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Abstract—We study the trade-off between delivery delay and
energy consumption in delay tolerant mobile wireless networks
that use two-hop relaying. The source may not have perfect
knowledge of the delivery status at every instant. We formulate
the problem as a stochastic control problem with partial infor-
mation, and study structural properties of the optimal policy.
We also propose a simple suboptimal policy. We then compare
the performance of the suboptimal policy against that of the
optimal control with perfect information. These are bounds on
the performance of the proposed policy with partial information.
Several other related open loop policies are also compared with
these bounds.

I. INTRODUCTION

During the last few years, there has been a growing interest

in delay tolerant networks (DTNs) [6]. DTNs are sparse

wireless ad hoc networks with highly mobile nodes. In these

networks, the link between two nodes is up when these are

within each other’s transmission range, and is down otherwise.

In particular, there is no complete route between a source and

its destination, most of the time.

In such networks, a common technique to improve packet

delivery delay is to disseminate the packet to multiple nodes in

the network. In particular, any node that has the packet copies

it to another node arriving within its communication range

provided the receiving node does not already have the packet.

The new node also buffers the packet and acts in the same

way. The destination receives the packet when it meets any

of the nodes carrying the packet. This “store-carry-forward”

paradigm is referred to as epidemic routing [14]. Epidemic

routing reduces the delivery delay at the cost of inefficient

use of network resources such as buffer space, bandwidth and

node energy. A variation of epidemic routing that exploits the

trade-off between delivery delay and resource consumption is

two-hop relaying [8]. The source copies the packet to any node

that it encounters, and that does not yet have a copy of the

packet, but the relays are allowed to transmit the packet only

to the destination.

These protocols need to be combined with a so-called

“recovery process” that deletes copies of the packet at the

nodes carrying it, following its successful delivery to the

destination. The packet is deleted to free the buffer and prevent

the node from copying it to another node that it meets. On

the other hand, a node retains “packet delivered” information

in the form of an anti-packet that prevents it from accepting

another copy of the same packet. Haas and Small [9] suggest

the following recovery schemes.

• immune: An anti-packet is created at a node only after

it meets the destination (and delivers the packet, if the

destination did not receive it before).

• immune tx: A node carrying an anti-packet transmits it

to another node that is carrying the associated obsolete

packet to let that node know of packet delivery.

• vaccine: A node carrying an anti-packet forwards it to all

other nodes.

In this work we focus on a scenario where a packet needs

to be delivered from a source to a destination, over a DTN.

There are also other nodes that can work as potential relays.

All nodes are mobile. However, relays do not interact with

each other. The two-hop relaying protocol is employed. At

each meeting with a relay that does not have a copy of the

packet, the source has the option of either copying or not

copying. When the destination meets the source or a relay

that carries the packet, then the packet is delivered. We assume

an enhanced version of “immune” recovery scheme in which

the source can know of packet delivery via meeting either

the destination or a relay with the anti-packet. Copying the

packet to relays incurs a transmission cost, but on the other

hand increases the number of carriers of the packet, leading to

faster delivery. We focus on the problem of optimal control of

relaying. Note that copying results in wastage of resources if

the packet is already delivered to the destination. However,

knowledge of packet delivery is constrained by the same

limited connectivity that constrains packet delivery. In such

a scenario, the source’s decision depends upon its belief about

the status of delivery. The source updates its belief continu-

ously with time, and also after each meeting with another node.

We formulate the problem as a partially observable Markov

decision process (POMDP) [4], and characterize the optimal

policy. We also propose a simple suboptimal policy.

Related work: Groenevelt et al. [7] model epidemic relaying

and two-hop relaying using Markov chains, and derive the

average delay and number of copies generated until the time

of delivery. Hanbali et al. [10] extend the analysis of two-hop

relaying to the case where there is an exponential time-to-live

timer at each relay. They also consider a limit on the maximum

number of transmissions by the source. Zhang et al. [16]

WiOpt 2010

256



develop a unified framework based on ordinary differential

equations to study epidemic routing and its variants. Their

models incorporate various recovery schemes as well.

Altman et al. [2] address the optimal relaying problem for

a class of monotone relay strategies which includes epidemic

relaying and two-hop relaying. In particular, they derive static

and dynamic relaying policies. Altman et al. [3] consider

optimal discrete-time two-hop relaying. They also employ

stochastic approximation to facilitate online estimation of net-

work parameters. In another paper, Altman et al. [1] consider a

scenario where active nodes in the network continuously spend

energy while beaconing. Their paper studies the joint problem

of node activation and transmission power control. All these

works use fluid approximations to model DTNs and study only

open loop controls. Consequently, none of them incorporates

the effect of recovery schemes on network performance.

To our knowledge, the only work to have studied closed loop

control of optimal relaying in DTNs, is Neglia and Zhang [12]:

the optimal policy is a threshold on the number of copies in the

network. They demonstrate that open loop policies are indeed

inefficient. However, they assume that all the nodes know the

number of copies in the network at all times. Moreover, they

are informed instantaneously if the destination has received

the packet. Thus the performance reported in [12] is a lower

bound for the cost in a real system. One simplification due to

the assumption of complete information is that the recovery

scheme is immaterial.

Our Contributions: We formulate the controlled forwarding

problem as a POMDP (Section III), and derive monotonicity

results for the value function (Theorem 3.1) and the optimal

policy (Theorem 3.2). Next we study a modified control

problem that explicitly gives a suboptimal policy for the

original problem (Theorem 4.1). Numerical results show that

the suboptimal control performs close to optimal control with

complete information, and outperforms the open loop control.

II. SYSTEM MODEL

We consider a set of N + 1 mobile nodes. These include a

source, a destination and N − 1 other nodes that act as relays.

