and 5.1-(ii) it follows that these thresholds
are ordered, αk ≤ αuk ≤ α`k. Further, in Fig. 3 we have depicted these thresholds to
be decreasing with the stage index k (vertical lines from left to right); this is due to
Lemma 5.1-(iii) from where we know that the stopping sets are increasing with k. Our
main result in the next section (Theorem 5.6 and 5.7) is to show that these thresh-
olds are, in fact, equal (i.e., αk = αk+1 and α`k = α`k+1). Finally, note that in Fig. 3 we
have not shown the threshold αN corresponding to the stopping set SN ; this is simply
because αN = 0 (since SN = [0, r]).

5.2. Stopping Sets: Stage Independence Property
From Lemma 5.1-(iii) we already know that Sk ⊆ Sk+1, and S`k ⊆ S`k+1. In this section
we will prove the inclusion in the other direction, thus leading to the result that the
stopping sets are identical across the stages. We will begin by defining the sets Q`k as,
for k = 1, 2, · · · , N − 1,

Q`k =
{
b : min{−ηb, Pk(b, F`)} ≤ Ck(b, F`)

}
. (20)

From (16) it follows that Q`k is, for a given distribution F`, the set of all b such that
whenever the state at stage k is (b, F`) it is better to either stop or probe than to
continue. From the definition of the sets S`k and Q`k (in (18) and (20), respectively) it
immediately follows that S`k ⊆ Q`k. Also from Lemma 5.1-(i) we already know that
S`k ⊆ Sk. However, it is not immediately clear how the sets Q`k and Sk are ordered.
Using the total stochastic ordering property of F = {F` : ` ∈ L} (Lemma 2.3), we will
show that Sk ⊆ Q`k (Lemma 5.5). This result will be essential for proving our main
theorems.

Remark: We again recall that our subsequent results are not simply limited to the
F in (5) which is the distribution set arising from the particular reward structure, R`,
we had assumed in (4). All our subsequent results will hold for any other collection
of bounded reward random variables {R`}, as long as the corresponding F is totally
stochastically ordered with a minimum distribution.

Before proceeding to our main theorems, we need the following results.

LEMMA 5.4. Suppose Sk ⊆ Quk , for some Fu, and some k ∈ {1, 2, · · · , N − 1}. Then
for every b ∈ Sk we have Jk(b, Fu) = JN (b, Fu).

PROOF. Fix a b ∈ Sk ⊆ Quk . Then,

Jk(b, Fu) = min
{
− ηb, Pk(b, Fu), Ck(b, Fu)

}
∗
= min

{
− ηb, Pk(b, Fu)

}
o
= min

{
− ηb, ηδ + Eu

[
Jk(max{b, Ru})

]}
†
= min

{
− ηb, ηδ − ηEu

[
max{b, Ru}

]}
= JN (b, Fu).

In the above derivation, ∗ is because, b being in Quk , at (b, Fu) it is optimal to ei-
ther stop or probe (recall (20)); o is simply obtained by substituting for Pk(b, Fu) from
(14). Further, after probing (since retaining the best relay is allowed) the new state,
max{b, Ru} ≥ b, is also in Sk (recall Theorem 5.3) so that it is optimal to stop after
probing; this observation yields †. Finally, the last equality is obtained by recalling the
expression of JN (b, Fu) from (9).
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Remark: The proof of the above lemma crucially uses the fact that retaining (or
recalling) the best relay is allowed. Thus, if recalling is not allowed, it is not possible to
show the stage independence property (Theorem 5.6 and 5.7). However, for the latter
case, the threshold property (Theorem 5.3) still holds so that the optimal policy is
characterized by stage dependent thresholds as in Fig. 3 (for more details, refer to the
problem of asset selling without recall [Bertsekas 2005, Section 4.4]).

Next we show that the hypothesis in the above lemma indeed holds for every F` ∈ F .

LEMMA 5.5. For k = 1, 2, · · · , N − 1 and for any F` ∈ F we have Sk ⊆ Q`k.

PROOF. The proof involves two steps:
1) First we show that if there exists an Fu such that, for k = 1, 2, · · · , N − 1, Sk ⊆ Quk

(thus satisfying the hypothesis in Lemma 5.4), then for every F` ≥st Fu we have Sk ⊆
Q`k. Lemma 5.4 and the total stochastic ordering of F are required for this part.

2) Next we show that a minimum distribution Fm satisfies the hypothesis in
Lemma 5.4, i.e., for every k = 1, 2, · · · , N − 1, Sk ⊆ Qmk . The proof is completed by
recalling that F` ≥st Fm for every F` ∈ F and then using in Step 1, Fm in the place of
Fu. The existence of a minimum distribution Fm (recall Lemma 2.3) is essential here.

Formal proofs of both steps are available in Appendix A.4.

The following are the main theorems of this section:

THEOREM 5.6. For k = 1, 2, · · · , N − 2, Sk = Sk+1.

PROOF. From Lemma 5.1-(iii) we already know that Sk ⊆ Sk+1. Here, we will show
that Sk ⊇ Sk+1. Fix a b ∈ Sk+1 ⊆ Sk+2. From Lemma 5.5 we know that Sk+1 ⊆ Q`k+1

and Sk+2 ⊆ Q`k+2, for every F`. Now, applying Lemma 5.4 we can write, Jk+1(b, F`) =
Jk+2(b, F`) = JN (b, F`). Thus,

Ck+1(b) = τ + EL
[
Jk+2(b, FLk+2

)
]

= τ + EL
[
Jk+1(b, FLk+2

)
]

∗
= τ + EL

[
Jk+1(b, FLk+1

)
]

= Ck(b),

where ∗ is obtained by replacing Lk+2 by Lk+1 since these are identically distributed.
Finally, since b ∈ Sk+1 we have −ηb ≤ Ck+1(b) = Ck(b) which implies that b ∈ Sk.

THEOREM 5.7. For k = 1, 2, · · · , N − 1 and any F`, S`k = S`k+1.

PROOF. Similar to the proof of Theorem 5.6, here we need to show that the probing
and continuing costs satisfy analogous equalities, i.e., for b ∈ S`k we need to show
that Pk+1(b, F`) = Pk(b, F`) and Ck+1(b, F`) = Ck(b, F`). Formal proof is available in
Appendix A.5.

Discussion: It will be interesting to compare the above results with the solution to
the basic relay selection model (i.e., δ = 0 case; recall Section 3) or equivalently the
basic asset selling problem. Towards this end, it will be useful to recall some definitions
first. The basic version of the problem comprises only the stop and continue actions
(where, in general, there can be more than one type of continue action). A problem is
said to be monotone if the stopping sets Sk are absorbing, i.e., if Xk ∈ Sk and suppose
the process is allowed to continue, then the next state Xk+1 ∈ Sk+1 so that it is optimal
to stop at the next stage as well. For a monotone problem, it is known that the 1-
step-look-ahead (OSLA) rule is optimal at any stage, implying that stopping sets are
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αN−1

αℓ
N
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N

Fig. 4. Illustration of the stage independence property: only the thresholds corresponding to the last stage
(and stage N − 1 for Sk) are shown, since these are sufficient to characterize the stopping sets for any k.

identical across the stages [Bertsekas 2005, Section 4.4]. Finally, for convenience, let
us recall the definition of the OSLA rule: A policy is said to be OSLA if, at any stage,
it chooses to stop if and only if (iff) the “cost of stopping” is less than the “cost of
continuing for one-more step and then stopping”.

