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Coverage in One-Dimensional Wireless Networks
with Infrastructure Nodes and Relay Extensions
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Abstract—We consider a wireless network comprising two
types of nodes, namely, sinks and relays. The sink nodes are
connected to a wireline infrastructure, while the relay nodes are
used to extend the region covered by providing multi-hop paths
to the sink nodes. Restricting to the one-dimensional setting,
our objective is to characterize the fraction of covered region as
a function of sink and relay node densities. We first compare
and contrast our infrastructure-based model with the traditional
setting where every node is a sink, and hence a location is covered
if it simply lies within the range of some node. Then, drawing
an analogy between the connected components of the network
and the busy periods of an M/D/∞ queue (and using renewal
theoretic arguments) we derive a closed-form expression for the
average vacancy (complement of coverage). We also compute
an upper bound for vacancy by introducing the notion of left-
coverage (i.e., coverage by a node on the left); a lower bound is
derived by coupling our model with an independent-disk model,
where the sinks’ coverage regions are independent and identically
distributed. Through an extensive theoretical and numerical
study, we investigate the problem of minimizing network deploy-
ment cost subject to a constraint on the average vacancy. We also
conduct simulations to understand the properties of a general
notion of coverage, obtained by introducing hop-counts into the
definition. Parameterized approximations for the hop-constrained
cluster lengths (around a sink) are proposed, whose efficacy
is evaluated numerically. In particular, there exists a range
of parameter values where our cluster-length approximation is
good. Finally, hop-constrained cost optimization is conducted to
demonstrate the efficacy of the infrastructure-based design.

Index Terms—Coverage of wireless networks, multihop wire-
less networks for IoT.

I. INTRODUCTION

The Internet of Things (IoT) envisions embedded sensors
(and even actuators) in all static and mobile objects and
even humans and animals, for enabling applications such as
condition monitoring, asset tracking, and resource monitoring,
for the purposes of predictive maintenance, and performance
management. The models we study in this paper, and the
questions we ask with those models, are motivated by the
future vision of installed wireless networks, within buildings
or along streets, that will provide universal connectivity for
quickly creating IoT applications. For example, in a hospital
a well known problem is that of tracking the location of
mobile diagnostic devices, and of monitoring patients who

K. P. Naveen is with the Department of Electrical Engineering, Indian
Institute of Technology Tirupati, Renigunta Road, Settipalli Post, Tirupati
517506, India (Email: naveenkp@iittp.ac.in); Anurag Kumar is with the
Department of Electrical Communication Engineering, Indian Institute of
Science, Bangalore 560012, India (Email: anurag@ece.iisc.ernet.in).

This work was supported by the Department of Science and Technology,
Government of India, through an INSPIRE Faculty Award (K. P. Naveen) and
a J. C. Bose National Fellowship (Anurag Kumar). The conference version
of this work [1] has appeared in ACM MSWIM, held at Malta, Nov. 2016.

have diagnostic devices attached to their bodies [2], [3], while
being allowed to move away from their beds. Factories and
warehouses have similar problems of tracking small indus-
trial vehicles, and mobile tools, and monitoring the location
and well-being of the many employees who might work in
dangerous situations. How do such organisations build out
networks to provide universal coverage for IoT devices in their
premises? The standardisation process of 5G cellular networks
includes standards for connectivity of IoT devices; however,
even the 5G technology vision envisions “capillary networks”
that will feed into cellular IoT gateways [4]. Further, given
the experience with two generations of cellular broadband
services, cellular networks have not replaced local networks
in home, offices, and factories. Thus, one expects that organ-
isations will build their own wireless networks for supporting
their IoT applications.

The cost of installation and the ease of retrofitting into exist-
ing large facilities are important considerations. The networks
should be easy to install, and it should be easy and inexpensive
to expand the networks as needs arise. Building out a complete
infrastructure network, with wired access points providing full
coverage might be difficult and very expensive; retrofitting and
expanding such a network is difficult and costly. On the other
hand, adding wireless relays to build out a network, or building
a network comprising some wired access points and some
wireless relays, with multihop wireless communications might
be more cost effective and easily deployable. The models we
study in this paper are motivated by this thinking.

Specifically, the setting we are interested in is the following.
We consider a network comprising two types of static nodes
− sinks and relays. The sink nodes are connected to an
infrastructure backhaul, while the relay nodes are deployed
so as to extend the network coverage by providing multi-hop
connectivity to the sink nodes. Thus, a location is said to be
covered if it lies within the communication range of some
node that is eventually connected (possibly via multiple hops)
to a sink node. A more general formulation is obtained by
imposing a constraint on the number of hops within which a
sink node can be reached; such a constraint would model the
delay requirements of the applications that use the network [5].
The above characterization (of coverage and hop-constrained
coverage) will be useful for network provisioning, where the
objective is to minimize the average cost of the network
subject to constraints on coverage and delay.

In this paper we develop the theory and analysis for one-
dimensional networks (i.e., the sinks and the relays are de-
ployed along a line, and the mobile sources of data are also
on the line). Our model and the questions that we ask are
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novel, and can provide direct insights for applications such
as the following. (i) Patients recovering in hospitals may be
allowed to walk freely in the hospital corridors, while carrying
IoT-enabled monitoring devices such as blood oxymeters, and
blood pressure monitors. Our one-dimensional network model
can represent a long hospital corridor, the objective being that,
as the patients walk along the corridor, they are “covered”
by the network of sinks and relays. (ii) The one-dimensional
model could also represent a straight road along the edge of
which sinks and relays are deployed (on lamp-posts or other
road-side infrastructure) so as to provide coverage for IoT-
enabled sensors on the road surface (e.g., for human distress
calls, or parking violations).

The outline of the paper is as follows. In Section II we
survey related literature, following which we discuss our
main technical contributions. In Section III we describe our
infrastructure-based network model in detail. In Section IV
we discuss the traditional case where every node is a sink.
The general case, comprising both sink and relay nodes, is
studied in Section V. In Section VI, we define a hop-count
constrained notion of coverage. Numerical and simulation
results are presented in Section VII. We finally summarize our
work in Section VIII. Due to page-length restriction, derivation
of some expressions and proofs of Theorem 2 and 3 are made
available as Supplementary Material.

II. RELATED WORK AND OUR CONTRIBUTION

We will first discuss literature from coverage processes and
its applications to wireless networks. Since coverage and con-
nectivity are related, we will proceed to briefly introduce work
from the latter topic. Next, we survey work related to one-
dimensional networks, and then proceed to discuss literature
on infrastructure-based networks. Finally, we place our work
in context by highlighting our main technical contributions.

Traditional coverage processes have been extensively stud-
ied for the Boolean model which comprises nodes of only
one type (or, in our terminology, comprises only sink nodes),
with independent and identically distributed (i.i.d.) shapes (or
coverage regions) placed around each node; the shapes are
further independent of the node locations. A classical reference
for this topic is the book by Hall [6]. In the context of wireless
communication, the problem of coverage has been extended
to the more general SINR (Signal to Interference plus Noise
Ratio) model [7]–[9]. For instance, Andrews et al. in [7]
consider the SINR model where the region covered by a node
depends on its signal power as well as the interference power
received from all other nodes. Formally, a location is covered
by a node if the SINR received at the location is greater than
a threshold value. The above setting is extended in [8] to a
scenario where the nodes are heterogeneous in terms of their
transmit power and their SINR threshold.

A quantity that is closely related to coverage is connectivity.
A key result concerning connectivity in wireless networks is
that by Gupta and Kumar [10]. Specifically, for a network
deployed uniformly on an unit disk, to guarantee asymptotic
connectivity they obtain the scale at which the (deterministic)
transmission radius should reduce with the number of nodes.
Connectivity results of similar asymptotic flavour are studied

in [11], [12], while the problem of connectivity in the presence
of channel randomness (so that the transmission radii are ran-
dom) have been addressed in [13], [14]. The related problem of
determining critical sensing radius in camera sensor networks
has also been recently studied in the literature; see [15] and
references therein.

All the above work, however, assumes that either all nodes
are sinks so that coverage by any one node suffices, or seek
multi-hop connectivity between every pair of nodes in the
network. This is in contrast to our work where we introduce
relay nodes, and define a point to be covered if and only if it
has a multi-hop connectivity to at least one sink node; thus,
relay nodes connected to different sinks may not have a multi-
hop path between them. Although we assume a Boolean model
like in [6], our work can be considered as an extension of the
model in [6] to the infrastructure-based network setting, but
restricted to the one-dimensional case.

There are already extensive work in the literature studying
the problem of coverage and connectivity in one-dimensional
networks. In the following we survey some of this work.
For a network with a finite number of nodes deployed on
a line of finite length, Desai and Manjunath in [16] obtain
the exact formula for the probability that the entire network
is connected. Miorandi and Altman in [17] adopt a queueing
theoretic approach to compute the coverage probability for
one-dimensional networks. For a general inter-node distance
distribution (not limiting to exponential distribution), the au-
thors in [17] show the equivalence between the coverage
probability and the probability that an equivalent GI/D/1
queue is busy. We will establish a similar equivalence for the
infrastructure-based network.

One early work considering an infrastructure-based archi-
tecture is that of Dousse et al. [18]. In [18], although the relay
locations constitute the points of a Poisson process, the sink
nodes are placed equi-distance from each other (which is in
contrast to our work where the sink locations also constitute
an independent Poisson process). A point located between two
sink nodes is connected if it has a multi-hop path to at least
one of them. Thus, the model essentially reduces to the one
with two sink nodes placed at the end points of a finite-length
line segment. The authors in [18] obtain a lower bound on the
probability that a location within the line segment is connected.
For a similar model, motivated by vehicular networks, Suo in
[19] obtains the probability that all vehicles (equivalently, relay
nodes) within a road segment of finite length are connected
to both road side units (equivalently, sink nodes) located at
either ends of the road segment.

Recently, Ng et al. in [20] consider a model where more
than two sink nodes are deployed at arbitrary locations within a
segment of finite length; the relay nodes are Poisson distributed
as in the earlier models. The probability that the entire network
is connected is obtained. Further, the authors show that uni-
form sink placement maximizes the connectivity probability.
Assuming different ranges for sink and relay nodes, Zhang
et al., in [21], obtain the uplink (relay to sink) and downlink
(sink to relay) connection probabilities. However, the setting
is again restricted to the scenario where two sink nodes are
place at the either ends of a finite length line segment.
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In contrast to all the above work, we consider a model where
the locations of both sink and relay nodes constitute the points
of two independent Poisson processes. We are interested in
obtaining explicit expression for the fraction of region that
is covered (i.e., coverage probability) as a function of sink
and relay node densities. To the best of our knowledge, the
particular model we consider and the coverage characterization
we obtain are not available in the literature. Our main technical
contributions are as follows:

1) Expression for Average Vacancy1: Using renewal
theoretic arguments we derive an explicit closed-form
expression for the average vacancy created in an
infrastructure-based network (Theorem 1). The above
result can be considered as a generalization of the
classical expression for average vacancy known in the
literature of coverage processes.