At t = 0, a single packet is generated at the source node and is

destined to the destination node. Let N = {1, 2, . . . , N − 1} be

the indexed set of relays. The index of the destination node is

N . Two nodes may communicate only when they come within

transmission range of each other, i.e., at the so called meeting

instants.

As is customary in this field (see e.g., [9], [16]), the

terminology relating to the spread of infectious diseases is

used to describe the state of a node. A relay is susceptible

until it receives a copy of the packet from the source. A node

with a copy of the packet is said to be infected. Once a relay

delivers the packet to the destination or comes to know of the

packet delivery by some means, it deletes the packet from its

own buffer. Such a relay is said to have recovered.

1) Mobility Model: We model the point process of the

meeting instants between pairs of nodes as independent Pois-

son point processes, each with rate λ. Groenevelt et al. [7]

validate this model for common mobility models, e.g., random

walker, random direction and random waypoint. In particular,

they establish its accuracy under the assumptions of small

communication range and sufficiently high speed of nodes.

2) Energy model: We assume that that each transmission

incurs a unit energy expenditure at the transmitter.

3) Routing Protocol: As stated before, the two-hop relay

protocol is assumed. We also assume an enhanced version of

“immune” recovery scheme in which the source can know of

packet delivery either via meeting the destination or a relay

with the anti-packet. Transmissions between two nodes are

assumed to be instantaneous.

III. THE OPTIMAL FORWARDING PROBLEM

At each meeting epoch with a susceptible relay, the source

needs to decide whether to copy the packet or not. Copying

the packet incurs unit cost, but promotes early delivery of the

packet to the destination. Thus, there is a trade-off, and we

wish to determine the optimal copying policy of the source.

The objective is to minimize

E{Td + ηEc}, (1)

where Td is the delay in delivery of the packet to the destina-

tion, Ec is the total energy consumption due to transmissions

of copies of the packet, and η is the parameter that relates

energy consumption to delay. Varying η facilitates studying

the trade-off between the above two quantities.

A. The MDP Formulation

Let Tk, k = 1, 2, . . . denote the meeting epochs of the

source node with other (destination or relay) nodes; T0 := 0.

Thus Tk, k = 1, 2, . . . are obtained as the superposition of N

independent Poisson processes, each of rate λ, and hence are

the points of a rate Nλ Poisson process.

Let M(t) be the set of relays that received copies of the

packet in [0, t], i.e., are either infected or recovered, and

R(t) be the set of recovered relays at time t. We use Mk

and Rk to mean M(Tk−) and R(Tk−) respectively. We also

define Mk := |Mk|, and Rk := |Rk|. Without any loss

of generality we assume that Mk = {1, . . . , Mk} whenever

it is nonempty. Then Mk suffices to describe the set Mk.

Let Ik and Sk describe respectively, the index and the state

of the relay that the source meets at Tk; Ik ∈ {1, . . . , N},

and Sk ∈ S := {s, i, r, d} where s, i, r stand for susceptible,

infected, and recovered relays respectively and d stands for

the destination.

The state of the system at meeting epoch Tk is given by the

tuple

X̄k := (Mk,Rk, Sk).

Let us also introduce a terminal state τ ; the system enters τ

when the source meets either a recovered node or the destina-

tion. We also define N̄ := {0, 1, 2, . . . , N − 1}. The state space

then is a subset of (N̄ ×2N ×S)∪{τ}. In particular the system

never encounters the set of states {(Mk,Rk, Sk) : Sk ∈ {r, d}},

and Rk ⊂ {1, . . . , Mk}.
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The control space is U ∈ {0, 1}, where 1 is for copy and 0

is for do not copy. Let Uk be the action of the source node at

meeting epoch Tk, k = 1, 2, . . . .

Define ∆k := Tk − Tk−1. Thus ∆k is exponentially dis-

tributed with parameter Nλ. To take into account the random

meetings between relays and the destination during ∆k, we

define another random variable Zk := (Dk,Vk). Dk is the

minimum of ∆k and the packet delivery delay beginning from

Tk−1, and thus is 0 if Rk−1 > 0. Vk, on the other hand, is

the set of relays that recover during [Tk−1, Tk). The above

embedding convention is shown in Figure 1. We treat the tuple

  

Tk−1 Tk Tk+1

Uk+1UkUk−1

Ik−1 Ik Ik+1

Sk−1 Sk Sk+1

∆k+1∆k

Mk−1

Rk−1

Mk

Rk

Mk+1

Rk+1

Fig. 1. Diagram showing the embedding convention.

(∆k+1, Zk+1, Ik+1, Sk+1) as the random disturbance at epoch

Tk; this along with the state X̄k and the action Uk determines

the single stage cost and the next state as given below. While

∆k+1 and Ik+1 are clearly independent of the current state and

the action, distributions of Zk+1 and Sk+1 depend on X̄k, Uk

and ∆k+1.

1) Transition structure: From the description of the system

model,

X̄k+1 = τ, if Sk+1 ∈ {r, d}.

Let us define Ck = Uk1{Sk=s}, i.e., Ck = 1 if and only if

a copy is actually made. Then, for t ∈ [Tk, Tk+1), M(t) =

Mk ∪ {Ik} if Ck = 1 and remains unchanged otherwise.1 In

particular,

Mk+1 = Mk + Ck. (2)

Also,

Rk+1 = Rk ∪ Vk+1, (3)

and Sk+1 is a component in the random disturbance. All these

show that the next state is indeed a function of the current

state, the current action and the current disturbance.

2) Cost Structure: The single stage cost is given by

ḡ(X̄k , Uk, ∆k+1, Zk+1, Ik+1, Sk+1) = ηCk + Dk+1.

The two terms in the right hand side account for energy

consumption and delivery delay respectively. The terminal cost

ḡ(τ ) = 0.