In contrast to the basic setting, our formulation includes an additional probe action,
due to which the above definitions will not directly apply. For instance, if b ∈ Sk and
suppose we continue, then it is possible that the next state (b, F`) is such that b /∈ S`k+1,
so that it is not optimal to stop at the next stage. Thus, our problem is not monotone
from the sense of the above standard definition. Similarly, the standard OSLA rule
is not optimal for our case, since the “cost of stopping (−ηb)” is always less than the
“cost of continuing for one-more step and then stopping (τ − ηb)”, implying that it is
optimal to stop at any b or (b, F`) which is not true. However, owing to Lemma 5.5,
our setting satisfies the following modified definition of monotonicity: if b ∈ Sk then
the next state (b, F`) is such that it is either optimal to “stop” or “probe and stop”. The
following modified definition of the OSLA rule is optimal for our case: A policy is said
to be OSLA, if at any stage,

• for states of the form b, it chooses to stop iff the “cost of stopping” is less than the
“cost of continuing for one more step and then choosing optimally between stopping
or probing-and-stopping”
• for states of the form (b, F`), it chooses to stop iff the “cost of stopping” is less than

the “cost of probing and stopping”.

Now, for the case where the probing cost δ = 0, the probe action is always exercised so
that the above definitions reduce to the standard ones; the decision problem effectively
simplifies to the basic setting of choosing between the stop and continue actions. Thus,
our formulation can be thought of as generalizing the basic setting (δ = 0 case) by
incorporating an additional probe action (δ > 0 case) into the existing set of stop and
continue actions.

Finally, owing to Theorem 5.6 and 5.7, we can now modify the illustration in Fig. 3 to
Fig. 4 where we show only a single threshold corresponding to each stopping set. Thus,
to characterize the stopping set S`k for any k, it is sufficient to compute only the thresh-
old α`N corresponding to the last stage. Similarly, the stopping set Sk is characterized
by the threshold αN−1 computed for stage N − 1 (recall that αN = 0).

5.3. Probing Sets
Similar to the stopping sets S`k, one can also define the probing sets P`k as the set of all
b such that whenever the state at stage k is (b, F`) it is better to probe than to either
stop or continue, i.e.,

P`k =
{
b : Pk(b, F`) ≤ min{−ηb, Ck(b, F`)}

}
. (21)
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Fig. 5. Structure of the probing sets if Conjecture 5.8 is true. (a) Probing sets corresponding to a distribu-
tion F` such that α`N > αN−1, (b) Probing sets corresponding to an Fu such that αuN = αN−1

Note that P`k is simply the difference of the sets Q`k and S`k, i.e., P`k = Q`k \ S`k.
From our numerical work we have observed that, similar to the stopping sets, the

probing sets P`k are characterized by upper bounds ζ`k (see Fig. 5). The intuition for
this is as follows. Let (b, F`) be the state at stage N − 1. If the value of b is very small,
then it is better to probe than to continue, because probing will give an opportunity
to probe an additional relay at stage N in case the process continues after probing at
stage N − 1, while continuing without probing will deprive F of this opportunity. This
argument can be extended to any stage k to conclude that it may be better to probe for
small values of b. However, as b increases, probing may not yield a better reward than
the existing b; hence probing might not be worth the cost, so that it may be better to
simply continue.

To formally show the threshold property of the probing set P`k, the following is suffi-
cient: for any b2 > b1,

Pk(b1, F`)− Pk(b2, F`) ≤ Ck(b1, F`)− Ck(b2, F`).

This is because, if b2 /∈ S`k (so that stopping is not optimal) is such that b2 ∈ P`k (i.e.,
Pk(b2, F`) ≤ Ck(b2, F`)) then from the above inequality we obtain Pk(b1, F`) ≤ Ck(b1, F`),
implying that it is optimal to probe at b1 as well so that probing sets are characterized
by upper bounds. However, we have not yet been able to prove or disprove such a result,
but we strongly believe that it is true and make the following conjecture.

CONJECTURE 5.8. For k = 1, 2, · · · , N − 1, for any F`, if b2 ∈ P`k then for any b1 < b2
we have b1 ∈ P`k. �

Discussion: If the above conjecture is true, then some additional structural results
can be deduced. For instance, suppose for some F`, α`k > αk, or equivalently, α`N > αN−1

(refer to Fig. 5(a)). Then, since Sk ⊆ Q`k (from Lemma 5.5), for any (b, F`) such that
αN−1 < b < α`N , it should be optimal to probe. Now, invoking Conjecture 5.8 we can
conclude that it is optimal to probe for any b < α`N , so that ζ`k = α`N for all k. Thus, for
such “good” distributions, F`, (i.e., F` such that α`N > αN−1) the policy corresponding to
it is completely characterized by a single threshold α`N . Next, for distributions Fu such
that αuk = αk (equivalently, α`N = αN−1; see Fig. 5(b)), there is a window between ζuk and
αuN where, for any (b, F`) such that ζuN ≤ b < αuN , it is optimal to continue. Unlike αuk ,
the thresholds ζuk are stage dependent. In fact, from our numerical work, we observe
that ζuk are increasing with k. Finally, as depicted in Fig. 5, for any distribution F`, at
the last stage we invariably should have α`N = ζ`N since the action to continue is not
available at stage N .
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ALGORITHM 1: RST-OPT (ReSTricted-OPTimal Forwarding Policy)

Input: Thresholds αN−1, α
`
N , ζ

`
k for all ` ∈ L, k = 1, 2, · · · , N ; /* These thresholds have to

be computed offline by the forwarder F via backward value iteration */
Initialize: αk = αN−1, k = 1, 2, · · · , N − 1; αN = 0;

b← −∞; /* best reward value is initially set to −∞ */
F` = Fm; /* best distribution is initially set to the minimum distribution Fm */
PROBED = 0; /* Index of best-probed relay */
UNPROBED = 0; /* Index of best-unprobed relay */
STATE = 1; /* 0-1 flag to indicate whether the state is b or (b, F`) */

for k = 1, 2, · · · , N do
Wait until the k-th relay wakes-up;
Receive Lk; /* location of the k-th relay */
Compute FLk ; /* reward distribution of the k-th relay */

if STATE == 1 then
/* State is of the form (b, F`) */
if FLk ≥st F` then

F` ← FLk ; /* update best distribution */
UNPROBED = k; /* update index of best-unprobed relay */

end
else

/* State is of the form b */
F` ← FLk ;
UNPROBED = k;
STATE = 1;

end
if b ≥ α`N then

/* Optimal to stop */
Forward the packet to PROBED;
break;

else if b < ζ`k then
/* Optimal to probe */
Probe UNPROBED;
Receive Rk; /* Reward value of UNPROBED */
if Rk > b then

b← Rk; /* Update best reward value */
PROBED = UNPROBED;
STATE = 0;

end
end
if STATE == 0 then

if b ≥ αk then
Forward the packet to PROBED;
break;

end
end

end

5.4. RST-OPT (ReSTricted-OPTimal) Policy
Recall from Theorem 5.3 that the stopping sets Sk and S`k (` ∈ L, k = 1, 2, · · · , N ) are
characterized by lower bounds αk and α`k. Also, in Theorem 5.6 and 5.7 we proved
that these thresholds are stage independent. Hence, it is sufficient to compute only
αN−1 and α`N , thus simplifying the overall computation of the optimal policy (which is
optimal within the restricted class; recall the discussion following (8)). Further, if Con-
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jecture 5.8 is true, then the upper bounds ζ`k are sufficient to characterize the probing
sets P`k. The various thresholds can be computed by the forwarding node by solving the
Bellman equation in in (10) and (11) via backward value iteration, starting with the
initial conditions, JN (b) = −ηb and JN (b, F`) given by (9) (for all b and F`).