2) Bounds on Average Vacancy: Defining left-coverage2

we obtain an upper bound for the average vacancy. More
interesting, we show that the average vacancy created in
an alternate Boolean model (where the coverage regions
of successive sink nodes are independent and identically
distributed), serves as a lower bound for the average
vacancy in the original model (Theorem 2).

3) Network-cost Optimization: We formulate the problem
of minimizing the network deployment cost (average
unit-length cost of the network) subject to a constraint on
the average vacancy. We conduct a theoretical analysis to
investigate convexity properties of the above formulation
(Lemma 3). Further properties of network optimization
is derived through an extensive numerical study.

4) Hop-constrained Coverage: We conduct simulation
experiments to study the average vacancy created in a
hop-count constrained model. We also propose approx-
imations for the length of the cluster around a sink
node (Theorem 3). The performance of the proposed
approximations are numerically validated.

III. SYSTEM MODEL

We consider a scenario where the sink and the relay nodes
are located along a line. The point process of these locations
is modeled as a Poisson process of rate λ. It is assumed
that any point of this Poisson process is independently a
sink with probability β ∈ (0, 1]. Thus, the point processes
of sink locations and relay locations are independent Poisson
processes of rates βλ and (1−β)λ, respectively. The wireless
range of each node is r > 0. Thus, we assume that the ranges
of both sink and relay nodes are identical. This assumption can
be justified by considering scenarios where both sink and relay
nodes are equipped with identical digital radios, while the sink
nodes have additional (high speed) backhaul connectivity (e.g.,
ethernet or satellite radios).

Remark: The one-dimensional setting could model a long
corridor in a large building, a long underground tunnel under

1Vacancy is the complement of coverage; A location is said to be covered
if it lies within the range of some node that is eventually connected (via. multi
hopping) to a sink node.

2A location is said to be left-covered if it is covered by a sink-connected
node (i.e., a node connected to the sink) to its left.

a dam or in a mine, or a long straight stretch of road.
Regarding random (Poisson) deployment assumption, we note
that it is commonly employed in literature [7]–[14], [16]–
[18], particularly when the network under consideration is
deployed in an ad hoc fashion. Even in scenarios where the
deployment is planned, nodes are generally not deployed at
regular intervals, due to the physical constraints on where
the wireless nodes can be placed. For example, along the
ceiling of a building corridor, other infrastructure, such as
vents, lights, and pillars, would govern the availability of
spaces for mounting wireless network nodes. Thus, assuming
a one-dimensional deployment, the locations of the sinks and
the relays can be viewed as a realisation of a point-process
along a line. For mathematical tractability, we have used a
homogeneous Poisson point process model. A comparison of
point process models for cellular base-station placements has
been performed by Andrews et al. [22], where they have
compared cellular coverage obtained from a Poisson model
and a grid model, with coverage obtained from an actual
deployment. They conclude that the Poisson model yields
conservative results, while providing closed form solutions
and, therefore, more insight. For instance, in our context
the Poisson assumption enables us to derive a closed form
expression for vacancy (see (19)), using which we will be
able to gain valuable insights about the coverage properties
of infrastructure-based networks (via our numerical work in
Section VII). We would like to however emphasize that more
involved deployment models (other than Poisson) such as the
Cluster (Cox) process (which is useful for modeling situations
where base-stations are likely to be close to one another, e.g.,
due to terrain) are available in the literature [23].
A. Connectivity

Given two nodes whose locations are x and y (x 6= y), we
say that the nodes are connected if, for some h ≥ 1, there
are nodes at locations x0 = x, x1, · · · , xh = y, such that
|xi−1−xi| ≤ r for i = 1, · · · , h; otherwise the nodes are said
to be disconnected.

We define a connected component, C, to be the maximal set
of nodes such that any pair of nodes in the set are connected.
Formally, C is a connected component if (i) u and v are
connected for all u, v ∈ C, and (ii) u and w are disconnected
for all u ∈ C and w /∈ C.

Since we are working with an infrastructure-based network,
a node is operationally useful only if it is eventually connected
to a sink node. Thus, we introduce the following definition:
A node is said to be sink-connected if it is connected to at
least one sink node; otherwise we say that the node is sink-
disconnected. Formally, a node u is sink-connected if and only
if there exists a sink node s and a connected component C such
that u ∈ C and s ∈ C. For instance, node u in Fig. 1 is sink-
connected, while node v is sink-disconnected. Note that, by
definition a sink node is always sink-connected.
B. Coverage and Vacancy

We finally introduce the definition of coverage for an
infrastructure-based wireless network.

Definition 1: A location ` ∈ <+ is said to be covered if it
is within the range of a sink-connected node; otherwise ` is
said to be vacant.
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Fig. 1. An illustration of the covered and vacant regions.

Let IV : <+ → {0, 1} denote the indicator function
that represents whether a location ` ∈ <+ is vacant or not.
Formally, IV (`) = 1 if ` is vacant; IV (`) = 0 otherwise
(i.e., if ` is covered); see Fig. 1 for an illustration. Then, the
average vacancy (i.e., fraction of vacant region) created in the
infrastructure-based wireless network (of node intensity λ and
sink probability β) is given by,

vλ,β = lim
L→∞

1

L

∫ L

0

IV (`)d`. (1)

By identifying renewal points in the network, it is possible
to establish that the above limit exists a.s. (almost surely).
For instance, locations of the sink nodes constitute one set of
renewal points. Formally, if {Yk : k ≥ 1} are the locations of
the successive sink nodes (define Y0 = 0) then the inter-sink
distances, {Xk = Yk − Yk−1 : k ≥ 1}, is a renewal sequence.
Define the reward in the k-th renewal cycle (k ≥ 1) as,

Rk =

∫ Yk

Yk−1

IV (`)d`. (2)

Note that, {Rk : k ≥ 1} is an i.i.d. sequence since Rk is a
function solely of the Poisson points located within the k-th
renewal cycle. Thus, using renewal reward theory (RRT) [24],
[25] we have,

vλ,β =
E[Rk]

E[Xk]
a.s. (3)

Although the above procedure provides an expression for
vλ,β , it is not a workable definition as it is not easy to obtain an
explicit formula for E[Rk] when β ∈ (0, 1) (β = 1 case can be
easily solved; see Section IV). Thus, our objective is to identify
alternative renewal points that can enable us to characterize
vλ,β as an explicit function of (λ, β); see Section V.

C. Network Optimization

Finally, we are interested in deploying a cost efficient
network. Suppose cS and cR denote the costs of a sink and a
relay node, respectively. Then, the average (per unit-length)
cost of the network is, cλ,β := λβcS + λ(1 − β)cR. The
objective is to minimize the average network cost subject to
an average vacancy constraint:

Minimize(λ,β) cλ,β
Subject to vλ,β ≤ v.

(4)

The optimal network cost is denoted as cλ∗,β∗ where (λ∗, β∗)
represents an optimal point. Convexity properties of the above
problem, and an equivalent unconstrained formulation, will be
discussed in Section V-C.

IV. AVERAGE VACANCY: β = 1 CASE

This section is essentially a review of some existing results.
Although the expression for average vacancy (when β = 1)
is well known from the literature on coverage processes, the
queueing theoretic approach for deriving the same is however
more recent. Since we will be adopting the latter approach
to tackle the general case where β < 1 (in Section V), this
review will enable us to setup the basic framework that will
be extended in the subsequent section.

The case β = 1 corresponds to a situation where every
node is a sink. Thus, a location ` ∈ <+ is covered if it is
simply within the range, r, of some node. Standard results
from coverage processes [6] can now be evoked to obtain the
average vacancy as vλ,1 = e−λ2r, where 2r is the length of
the disk around each node (because the range on either side
of a node is r; see Fig. 1).

The above result can also be obtained using (3) as follows.
First, note that a location ` in the k-th renewal cycle is vacant
only if it is not within the range r of both sinks at either ends
of this cycle (i.e., nodes at Yk−1 and Yk). Hence, the reward
expression in (2) can be expressed as Rk = (Xk−2r)+, where
(x)+ = max{0, x}. Next, since {Xk} are exponential random
variables of rate λ, the average reward and average renewal
cycle length are given by,

E[Rk] =
e−λ2r

λ
and E[Xk] =

1

λ
.

Thus, from (3) we have vλ,1 = e−λ2r.
As mentioned earlier, the above technique is not useful

when β < 1 since it is then not easy to obtain an explicit
expression for E[Rk]. This motivates us to look for alternate
renewal sequences. One idea is to view the successive covered
and vacant regions in the network as being analogous to the
successive busy and idle periods in an M/D/∞ queuing
system [24]. Then, recognizing that the start-instants of the
busy periods constitute renewal points, the average vacancy
expression can be alternatively obtained using results from
M/D/∞ queues [17]. Details are discussed below.

Borrowing terminology from queuing theory, we identify
the busy and idle periods of an infrastructure-based network
as follows. Let Ck be the k-th connected component with
the positions of the leftmost and the rightmost nodes in Ck
being denoted as xk and yk, respectively (see Fig. 2 for an
illustration). Note that, if the node locations are thought as
the times at which customers arrive into an M/D/∞, then
xk represents the instance at which the k-th busy period starts
while yk + r is the time at which the respective busy period
ends. Formally, we define the busy period corresponding to
Ck as the region [xk, yk + r], while the idle period of Ck is
the region (yk + r, xk+1), where xk+1 is the location of the
leftmost node in the next connected component Ck+1. Note
that, unlike in queues where the idle periods are truly idle,

:; :< := :> :?3; 3< 3= 3>
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Fig. 2. Busy-idle periods in an infrastructure-based wireless network.



5

here it is possible that some locations within the idle period
are covered by the first node in the next busy period, provided
that the next busy period contains a sink node. Finally, Let Bk
and Ik, k ≥ 1, denote the lengths of the busy and idle periods
corresponding to the k-th connected component, respectively.

We refer to the k-th busy-idle period as the k-th renewal
cycle. Thus, Bk + Ik is the length of the k-th renewal cycle.
The reward in the k-th renewal cycle, denoted R′k, is the
fraction of region vacant in the k-th cycle. R′k can be evaluated
as follows. First, note that when β = 1 the busy periods are
always completely covered since every node is a sink. Next,
when the length of an idle period is less than r then the idle
period is completely covered by the first node in the next busy
period. Thus R′k is simply the portion of the idle period that
is not covered, which is given by R′k = (Ik − r)+.

The renewal cycle lengths, {Bk + Ik : k ≥ 1}, is an i.i.d.
sequence. The reward sequence, {R′k : k ≥ 1}, is also i.i.d.
Hence, RRT can be applied to obtain

vλ,1 =
E[(Ik − r)+]

E[Bk] + E[Ik]
a.s. (5)

Since Ik is an exponentially distributed random variable of
rate λ, we have E[Ik] = 1

λ and E[(Ik−r)+] = e−λr

λ . E[Bk] is
the average busy period of an M/D/∞ queuing system with
constant service times r, which is given by [17]

E[Bk] = r +

∫ r
0
tfX(t)dt

1− FX(r)

where fX and FX are the p.d.f. and c.d.f., respectively, of
the inter-arrival times. The inter-arrival times in our case are
the inter-node distances, which are exponentially distributed
random variables of rate λ, i.e., fX(t) = λe−λt and FX(r) =
(1− e−λr). Hence, we have

E[Bk] =
(1− e−λr)
λe−λr

. (6)

Using the above quantities in (5), we obtain vλ,1 = e−λ2r.