1Again a reindexing of nodes makes Mk ∪ {Ik} = {1, . . . , Mk + 1}.

B. The POMDP Formulation

In reality, knowledge of packet delivery to destination, and

hence of R(t), is constrained by the same limited connectivity

that constrains packet delivery. Hence we develop the problem

in a partially observable Markov decision process (POMDP)

framework. At the kth meeting epoch, the source has access to

observation (∆k, Ik, Sk). Let us denote by Hk the information

available to the controller at epoch Tk. We have

Hk = (∆1, . . . , ∆k, I1, . . . , Ik, S1, . . . , Sk, U1, . . . , Uk−1),

where ∆1 = T1. Clearly,

Hk+1 = (Hk, Uk, ∆k+1, Ik+1, Sk+1), k = 0, 1, . . .

We also define the partial history

H(k+1)− = (Hk, Uk, ∆k+1).

Considering a new system with state Hk at epoch Tk,

we thus get a completely observable Markov decision pro-

cess (COMDP) equivalent of the original POMDP. Following

the discussion in [4, Section 5.4], we can make the routine

conclusion that (Mk, P (Rk|Hk), Sk) are sufficient statistics

for the POMDP problem, where P (Rk|Hk) is the probabil-

ity that the subset Rk of {1, . . . , Mk} has recovered. Note

that Mk is known to the source, Sk is observed, and the

only part of state X̄k that is not observable is Rk. The

lack of interaction between relays in our model implies the

tremendous simplification that the recovery processes of relays

are independent, i.e., if we define vector Ψk as Ψk,j :=

1 − P (the state of relay j is r|Hk), then

P (Rk|Hk) =
Y

j∈Rk

(1 − Ψk,j)
Y

j /∈Rk

Ψk,j .

Hence we formulate a new COMDP whose state at epoch Tk is

Xk = (Mk, Ψk, Sk). As before the system enters the terminal

state τ when the source meets either a recovered relay or the

destination. The state space now is a subset of (N̄ × [0, 1]N ×

S) ∪ {τ}. In particular Ψk ∈ Θ(Mk) where Θ(M) := {Ψ ∈

[0, 1]N : Ψj = 1 for all j > M}, and Sk ∈ {s, i} as before.
1) Transition Structure: Clearly

Xk+1 = τ, if Sk+1 ∈ {r, d}.

If Sk+1 ∈ {s, i}, the controlled Markov process evolves as

follows. Mk+1 is obtained according to (2). In the interval

[Tk, Tk+1), R(t) is a pure birth continuous time Markov chain,

whose evolution is governed by the mobility of infected nodes

and the destination. In particular, the conditional distributions

of relays’ states at t = T(k+1)−, denoted by vector Ψ(k+1)−,

are obtained as

Ψ(k+1)−,j = 1 − P (the state of relay j is r|H(k+1)−)

=

(

Ψk,j exp(−λ∆k+1) if j ∈ Mk+1,

1 otherwise.

Finally, Ψ(k+1)− is updated immediately after observing Ik+1

and Sk+1 as follows. For Ik+1 = j, Sk+1 ∈ {s, i},

Ψk+1,l =

(

1 if l = j,

Ψ(k+1)−,l otherwise.
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J(X)

= min
n

Q

j∈N Ψj

(M + N)λ
+ E∆′

n

P (I ′ /∈ M|X, 0, ∆′)J(M, ΨM , s) +
X

j∈M

P (I ′ = j, S′ = i|X, 0, ∆′)J(M, ΨM,j , i)
o

,

ηC +

Q

j∈N Ψj

(M + C + N)λ
+ E∆′

n

P (I ′ /∈ M∪ C|X, 1, ∆′)J(M + C, ΨM+C , s)

+
X

j∈M∪C

P (I ′ = j, S′ = i|X, 1, ∆′)J(M + C, ΨM+C,j , i)
o

,

= min
n

Q

j∈N Ψj

(M + N)λ
+ E∆′

nN − 1 − M

N
J(M, ΨM , s) +

X

j∈M

ΨM
j

N
J(M, ΨM,j , i)

o

,

ηC +

Q

j∈N Ψj

(M + C + N)λ
+ E∆′

nN − 1 − M − C

N
J(M + C, ΨM+C , s) +

X

j∈M∪C

ΨM+C
j

N
J(M + C, ΨM+C,j , i)

oo

. (4)

We define mappings Γ and Υ that effect these transitions, i.e.,

Ψ(k+1)− = Γ(Ψk, Mk+1, ∆k+1),

Ψk+1 = Υ(Ψ(k+1)−, Ik+1, Sk+1) if Sk+1 ∈ {s, i}.

2) Cost Structure: The single stage cost for the above

formulated COMDP will be

ERk,Zk+1
{ḡ(Mk,Rk, Sk, Uk, ∆k+1, Zk+1, Ik+1, Sk+1)|Hk, Uk}

= ERk,Zk+1
{ηCk + Dk+1|Hk, Uk},

where the subscripts denote the unobserved random variables

over which expectation is taken. Taking expectation with

respect to the observables (∆k+1, Ik+1, Sk+1), the expected

single stage cost

g(Mk, Ψk, Sk, Uk)

= E∆k+1,Ik+1,Sk+1

n

ERk,Zk+1
{ηCk + Dk+1|Hk, Uk}

o

= ηCk + P (Rk = ∅|Hk)

E∆k+1,Ik+1,Sk+1

n

EZk+1
{Dk+1|Mk,Rk = ∅, Sk, Uk}

o

= ηCk +
“

Y

j∈N

Ψk,j

”

E∆k+1

n1 − exp(−(Mk + Ck)λ∆k+1)

(Mk + Ck)λ

o

= ηCk +

Q

j∈N Ψk,j

(Mk + Ck + N)λ
.