Now, F after computing these thresholds, operates as follows: At stage k =
1, 2, · · · , N − 1, whenever the state is (b, F`), (1) if b ≥ α`N then stop and forward the
packet to the probed relay, (2) if b ≤ ζ`k then probe the unprobed relay and update the
best reward to b′ = max{b, R`}. Now, if b′ ≥ αN−1 stop, otherwise continue to wait for
the next relay, (3) otherwise (i.e., if ζ`k < b < α`N ), continue to wait for the next relay to
wake-up, at which instant choose, between F` and FLk+1

, whichever is stochastically
greater while putting the other unprobed relay to sleep. If the decision process enters
the last stage N and if the state is (b, F`) then if b ≥ α`N stop, otherwise probe (continue
is not available). Finally, if the state at stage N is b then stop irrespective of its value.

We summarize the above discussion in the form of Algorithm 1 (labeled RST-OPT).
Thus, in a large sleep-wake cycling wireless network, routing of an alarm packet to the
sink node can be accomplished by successively using RST-OPT at each node along the
path of the packet (recall Fig. 1); the thresholds required for implementing RST-OPT
can be computed and stored offline, independently by each node during the normal
operational phase (i.e., the phase where no event of interest has occurred yet so that
the nodes are sleep-wake cycling without any disruption). In Section 7 we will study
the end-to-end performance achieved by RST-OPT.

6. UNRESTRICTED CLASS Π: AN INFORMAL DISCUSSION
In this section, based on the insights we have obtained from the analysis in the pre-
vious sections, we will informally discuss the possible structure of the optimal policy
within the unrestricted class of policies, Π.

Recall that a policy within Π, at stage k, is in general allowed to base its decision on
(bk,Fk) where bk is the reward of the best probed relay (bk = −∞ if no relay has been
probed yet) and Fk is the set of unprobed relays (Fk = {} if all the relays have been
probed). Thus, the state space at stage k can be written as

Xk =
{

(b,H) : b ∈ {−∞} ∪ [0, r],H ∈ F j , 0 ≤ j ≤ k
}
. (22)

Again the actions available are stop, probe, and continue. If the action is to probe then
F has to further decide which relay to probe among the several ones available at stage
k. When there are no unprobed relays (i.e., H = { }) we will represent the state as sim-
ply b. We now proceed to write the recursive Bellman optimality equation for this more
general unrestricted problem. Although these equations are more involved than the
ones in Section 4 (recall (9) through (11)), these can be understood similarly and hence
we do not provide an explanation. The sole purpose for writing these equations here is
because we will require these (in Section 7) to perform value iteration and numerically
compute an optimal policy for the unrestricted problem. Hence these equations can be
omitted without affecting the readability of the remainder of this section.

Let Jk, k = 1, 2, · · · , N , represent the optimal cost-to-go at stage k (for simplicity we
are again using Jk), then, JN (b) = −ηb, and

JN (b,H) = min
{
− ηb, ηδ + min

F`∈H
E`
[
JN (max{b, R`},H \ {F`})

]}
. (23)

For stage k = 1, 2, · · · , N − 1 we have

Jk(b) = min
{
− ηb, τ + EL

[
Jk(b, {FLk+1

})
]}
, (24)
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Jk(b,H) = min
{
− ηb, ηδ + min

F`∈H
E`
[
Jk(max{b, R`},H \ {F`})

]
,

τ + EL
[
Jk+1(b,H ∪ {FLk+1

})
]}
. (25)

In view of the complexity of the problem, we do not pursue the formal analysis of
characterizing the structure of the optimal policy within the unrestricted class. How-
ever, based on our results from the previous sections and a related work by Chaporkar
and Proutiere [Chaporkar and Proutiere 2008], we will discuss the possible structure
of the unrestricted-optimal policy.

6.1. Discussion on the Last Stage N
Suppose the decision process enters the last stage N . Now, given the best reward value
among the probed relays, b, and the set H of reward distributions of the unprobed
relays, F has to decide whether to stop, or probe a relay (note that continue action is
not available at the last stage). Suppose the action is to probe then, after probing and
updating the best reward value, if still there are some unprobed relays left, F has to
again decide to stop or probe. This decision problem is similar to the one studied by
Chaporkar and Proutiere in [Chaporkar and Proutiere 2008], but from the context of
channel selection. In the following, we will briefly describe the problem in [Chaporkar
and Proutiere 2008].

Given a set of channels with different channel gain distributions, a transmitter has
to choose a channel for its transmissions. The transmitter can probe a channel to know
its channel gain. Probing all the channels will enable the transmitter to select the best
channel but at the cost of reducing the effective transmission time within the channel
coherence period. On the other hand, probing only a few channels may deprive the
transmitter of the opportunity to transmit on a better channel. The transmitter is
interested in maximizing its throughput within the coherence period.

The authors in [Chaporkar and Proutiere 2008], for their channel probing problem,
prove that the 1-step-look-ahead (OSLA) rule is optimal: given the channel gain of the
best channel (among the channels probed so far) and a collection of channel gain distri-
butions of the unprobed channels, it is optimal to stop and transmit on the best channel
if and only if the throughput obtained by doing so is greater than the expected through-
put obtained by probing any unprobed channel and then stopping (by transmitting on
the new-best channel). Further, they prove that if the set of channel gain distributions
is totally stochastically ordered (recall Definition 2.2), then it is optimal to probe the
channel whose distribution is stochastically largest among all the unprobed channels.
However, in their problem maximizing throughput involves optimizing a product of the
channel gain and the remaining transmission time, unlike in our problem where (at
the last stage) we optimize a linear combination of reward and the probing cost. But,
from our numerical work we have seen that a similar OSLA rule is optimal once our
decision process enters the last stage N : given a state (b,H) at stage N , it is optimal to
stop if the cost of stopping is less than the cost of probing any distribution from H and
then stopping; otherwise it is optimal to probe the stochastically largest distribution
from H.
6.2. Discussion on Stages k = 1, 2, · · · , N − 1

For the other stages k = 1, 2, · · · , N − 1, one can begin by defining the stopping sets
Sk and SHk , and the sets QHk , analogous to the ones in (17), (18) and (20). Note that,
here we need to define SHk and QHk for a set of distributions H unlike in the earlier
case where we had defined these sets only for a given distribution F`. We expect that
the results analogous to the ones in Section 5, namely Theorems 5.6 and 5.7 where
we prove that the stopping sets are stage independent, hold true for this more general
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setting as well. Further, similar to that at stage N , for any stage k we expect that if
it is optimal to probe at some state (b,H) then it is better to probe the stochastically
largest distribution from H. Again, we have seen that these observations hold in our
numerical work.