V. AVERAGE VACANCY: β < 1 CASE

The case β < 1 yields an infrastructure-based network,
comprising both sink and relay nodes. Here, a location within
the range of a relay node is covered if and only if the relay
is connected to a sink node. We will first argue that the
earlier approach (employed for the β = 1 case) of regarding
the successive busy-idle periods as renewal cycles is not
applicable when β < 1; however, a simple upper bound can
be derive using this approach. We hence proceed to seek
alternate renewal epochs that will enable us to derive the
average vacancy for this case. The details are presented in
the following.

Continuing the discussion from the previous section, when
β < 1, it is possible for a connected component to not contain
a sink node (for instance, C2 and C3 in Fig. 2 does not contain
sink nodes). Hence, the corresponding busy period must be
treated as being vacant.Let Sk denote the event that there
exists a sink in the k-th connected component. Let Sck be
the complement of Sk. Note that the events Sk, k ≥ 1, are
independent and have the same probability.

Unlike in the β = 1 case, here it is not useful to regard the
successive busy-idle periods as renewal cycles. This is because
the reward R′k, which is the fraction of region uncovered
within the k-th busy-idle period, is given by (IA denotes the
indicator function of event A)

R′k =


Bk + Ik if ISck∩Sck+1

= 1

Bk + Ik − r if ISck∩Sk+1
= 1

Ik if ISk∩Sck+1
= 1

(Ik − r)+ if ISk∩Sk+1
= 1.

(7)

We see that the reward in the k-th busy-idle period depends
on whether or not the (k + 1)-th busy-idle period contains a
sink node. Thus, unlike the β = 1 case, the reward sequence
{R′k : k ≥ 1} is not i.i.d. As a consequence, RRT cannot be
applied to write vλ,β = E[R′k]/(E[Bk] + E[Ik]) (as in (5)),
although it is possible to compute E[R′k] using P(Sk)3

A simple upper bound for vacancy can however be obtained
by neglecting the region covered by the (k+1)-th busy period
in the reward expression for R′k (in case a sink is present in
the corresponding connected component). We derive this upper
bound first (in Section V-A) before proceeding to obtain the
exact expression for vacancy (in Section V-B). In Section V-D
we prove a lower bound for vacancy by coupling our model
with a traditional Boolean model where i.i.d. coverage disks
are placed around the sink nodes.

A. An Upper Bound for Vacancy

We begin with the following definition.
Definition 2: A location ` ∈ <+ is said to be covered from

the left or left-covered if ` is within the range of a sink-
connected node towards the left of `, i.e., ` is left-covered if
there is a sink-connected node at some location x such that
x ≤ ` and |x−`| ≤ r. If there is no such sink-connected node
we say that ` is vacant from the left or left-vacant.

Let IU : <+ → {0, 1} denote the function indicating
whether a location ` ∈ <+ is left-vacant or not. Then, the
fraction of region that is left-vacant is given by,

uλ,β = lim
L→∞

1

L

∫ L

0

IU (`)d`. (8)

We immediately obtain the following result.
Lemma 1: The fraction of left-vacant region is an upper

bound for the fraction of vacant region, i.e., vλ,β ≤ uλ,β for
all (λ, β).

Proof: Note that, for any ` ∈ <+ we have

IV (`) ≤ IU (`).

The above relation can be easily deduced by noting that `
being vacant (IV (`) = 1) always implies that ` is left-vacant
(IU (`) = 1). However, it is possible that ` is covered by a
node towards its right (IV (`) = 0), but is not left-covered
(IU (`) = 1). Thus, vλ,β is upper bounded by uλ,β .

We now proceed to obtain an explicit expression for uλ,β .

3Note that, since Sk and Sk+1 are i.i.d. events, we have P(Sk ∩Sk+1) =
P(Sk)P(Sk+1) = P(Sk)2. The probability of other events can be computed
similarly; for instance, P(Sck ∩ Sk+1) = (1 − P(Sk))P(Sk). Thus, the
expectation of the reward R′k in (7) can be computed using P(Sk).
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Lemma 2: For any given (λ, β), the fraction of left-vacant
region is given by

uλ,β =
1 + λβr + β2

(
eλr − λr − 1

)
(

1− β + βeλr
)2 . (9)

Proof: We begin by regarding the busy-idle periods
corresponding to the k-th connected component as the k-
th renewal cycle. Let the reward in the k-th renewal cycle,
denoted R′′k , be the length of the region that is left-vacant.
Then,

R′′k = BkISck + Ik. (10)

The sequence {R′′k : k ≥ 1} is i.i.d. unlike the {R′k : k ≥ 1}
sequence in (7). Hence, we can now apply RRT to obtain

uλ,β =
E[BkISck ] + E[Ik]

E[Bk] + E[Ik]
. (11)

For notational simplicity, define p := P(Sck) and Q :=
E[Bk|Sck]. Thus, p is the probability that a connected com-
ponent does not contain a sink, and Q is the average busy
period length conditioned on the event that it does not contain
a sink. Hence, we have

E[BkISck ] = P(Sck)E[BkISck |S
c
k] = pQ

Substituting the above expression in (11) along with the
identities E[Ik] = 1

λ and E[Bk] = 1−e−λr
λe−λr

, we obtain

uλ,β =
(
λpQ+ 1

)
e−λr. (12)

Explicit formulas for p and Q along with Q = E[Bk|Sk]
(which will be required in our subsequent development) are
derived in Supplementary Material; we recall the expressions
for these here for convenience (as well as for completeness):

p = 1− q =
(1− β)e−λr

β + e−λr − βe−λr
(13)

Q = pE[Bk] + (1− p)r (14)

Q =
E[Bk]− pQ

(1− p)
. (15)

Substituting for p and Q from the above expressions in (12),
and simplifying4 yields the result in (9).

B. Exact Vacancy Analysis

To obtain vλ,β exactly we identify alternate renewal in-
stances. Specifically, as illustrated in Fig. 3, we regard the
end points of the sink-containing busy periods as renewal
instances. Thus, a renewal cycle starts with an idle period
while comprising a random number of successive non-sink-
containing busy-idle periods, and finally ends with a sink-
containing busy period.

Let Mn denote the number of busy periods (both non-sink
and sink containing) within the n-th renewal cycle. Thus,

4Since manual simplification is cumbersome, we have used Mathematica
to simplify the expression in (12)

-."/ CD-&."/ CD-&."/ -."/

1*"*F%2	G3)2*

:; :< := :> :?3; 3< 3= 3>
$ $ $ $

!=!; @< !<@; @= @> !>

ℓ

Fig. 3. Illustration of a renewal cycle when β < 1.

Mn = m (m ≥ 1) implies that the first idle period is
followed exactly by (m − 1) successive non-sink-containing
busy-idle periods, while the renewal cycle ends with the
m-th busy period which invariably contains a sink; thus,
counting the first idle period and the last busy period, the
corresponding renewal cycle contains Mn busy-idle periods
in total. Note that, Mn is a geometric random variable with
success probability q := P(Sk) = 1− p. Thus, we have

P(Mn = m) = (1− q)m−1q, for m ≥ 1. (16)

Let I(n)
i and B(n)

i (1 ≤ i ≤Mn) denote the lengths of the
i-th idle and busy periods within the n-th renewal cycle. Then,
the length of the n-th renewal cycle is given by,

X̂n =

Mn∑
i=1

(
I

(n)
i +B

(n)
i

)
. (17)

The reward R̂n is simply the length of the vacant region within
the n-th renewal cycle, which can be expressed as

R̂n =


(
I

(n)
1 − r

)+

if Mn = 1
Mn−1∑
i=1

(
I

(n)
i +B

(n)
i

)
+ I

(n)
Mn
− r if Mn > 1.

(18)

We are ready to state and prove the following key theorem:
Theorem 1: For any given (λ, β), the fraction of vacant

region is given by

vλ,β =
1(

1− β + βeλr
)2 (19)

Proof: We now proceed to compute the expectation of the
above quantities. For simplicity, define Q := E[Bk|Sk], which
is the average length of the busy period, conditioned on the
event that it contains a sink node. The expectation of X̂n can
be simplified as follows:

E[X̂n] = E

[
Mn∑
i=1

(
I

(n)
i +B

(n)
i

)]

=

∞∑
m=1

P(Mn = m) E

[
Mn∑
i=1

(
I

(n)
i +B

(n)
i

) ∣∣∣∣∣Mn = m

]
(a)
=

∞∑
m=1

P(Mn = m)
(m
λ

+ (m− 1)Q+Q
)

=

∞∑
m=1

(1− q)m−1q
(m
λ

+ (m− 1)Q+Q
)

(b)
=

1

λq
+

(
1− q
q

)
Q+Q
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(c)
=

(
1− β + βeλr

)
λβ

. (20)

To obtain (a) note that, conditioned on (Mn = m), the mean
length of each of the m idle periods is 1

λ ; the first (m−1) busy
periods do not contain a sink (the average length of each is
Q) while the last busy period contains a sink (whose average
length is Q). Equality (b) is obtained using the following
identities (corresponding to the geometric distribution):

∞∑
m=1

(1− q)m−1q = 1,

∞∑
m=1

m(1− q)m−1q =
1

q
.

Substituting for p, Q and Q (from (13), (14) and (15)) and
simplifying (using Mathematica) yields the final equality (c).

Similarly, conditioning on (Mn = m) and simplifying, we
obtain the following expression for E[R̂n]:

E[R̂n] = P(Mn = 1)
e−λr

λ
+

∞∑
m=2

P(Mn = m)×(m
λ

+ (m− 1)Q− r
)

=
q2e−λr + λpQ− pqλr + p(1 + q)

λq
.

=
1

λβ
(

1− β + βeλr
) . (21)

RRT can now be evoked to express the average vacancy as
vλ,β = E[R̂n]

E[X̂n]
, which, using (20) and (21), can be simplified

to yield the expression in (19).
Discussion: Note that the expression for vλ,β in (19) encom-

passes the β = 1 case. This is easy to verify, as substituting
β = 1 in (19) yields vλ,1 = e−λ2r. On the other hand, as
β → 0 we see that vλ,β → 1; this result should not be
surprising as well because, as the density of sink nodes reduces
to 0, the network is expected to be rendered completely
vacant. In general, for any β ∈ (0, 1], the average vacancy
vλ,β can be easily computed using the expression in (19).
Our study thus generalizes the traditional coverage processes
model (comprising only sink nodes) to the infrastructure-based
setting (where both sink and relay nodes are present).

We next proceed to investigate the convexity properties
of the average vacancy expression in (19). The results are
reported in the following lemma.

Lemma 3: (a) For a given β, vλ,β is a decreasing function
of λ. Similarly, for a given λ, vλ,β is decreasing in β.
(b) vλ,β is neither convex nor concave.
(c) vλ,β is quasi-convex but not quasi-concave.

Proof: Available in the Supplementary Material.