This expression has a simple form: there is an energy cost of η

if the packet is copied to the relay; with probability
Q

j∈N Ψj

the source’s belief is that the destination has not yet received

the packet, and in this case the contribution to the delivery

delay in the next stage of the COMDP is the minimum of two

independent exponentially distributed random variables, one

with rate (Mk + Ck)λ and the other with rate Nλ.

3) Policies: A policy π is a sequence of mappings {uπ
k , k =

1, 2, . . . }, where uπ
k : (N̄×[0, 1]N×S)∪{τ} → U . The cost func-

tion of an admissible policy π for initial state X = (M, Ψ, S)

is

Jπ(X) = lim
K→∞

K
X

k=1

E
n

g(Xk, uπ
k (Xk))

˛

˛X1 = X
o

.

Let Π be the set of all admissible policies. Then the optimal

cost function is defined as

J(X) = min
π∈Π

Jπ(X).

A policy π is called stationary if uπ
k are identical, say u, for

all k. For brevity we refer to it as the stationary policy u. A

stationary policy u∗ ≡ {u∗, u∗, . . . } is optimal if Ju∗

(X) =

J(X) for all states X.

C. Optimal Policy

Since the cost function g takes nonnegative values for

all possible values of its arguments, Proposition 1.1 in [5,

Chapter 3] implies that, optimal cost function will satisfy the

following Bellman equation. For X = (M, Ψ, S),

J(X) = min
u∈{0,1}

h

g(X, u) + E∆′,I′,S′

n

J(X′|X, u, ∆′, I ′, S′)
oi

.

Here (∆′, I ′, S′) denote the random disturbance and X′ denotes

the next state. X′ is determined by the transition structure

described above. In the following, we also use notations:

ΨM = Γ(Ψ, M, ∆′),

and ΨM,j = Υ(ΨM , j, i), for all M, j,

where superscript M shows dependence on the number of

nodes carrying the packet. Moreover, M∪C is used to denote

the set {1, . . . , M +C}. Thus the Bellman equation is expanded

as in (4) above. The value iteration algorithm can be written

as follows

J0(M, Ψ, S) = 0, S ∈ {s, i}; (5a)

for k = 1, 2, . . . ,

Jk(M, Ψ, s) = min{Ak(M, Ψ), η + Ak(M + 1, Ψ)},(5b)

Jk(M, Ψ, i) = Ak(M, Ψ), (5c)

where,

Ak(M, Ψ) =

Q

j∈N Ψj

(M + N)λ

+E∆′

nN − 1 − M

N
Jk−1(M, ΨM , s)

+
X

j∈M

ΨM
j

N
Jk−1(M, ΨM,j , i)

o

. (6)
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Again, since the cost function always assumes nonnegative

values and the action space is finite, Proposition 1.6 in [5,

Chapter 3] implies that Jk(M, Φ, S) → J(M, Φ, S) as k →

∞. Furthermore, a stationary policy u∗ is optimal if and only

if, for all X, u∗(X) attains minimum in the above Bellman

equation (see Proposition 1.3 in [5, Chapter 3]).2

Remarks 3.1: Recall that at the first decision instant T1, X1

is Xo := (0, (1, . . . , 1), s) if the source meets any of the relays

and τ if it meets the destination. The objective function (1)

can then be restated as

min
π∈Π

Eπ{Td + ηEc} =
1

Nλ
+

N − 1

N
min
π∈Π

Jπ(Xo) + η, (7)

where the superscript π shows dependence on the underlying

policy. In the right hand side, 1
Nλ is the average delay until the

first meeting, and η is the cost of copying to the destination;

these have to be borne under any policy.

The constrained problem: Often we aim at optimizing the

delivery performance given a constraint on the expected energy

consumption (e.g., see[1], [2], [3]). The constrained version

of (7) is

min
π∈Π

Eπ{Td},

s. t. Eπ{Ec} ≤ ǫ

For any η > 0, let π(η) be the optimal solution of (7). Further

assume that for a given ǫ in the constrained problem, there is

an ηǫ such that Eπ(ηǫ){Ec} = ǫ. Then π(ηǫ) is optimal for the

constrained problem as well.

D. Properties of the Optimal Control

We now describe some properties of the optimal policy. We

start with defining the following partial order on [0, 1]N .

Definition 3.1: For Ψ1, Ψ2 ∈ [0, 1]N , Ψ1 ≥ Ψ2 if and only

if Ψ1
k ≥ Ψ2

k for all k ∈ N .

In the following the monotonicity properties are meant to be

with respect to the above partial order.

Lemma 3.1: 1. If Ak(M, Ψ)−Ak(M +1, Ψ) is increasing in

Ψ for all M , so is Jk(M, Ψ, s) − Jk(M + 1, Ψ, s).

2. If Ak(M, Ψ) − Ak(M + 1, Ψ) is decreasing in M for all Ψ,

so is Jk(M, Ψ, s) − Jk(M + 1, Ψ, s).

Proof: Observe that

Jk(M, Ψ, s) − Jk(M + 1, Ψ, s)

= Jk(M, Ψ, s) − Ak(M + 1, Ψ)

+Ak(M + 1, Ψ) − Jk(M + 1, Ψ, s)

= min{Ak(M, Ψ) − Ak(M + 1, Ψ), η}

+ max{0, Ak(M + 1, Ψ) − Ak(M + 2, Ψ) − η},

from which part 1 as well as part 2 directly follow.

Lemma 3.2: 1. For all k and M , the mapping Ψ 7→

Ak(M, Ψ) − Ak(M + 1, Ψ) is monotonically increasing on

Θ(M).

2For the modified MDP to be defined soon in the next section, cost functions
and action space spaces satisfy hypotheses of Propositions 1.1, 1.3 and 1.6
in [5, Chapter 3]. Hence we use the corresponding results wherever needed.