7. NUMERICAL AND SIMULATION RESULTS
7.1. One-Hop Study
We begin by listing the various parameter values that we have used in our numerical
work. The forwarder and the sink are separated by a distance of V = 1000 meters (m);
recall Fig. 2. The radius of the communication region is 50 m. We set zmin = 5 m. There
are N = 5 relays within the forwarding region L. These are uniformly located within L.
To enable us to perform value iteration (i.e., recursively solve the Bellman equation to
obtain optimal value and the optimal policy), we have discretized the forwarding region
L into a grid of 20 uniformly spaced points within L and then map the location of each
relay to a grid point closest to it. Since the grid is symmetric about the line joining
F and the sink (with 4 points lying on the line so that these do not have symmetric
pairs), we have in total ( 20−4

2 + 4 =) 12 different possible D` values, giving rise to 12
different reward distributions constituting the set F .

Next, recall the reward expression from (4); we have fixed, dref = 5 m, ξ = 2.5,
and a = 0.5. For ΓN0, which is referred to as the receiver sensitivity, we use a value
of 10−9 mW (equivalently −90 dBm) specified for the Crossbow TelosB wireless mote
[Crossbow 2006]. To ensure that the transmit power of a relay from any grid location
is within the range of 1 mW to 0.003 mW (equivalently 0 dBm to −24 dBm; again from
TelosB datasheet [Crossbow 2006]),5 we allow for four different channel gain values:
0.4 × 10−3, 0.6 × 10−3, 0.8 × 10−3, and 1 × 10−3, each occurring with equal probability.
Since channel probing is usually performed using the maximum allowable transmit
power, we set the probing cost δ to be 1 mW. Finally, the inter-wake-up times {Uk} are
exponentially distributed random variables with mean τ = 20 milliseconds (ms).

One-Hop Policies: The following is the description of the policies that we will study:

•RST-OPT (ReSTricted OPTimal): The optimal policy within the restricted class (Sec-
tions 4 and 5) where F is allowed to keep at most two relays awake − the best
probed and the best unprobed relay; recall the summary in Section 5.4.
•GLB-OPT (GLoBal OPTimal): The optimal policy within the unrestricted class of

policies where F operates by keeping all the unprobed relays awake. We obtain
GLB-OPT by numerically solving the optimality equations in (23), (25) and (24).
•BAS-OPT (BASic OPTtimal): The optimal policy for the basic relay selection model

where F is not allowed to exercise the option of not-probing a relay (recall discus-
sion of the basic model from related work). Thus, each time a relay wakes up, it is
immediately probed (incurring a cost of ηδ) and its reward value is revealed to F .
By incorporating ηδ into the term τ (so that the inter-wake-up time is modified to
τ + ηδ), the solution to this model can be characterized (see our prior work [Naveen
and Kumar 2013, Section 6]) in terms of a single threshold α as follows: at any stage
k = 1, 2, · · · , N − 1, stop if and only if the best reward value bk ≥ α; at stage N stop
for any bN . Note that the threshold α depends on η.

Discussion: In Fig. 6 we have plotted the total cost (i.e., the objective in (8)) incurred
by each of the above policies as a function of the coefficient η. GLB-OPT being the

5Although practically only a finite set of transmit power levels will be allowed, for our numerical work we
assume that the relays can transmit using any power within the specified range.
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Fig. 6. Expected total cost as a function of the trade-off coefficient η; see (8). Recall that a large η implies
less emphasis on expected delay.

globally optimal policy achieves the minimum cost. However, interestingly we observe
that the total cost obtained by RST-OPT is very close to that of GLB-OPT. While the
performance of BAS-OPT is good for small values of η, the performance degrades as η
increases illustrating that it is not wise to naively probe every relay as and when they
wake-up.

In Fig. 7 we have shown the individual components of the total cost (namely delay, re-
ward, and probing cost) as functions of η. As η decreases to 0 we see (from Fig. 7(a)) that
the expected delay incurred by all the policies converges to 20 ms which is the mean
time, τ , until the first relay wakes up. Similarly, the expected rewards (in Fig. 7(b))
converge to reward of the first relay, and the probing costs (in Fig. 7(c)) converge to
the cost of probing a single relay, i.e., δ = 1 mW. This is because, for small values of
η, since delay is valued more (recall the total cost expression from (8)), all the policies
essentially end up probing the first relay and then forwarding the packet to it. This
also explains as to why similar total cost (recall Fig. 6) is incurred by all the policies in
the low η regime (e.g., η ≤ 20).

Next, as η increases we see that the delay incurred and the reward achieved by all
the policies increases (see Fig. 7(a) and 7(b), respectively). While the probing cost of
BAS-OPT naively increases (see Fig. 7(c)), probing costs incurred by RST-OPT and
GLB-OPT saturate beyond η = 20. This is because, whenever η is large, RST-OPT and
GLB-OPT are aware that the gain in reward value obtained by probing more relays is
negated by the cost term, ηδ, which is added to the total cost each time a new relay
is probed; BAS-OPT, not allowed to not-probe, ends up probing all the relays until
the best reward exceeds the threshold α. Thus, although BAS-OPT incurs a smaller
delay than the other two policies, but suffers both in terms of reward and probing cost,
leading to an higher total cost. On the other hand, RST-OPT and GLB-OPT wait for
more relays and then probe only the relays with good reward distribution to accrue a
better total cost.

Finally, the marginal improvement in performance obtained by GLB-OPT over RST-
OPT can be understood as follows. Although the delay incurred by these two policies is
almost identical, for large η values, GLB-OPT achieves a better reward than RST-OPT
by incurring a slightly higher probing cost. Thus, whenever the reward offered by the
relay with the best distribution is not good enough, GLB-OPT probes an additional
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Fig. 7. Individual components of the total cost in Fig. 6 as functions of η: (a) Delay (b) Reward and (c)
Probing Cost.

relay to improve the reward; such improvement is not possible by RST-OPT since it is
restricted to keep only one unprobed relay awake.

Computational Complexity: Finally on the computational complexity of these
policies. To obtain GLB-OPT we had to recursively solve the Bellman equation (re-
ferred to as the value iteration) in (23), (25) and (24), for every stage k and every
possible state at stage k. The total number of all possible states at stage k, i.e., the
cardinality of the state space Xk in (22), grows exponentially with the cardinality of
F (assuming that F is discrete like in our numerical example). It also grows exponen-
tially with the stage index k.

In contrast, for computing RST-OPT, since within the restricted class at any time
only one unprobed relay is kept awake, the state space size grows only linearly with
the cardinality of F . Also, the size of the state space does not grow with k. Furthermore,
from our analysis in Section 5 we know that the stopping sets are threshold based, and
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Fig. 8. End-to-end performance of RST-OPT and BAS-OPT as functions of η for different values of a: (a)
Total delay, and (b) Total power.

moreover the thresholds, αk and {α`k : F` ∈ F}, are stage independent. Hence, these
thresholds have to be computed only once (for stage N − 1 and N , respectively), thus
further reducing the complexity of RST-OPT. BAS-OPT, being a single-threshold based
policy, is much simpler to implement but is not a good choice whenever η is large.

7.2. End-to-End Study
The good one-hop performance of RST-OPT and its computational simplicity motivates
us to apply RST-OPT to route packets in an asynchronously sleep-wake cycling WSN
and study its end-to-end performance. We will also obtain the end-to-end performance
of the naive BAS-OPT policy.