C. Simplification of the Network Optimization Problem

Using the results in Lemma 3, we can infer the following
about the network optimization problem in (4). The problem
in (4) is non-convex since vλ,β is non-convex (Lemma 3
(b)). Although vλ,β is quasi-convex (Lemma 3 (c)), the cost
function cλ,β is however quasi-concave (proof of this result
is available in the Supplementary Material). As a result the

problem in (4) cannot be posed as a quasi-convex problem as
well. However, using the monotonicity results in Lemma 3 (a)
it is possible to simplify the problem in (4) into an equivalent
unconstrained problem. For this, we first require the following
result that shows that the inequality constraint in (4) is tight
at optimal points.

Lemma 4: If (λ∗, β∗) is an optimal point for the problem
in (4), then vλ∗,β∗ = v.

Proof: Suppose vλ∗,β∗ < v, then Lemma 3 (a) suggests
that the vacancy constraint can be met by either decreasing λ∗,
or β∗ (or a combination of both). This would however reduce
the optimal cost cλ∗,β∗ , thus contradicting the hypothesis that
(λ∗, β∗) is an optimal point. Hence, we have vλ∗,β∗ = v.

An important consequence of the above result is that the
inequality constraint in (4) can be replaced by the equality
constraint vλ,β = v. Now, for a given β, the value of λ
(denoted λ(β)) required to achieve a target vacancy of v is
obtained by solving vλ(β),β = v. The solution is given by

λ(β) =
1

r
ln

(
1 +

ṽ

β

)
(22)

where ṽ = 1−
√
v√
v

. Thus, using λ(β) in the expression of the
cost function, the original problem in (4) can be reduced to
the following equivalent unconstrained problem:

Minimize:
β(0,1]

c(β) (23)

where

c(β) := cλ(β),β =
1

r
ln

(
1 +

ṽ

β

)(
βcS + (1− β)cR

)
. (24)

We use β∗ to denote an optimal point. Thus, the optimal cost
is given by cλ∗,β∗ = c(β∗) where λ∗ = λ(β∗).

Finally, we study the convexity properties of the function
c(β) in (24). In Fig. 4 we plot c(β) vs. β for different
values of cS and v. We immediately observe the c(β) is non-
convex for some values of cS and v; for instance, see the plot
corresponding to cS = 10cR in Fig. 4(a). Hence, in general,
the unconstrained problem in (23) is non-convex. However,
from Fig. 4 we notice that c(β) is either strictly decreasing
or strictly unimodal, thus suggesting that c(β) is strictly
quasi-convex [26]. Although we have not been able to prove
(or disprove) this result, the compelling evidence from our
numerical work motivates us to conjecture this observation.

(a) (b)

Fig. 4. c(β) vs. β curves for (a) different values of cS with v = 0.1 (b) for
different values of v with cS = 5cR. In both cases, we have fixed cR = 1.
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Conjecture 1: c(β) in (24) is strictly quasi-convex.
The validity of the above conjecture is also verified while
conducting a detailed numerical study in Section VII-B.

A consequence of the above conjecture is that the uncon-
strained problem in (23) is strictly quasi-convex. Thus, there
exists a unique solution β∗ to the unconstrained problem
[26]. Since the unconstrained and the original problems are
equivalent, we can claim that there is a unique solution
(λ∗, β∗) (where λ∗ = λ(β∗)) to the latter problem as well.
In Section VII-B we will conduct a detailed numerical study
to understand the properties of the optimal solution.

D. A Lower Bound for Vacancy

In this section we will show that the average vacancy in
an independent-disk model, which is obtained by placing i.i.d.
coverage regions (or disks) around the sink nodes, will serves
as a lower bound for the average vacancy in the original model
(henceforth referred to as the dependent-disk model) where the
coverage disks are not independent. We begin by introducing
some notation.

Let Yk ∈ <+ (k ≥ 1) denote the location of the k-th
sink node. For simplicity, with a slight abuse of notation we
will use Yk to also refer to the k-th sink node. Defining
Xk = Yk − Yk−1 (with Y0 = 0), note that {Xk : k ≥ 1}
constitutes a Poisson (renewal) process of rate βλ. The loca-
tion of the relay nodes are instead represented using Λ, where
Λ is a Poisson (counting) process of rate (1−β)λ (i.e., for any
interval I , Λ(I) denotes the number of points within I). To
avoid boundary effects occurring at the origin, let us assume
that the relays are distributed along the entire real line. Thus,
Λ is a Poisson process on <.

Definition 3: Retaining Yk and the relay nodes, remove all
other sink nodes from the network. Then, the relay-extended
coverage disk (or simply the coverage disk) of Yk is defined
as the set of all locations that are either
• directly within the range of Yk, or
• within the range of some relay that is connected to Yk.

Let Uk (respectively, Vk) denote the length of the coverage
disk towards the right (respectively, left) of Yk. Thus, the
coverage disk of Yk is the region Wk := [Yk − Vk, Yk + Uk].

Given that the relay nodes are distributed according to Λ, Uk
is simply the length of the busy period duration of an M/D/∞
queue with arrival rate (1−β)λ and constant service times r.
Recalling (6), the average length of Uk can be written as

C := E[Uk] =
(1− e−(1−β)λr)

(1− β)λe−(1−β)λr
. (25)

Since the process Λ is i.i.d. on either side of Yk, it follows that
Vk is independent and identically distributed as Uk. Thus, the
average length of the coverage disk around Yk is 2C. However,
as mentioned earlier, the coverage disks around Yk and Yk+1,
although identically distributed, are not independent. This is
because these disks are constructed using the same Poisson
process, Λ, of relay nodes. Hence, we refer to our original
model as the dependent-disk model.

Now, suppose we consider an alternate independent-disk
model where, in fact, i.i.d. coverage disks of mean length 2C

are placed around the sink nodes. Then, we are in the regime
of the traditional coverage processes with grain density βλ
and disk length 2C. Let wλ,β denote the fraction of vacancy
created in this coverage process. Then, from [6] we have

wλ,β = e−βλ2C . (26)

We show that wλ,β is a lower bound for vλ,β .
Theorem 2: Fraction of vacancy created in the indepen-

dent-disk model is a lower bound for that created in the
dependent-disk model, i.e., wλ,β ≤ vλ,β for all (λ, β).

Proof Outline: The proof is based on a coupling ar-
gument. Given the dependent-disk model, we will iteratively
construct an independent-disk model such that the region
covered by the latter is larger. In fact, we will show that a
larger coverage is obtained by placing i.i.d. coverage disks
around a carefully chosen subset, {Ykn : n ≥ 1}, of sink
nodes. The details are available in Supplementary Material.

Remark: The coupling argument used to derive the lower
bound result in Theorem 2 may be extended to higher di-
mensions. Thus, the result derived in this section can serve
as a useful lower bound for vacancy in infrastructure-based
networks in two-dimensional networks where it may not be
possible to obtain an explicit expression for exact vacancy.

VI. HOP-CONSTRAINED COVERAGE

Recall from Definition 1 that a location is said to be covered
if it simply lies within the range of a sink-connected node,
irrespective of the number of hops between the node and
the sink. This definition of coverage may be restrictive for
delay sensitive applications where a strict constraint is imposed
on the number of hops (which is proportional to the delay
incurred) within which a packet is expected to reach a sink
node for processing. Hence, in this section we will introduce
a general notion of coverage by incorporating hop constraint
into the definition.

A. Definition and Results

Definition 4: A location ` ∈ <+ is said to be h-covered,
h ≥ 0, if ` is within the range of a sink-connected node that
is at most h-hops away from a sink node; otherwise ` is said
to be h-vacant.

Let IVh : <+ → {0, 1} denote the indicator function that
represents whether a location ` ∈ <+ is left-vacant or not.
The fraction of h-vacant region is defined as,

vλ,β,h = lim
L→∞

1

L

∫ L

0

IVh(`)d`. (27)

For h = 0, a location ` is 0-covered if it is simply within
the range of a sink node. In this case, the relay nodes do
not contribute in extending the coverage. Thus, we are in
the framework of a standard coverage process, comprising
sink nodes (whose density is βλ) with disks of length 2r
placed around them. Hence, we readily have vλ,β,0 = e−βλ2r.
However, for h ≥ 1 the analysis of vλ,β,h is not straight
forward, although some properties can be easily deduced. For
instance, it is easy to see that vλ,β,h is decreasing with h. In
fact, we can also obtain a corollary to Theorem 2, yielding a
lower bound on vλ,β,h. We formally note the above results.
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Lemma 5: The fraction of h-vacant region is decreasing with
h, i.e., for h > h′ we have vλ,β,h ≤ vλ,β,h′ for all (λ, β).
Further, vλ,β,h → vλ,β as h→∞.

Proof: A location ` ∈ <+ being h′-covered (IVh′ (`) = 0)
implies that ` is h-covered (IVh(`) = 0). However, it is
possible for ` to be h′-vacant (IVh′ (`) = 1) while being
h-covered (IVh(`) = 0). Thus, we have IVh(`) ≤ IVh′ (`),
yielding vλ,β,h ≤ vλ,β,h′ . Further, since IVh(`) → IV (`) as
h→∞, we have lim

h→∞
vλ,β,h = vλ,β .

Corollary 1: Fraction of h-vacant region is lower bounded
as follows: wλ,β,h ≤ vλ,β,h, for all (λ, β, h), where

wλ,β,h = e−βλ2Ch

with 2Ch (analogous to 2C) being the expected length of
the h-coveraged disk around a sink node, that is obtained
by removing all other sink nodes from the network (recall
Definition 3).

Proof: The proof is exactly along the lines of the proof
of Theorem 2. Details are omitted for brevity.

Remark: We refer to Ch as the h-constrained cluster length
around a sink node, while C in (25) is the unconstrained
cluster length. Unlike C, it is not easy to derive a general
closed-form expression for Ch. Hence, in the following sub-
section we propose an approximation for Ch. The efficacy
of our approximation will be numerically demonstrated in
Section VII-C.
B. Approximation for Ch

Without loss of generality we will assume that a sink node is
located at the origin (while all other sink nodes are removed).
Recall that the location of the relay nodes is represented by
a Poisson process Λ of rate (1− β)λ. Alternatively, let (Zk :
k ≥ 1) denote the location of the relay nodes; for simplicity,
let Z0 = 0. Let Ch (h ≥ 0) denote the (random) length of
the h-covered disk around the sink at the origin. Note that,
Ch = E[Ch]. Formally, using the relay locations, Ch can be
inductively expressed as follows: C0 = r, and for h ≥ 1

Ch = Ch−1 + sup
{
Zk : Zk ∈ [Ch−1 − r, Ch−1]

}
. (28)

Defining, for h ≥ 1,

Gh = sup
{
Zk : Zk ∈ [Ch−1 − r, Ch−1]

}
we can alternatively express Ch in terms of the coverage-
increments (G` : ` ≥ 1) as,

Ch =

(
h∑
`=1

G`

)
+ r. (29)

See Fig. 5 for an illustration of the above quantities.
Let G` denote the expectation of G` (i.e., G` = E[G`]). For

instance, G1 is given by

G1 = r − 1− e−µr

µ
(30)

where, for simplicity, we let µ := (1−β)λ denote the density
of relay nodes. To obtain the above expression, note that the
distribution function of G1 is given by, for x ∈ [0, r],

FG1
(x) = P(G1 ≤ x)

$
$

$

J; J< J=
GK

G;
G<

ℓ

Fig. 5. Illustration of G` and C`, ` ≥ 1. The hatched segments represent
the regions (C`−1 + G`, C` + r] (` ≥ 1) that are invariably vacant, given
the values of G` (follows from the definition of G`).