2. For all k and Ψ, the mapping M 7→ Ak(M, Ψ)−Ak(M+1, Ψ)

is monotonically decreasing on N .

Proof: 1. The validity of this claim for k = 1 follows

from

A1(M, Ψ) − A1(M + 1, Ψ) =

Q

j∈N Ψj

(M + N)(M + N + 1)λ
.

Now assume that Ak(M, Ψ) − Ak(M + 1, Ψ) is increasing in

Ψ. Then, from Lemma 3.1, part 1, the same holds true for

Jk(M, Ψ, s) − Jk(M + 1, Ψ, s). Then, using (5b) and (5c), we

get

Ak+1(M, Ψ) − Ak+1(M + 1, Ψ)

=

Q

j∈N Ψj

(M + N)(M + N + 1)λ

+E∆

nN − 2 − M

N

“

Jk(M, ΨM , s) − Jk(M + 1, ΨM+1, s)
”

+
X

j∈M

ΨM
j

N

“

Ak(M, ΨM,j) − Ak(M + 1, ΨM+1,j)
”

+
1

N

“

Jk(M, ΨM , s) − ΨM+1
M+1Ak(M + 1, ΨM+1,M+1)

”o

where we have used the fact that ΨM+1
j = ΨM

j for all j ∈ M.

Using induction on k and Lemma 3.1, part 1, it can be shown

that Jk(M, ΨM , s) − Jk(M + 1, ΨM+1, s) and Ak(M, ΨM,j) −

Ak(M + 1, ΨM+1,j), j ∈ M are increasing in Ψ. We omit the

details here. The final term can be written as

Jk(M, ΨM , s) − ΨM+1
M+1Ak(M + 1, ΨM+1,M+1)

= Jk(M, ΨM , s) − exp(−λ∆)Ak(M + 1, ΨM )

= min{Ak(M, ΨM ) − Ak(M + 1, ΨM ), η}

+(1 − exp(−λ∆))Ak(M + 1, ΨM ).

The first equality follows because ΨM+1
M+1 = exp(−λ∆) and

ΨM+1,M+1 = ΨM for all Ψ ∈ Θ(M). The proof of Theo-

rem 3.1, part 1 below shows that Ψ 7→ Ak(M + 1, ΨM ) is

increasing on Θ(M). From this, the monotonicity of the left

hand side is easily seen. This proves the claim for k + 1.

2. This can be shown using arguments similar to those in the

proof of the first part. We omit the details here.

1) Monotonicity of the Value Function:

Theorem 3.1: The value function has the following proper-

ties:

1. For all M and S, Ψ 7→ J(M, Ψ, S) is monotonically

increasing on Θ(M),

2. For all Ψ and S, M 7→ J(M, Ψ, S) is monotonically

decreasing on N̄ ,

3. For all M and Ψ, J(M, Ψ, s) ≤ J(M, Ψ, i).

Proof: 1. Clearly, for all M , A1(M, Ψ) is increasing in

Ψ. From (5b) and (5c), both J1(M, Ψ, s) and J1(M, Ψ, i) are

increasing in Ψ. Now assume that Jk(M, Ψ, s) and Jk(M, Ψ, i)

are increasing in Ψ. By definition,

Ak+1(M, Ψ) =

Q

j∈N Ψj

(M + N)λ
+ E∆

nN − 1 − M

N
Jk(M, ΨM , s)

+
X

j∈M

ΨM
j

N
Jk(M, ΨM,j , i)

o

.
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Observe that Γ : [0, 1]N → [0, 1]N and Υ : [0, 1]N → [0, 1]N

are monotone increasing functions. Furthermore, since ΨM,j

does not depend on Ψj , ΨM
j Jk(M, ΨM,j , i) is increasing in

Ψj . Hence, the term inside the expectation is increasing in Ψ

for all ∆ ≥ 0. This shows that Ak+1(M, Ψ) is increasing in Ψ.

The claim follows by taking limits as k → ∞.

2. It is sufficient to prove that M 7→ Ak(M, Ψ) is monotonically

decreasing on N̄ for all k. First assume M > 0, and consider

Ψo such that Ψo
j = 0 for all j ≤ M and Ψo

j = 1 otherwise. Then

Ak(M, Ψo) −Ak(M + 1, Ψo) = 0. Also note that only Ψ ≥ Ψo

are of interest. For all such Ψ, from Lemma 3.2, part 1,

Ak(M, Ψ) − Ak(M + 1, Ψ) ≥ 0, for all k.

To complete the proof we need to show that Ak(0, Ψ1) −

Ak(1, Ψ1) ≥ 0, for all k, where Ψ1 := (1, . . . , 1) is the only

element of the singleton set Θ(0). This can be shown using

induction on k. We omit the details here.

3. From (5b) and (5c), Jk(M, Ψ, s) ≤ Jk(M, Ψ, i) for all k. The

claim follows by taking k → ∞.

2) Monotonicity of the Optimal Policy: The following is

the main theorem of this section.

Theorem 3.2: The optimal policy u∗ : N̄ ×[0, 1]N×{s} → U

has the following properties.

1. For all M , Ψ 7→ u∗(M, Ψ, s) is monotonically increasing on

Θ(M).

2. For all Ψ, M 7→ u∗(M, Ψ, s) is monotonically decreasing on

N̄ .

Proof: 1. Lemma 3.2, part 1 shows that for all M ,

Ak(M, Ψ) − Ak(M + 1, Ψ) is increasing in Ψ. Taking limit

as k → ∞, A(M, Ψ) − A(M + 1, Ψ) is increasing in Ψ.