First we will describe the setting that we have considered for our end-to-end simu-
lation study. We construct a network by randomly placing 500 nodes in a square region
of side 500 m. The sink node is placed at the location (500, 0). The network nodes are
asynchronously and periodically sleep-wake cycling, i.e., a node i wakes up at the peri-
odic instants, {Ti + kT : k ≥ 0}, where {Ti} are i.i.d. uniform on [0, T ] with T being the
sleep-wake cycling period (recall our justification for the periodic sleep-wake cycling
from footnote 1 in page 5). We fix T = 100 ms. A source node is randomly chosen, which
generates an alarm packet at time 0. This alarm packet has to be routed to the sink
node.

Here, in addition to varying η, we will also vary the coefficient a and study the end-
to-end performance. Recall from (4) that a is the coefficient used to trade-off between
progress and power in the reward expression; a larger value of a implies more empha-
sis on progress. The values of all the other parameters, e.g., rc, δ, ΓN0, channel gains,
etc., remain as in our one-hop study.

Now, for a given η and a, each node computes the corresponding RST-OPT and BAS-
OPT policies assuming a mean inter-wake-up time of T

Ni
ms, where Ni is the number

of nodes in the forwarding region of node i. In Fig. 8, for three different values of a
(namely 0.5, 0.7, and 0.9) we have plotted, as functions of η, the total delay and the
total power (which is the sum of the probing and the transmission powers incurred at
each hop) incurred, by applying RST-OPT and BAS-OPT policies at each hop en-route
to the sink node. Each data point in Fig. 8 is obtained by averaging the respective
quantities over 1000 alarm packets.
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Discussion: First, note that both total delay and total power incurred by BAS-OPT
are increasing with η for each a. Hence, no favorable trade-off between delay and power
can be obtained using BAS-OPT; it is better to operate BAS-OPT at a low value of
η, where the total delay incurred is (approximately) 250 ms while the total power
expended is about 20 mW. In fact, as η decreases to 0, we see that the performance
of all the policies (i.e., RST-OPT and BAS-OPT for different values of a) converge to
these values. This is simply because, whenever η is small, since (one-hop) delay is
valued more, all the policies, at each hop, essentially forward the packet to the first
relay that wakes up.

For RST-OPT, while only a marginal trade-off between delay and power can be
achieved for a = 0.5 (see from Fig. 8(b) that the corresponding total power decreases
only marginally as η increases from 1 to 4), but as we increase the value of a to 0.7
and then to 0.9, we see that the total power sharply decreases with η. For instance, for
a = 0.9, from Fig. 8(b) we see that the total power decrease from 20 mW to 13 mW as
η goes from 0 to 7. However, over this range of η, total delay increases from 250 ms to
360 ms (see the plot corresponding to RST-OPT, a = 0.9, from Fig. 8(a)). Thus, for these
higher values of a, trade-off between delay and power can be achieved using RST-OPT.

Next, for any fixed η, from Fig. 8(b) observe that the total power incurred by RST-
OPT is improving (i.e., decreasing) with a. This can be understood as follows: since a
larger a gives less emphasis on power and more emphasis on progress in the reward ex-
pression (recall (4)), then, although the one-hop transmissions may be of higher power,
but there are fewer hops and hence fewer transmissions, thus resulting in a lower to-
tal power. This observation would suggest that it is advantageous to use RST-OPT by
setting a = 0.9 rather than a = 0.5 or 0.7. However, from Fig. 8(a) we see that the total
delay is not decreasing with a. In fact, delay incurred by RST-OPT first decreases as
a increases from 0.5 to 0.7, and then increases as a is further increased to 0.9. Similar
is the case for the plots corresponding to BAS-OPT in Fig. 8(a). This observation can
be understood as follows. When a = 0.5, since (one-hop) power is valued more, the re-
spective forwarding nodes at each hop will end up spending more time waiting for a
relay which require strictly lesser transmission power. Similarly, when a = 0.9, larger
delay is incurred at each hop since the forwarding nodes now have to wait for relays
whose progress value is more (however, since a = 0.9 results in a fewer hops we see
that the delay incurred in this case is considerably less than the a = 0.5 case). On the
other hand, when a = 0.7, since a relatively fair trade-off between progress and power
exists, the waiting time at each hop is reduced because now any relay with a moderate
progress and a moderate transmission power would suffice.

The above argument is precisely the reason as to why the total power incurred by
BAS-OPT behaves as in Fig. 8(b): when a = 0.5 or 0.9, each forwarder, in the process of
waiting for a relay whose transmission power requirement is low or progress is large,
respectively, will end up probing more relays. RST-OPT benefits over BAS-OPT here
by probing only good relays at each hop, thus yielding a lower total power.

Finally, summarizing our end-to-end results, we see that no trade-off between delay
and power can be achieved by the naive BAS-OPT policy, while RST-OPT achieves such
a trade-off (by varying η) for a = 0.7 or 0.9. Further, for a fixed η, favorable trade-off
between delay and power can be obtained by varying a. For instance, from Fig. 8 we see
that when η = 7, moving from a = 0.7 to 0.9 will result in a power saving of about 3 mW
while increasing the end-to-end delay by 130 ms. Thus, depending on the application
requirement (i.e., delay or power sensitive application) one has to appropriately choose
the values of η and a.
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8. CONCLUSION
Motivated by the problem of end-to-end geographical forwarding in a sleep-wake cy-
cling wireless sensor network, we formulated a decision problem of choosing a next-hop
relay node when a set of potential relay neighbors are sequentially waking up in time.
A power cost is incurred for probing a relay to learn its channel gain. We first studied
a restricted class of policies where a policy’s decision is based only on, in addition to
the best probed relay, the best unprobed relays (instead of all the unprobed relays).
We characterized the optimal policy in terms of stopping sets. Our first main result
(Theorem 5.3) was to show that the stopping sets are threshold based. Then we proved
that the stopping sets are stage independent (Theorem 5.6 and 5.7). A discussion on
the more general unrestricted class of policies was provided. We conducted numerical
work to compare the performances of the restricted optimal (RST-OPT) and the global
optimal (GLB-OPT) policies. We observed that the performance of RST-OPT is close to
that of GLB-OPT. We also conducted simulation experiments to study the end-to-end
performance of RST-OPT. Finally, it is worth noting that our work being a variant of
the asset selling problem, can, in general, find application wherever the problem of
resource-selection occurs, when a collection of resources are sequentially arriving.

APPENDIX
For convenience, we will recall the respective Lemma/Theorem statement before pro-
viding its proof.

A.1. Proof of Lemma 4.2
Before proceeding to the proof of Lemma 4.2, we will require the following result first.

LEMMA A.1. For k = 1, 2, · · · , N , Jk(b) and Jk(b, F`) are decreasing in b.

PROOF. Proof is by induction. For stage N we know that JN (b) = −ηb, and hence is
decreasing in b. Also, recalling JN (b, F`) from (9):

JN (b, F`) = min
{
− ηb, ηδ − ηE`

[
max{b, R`}

]}
,

it is easy to see that JN (b, F`) is also decreasing in b. Thus, the monotonicity properties
holds for stage N . Now, suppose Jk+1(b) and Jk+1(b, F`) (for all F`) are decreasing in b
for some k+ 1 = 2, 3, · · · , N , then we will show that the result holds for stage k as well.