= P(Λ([x, r]) = 0)

= e−µ(r−x).

Thus, G1 has a mass of e−µr at 0 and a non-zero density on
[0, r] given by

fG1
(x) = µe−µ(r−x). (31)

Using the above density function, the expression for G1 in
(30) can be easily computed. We will also require the second
moment of G1, which is given by

G1 = E
[
G2

1

]
= r2 − 2G1

λR
.

In general, for ` ≥ 1 the coverage-increment G` can be
computed as follows:

G` = E[G`] =

∫ r

0

xfG`(x)dx (34)

where the density function fG`(x) is given by

fG`(x) =

∫ r

0

fG`−1
(y)fG`|G`−1

(x|y)dy (35)

with the conditional density fG`|G`−1
(x|y) given by (see

Section C in Supplementary Material for details)

fG`|G`−1
(x|y) =

{
µe−µ(r−x) for x ∈ [r − y, r]
0 otherwise.

(36)

Thus, computing G` involves evaluating the recursive integral-
form expressions in (34) and (35), which is computationally
intensive in general. Hence, in the following, we propose
an approximation for G` (` ≥ 2), denoted G

(α)

` , where
α ∈ [0, r] is a parameter that can be varied to obtain a range
of approximations. The approximation G

(α)

` , however, requires
knowing all the lower order terms (Gk : k < `) exactly. Hence,
we will later propose a second approximation, denoted H

(α)

` ,
whose computation is completely based on (H

(α)

k : k < `);
the form of H

(α)

` is motivated by the structure of G
(α)

` . While
theoretical guarantees are proved for the first approximation
G

(α)

` (see Theorem 3), the efficacy of the second approxima-
tion is observed numerically in Section VII-C.

Approximation-1: Let G
(α)

1 = G1, and for ` ≥ 2, given
the lower order terms (Gk : k < `), the approximation
G

(α)

` is computed as in (32), where θα = (1 + µα)e−µr and
bxc denotes the smallest integer less than or equal to x. For
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G
(α)

` =


G`−1 −

`−2∑
k=2,4,···

θ
(`−2)−k

2
α

(
µrGk −Gk−1

)
e−µr − θ(

`
2−1)

α
µr2

2 e−µr if ` is even

G`−1 −
`−2∑

k=3,5,···
θ
b (`−2)−k

2 c
α

(
µrGk −Gk−1

)
e−µr − θb

`
2−1c

α µG1e
−µr if ` is odd

(32)

H
(α)

` =


H

(α)

`−1 −
`−2∑

k=2,4,···
θ

(`−2)−k
2

α

(
µrH

(α)

k −H(α)

k−1

)
e−µr − θ(

`
2−1)

α
µr2

2 e−µr if ` is even

H
(α)

`−1 −
`−2∑

k=3,5,···
θ
b (`−2)−k

2 c
α

(
µrH

(α)

k −H(α)

k−1

)
e−µr − θb

`
2−1c

α µG1e
−µr if ` is odd

(33)

instance, evaluating (32) for ` = 2 and ` = 3 we obtain,
respectively,

G
(α)

2 = G1 −
µr2

2
e−µr (37)

G
(α)

3 = G2 − µG1e
−µr. (38)

The higher order terms can be evaluated similarly. Note that
the expressions for G

(α)

2 and G
(α)

3 does not depend on the
parameter α; however, the higher order terms are, in general,
functions of α.

In the following theorem we show that G(α)
` evaluated at the

extreme values of α (i.e., α = r and α = 0, respectively) serve
as lower and upper bounds (respectively) for G`. Further, a
range of approximations, with values lying between the upper
and lower bound values, are obtained by varying α.

Theorem 3: For ` ≥ 1, we have

G
(r)

` ≤ G` ≤ G
(0)

` . (39)

Also, for α ∈ [0, r], we have

G
(r)

` ≤ G
(α)

` ≤ G(0)

` . (40)

Proof: Available in Supplementary Material.
The following corollary is a simple consequence of the

above theorem.
Corollary 2: For h ≥ 1, we have(

h∑
`=1

G
(r)

`

)
+ r ≤ Ch ≤

(
h∑
`=1

G
(0)

`

)
+ r. (41)

Proof: Follows from (29) and Theorem 3.

Approximation-2: Motivated by the form of the approxima-
tion G

(α)

` in (32), we propose a second approximation H
(α)

` ,
where H

(α)

1 = G
(α)

1 , while for ` ≥ 2 the expression for H
(α)

`

is as in (33). Note that, the computation of H
(α)

` is completely
stand-alone, in the sense that H

(α)

` can be evaluated using only
the lower order approximations {H(α)

k : k ≤ `− 1}. This is in
contrast to G

(α)

` , whose computation requires the knowledge
to the true expectations Gk (of Gk) for all k ≤ ` − 1. Thus,
H

(α)

` is a practically computable approximation. Although we
do not have results analogous to that for G

(α)

` in Theorem 3,
numerically (in Section VII-C) we find that H

(α)

` also yields a
range of approximations for G` as α is varied, including upper

and lower bounds, respectively, for α = 0 and α = r. In fact,
motivated by our numerical observations in Section VII-C we
conjecture the following.

Conjecture 2: For ` ≥ 1, we conjecture that

H
(r)

` ≤ G
(r)

` ≤ G` ≤ G
(0)

` ≤ H
(0)

` .

Finally, given H
(α)

` , an approximation to the cluster length
Ch can be naturally written as, for α ∈ [0, r],

C
(α)

h :=

(
h∑
`=1

H
(α)

`

)
+ r. (42)

Again, numerically we observe that the above approximation,
evaluated at α = 0 and α = r, respectively, yields upper
and lower bounds for Ch. Furthermore, we find that C

(α)

h ,
evaluated at α = 0.5, in fact, serves as a very good approxima-
tion for the true cluster length, Ch, at least for the considered
numerical setting; details are discussed in Section VII-C.

VII. NUMERICAL & SIMULATION WORK

Without loss of generality, we assume a normalized range of
r = 1. Thus, the node density λ is in the units of number-of-
nodes per range. Also, we fix the cost of a relay node to cR = 1
unit. In the following subsections we first (in Section VII-A)
study the properties of the average vacancy, while also drawing
a comparison with the proposed upper and lower bounds. In
Section VII-B we investigate the network optimization prob-
lem proposed in (4). Finally, in Section VII-C we evaluate hop-
constrained coverage along with the proposed approximations
for the average cluster length.

A. Average Vacancy, Upper and Lower Bounds

In Fig. 6(a) we plot the average vacancy vλ,β as a function
of λ for different values of β. As shown in Lemma 3 (a), we
see that vλ,β is a decreasing function of λ for any given β;
similarly, for a given λ, vλ,β decreases with β. Also shown in
Fig. 6(a) are the upper-bound (uλ,β vs. λ) and lower-bound
curves (wλ,β vs. λ), for different values of β.

We observe that the upper-bound curves are a good ap-
proximation for the exact vacancy curves for small values
of β, while the quality of the approximation deteriorates as
β increases. This is because, as β increases more connected
components contain sink nodes so that the region of length
r preceding the connected components are actually covered
while they remain left-vacant in the upper bound process, thus
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Fig. 6. (a) Average vacancy as a function of λ for different values of β; the respective upper and lower bound curves are also shown. (b) Optimal cost vs.
vacancy constraint for different values of sink-cost. (c) Optimal cost vs. sink-cost curves for different values of vacancy constraint (v). (d) and (e): Optimal
node density as a function of the vacancy constraint for cs = 4cR and cs = 6cR, respectively. (f) Behavior at cut-off as a function of the sink-cost.

increasing the contribution of the term that was left out in order
to obtain the bound.

The lower bound curves should be understood as follows
(although these appear to be a good approximation for the
exact curves for larger values of β). For a given node density
λ, observe that the difference between vλ,β and wλ,β increases
as β increases. For instance, fixing λ = 3 we see that
the difference, vλ,β − wλ,β , increases as β increases from
β = 0.001 to β = 0.1 (curves corresponding to β = 0.5
have already saturated to 0). Hence, the lower bound is
actually a good approximation for the average vacancy for
smaller values of β. This is because, smaller β implies a
larger distance of separation between successive sink nodes,
so that the probability of adjacent coverage disks overlapping
is small. Thus, essentially it appears as if i.i.d. coverage
disks are placed around each sink node. Hence, the original
dependent-disk model approaches the independent-disk model
as β decreases, so that the respective average vacancies are
comparable. However, the above effect gets nullified as λ
increases with β remaining fixed. This observation can be
made from Fig. 6(a) where we see that, for a fixed β,
the lower-bound’s approximation deteriorates as λ increases.
This is essentially due to the increase in the length of the
coverage disk as λ increases. As a result, the probability
that the adjacent disks overlap increases, thus increasing the
dependency in the model.

B. Network Optimization

Recall the network optimization problem in (4) along with
the simplified formulation in (23). We compute the optimal
cost by solving the simplified formulation since it is of
lower complexity than the original problem. The approach we
implement is based on discretizing the problem. Specifically,
for a given cS and v, using (24) we first compute c(β) by
varying β from 0.001 to 1 in steps of 0.001. The minimizer β∗

along with the optimal cost cλ∗,β∗ = c(β∗) are then identified,
where λ∗ = λ(β∗) is computed using (22). The process is
repeated for different values of cS and v.

In Fig. 6(b) we plot the optimal network cost, cλ∗,β∗ ,
as a function of the vacancy constraint, v. The curves are
shown for different values of sink to relay cost ratios (cS/cR),
where recall that we have normalized the relay cost to 1 unit.
Alternatively, in Fig. 6(c) we depict the optimal cost as a
function of the sink cost cS for different values of vacancy
constraint v. From Fig. 6(c) we observe that the optimal cost
behaves as a concave function of cS , for any v. As a result we
find that, in the high-cS regime a small reduction in cS does
not significantly reduce the network cost; while in the low-cS
regime, an equivalent reduction in cS can yield noticeable cost
gains. For instance, fixing v = 0.1, (from both Fig. 6(b) and
6(c)) we see that the network cost reduces by only 6% (from
5.4 to 5.1) when cS reduces from 10cR to 8cR, while it is
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Fig. 7. (a) Hop-constrained vacancy as a function of node density. (b) Coverage-increments vs. hop-count. (c) Cluster-length vs. hop-count.

more than 40% (4 to 2.3) for cS = 4cR to 2cR reduction. The
above behavior can be understood as follows. When the sink
nodes are expensive (high-cS regime), optimal network design
would comprise only a small fraction of sink nodes, so that
a small reduction in sink cost would not greatly reduce the
network cost. On the other hand, in the low-cS regime where
the sink nodes are inexpensive, the network would almost
entirely consist of sink nodes; as a result, a small reduction in
sink cost would result in a large savings in the network cost.