Thus for Ψ1 ≥ Ψ2, A(M, Ψ2) ≥ A(M + 1, Ψ2) + η implies

A(M, Ψ1) ≥ A(M + 1, Ψ1) + η, i.e., u∗(M, Ψ2, s) = 1 implies

u∗(M, Ψ1, s) = 1. This proves the claim.

2. We use Lemma 3.2, part 2 here, and the arguments are

similar to those in the proof of the first part.

Hence, for every belief vector Ψ, there exists a threshold

on the number of copies: the source stops copying once

the number of copies reaches this threshold. Moreover, the

threshold increases with Ψ.

Monotonicity with respect to MLR ordering: In POMDP

literature, under various constraints, monotonicity of the opti-

mal policy with respect to monotone likelihood ratio (MLR)

ordering has been shown (see [11], [13]). To define the MLR

order over the space of probability mass functions, the under-

lying state space should be completely ordered. In our case,

2N is not completely ordered. However, we consider a partial

order (determined by set inclusion) on 2N , and introduce

the notion of generalized monotone likelihood ratio (GMLR),

denoted as ≥gr, and defined as follows.

Definition 3.2: For Φ1, Φ2 ∈ P(2N ), Φ1 ≥gr Φ2 if

Φ1(R1)Φ
2(R2) ≥ Φ1(R2)Φ

2(R1)

for all R1 ⊇ R2, R1,R2 ∈ 2N .

Now, let Ψ1, Ψ2 ∈ [0, 1]N be as defined in Section III-B. They

will induce probability mass functions, Φ1, Φ2 ∈ P(2N ), on

the sets of recovered relays. Ψi and Φi are related as

Φi(R) =
Y

j∈R

(1 − Ψi
j)

Y

j /∈R

Ψi
j , i = 1, 2. (8)

The following result is an easy observation.

Proposition 3.1: Ψ1 ≤ Ψ2 ⇐⇒ Φ1 ≥gr Φ2.

Proof: See Appendix A.

(8) allows as to map the set of states N̄ ×[0, 1]N ×S to another

set N̄ × P(2N ) × S . The optimal policy u∗(M, Ψ, S) can also

be mapped to a policy ũ∗(M, Φ, S) defined over the latter set

as ũ∗(M, Φ, S) = u∗(M, Ψ, S) where Φ and Ψ are related as in

(8). Then we have the following result.

Corollary 3.1: ũ∗(M, ·, s) is monotonically decreasing on

(P(2N ),≥gr).

IV. A SUBOPTIMAL CONTROL

In this section we formulate and analyze a suboptimal

control problem. The idea is to replace random state transitions

with the expected state transition which is similar in spirit to

the one proposed by White [15]. Our approximations lead to

explicit formula for a simpler policy that depends on Ψ only

through the product of its components

φ :=
Y

j∈N

Ψj , (9)

which is the probability that the destination has not received

the packet. It can be seen that A1(M, Ψ) depends on Ψ only

through φ (see (6)). Denote it by

Â1(M, φ) =
φ

(M + N)λ
,

and Ĵ1(M, φ, s) = min{Â1(M, φ), η + Â1(M + 1, φ)}.

Clearly, Ĵ1(M, φ, s) is concave and increasing in φ, and

Â1(M, 0) = 0. It can also be seen that

ΨM
j A1(M, ΦM,j) = Â1(M, φ).

Let us replace Ak(M, Ψ) by another function Âk(M, φ) which

depends on Ψ only through φ and satisfies Ak(M, Φ) ≤

Âk(M, φ). Moreover, Âk(M, φ) is concave, increasing in φ,

and Âk(M, 0) = 0. Naturally, given Âk(M, φ), we define,

Ĵk(M, φ, s) = min{Âk(M, φ), η + Âk(M + 1, φ)}. (10)

It is immediate that the above properties for Âk hold for

Ĵk(M, φ, s) as well. In particular,

Jk(M, Ψ, S) ≤ Ĵk(M, φ, S), S ∈ {s, i}. (11)

All these facts trivially hold for k = 1. We next proceed

to define Âk(M, φ) and prove the aforementioned properties

inductively. So assume Âk(M, φ) is defined and satisfies all

the above properties. Let us revisit (6), and observe that

ΨM
j Ak(M, ΨM,j) ≤ ΨM

j Âk

“

M,

Q

l∈N ΨM
l

ΨM
j

”

≤ Âk(M,
Y

l∈N

ΨM
l )

where the first inequality follows from the induction hypoth-

esis and the last inequality follows from the hypotheses that

Âk(M, φ) is concave in φ, and Âk(M, 0) = 0. We consider the

right most expression as an approximation of the left most

one, and define, in analogy to (6),
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Âk+1(M, φ) =
φ

(M + N)λ
+ E∆

n

N−1−M
N Ĵk(M, φ(M,∆), s)

+M
N Âk(M, φ(M,∆))

o

. (12)

where φ(M,∆) := φ exp(−Mλ∆). The induction hypotheses

imply Ak+1(M, Ψ) ≤ Âk+1(M, φ). Obviously, Âk+1(M, φ, s)

is also concave, increasing in φ, and Âk+1(M, 0) = 0. This

completes the induction step.

What we have is another MDP whose state at epoch Tk is

X̂k = (Mk, φk, Sk). The state space is (N̄ × [0, 1] × S) ∪ {τ}

where τ is the terminal state as in Section III-B. The action

at epoch Tk is Ûk ∈ U and Ck = Ûk1{Sk=s} as before. The

observation tuple (∆k+1, Sk+1) is the random disturbance at

epoch Tk. If Sk+1 ∈ {r, d} then Xk+1 = τ . Transitions of Mk

and Sk happen as before, and φk+1 = φ
(Mk,∆k)
k . The expected

single stage cost is

ĝ(X̂k , Uk) = ηCk +
φk

(Mk + Ck + N)λ

with ĝ(τ ) = 0. Policies are also defined as in Section III-B.