First, recall the expressions of Jk(b) and Jk(b, F`) (from (15) and (16) respectively):
Jk(b) = min

{
− ηb, Ck(b)

}
and Jk(b, F`) = min

{
− ηb, Pk(b, F`), Ck(b, F`)

}
. Thus to

complete the proof it is sufficient to show that Ck(b), Pk(b, F`) and Ck(b, F`) are de-
creasing in b. From the induction hypothesis, it is easy to see that Ck(b) (in (12)) is
decreasing in b, so that we obtain Jk(b) is decreasing in b. Now that we have estab-
lished Jk(b) is decreasing in b, it will immediately follow that the probing cost Pk(b, F`)
(in (14)) is decreasing in b. Finally, again using the induction argument, observe that
min

{
Jk+1(b, F`), Jk+1(b, FLk+1

)
}

is decreasing in b so that the continuing cost Ck(b, F`)

(in (13)) is also decreasing.

We are now ready to prove Lemma 4.2.
Lemma 4.2:

(i) For k = 1, 2, · · · , N − 1, if F` ≥st Fu then Ck(b, F`) ≤ Ck(b, Fu), (including k = N )
Pk(b, F`) ≤ Pk(b, Fu) and Jk(b, F`) ≤ Jk(b, Fu).
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(ii) For k = 1, 2, · · · , N − 2, Ck(b) ≤ Ck+1(b) and Ck(b, F`) ≤ Ck+1(b, F`), (including
k = N − 1) Pk(b, F`) ≤ Pk+1(b, F`) and Jk(b, F`) ≤ Jk+1(b, F`).

PROOF OF PART-(I). Consider stage N and recall the expression for the optimal
cost-to-go function JN (b, F`) from (9):

JN (b, F`) = min
{
− ηb, PN (b, F`)

}
= min

{
− ηb, ηδ − ηE`

[
max{b, R`}

]}
.

Since the function f(r) = max{b, r} is increasing in r, using the definition of stochastic
ordering (Definition 2.1) we can write

E`
[

max{b, R`}
]
≥ Eu

[
max{b, Ru}

]
,

so that we have PN (b, F`) ≤ PN (b, Fu) and JN (b, F`) ≤ JN (b, Fu). Thus, the result holds
for stage N .

Now suppose the result is true for some k + 1 = 2, 3, · · · , N . From Lemma A.1 we
know that Jk(b) is decreasing in b, which would imply that, for any b, the function
f(r) = Jk(max{b, r})) is decreasing in r. Again, using the definition of stochastic order-
ing (in Definition 2.1) we can conclude that

E`
[
Jk(max{b, R`})

]
≤ Eu

[
Jk(max{b, Ru})

]
,

so that Pk(b, F`) ≤ Pk(b, Fu) (see (14)). Next, from the induction argument we know
that Jk+1(b, F`) ≤ Jk+1(b, Fu) so that

min
{
Jk+1(b, F`), Jk+1(b, FLk+1

)
}
≤ min

{
Jk+1(b, Fu), Jk+1(b, FLk+1

)
}
.

Thus, we also have Ck(b, F`) ≤ Ck(b, Fu) (see (13)). The proof can now be easily com-
pleted by recalling (from (16)) that Jk(b, F`) = min

{
− ηb, Pk(b, F`), Ck(b, F`)

}
.

PROOF OF PART-(II). This result is very intuitive, since with more number of stages
to go, one is expected to accrue a lower cost. However, we prove it here for completeness.
Again the proof is by induction. For stage N − 1 we easily have,

JN−1(b) = min
{
− ηb, Ck(b)

}
≤ −ηb
= JN (b).

Next, consider a state of the form (b, F`). The cost of probing PN−1(b, F`) can be bounded
as follows:

PN−1(b, F`) = ηδ + E`
[
JN−1(max{b, R`})

]
∗
≤ ηδ + E`

[
JN (max{b, R`})

]
o
= ηδ − ηE`

[
max{b, R`}

]
†
= PN (b, F`),

where, to obtain ∗ we have used, JN−1(b) ≤ JN (b) (which we had just proved), o is
because JN (b) = −ηb for all b, and † is simply obtained by recalling the expression for
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PN (b, F`). Using the above inequality in the following, we obtain

JN−1(b, F`) = min
{
− ηb, PN−1(b, F`), CN−1(b, F`)

}
≤ min

{
− ηb, PN−1(b, F`)

}
≤ min

{
− ηb, ηδ − ηE`

[
max{b, R`}

]}
= JN (b, F`).

Thus we have shown the result for stage N − 1.
Suppose the result is true for some stage k+1 = 2, 3, · · · , N−1. i.e., Jk+1(b) ≤ Jk+2(b)

and Jk+1(b, F`) ≤ Jk+2(b, F`) (for all F`), then, using the induction hypothesis, the cost
of continuing, Ck(b), can be bounded as

Ck(b) = τ + EL
[
Jk+1(b, Fk+1)

]
≤ τ + EL

[
Jk+2(b, Fk+2)

]
= Ck+1(b).

Thus, we have Jk(b) ≤ Jk+1(b) (see (15)). Next, consider the probing cost,

Pk(b, F`) = ηδ + E`
[
Jk(max{b, R`})

]
∗
≤ ηδ + E`

[
Jk+1(max{b, R`})

]
= Pk+1(b, F`)

where, to obtain ∗ we have used Jk(b) ≤ Jk+1(b) which we have already shown. The
cost of continuing can be similarly bounded:

Ck(b, F`) = τ + EL
[

min{Jk+1(b, F`), Jk+1(b, FLk+1
)}
]

∗
≤ τ + EL

[
min{Jk+2(b, F`), Jk+2(b, FLk+2

)}
]

= Ck+1(b, F`),

where ∗ is due to the induction hypothesis and the fact that location random vari-
ables, Lk+1 and Lk+2, are identically distributed. Finally, using the above inequalities
in the expression of Jk(b, F`)

(
recall (16); Jk(b, F`) = min

{
− ηb, Pk(b, F`), Ck(b, F`)

})
,

we obtain Jk(b, F`) ≤ Jk+1(b, F`), thus completing the proof.

A.2. Proof of Lemma 5.2
The following simple property about the min-operator will be useful while proving
Lemma 5.2.

LEMMA A.2. If x1, x2, · · · , xj and y1, y2, · · · , yj in <, are such that, xi − yi ≤ x1 − y1

for all i = 1, 2, · · · , j, then
min{x1, x2, · · · , xj} −min{y1, y2, · · · , yj} ≤ x1 − y1 (26)

PROOF. Suppose min{y1, y2, · · · , yj} = yi, for some 1 ≤ i ≤ j, then the LHS of (26)
can be written as,

LHS = min{x1, x2, · · · , xj} − yi ≤ xi − yi.
The proof is complete by recalling that we are given, xi − yi ≤ x1 − y1.
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Lemma 5.2: For k = 1, 2, · · · , N − 1 (for part (ii), k = 1, 2, · · · , N ), for any F`, and for
b2 > b1 we have

(i) Ck(b1)− Ck(b2) ≤ η(b2 − b1),
(ii) Pk(b1, F`)− Pk(b2, F`) ≤ η(b2 − b1)

(iii) Ck(b1, F`)− Ck(b2, F`) ≤ η(b2 − b1).