Summarizing the above observations we conclude that,
when the backhaul is inexpensive (so that the cost of deploy-
ing a sink node is low), noticeable gains can be achieved
by optimizing the backhaul design5; Otherwise (i.e., when
the backhaul is expensive), incremental optimization of the
backhaul is not necessary as it yields only marginal gains.

Further insights into the structure of the optimal network can
be gained through Fig. 6(d) and 6(e), where (for cS = 4cR
and cS = 6cR, respectively) we have shown how λ∗ and β∗

(optimal node density and sink probability) varies with the
vacancy constraint v. From these figures we observe that there
is a cut-off value of v, denoted vc, beyond which β∗ = 1.
Thus, if a vacancy of more than the cut-off is tolerable then
the optimal network design comprises only sink nodes. The
respective cut-offs in Fig. 6(d) and 6(e) are (approximately)
vc = 0.3 and vc = 4.7. Hence, there is a shift in the cut-
off towards the right as the cost of the sink nodes increases.
This is expected because as the sink-node’s cost increases it
is important to be cautious about using more sink nodes in
the network. On the other hand, if the vacancy constraint is
less than the cut-off, the optimal network comprises both sink
and relay nodes. In fact, the fraction of sink nodes required
reduces as the vacancy constraint is lowered. For instance,
from Fig. 6(d) we see that β∗ = 0.37 when v = 0.2 as
compared to β∗ = 0.19 for v = 0.1. However, the respective
λ∗ are 1.5 and 2.5 so that the network cost is much lower
when v = 0.2 although the corresponding β∗ is more. Similar
observations can be made from Fig. 6(e).

Accumulating the results in Fig. 6(d) and 6(e) (along with
the result corresponding to other values cS), in Fig. 6(f) we

5Backhaul design optimization can be accomplished by allocating additional
resources toward finding even cheaper hardware and operating costs associated
with the sink node.

plot the cut-off value vc as a function of cS . Also shown in the
figure are the optimal node density and optimal cost at cut-off
(note that β∗ = 1 at cut-off). From Fig. 6(f) it is interesting to
observe that there is a threshold on the sink cost of cS = 1.3
below which vc is close to 0, implying that an all-infrastructure
design is optimal in this regime. Further, we observe that λ∗

remains constant until cS = 1.3. As a result, the optimal cost
increases linearly in cS until the threshold of 1.3. However,
beyond cS = 1.3 we observe that vc steadily increases, while
both λ∗ and cλ∗,β∗ decreases with cS .

The behavior in Fig. 6(f) can be understood as follows. Let
us first fix a vacancy constraint v0 close to zero. Now, when
cS = cR, since the sink and relay nodes are identical in terms
of cost, it is optimal to go for an all-sink network design (so
that β∗ = 1) to achieve the required vacancy constraint of
v0; let us denote the corresponding value of λ∗ as λ0 (from
Fig. 6(f) we identify that λ0 = 3.45). For simplicity, define
β0 = 1. Now, as cS increases, the vacancy constraint of v0

can be maintained by
• either fixing (λ, β) at (λ0, β0) in which case the cost
cλ,β = λ0β0cS increases linearly with cS (in Fig. 6(f),
see the increasing portion of the curve cλ∗,β∗ ), or

• by optimally choosing a λ > λ0 and β < β0 (so that
relay nodes are introduced at the expense of increased
node density) in which case the cost cλ,β decreases with
cS (in Fig. 6(f), imagine the decreasing portion of the
curve cλ∗,β∗ extended to the range cS = 1 to 1.3).

The respective increasing and decreasing cost functions in-
tersect at cS = 1.3. Thus, the former option yields a lower
cost until cS = 1.3 (hence, vc = v0 ≈ 0 in this range since
β∗ = β0), while the latter option is optimal beyond cS = 1.3
(as a result, vc starts increasing since β∗ < 1 in this regime).

C. Hop-Constrained Vacancy

We resort to simulations to compute the hop-constrained
vacancies, vλ,β,h. These results are reported in Fig. 7(a) where,
for β = 0.1 and β = 0.5, vλ,β,h are shown as functions of
λ for different values of h (the arrowed lines in Fig. 7(a)
indicates the direction along which h increases). Also shown
in the figure are corresponding vacancy curves, vλ,β . As
expected we observe that as h increases the hop-constrained
curves, vλ,β,h, converge to the respective vacancy curves, vλ,β .
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However, the value of h for which good approximation to vλ,β
is achieved is larger for β = 0.1 than for β = 0.5 (h = 9
and h = 3, respectively). This is because, when β = 0.1
the successive sink nodes are farther apart so that a larger
value of h is required to completely cover the sink-containing
busy periods (which are always completely covered when h
is unconstrained).

In Fig. 7(b) and 7(c) we demonstrate the efficiency of
the approximations proposed in Section VI-B; these plots
correspond to µ = 4 (recall that µ denotes the density of
relay nodes). First, in Fig. 7(b) we depict coverage-increments
Gh as a function of the hop-count h. Also shown are the
approximations G

(α)

h and H
(α)

h for α = 0 and α = r.
Recall from Theorem 3 that G

(α)

h , evaluated at α = 0 and
α = r, respectively yield upper and lower bounds for the
true coverage-increment Gh. We find that the upper and
lower bounds coincide so well that these plots are practically
indistinguishable from the true Gh curve; we hence provide
an inset in Fig. 7(b) so that the all the curves are distinctly
emphasized. From Fig. 7(b) we also find that H

(α)

h , evaluated
at α = 0 and α = r, yield good upper and lower bound
approximations for Gh; this observation is in line with our
conjecture in Section VI-B (recall Conjecture VI-B).

In Fig. 7(c) we plot the average cluster-length, Ch, along
with the approximations C

(α)

h in (42) for different values of
α. The horizontal line in Fig. 7(c) corresponds to the uncon-
strained length of the cluster C∞ = C, whose expression is as
given in (25); note that Ch converges to C∞ as h increases.
While C

(α)

h , for α = 0 and α = r, serves as upper and lower
bounds (respectively) for Ch, a range of approximations that
lie between these two extremes are obtained by varying α; in
fact, C

(α)

h decreases with α. Interestingly, we find that C
(α)

h ,
evaluated at α = 0.5, yields a very good approximation for
the true cluster length Ch.

Remark: Regarding computational complexity, we would
like to note that determining exact cluster length Ch involves
computing the (recursive) integral expressions in (34) and
(35), which is intensive in general. In contrast, the approx-
imation C

(α)

h requires computing the simple (recursive) linear
expressions in (33), which involves only additions and multi-
plications. Thus, the approximation is far easier to compute.
However, we would like to note that determining the value of
the approximation parameter α that achieves the best cluster-
length approximation (i.e., C

(α)

h ≈ Ch) is not easy in general
(and is out of our current scope). This is primarily because
of the integral and the linear form expressions involved in
the computation of Ch and C

(α)

h , that prevents us from
establishing any form of relation between the two quantities.

Finally, in Fig. 8 we plot optimal cost as a function of
hop constraint (h) that is obtained by solving (via simulation
and numerical analysis) the following generalization of the
network optimization problem in (4):

Minimize(λ,β) cλ,β
Subject to vλ,β,h ≤ v and h ≤ h. (43)

In the above formulation, v denotes the vacancy constraint (as
before), while h is the hop constraint that could model delay
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Fig. 8. Optimal cost vs. hop constraint (h) for vacancy constraint v = 0.1.

constraints in applications that are sensitive to delays. The plot
in Fig. 8 corresponds to v = 0.1, while h is varied from 0 to
10; h =∞ simply corresponds to the unconstrained problem
in (4). The individual curves in Fig. 8 correspond to different
values of the sink cost cS . As in the case of unconstrained
optimization, we note that both the constraints in (43) are
met at the optimal (which follows from the form of vλ,β,h
in Fig. 7(a)).

From Fig. 8 we observe that the optimal cost does not vary
with h when the sink cost is comparable with that of relay’s
(see the plots corresponding to cS = cR and cS = 2cR). This
is essentially because, whenever cS ≈ cR, it is optimal to
adopt an all-infrastructure design (i.e., β∗ = 1), in which case
a location that is covered is also h-covered for any h ≥ 0. As a
result, the hop constraint in (43) would be rendered redundant.
In contrast, when the sinks are much more expensive than
relays, relaxing the hop constraint yields significant gains in
terms of cost reduction. For instance, when cS = 10cR, from
Fig. 8 we see that the optimal cost reduces (approximately)
from 11.5 to 7 when h is relaxed from 0 to 4, respectively. This
is because, higher hop-constraints can be met with reduced
sink and/or relay densities, thus yielding lower costs.

In summary, an infrastructure-based design (comprising
both sink and relays) is recommended whenever the appli-
cation under consideration (for which the network is being
planned) is delay-tolerant.

VIII. CONCLUSION

Motivated by the possibility of installed wireless networks
that would be readily available for deploying IoT applications,
we have studied a new class of coverage problems arising in
one-dimensional wireless networks comprising infrastructure
nodes whose coverage is extended by deploying some relay
nodes. A point is covered even if it is in range of a relay
node, which, in turn, is connected by a multihop path to an
infrastructure node.

For the proposed model, our theoretical contribution in-
cludes deriving a closed-form expression for average vacancy
(expression (19)). This result is a generalization of the clas-
sical expression for vacancy (i.e., vλ,1 = e−2λr) known for
traditional coverage processes. In addition to the above result,
we also derived bounds on the average vacancy. First, a
simple upper bound was obtained by introducing the notion
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of left-vacancy (Lemma 1). Then, via. an interesting coupling
argument we showed that the average vacancy created in an
alternate independent-disk model serves as a lower bound for
the vacancy in the proposed model (Theorem 2). We also
explored the problem of minimizing the average deployment
cost of the network subject to a constraint on the average
vacancy. We established interesting quasi-convexity results for
the proposed formulation (Lemma 3 and discussions therein).

On the numerical front, we first conducted experiments to
determine the efficacy of the theoretical bounds (Fig. 6(a));
specifically, we found that the upper bound (respectively
lower bound) serves as a good approximation for average
vacancy at low (respectively high) sink densities. For the
network optimization problem we find that there exists a
threshold on the vacancy constraint such that below the
threshold an infrastructure-based design (comprising both sink
and relay nodes) is optimal while above the threshold an all-
infrastructure design (comprising only sink nodes) suffices
(Fig. 6(d)-(f)). Finally, we introduced a generalized notion
of hop-constrained coverage; easy-to-compute approximations
for the cluster-lengths (i.e., length of the coverage region
around a sink node) were proposed (expression (33)), whose
efficacy was validated numerically. Through a hop-constrained
cost optimization framework we demonstrate the gains that
can be achieved by the infrastructure-based design, particular
when the network application can tolerate some delay (Fig. 8).
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SUPPLEMENTARY MATERIAL

A. Expressions for p, Q and Q

Recall that p = P(Sck), Q = E[Bk|Sck], and Q = E[Bk|Sk],
where Sk is the event that the k-th connected component
contains a sink, and Sck is the complement of Sk. Thus, p
is the probability that the k-th connected component does not
contain a sink, while Q (respectively, Q) is the expected length
of the k-th busy period conditioned on Sck (respectively, Sk).