The value iteration algorithm for this MDP is given by

Ĵ0(M, φ, S) = 0, S ∈ {s, i};

for k = 1, 2, . . . ,

Ĵk(M, φ, s) = min{Âk(M, φ), η + Âk(M + 1, φ)},

Ĵk(M, φ, i) = Âk(M, φ).

where Âk(M, φ) is as defined in (12).

A. An Optimal Policy for the Modified MDP

Let Ĵ(M, φ, S) be the optimal value function, and û : (N̄ ×

[0, 1] × S)∪ {τ} → U be the optimal policy for this MDP. We

need the following lemma.

Lemma 4.1: For all k and M , Âk(M, φ) − Âk(M + 1, φ) is

increasing in φ.

Proof: The arguments involved are analogous to those in

the proof of Lemma 3.2, part 1. We omit the details here.

Lemma 4.2: û(M, φ, s) is monotonically increasing in φ.

Proof: Define,

ûk(M, φ, s) =

(

0 if Âk(M, φ) ≤ η + Âk(M + 1, φ),

1 otherwise.

Then ûk(M, φ, s) is increasing in φ follows from Lemma 4.1.

A limiting argument as before proves the result.

The following is the main result of this section.

Theorem 4.1: The optimal policy û exhibits a threshold

behavior:

û(M, φ, s) =

(

1 if φ > ηλ(M + 1)(M + 2),

0 otherwise.

In particular, û(M, φ, s) is monotonically decreasing in M .

Proof: Let us write Bellman equation for the hatted value

function.

Ĵ(M, φ, s)

= min
n

Â(M, φ), η + Â(M + 1, φ)
o

= min
n φ

(M + N)λ
+ E∆

nN − 1 − M

N
Ĵ(M, φ(M,∆), s)

+
M

N
Â(M, φ(M,∆))

o

,

η +
φ

(M + N + 1)λ

+E∆

nN − 2 − M

N
Ĵ(M + 1, φ(M+1,∆), s)

+
M + 1

N
Â(M + 1, φ(M+1,∆))

oo

.

Suppose that û(M, φ, s) = 0, i.e., Ĵ(M, φ, s) = Â(M, φ). In the

following we are only interested in the polices which are con-

sistent with Lemma 4.2, namely, û(M, φ, s) = 0 implies that

û(M, φ(M,∆), s) = 0 and so Ĵ(M, φ(M,∆), s) = Â(M, φ(M,∆)),

for all ∆ > 0. Under this constraint, one can easily show that

Ĵ(M, φ, s) =
φ

(M + 1)λ
.

Next we prove that if û(M + 1, φ, s) = 0 and û(M, φ, s) =

1, then û(M ′, φ, s) = 1 for all M ′ < M . From the Bellman

equation

Ĵ(M, φ, s) = η + Â(M + 1, φ)

= η + Ĵ(M + 1, φ, s)

= η +
φ

(M + 2)λ

<
φ

(M + 1)λ
,

where the last inequality arises because the right hand side is

the cost of û(M, φ, s) = 0, which is assumed to be suboptimal.

Thus

η <
φ

(M + 1)(M + 2)λ
. (13)

Hence,

η <
φ

(M ′ + 1)(M ′ + 2)λ
, for all M ′ < M.

But this implies

Ĵ(M ′, φ, s) ≤ η + Â(M ′ + 1, φ)

= η +
φ

(M ′ + 2)λ

<
φ

(M ′ + 1)λ

= Â(M ′, φ),

which proves the claim that û(M ′, φ, s) = 1. Finally, for a fixed

φ, û(M, φ, s) = 1 if and only if M satisfies (13).

We now make some remarks on the usefulness of this policy

û for the original POMDP.

Remarks 4.1: 1. The optimal policy for the modified control

problem can naturally be mapped to a suboptimal policy for

the original control problem.

u(M, Ψ, S) = û(M, φ,S),

where φ is given by (9).
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Fig. 2. Transition rate diagram for the CTMC. Though the diagram does not show all of them, the transition rate from any state (k, r) to τ is (r + 1)λ.

2. Clearly J(M, Ψ, S) ≤ Ju(M, Ψ, S). Moreover,

Ju(M, Ψ, S) ≤ Ĵ(M, φ, S), for all M, Ψ and S. This

follows because Jπ
k (M, Ψ, S) ≤ Ĵπ

k (M, φ, S) for all k and

for any policy π ∈ Π (See (11)). We thus not only have a

suboptimal policy for the original POMDP, but also an upper

bound on the cost of this policy.

3. Neglia and Zhang [12] give the following optimal policy

for epidemic relaying with complete information at all the

nodes.

ū(M) =

(

1 if (M + 1)(M + 2) < 1
ηλ ,

0 otherwise.

The above policy remains optimal even in the setting of two-

hop relaying with complete information at the source. This

may be viewed as a special case of our setup with φ = 1

at every decision epoch. In this special case, the suboptimal

policy derived in this paper, reduces to above policy.

V. NUMERICAL RESULTS

Here we study the performance of the suboptimal closed

loop policy proposed in Section IV. First we evaluate the

following two open loop schemes that do not exploit either

the copying history or the source’s beliefs.

1. The source copies to at most M susceptible relays. We

optimize over M ∈ {0, . . . , N − 1}.

2. The source copies to each susceptible relay it meets with

probability α. We optimize over α ∈ [0, 1].

We call these schemes POOL (partially observed open loop) 1

and POOL 2 respectively. In both schemes the source stops

copying if it meets either a recovered relay or the destination.

We also compare with the performance of the COMDP (closed

loop control with complete information) studied in [12].