PROOF. Since JN (b) is−ηbwe already have, for stageN , JN (b1)−JN (b2) = η(b2−b1).
Also, for a given distribution F` and for b2 > b1,

PN (b1, F`)− PN (b2, F`) = ηE`
[

max{b2, R`} −max{b1, R`}
]

∗
≤ η(b2 − b1),

where to obtain ∗, first consider all the three cases that are possible: (1) R` ≤
b1 < b2, (2) b1 < R` < b2, and (3) b1 < b2 ≤ R`, and then note that in all
these cases,

(
max{b2, R`} − max{b1, R`}

)
, is bounded above by b2 − b1. Now, since

JN (b, F`) = min
{
− ηb, PN (b, F`)

}
, the above inequality along with Lemma A.2 will

yield, JN (b1, F`)− JN (b2, F`) ≤ η(b2 − b1).
Suppose for some stage k + 1 = 1, 2, · · · , N we have Jk+1(b1) − Jk+1(b2) ≤ η(b2 − b1)

and Jk+1(b1, F`) − Jk+1(b2, F`) ≤ η(b2 − b1) for all b2 > b1, and for all F`. Then we will
show that all the inequalities listed in the lemma will hold for stage k as well. First, a
simple application of the induction hypothesis will yield,

Ck(b1)− Ck(b2) = EL
[
Jk+1(b1, FLk)− Jk+1(b2, FLk)

]
≤ η(b2 − b1).

Since Jk(b) = min
{
− ηb, Ck(b)

}
, the above inequality along with Lemma A.2 gives,

Jk(b1)− Jk(b2) ≤ η(b2 − b1), for any b2 > b1. Using this we can write

Pk(b1, F`)− Pk(b2, F`) = E`
[
Jk(max{b1, R`})− Jk(max{b2, R`})

]
≤ E`

[
η
(

max{b2, R`} −max{b1, R`}
)]

≤ η(b2 − b1), (27)

where the last inequality is again by considering all the three regions where R` can
lie.

To show part (iii), define L` as the set of all distributions that are stochastically
greater than `, i.e., L` =

{
Ft ∈ F : Ft ≥st F`

}
. Let Lc` denote the set of all the remaining

distributions, i.e., Lc` = F\L`. From Lemma 2.3, where we have shown that F is totally
stochastically ordered (see Definition 2.2), it follows that Lc` contains all distributions
in F which are stochastically smaller than F`. Recalling the expression for Ck(b, F`)
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from (13), the difference in the cost of continuing can now be bounded as follows:

Ck(b1, F`)− Ck(b2, F`) =

∫
F

(
min{Jk+1(b1, F`), Jk+1(b1, Ft)}

−min{Jk+1(b2, F`), Jk+1(b2, Ft)}
)
dL(t)

∗
=

∫
L`

(Jk+1(b1, Ft)− Jk+1(b2, Ft))dL(t)

+

∫
Lc`

(Jk+1(b1, F`)− Jk+1(b2, F`))dL(t).

o
≤ η(b2 − b1). (28)

In the above derivation, ∗ is obtained by using Lemma 4.2-(i), and o is simply by ap-
plying the induction argument. Since Jk(b, F`) = min

{
− ηb, Pk(b, F`), Ck(b, F`)

}
, using

(27) and (28) along with Lemma A.2, we obtain, Jk(b1, F`)−Jk(b2, F`) ≤ η(b2− b1), thus
completing the induction argument.

A.3. Proof of Lemma 2.3
Lemma 2.3: The set of reward distributions F in (5), is totally stochastically ordered
with a minimum distribution.

PROOF. Recall the reward expression from (4),

R` =
Za`

P
(1−a)
`

=
Za`

(Γ′Dξ
` )

(1−a)
G

(1−a)
` .

The distribution, F`, of R` can be written as,
F`(r) = P(R` ≤ r)

= P

(
Za`

(Γ′Dξ
` )

(1−a)
G

(1−a)
` ≤ r

)
= P

(
G

(1−a)
` ≤ κ`r

)
, (29)

where κ` =
(Γ′Dξ` )(1−a)

Za`
.

Let `, u be any two locations in L. Since the rewards are non-negative, we have
F`(r) = Fu(r) = 0 for r < 0. Hence, we only need to consider the case r ≥ 0. Now,
given `, u ∈ L, either κ` ≤ κu or κ` > κu. Thus we have, either κ`r ≤ κur or κ`r ≥ κur,
for every r ≥ 0. Finally, since G` and Gu are identically distributed, we have, either
F`(r) ≤ Fu(r) or F`(r) ≥ Fu(r), for all r, so that F` and Fu are stochastically ordered
(recall Definition 2.1).

To show that there exists a minimum distribution, first note that κ` as a function
of ` ∈ L is continuous. Then, since we had assumed that L is compact (closed and
bounded), there exists an m ∈ L where the maximum is achieved, i.e., κ` ≤ κm for all
` ∈ L. Again, since the gains G` and Gm are identically distributed, from (29) it follows
that F` ≥st Fm for all ` ∈ L, so that Fm is the minimum distribution.

A.4. Proof of Lemma 5.5
As discussed in the outline of the proof of Lemma 5.5, the result immediately follows
once we show Step 1 and Step 2. First we will formally state and prove Step 1.
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LEMMA A.3. Suppose Fu is a distribution such that for all k = 1, 2, · · · , N − 1,
Sk ⊆ Quk . Then for any distribution F` ≥st Fu we have Sk ⊆ Q`k.

PROOF. We will first show that SN−1 ⊆ Q`N−1. Fix a b ∈ SN−1. Then b ∈ QuN−1
(because it is given that SN−1 ⊆ QuN−1), so that using the definition of the set QuN−1
(from (20)) we can write

min
{
− ηb, PN−1(b, Fu)

}
≤ CN−1(b, Fu). (30)

For any generic distribution Fs, whenever b ∈ SN−1, the minimum of the cost of stop-
ping and the cost of probing can be simplified as follows:

min
{
− ηb, PN−1(b, Fs)

}
∗
= min

{
− ηb, ηδ + Es

[
JN−1(max{b, Rs})

]}
o
= min

{
− ηb, ηδ − ηEs

[
max{b, Rs}

]}
†
= JN (b, Fs). (31)

In the above, ∗ is obtained by recalling the expression for the probing cost from
(14). o is because, after probing we are still at stage N − 1 with the new state
max{b, Rs} also in SN−1 (Lemma 5.3); in SN−1 we know that it is optimal to stop, so
that JN−1(max{b, Rs}) = −ηmax{b, Rs}. Finally, to obtain †, recall the expression for
JN (b, Fs) from (9).