Let Nk denote the number of nodes in the k-th busy period.
Note that Nk is a geometric random variable with success
probability e−λr (which is the probability that the region of
length r towards the right of the Nk-th node is empty, thus
terminating the busy period). Conditioning on (Nk = n) we
can write

p =

∞∑
n=1

P(Nk = n) P(Sck|Nk = n)

=

∞∑
n=1

(1− e−λr)n−1 e−λr (1− β)n

= (1− β)e−λr
∞∑
n=1

[(1− e−λr)(1− β)]n−1

=
(1− β)e−λr

β + e−λr − βe−λr
. (44)

Computation of Q is along similar lines, although it is more
involved. Denoting Qn := E[Bk|Sck, N = n], we have

Q =

∞∑
n=1

P(Nk = n|Sck)Qn

=
1

p

∞∑
n=1

P(Nk = n)P(Sck|Nk = n)Qn (45)

Now, let Di, i = 1, · · ·Nk−1, denote the distance between the
i-th and (i+1)-th node in the k-th connected component. Note
that, {Di} are i.i.d. exponentially distributed random variables
of rate λ. Hence, we can write

Qn = E

[
Nk−1∑
i=1

Di + r

∣∣∣∣∣Sck, Nk = n

]
= (n− 1)D + r (46)

where

D = E
[
D1

∣∣∣D1 ≤ r
]

=
(1− e−λr − λre−λr)

λ(1− e−λr)
. (47)

Substituting (46) in (45) and simplifying we obtain

Q =
p(1− e−λr)

e−λr
D + r

=
p(1− e−λr)
λe−λr

+ (1− p)r.

Recalling the expression for E[Bk] from (6), we have

Q = pE[Bk] + (1− p)r. (48)

Finally, Q can be obtained using the total expectation identity:

E[Bk] = P(Sk)E[Bk|Sk] + P(Sck)E[Bk|Sck]

= (1− p)Q+ pQ

so that we have

Q =
E[Bk]− pQ

(1− p)
. (49)

Discussion: Since E[Bk] ≥ r, from (48) we see that Q ≤
E[Bk], which implies that Q ≥ E[Bk]. Thus, the busy periods
not containing sink nodes are shorter in length than the busy
periods containing sink nodes. Indeed, as β → 1, from (44)
we see that p → 0, yielding Q → r and Q → E[Bk]. Thus,
as β approaches 1, the busy periods not containing sink nodes
are essentially the ones consisting of an isolated relay node
(thus, Q ≈ r), while the regular busy periods always contain
sink nodes (so that, Q ≈ E[Bk]).

B. Proof of Lemma 3

Proof of Part (a): The partial derivatives of vλ,β w.r.t λ
and β, respectively, are given by

∂vλ,β
∂λ

=
−2βreλr(

1− β + βeλr
)3

∂vλ,β
∂β

=
−2
(
eλr − 1

)
(

1− β + βeλr
)3 .

The result follows by noting that the above partial derivatives
are strictly negative for any λ > 0 and β ∈ (0, 1].

Proof of Part (b): To demonstrate that vλ,β is non-
convex we simply exhibit a (λ1, β1) and a (λ2, β2) along
with a θ ∈ [0, 1] such that θvλ1,β1

+ (1 − θ)vλ2,β2
< vλ̄,β̄

(where (λ̄, β̄) = θ(λ1, β1) + (1 − θ)(λ2, β2)), thus defying
the condition necessary for convexity [26]. For instance, let
λ1 = 0.1, λ2 = 3.5 and β1 = β2 = 0.01. Then, for θ = 0.5
(with r = 16), we obtain vλ1,β1

= 0.99, vλ2,β2
= 0.57 and

vλ̄,β̄ = 0.90, while θvλ1,β1 + (1− θ)vλ2,β2 = 0.78 < vλ̄,β̄ .
Similarly, to show non-concavity, consider λ1 = 4, λ2 = 6

and β1 = β2 = 0.01. Then, again for θ = 0.5 (with r = 1),
we obtain vλ1,β1

= 0.42, vλ2,β2
= 0.04, and vλ̄,β̄ = 0.16

while θvλ1,β1
+ (1− θ)vλ2,β2

= 0.23 > vλ̄,β̄ , thus defying the
condition necessary for concavity [26].

See Fig. 9(a) for an illustration of the non-convexity and
non-concavity behavior of the vacancy function vλ,β around
the above considered values.

Proof of Part (c): In order to prove quasi-convexity we
will show that the sub-level set Cα = {(λ, β) : vλ,β ≤ α},
where α ∈ (0, 1], is convex7. For this, we first express the level
set {(λ, β) : vλ,β = α} as the graph {(λ(β), β) : vλ(β),β =
α}. Solving for λ from the equation vλ,β = α we have

λ(β) =
1

r
ln

(
1 +

α̃

β

)
where α̃ = 1−

√
α√
α

> 0. Since the second-derivative

λ′′(β) =
α̃(α̃+ 2β)

rβ2(α̃+ β)2
> 0 for all β ∈ (0, 1]

6For simplicity, we fix r = 1. Note that, similar instances can be exhibited
for other values of r as well.

7For α > 1, Cα = {(λ, β) : λ > 0, β ∈ (0, 1]} is readily convex. Hence,
we only consider the case α ∈ (0, 1].
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(a) (b) (c)

Fig. 9. Illustrations supporting the details in the proof of Lemma 3. (a) Non-convex and non-concave behavior of the average vacancy function vλ,β ; (b)
Level curves λ(β) of the function vλ,β . The shaded region represents the epigraph of the level curve corresponding to α = 0.1, which is shown to be equal
to the sub-level set C0.1. (c) Illustration depicting the non-concave nature of the vacancy function vλ,β .

it follows that λ(β) is strictly convex (see Fig. 9(b)). Hence,
the epigraph of the function λ, given by

Epi(λ) = {(t, β) : β ∈ (0, 1], λ(β) ≤ t}

is convex [26]. Finally, since vλ,β is decreasing in λ (recall
Part (a)), it follows that Cα = Epi(λ), thus completing the
proof of quasi-convexity.

To show that vλ,β is not quasi-concave, consider the fol-
lowing points: (λ1, β1) = (0.1, 0.5) and (λ2, β2) = (1, 0.1).
Then, for θ = 0.3 (with r = 1) we obtain vλ1,β1

= 0.90
and vλ2,β2

= 0.73 while vλ̄,β̄ = 0.65 < min{vλ1,β1
, vλ2,β2

},
thus defying the condition necessary for quasi-concavity. The
above non-quasi-concave behavior is depicted in Fig 9(c).

C. Proof of Theorem 2

Proof: Let {Yk : k ≥ 1} be the locations of the sink
nodes in the independent-disk model. Thus, the sink node
locations are coupled in both models. We will use Ûk and V̂k,
respectively, to denote the lengths of the coverage disk towards
the right and left of Yk in the independent-disk model. Thus,
Ŵk := [Yk − V̂k, Yk + Ûk] is the coverage disk around Yk
in the independent-disk model. These quantities are iteratively
obtained as follows.

Define k1 = 1. Let Ûk1 = Uk1 and V̂k1 = Vk1 . Thus, we
have Ŵk1 = Wk1 . Define T1 := Yk1 + Ûk1 . Note that, given
the sequence {Yk}, T1 is a stopping time for Λ, i.e., {T1 ≤ t}
depends only on the process {Λ([0, τ ]) : τ ≤ t}. Thus, the
process, Λ′ := {Λ([T1, T1 +t]) : t ≥ 0} is a one-sided Poisson
process of rate (1− β)λ, independent of (V̂k1 , Ûk1).

Let Ω1 denote a Poisson process on < of rate (1−β)λ, that
is independent of Λ. Construct a new point process, Λ1, by
concatenating the points of Ω1 and Λ as follows:

Λ1([a, b]) =

 Ω1([a, b]) if b ≤ T1

Λ([a, b]) if a ≥ T1

Ω1([a, T1]) + Λ((T1, b]) otherwise.
(50)

It follows that Λ1 is also a Poisson process of rate (1−β)λ [27,
Section 3.3]. Further, Λ1 is independent of (V̂k1 , Ûk1) (since
Λ′ and Ω1 are independent of (V̂k1 , Ûk1)).

Now, define k2 = min{k > k1 : Yk > T1 − r}. Using
the points of Λ1 as the location of the relay nodes, obtain
the coverage disk, Ŵk2 := [Yk2 − V̂k2 , Y2 + Ûk2 ], where V̂k2
and Ûk2 denote the disk’s length towards the left and right
of Yk2 , respectively. (V̂k2 , Ûk2) is independent and identically
distributed as (V̂k1 , Ûk1), since the process Λ1 is independent
of the latter. In the following we will show that

k2⋃
k=1

Wk ⊆ Ŵk1 ∪ Ŵk2 . (51)

First, recalling the definition of k2, note that we have Yk1 ≤
Yk ≤ T1 − r, for all k1 < k < k2. Thus, Yk is surrounded
by the same set of relay nodes that determine Uk1 . Hence,
Uk satisfies, Yk + Uk = Yk1 + Uk1 . On the other hand, there
are two cases possible for Vk: (i) Yk − Vk > Yk1 − Vk1 , if
the connectivity between the relay nodes on either side of
Yk1 is affected after removing Yk1 ; otherwise (ii) Yk − Vk =
Yk1−Vk1 . In general, Vk satisfies, Yk−Vk ≥ Yk1−Vk1 . Thus,
we have

Wk ⊆ Wk1 = Ŵk1 , for all k1 < k < k2. (52)

Next, we proceed to characterize the coverage disk around
Yk2 . We need to consider two cases: (i) Yk2 ∈ (T1 − r, T1)
and (ii) Yk2 ≥ T1.