To start, let us consider that the source copies with proba-

bility α to each of the first M susceptible relay it meets until

it has met either a recovered relay or the destination. The

state of the network is represented by the tuple (K(t), R(t))

where K(t) ∈ {0, . . . , M} and R(t) ∈ {0, . . . , K(t)} are the

number of infected relays and the number of recovered relays

respectively, by time t. As in Section III, when the source

meets a recovered relay or the destination, the system enters

in a terminal state τ . Under the assumptions made in Sec-

tion II, (K(t), R(t)) is a finite-state, continuous time Markov

chain (CTMC) with an absorbing state τ . The transition rate

diagram for the CTMC is shown in Figure 2. Though the

diagram does not show all transitions to τ , the transition rate

from any state (k, r) to τ is (r + 1)λ. In particular, let p(k, r)

be the probability that the system visits state (k, r). These

probabilities are calculated recursively as follows.

p(0, 0) = 1,

p(k, 0) =
p(k − 1, 0)(N − k)α

αN + (1 − α)k
, 1 ≤ k ≤ M

p(k, r) =
p(k − 1, r)(N − k)α

αN + (1 − α)k
+

p(k, r − 1)(k − r + 1)

αN + (1 − α)(k + 1)
,

1 ≤ k < M, 1 ≤ r ≤ k,

p(M,r) =
p(M − 1, r)(N − M)α

αN + (1 − α)M
+

p(M,r − 1)(M − r + 1)

M + 1
,

1 ≤ r ≤ M.

Let K be the random number of infected relays before the

system enters state τ . Then

E{Ec} =

M
X

k=0

Pr(K = k)E{Ec|K = k}

=

M−1
X

k=0

k
X

r=0

p(k, r)(r + 1)

αN + (1 − α)(k + 1)
(k + 1)

+

M
X

r=0

p(M,r)(r + 1)

M + 1
(M + 1)

Similarly let Tkr be the sojourn time in state (k, r) once the

263



0 0.002 0.004 0.006 0.008 0.01
0

50

100

150

200

λ

c
o
s
t

 

 

COMDP

POOL 1

bound on suboptimal control

0 0.002 0.004 0.006 0.008 0.01
0

50

100

150

λ

c
o
s
t

 

 

COMDP

POOL 1

bound on suboptimal control

Fig. 3. Cost as a function of λ. The first set of plots is for the number of
nodes N+1 = 51 and η = 2 while the second set of plots is for N+1 = 101
and η = 1.

system enters (k, r). Only Tk0s account for the delay. So

E{Td} =

M
X

k=0

p(k, 0)E{Tk0}

=
M−1
X

k=0

p(k, 0)

(αN + (1 − α)(k + 1))λ
+

p(M, 0)

(M + 1)λ

Define V (M, α) := E{Td + ηEc}
3 to be the cost associated

with this system. Clearly, POOL 1 chooses M which min-

imizes V (M, 1) while POOL 2 chooses α which minimizes

V (N − 1, α). Moreover, to study the problem with complete

information one can define another terminal state

τ̄ := τ ∪ {(k, r) : 1 ≤ k ≤ M, 1 ≤ r ≤ k}.

Assume K̄ to be the number of infected relays before the

system enters state τ̄ and redefine E{Ec} as before. E{Td}

remains same. Let V̄ (M, 1) be the associated cost. Then

the optimal control chooses M that minimizes V̄ (M, 1). In

Figure 3, we plot the optimal value of the modified problem as

3In the expressions of E{Ec} and E{Td} the first summations on the right
hand sides disappear if M = 0.

a function of λ. In view of Remark 4.1, part 2, this is an upper

bound on the cost of original problem with the suboptimal

policy. We also plot costs of COMDP and POOL 1. The two

sets of plots are for N + 1 = 51, η = 2 and N + 1 = 101, η = 1

respectively. It is observed that the three policies perform

close to each other and the suboptimal control marginally

outperforms the open loop control.

VI. CONCLUSION

We studied optimal two-hop relaying problem in DTNs that

employ an enhanced version of “immune” recovery scheme.

In particular, we formulated the problem as a POMDP and

characterized the optimal policy (Section III). We also derived

a suboptimal policy (Section IV) in an explicit form. An

optimal policy with complete information at the source gives

the least cost among all the policies. On the other hand open

loop policies that do not exploit either the copying history or

the source’s beliefs are likely to perform worse. We compared

the performances of these policies and that of the proposed

suboptimal policy. The costs of the COMDP and the open loop

policy are close to each other implying that the performance

gain of the closed loop control is not substantial. Furthermore,

the more efficient recovery schemes, e.g., immune tx and

vaccine, are also not likely to bring substantial performance

gains.
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APPENDIX A

PROOF OF PROPOSITION 3.1

The only if part: It is sufficient to consider Ψ1, Ψ2 which

differ in only one, say jth coordinate. Let Ψ1
j < Ψ2

j . Now, fix

R1 ⊃ R2.

1) If j ∈ R2 or j /∈ R1,
Φi(R1)
Φi(R2)

will be same for i = 1, 2.

2) If j /∈ R2 but j ∈ R1,

Φ1(R1)

Φ1(R2)
=

1 − Ψ1
j

Ψ1
j

>
1 − Ψ2

j

Ψ2
j

=
Φ2(R1)

Φ2(R2)
.

The if part: We prove this by contraposition. Consider Ψ1, Ψ2

and define R1,R2 such that Ψ1
j > Ψ2

j for all j ∈ R1 and

Ψ2
j > Ψ1

j for all j ∈ R2. If Ψ1 � Ψ2 then R1 6= ∅. We now

argue that Φ1 �gr Φ2. Indeed, it can be easily verified that

Φ1(R1 ∪ R2)

Φ1(R2)
<

Φ2(R1 ∪R2)

Φ2(R2)
.
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