Now using (31) in (30) we see that, the hypothesis b ∈ SN−1 implies, JN (b, Fu) ≤
CN−1(b, Fu). Also, from Lemma 4.2-(i) we have, JN (b, F`) ≤ JN (b, Fu) for any F` ≥st Fu.
Combining these we can write

JN (b, F`) ≤ JN (b, Fu) ≤ CN−1(b, Fu). (32)

To conclude that b ∈ Q`N−1, we need to show

min
{
− ηb, PN−1(b, F`)

}
≤ CN−1(b, F`),

or, alternatively, recalling (31), it is sufficient to show,

JN (b, F`) ≤ CN−1(b, F`). (33)

Now for any generic distribution Fs ∈ F define Ls =
{
t ∈ L : Ft ≥st Fs

}
i.e., Ls is the

set of all distributions in F that are stochastically greater than Fs. Let Lc` denote the
set of all the remaining distributions, i.e., Lc` = F \ L`. Since F is totally stochastically
ordered (Lemma 2.3), Lcs contains all distributions in F that are stochastically smaller
than Fs. Further, for F` ≥st Fu we have L` ⊆ Lu. Then, recalling the expression for
CN−1(b, Fu) from (13) we can write

CN−1(b, Fu) = τ + EL
[

min{JN (b, Fu), JN (b, FLN )}
]

∗
= τ +

∫
Lu
JN (b, Ft) dL(t) +

∫
Lcu
JN (b, Fu) dL(t)

o
= τ +

∫
L`
JN (b, Ft) dL(t) +

∫
Lu\L`

JN (b, Ft) dL(t) +

∫
Lcu
JN (b, Fu) dL(t),

where, ∗ is obtained by using Lemma 4.2-(i) and the definition of Lu, and to obtain o
we have split the integral over Lu (first integral in ∗) into two integrals − one over
L` and the other over Lu \ L`. Now, for any Ft ∈ Lu \ L` we know that Ft ≥st Fu so
that JN (b, Ft) ≤ JN (b, Fu) (again from Lemma 4.2-(i)). Thus, in the above expression,
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replacing JN (b, Ft) by JN (b, Fu) in the middle integral, and then combining it with the
last integral, we obtain

CN−1(b, Fu) ≤ τ +

∫
L`
JN (b, Ft) dL(t) +

(∫
Lc`
dL(t)

)
JN (b, Fu) (34)

From (32) and (34) we see that we have an inequality of the following form

JN (b, F`) ≤ JN (b, Fu) ≤ c+ pJN (b, Fu), (35)

where c = τ +
∫
L` JN (b, Ft) dL(t) and p =

∫
Lc`
dL(t). Since p ∈ [0, 1] we can write

JN (b, F`)(1− p) ≤ JN (b, Fu)(1− p),
rearranging which we obtain,

JN (b, F`) ≤ pJN (b, F`) + JN (b, Fu)− pJN (b, Fu)
∗
≤ pJN (b, F`) + c+ pJN (b, Fu)− pJN (b, Fu)

= c+ pJN (b, F`)

where, to obtain ∗ we have used (35). Finally, note that

c+ pJN (b, F`) = τ +

∫
L`
JN (b, Ft) dL(t) +

(∫
Lc`
dL(t)

)
JN (b, F`)

= τ + EL
[

min{JN (b, F`), JN (b, FLN )}
]

= CN−1(b, F`).

Thus, as desired we have shown JN (b, F`) ≤ CN−1(b, F`) (recall the discussion leading
to (33)).

Suppose that for some k + 1 = 2, 3, · · · , N − 1 we have Sk+1 ⊆ Q`k+1. We will have to
show that the same holds for stage k. Fix any b ∈ Sk, then for any generic distribution
Fs, exactly as in (31) we have

min
{
− ηb, Pk(b, Fs)

}
= min

{
− ηb, ηδ + Es

[
Jk(max{b, Rs})

]}
= min

{
− ηb, ηδ − ηEs

[
max{b, Rs}

]}
= JN (b, Fs). (36)

Thus the hypothesis Sk ⊆ Quk implies JN (b, Fu) ≤ Ck(b, Fu), and to show Sk ⊆ Q`k it
is sufficient to obtain JN (b, F`) ≤ Ck(b, F`). Proceeding as before (recall how (34) was
obtained) we can write

Ck(b, Fu) ≤ τ +

∫
L`
Jk+1(b, Ft) dL(t) +

(∫
Lc`
dL(t)

)
Jk+1(b, Fu).

Now using Lemma 5.4, we conclude

Ck(b, Fu) ≤ τ +

∫
L`
Jk+1(b, Ft) dL(t) +

∫
Lc`
dL(t) JN (b, Fu).

Note that the conditions required to apply Lemma 5.4 hold i.e., b ∈ Sk+1 (since Sk ⊆
Sk+1 from Lemma 5.1-(iii)) and Sk+1 ⊆ Quk+1 (this is given).

Thus, again we have an inequality of the form JN (b, F`) ≤ JN (b, Fu) ≤ c′+ pJN (b, Fu)
(where c′ = τ +

∫
L` Jk+1(b, Ft) dL(t)). As before we can show that JN (b, F`) ≤ c′ +
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pJN (b, F`). Finally the proof is complete by showing that c′ + pJN (b, F`) = Ck(b, F`) as
follows:

Ck(b, F`) = τ +

∫
L`
Jk+1(b, Ft) dL(t) +

∫
Lc`
Jk+1(b, F`) dL(t)

= c′ + pJN (b, F`), (37)

where to replace Jk+1(b, F`) by JN (b, F`) we have to again apply Lemma 5.4. However
this time Sk+1 ⊆ Q`k+1, is by the induction hypothesis.

We still require a distribution Fu satisfying Sk ⊆ Quk , for every k. The minimum
distribution Fm turns out to be useful in this context. The following lemma thus con-
stitutes Step 2 of the proof of Lemma 5.5.

LEMMA A.4. For every k = 1, 2, · · · , N−1, the setQmk corresponding to the minimum
distribution Fm satisfies, Sk ⊆ Qmk .

PROOF. First note that the existence of a minimum distribution Fm follows from
Lemma 2.3. Now, Fm being minimum we have F` ≥st Fm for all F`. Then, using
Lemma 4.2-(i) we can write

Jk+1(b, FLk+1
) ≤ Jk+1(b, Fm).

Using the above expression in (13) and then recalling (12), we obtain Ck(b, Fm) = Ck(b).
Finally, the result follows from the definition of the sets Qmk and Sk.

A.5. Proof of Theorem 5.7
Theorem 5.7: For k = 1, 2, · · · , N − 1 and for any F`, S`k = S`k+1.

PROOF. Recalling the definition of the set S`k (from (18)), for any b ∈ S`k+1 we have
(if k + 1 = N , note that the following expression will not contain the continuing cost),

−ηb ≤ min
{
Pk+1(b, F`), Ck+1(b, F`)

}
.

Suppose, as in Theorem 5.6, we can show that for any b ∈ S`k+1, the various costs at
stages k and k + 1 are same, i.e., Pk(b, F`) = Pk+1(b, F`) and Ck(b, F`) = Ck+1(b, F`),
then the above inequality would imply, S`k ⊇ S`k+1. The proof is complete by recalling
that we already have S`k ⊆ S`k+1 (from Lemma 5.1-(iii)).

Fix a b ∈ S`k+1. To show that Pk(b, F`) = Pk+1(b, F`), first using Lemma 5.1-(i) and
Theorem 5.6, note that S`k+1 ⊆ Sk+1 = Sk. Since b ∈ Sk+1 the cost of probing is

Pk+1(b, F`) = ηδ + E`
[
Jk+1(max{b, R`})

]
= ηδ − ηE`

[
max{b, R`}

]
where, to obtain the second equality, note that max{b, R`} ∈ Sk (from Theorem 5.3) and
hence at max{b, R`} it is optimal to stop, so that Jk+1(max{b, R`}) = −ηmax{b, R`}.
Similarly, since b is also in Sk the cost of probing at stage k, Pk(b, F`), is again ηδ −
ηE`

[
max{b, R`}

]
. Finally, following the same procedure used to show Ck(b) = Ck+1(b)

in Theorem 5.6, we can obtain Ck(b, F`) = Ck+1(b, F`), thus completing the proof.
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