Case-(i): If Uk2 = r (implying Λ([Yk2 , Yk2 + r]) = 0) then
Ûk2 ≥ Uk2 . This is because, if Ω1([Yk2 , T1]) > 0 then it is
possible that a point of Ω1 in [Yk2 , T1] is connected to a point
of Λ in [Yk2 + r,∞), thus extending the right coverage disk
of Yk2 in the independent-disk model. On the other hand, if
Uk2 > r then Ûk2 = Uk2 , since in both models these quantities
are determined by the points of Λ in [T1,∞). Thus, in general,
we have

[Yk2 , Yk2 + Uk2 ] ⊆ [Yk2 , Yk2 + Ûk2 ] ⊆ Ŵk2 . (53)

Recalling the argument used for Vk (k1 < k < k2), we
have, Yk2 − Vk2 ≥ Yk1 − Vk1 , so that

[Yk2 − Vk2 , Yk2 ] ⊆ Wk1 = Ŵk1 . (54)

Combining (53) and (54) we see that, Wk2 ⊆ Ŵk1 ∪ Ŵk2 .
Using the above along with (52), we obtain (51).
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f
(α)
G`

(x) =


fG`−1

(x)−
`−2∑

k=2,4,···
θ

(`−2)−k
2

α

(
µrfGk(x)− fGk−1

(x)
)
e−µr − θ(

`
2−1)

α µe−µr if ` is even

fG`−1
(x)−

`−2∑
k=3,5,···

θ
b (`−2)−k

2 c
α

(
µrfGk(x)− fGk−1

(x)
)
e−µr − θb

`
2−1c

α µxe−µrfG1
(x) if ` is odd

(57)

Case-(ii): Recall that this case corresponds to Yk2 ≥ T1.
Since Λ1 = Λ in [T1,∞), Uk2 and Ûk2 are obtained using
the same Poisson points of relay nodes. Hence, we readily
have Ûk2 = Uk2 . To obtain V̂k2 , note that Vk2 satisfies Yk2 −
Vk2 > T1 − r (since Λ([T1 − r, T1]) = 0). If Yk2 − Vk2 > T1

then V̂k2 = Vk2 since Λ1 = Λ on (T1, Yk2 ]. In contrast, if
Yk2 − Vk2 ∈ (T1 − r, T1] then V̂k2 ≥ Vk2 since it is possible
that a point of Ω1 in (T1− r, T1] is connected to a point of Λ
in (T1,∞) so that the left coverage disk of Yk2 gets extended
in the independent-disk model. Thus, we have

Wk2 ⊆ Ŵk2 . (55)

Combining (52) and (55) we see that (51) is satisfied for case-
(ii) as well.

We complete the proof through an induction argument.
Suppose for some n ≥ 2 we have inductively obtained
i.i.d. coverage disks, Ŵkm = [Ykm − V̂km , Ykm + Ûkm ], for
m = 1, 2, · · · , n, satisfying,

kn⋃
k=1

Wk ⊆
n⋃

m=1

Ŵkm . (56)

Define Tk = Ykn + Ûkn and kn+1 = min{k > kn : Yk >
Tk − r}. Let Ωk be a Poisson process of rate (1 − β)λ,
independent of Λ and Ωm,m = 1, 2, · · · , k − 1. Analogous
to the construction of Λ1 in (50), obtain the Poisson process
Λk by concatenating the processes Ωk and Λ at Tk. Since Tk
is a stopping time for Λ, it follows that Λk is independent
of Ŵkm ,m = 1, 2 · · · , n. Using the points of Λk as the
location of the relay nodes, we can obtain i.i.d. coverage disk,
Ŵkn+1 = [Ykn+1 − V̂kn+1 , Ykn+1 + Ûkn+1 ], around Ykn+1 .

Now, for all k such that kn < k < kn+1 we have Ykn ≤
Yk ≤ Tk−r. Hence, as in n = 2 case, Uk and Vk, respectively,
satisfies Yk+Uk = Ykn +Ukn and Yk−Vk ≥ Ykn−Vkn , thus
yielding,

Wk ⊆ Wkn , for all kn < k < kn+1. (58)

Again, using the arguments analogous to the n = 2 case, we
can show that Wkn+1 satisfies,

Wkn+1 ⊆


n+1⋃
m=1
Ŵkm if Ykn+1 ∈ (Tk − r, Tk)

Ŵkn+1 if Ykn+1 ≥ Tk.

(59)

Using (56), (58) and (59) we finally obtain,

kn+1⋃
k=1

Wk ⊆
n+1⋃
m=1

Ŵkm

thus completing the induction argument.

D. Proof of Theorem 3

Proof: We will first show that the result holds for ` = 2.
In order to compute G2, we require the conditional density
of G2 given G1. In general, for ` ≥ 2, using Ph,y to denote
the probability measure conditioned on {G`−1 = y} (where
y ∈ [0, r]), we have

Ph,y(G` ≤ x) =

{
e−µy if x ≤ r − y
e−µ(r−x) if x ∈ [r − y, r]

Thus, the conditional density of G` given G`−1, denoted
fG`|G`−1

(·|·), can be written as

fG`|G`−1
(x|y) =

{
µe−µ(r−x) for x ∈ [r − y, r]
0 otherwise.

(60)

Note that the conditional density does not depend on the index
`. Also, from (31) observe that fG`|G`−1

(x|y) = fG1(x).
These observations will be useful in our subsequent devel-
opment.

Now, using the conditional density fG`|G`−1
, the density

function of G` can be computed as follows:

fG`(x) =

∫ r

0

fG`−1
(y)fG`|G`−1

(x|y)dy

=

∫ r

r−x
fG`−1

(y)fG1
(x)dy. (61)

Simplifying the above expression for h = 2 we obtain,

fG2(x) = fG1(x)− µe−µr. (62)

Thus, G2 = E[G2] is given by

G2 = G1 −
µr2

2
e−µr. (63)

Similarly, for ` = 3 we have

fG3
(x) =

∫ r

0

fG2
(y)fG2|G1

(x|y)dy

=

∫ r

r−x

(
fG1

(y)− µe−µr
)
fG1

(x)dy

=

∫ r

r−x
fG1

(y)fG1
(x)dy −

∫ r

r−x
µe−µrfG1

(x)dy

= fG2
(x)− µxe−µrfG1

(x) (64)

where the last equality is obtained using (61) with ` = 2. The
expectation of G3 is thus given by

G3 = G2 − µG1e
−µr. (65)

Comparing (63) and (65) with the expression for G
(α)

2 and
G

(α)

3 in (37) and (38), respectively, we see that (39) and (40)
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trivially holds for ` = 2, 3. We will complete the proof by
induction. Suppose for some ` ≥ 2 we have, for all x ∈ [0, r],

f
(r)
G`

(x) ≤ fG`(x) ≤ f (0)
G`

(x) (66)

f
(r)
G`

(x) ≤ f (α)
G`

(x) ≤ f (0)
G`

(x) (67)

where f (α)
G`

(x) is defined as in (57).
Expressions (66) and (67) are the induction hypothesis. Note

that, since ∫ r

0

xf
(α)
G`

(x)dx = G
(α)

`

(66) and (67) implies the results in (39) and (40), respectively
(thus, we are assuming a stronger induction hypothesis). Also,
from (62) and (64) observe that (66) and (67) already holds
for ` = 2, 3.

First, let us consider the case where ` is even. Then, since
fG`|G`−1

(x|y) = fG1
(x) (recall the discussion following (60))

and
∫ r
r−x fGk(y)fG1

(x)dy = fGk+1
(see (61)), we obtain∫ r

0

f
(α)
G`

(y)fG1
(x)dy = f

(α)
G`+1

(x).

The above expression, along with the induction hypothesis,
can be used to show that the inequalities in (66) and (67) hold
for `+ 1.

Next, suppose ` is odd, then
∫ r
r−x f

(α)
G`

(y)fG1
(x)dy will

involve an integral term of the form

g(α)(x) := cα

∫ r

r−x
µye−µrfG1

(y)fG1
(x)dy

where for simplicity we have let cα := θ
b `2−1c
α . The above

expression can be simplified to yield

g(α)(x) = cα

(
µrfG2

(x)− fG1
(x)
)
e−µr + cαθxµe

−µr.

For α = 0 and α = r, respectively, replacing θx in the RHS
of the above expression by θα, we obtain

g(r)(x) ≤ cr

(
µrfG2(x)− fG1(x)

)
e−µr + crθrµe

−µr

g(0)(x) ≥ c0

(
µrfG2

(x)− fG1
(x)
)
e−µr + c0θ0µe

−µr.

Using the above inequalities, along with (66), we obtain

f
(r)
G`+1

(x) ≤
∫ r

r−x
f

(r)
G`

(y)fG1
(x)dy

≤
∫ r

r−x
fG`(y)fG1

(x)dy

= fG`+1
(x)

≤
∫ r

r−x
f

(0)
G`

(y)fG1
(x)dy

≤ f
(0)
G`+1

(x).

Finally, since θ0 ≤ θα ≤ θr, from (67) it follows that
f

(r)
G`+1

(x) ≤ f (α)
G`+1

(x) ≤ f (0)
G`+1

(x).

E. Properties of the Cost Function

Recall the expression for the cost function:

cλ,β = λβcS + λ(1− β)cR

= λβ(cS − cR) + λcR (68)

where cS and cR are the cost of the sink and relay nodes, re-
spectively. Note that, we assume cS > cR. Although convexity
and quasi-convexity results for the form of expression in (68)
is well known [26], we formally report these results here for
completeness.

Lemma 6: (a) cλ,β is neither convex nor concave.
(b) cλ,β is not quasi-convex but is quasi-concave.

Proof of Part (a): The Hessian matrix of the cost function
in (68) can be written as

∇2cλ,β =

[
0 (cS − cR)

(cS − cR) 0

]
.

Now the result follows since the above matrix is neither
positive semidefinite nor negative semidefinite.

Proof of Part (b): To show that cλ,β is not quasi-
convex, consider the following points: (λ1, β1) = (0.1, 1) and
(λ2, β2) = (1, 0.1). Then, with cS = 4 and cR = 1, we
have vλ1,β1

= 0.4 and vλ2,β2
= 1.3, while for θ = 0.3 we

obtain vλ̄,β̄ = 1.54 > max{vλ1,β1 , vλ2,β2} where (λ̄, β̄) =
θ(λ1, β1) + (1 − θ)(λ2, β2). The above inequality defies the
condition that is necessary for quasi-convexity.

To prove quasi-concavity, we invoke the first-order condi-
tion [26] which states that cλ,β is quasi-concave iff

cλ2,β2
≥ cλ1,β1

=⇒ 〈∇cλ1,β1
, (λ2, β2)− (λ1, β1)〉 ≥ 0 (69)

where ∇cλ1,β1
denotes the gradient of cλ,β evaluated at

(λ1, β1) while 〈·, ·〉 represents inner product. The second
inequality in (69) can be simplified to obtain:

∆cβ1(λ2 − λ1) ≥ ∆cλ1(β1 − β2) + cR(λ1 − λ2) (70)

where, ∆c = (cS − cR). Similarly, subtracting δcλ1β2 from
both sides of the first inequality in (69) and simplifying yields

∆cβ2(λ2 − λ1) ≥ ∆cλ1(β1 − β2) + cR(λ1 − λ2). (71)

Three cases are possible depending on the relative values
of β1 and β2. (Case-1) If β1 = β2 then (71) trivially implies
(70). (Case-2) Suppose β1 > β2 then invariably it should be
that λ1 < λ2 (otherwise the hypothesis (71) will be violated)
so that the LHS of (71) is positive; β2 in the LHS can hence be
replaced by β1 > β2, yielding (70). (Case-3) Finally, suppose
β1 < β2 then the following two sub-cases are possible:
• If λ1 ≤ λ2 then the LHS of (71) is non-negative while

the RHS is strictly negative. Thus, β2 in the LHS of (71)
can be replaced by β1 to yield (70).

• On the other hand, if λ1 > λ2 then both the LHS and the
RHS of (71) are negative. Thus, β2 in the LHS of (71)
can again be replaced by β1 < β2 to obtain (70).

We have thus shown that (69) holds. The first-order condi-
tion then implies that cλ,β is quasi-concave.
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