
1

Optimal Forwarding in Delay Tolerant Networks
with Multiple Destinations

Chandramani Singh, Student Member, IEEE, Eitan Altman, Fellow, IEEE, Anurag Kumar, Fellow, IEEE,
and Rajesh Sundaresan, Senior Member, IEEE

Abstract—We study the trade-off between delivery delay and
energy consumption in a delay tolerant network in which a
message (or a file) has to be delivered to each of several
destinations by epidemic relaying. In addition to the destinations,
there are several other nodes in the network that can assist in
relaying the message. We first assume that, at every instant, all
the nodes know the number of relays carrying the message and
the number of destinations that have received the message. We
formulate the problem as a controlled continuous time Markov
chain and derive the optimal closed loop control (i.e., forwarding
policy). However, in practice, the intermittent connectivity in the
network implies that the nodes may not have the required perfect
knowledge of the system state. To address this issue, we obtain an
ODE (i.e., a deterministic fluid) approximation for the optimally
controlled Markov chain. This fluid approximation also yields
an asymptotically optimal open loop policy. Finally, we evaluate
the performance of the deterministic policy over finite networks.
Numerical results show that this policy performs close to the
optimal closed loop policy.

Index Terms—Delay tolerant networks, epidemic relaying,
optimal control, fluid approximation

I. INTRODUCTION

Delay tolerant networks (DTNs) [1] are sparse wireless ad
hoc networks with highly mobile nodes. In these networks,
the link between any two nodes is up when these are within
each other’s transmission range, and is down otherwise. In
particular, at any given time, it is unlikely that there is a
complete route between a source and its destination.

We consider a DTN in which a short message (also referred
to as a packet) needs to be delivered to multiple (say M )
destinations. There are also N potential relays that do not
themselves “want” the message but can assist in relaying
it to the nodes that do. At time t = 0, N0 of the relays
have copies of the packet. All nodes are assumed to be
mobile. In such a network, a common technique to improve
packet delivery delay is epidemic relaying [2]. We consider a
controlled relaying scheme that works as follows. Whenever a
node (relay or destination) carrying the packet meets a relay
that does not have a copy of the packet, then the former has
the option of either copying or not copying. When a node that
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has the packet meets a destination that does not, the packet
can be delivered.

We want to minimize the delay until a significant fraction
(say α) of the destinations receive the packet; we refer
to this duration as delivery delay. Evidently, delivery delay
can be reduced if the number of carriers of the packet is
increased by copying it to relays. Such copying cannot be
done indiscriminately because every act of copying to a relay
incurs a transmission cost. Thus, we focus on the problem of
the control of packet forwarding.

A. DTNs with Multiple Destinations

DTNs are commonly envisaged for certain applications
involving personal mobile devices; such applications have
two characteristics: (i) they can work with infrastructure-
free direct communication between the devices, and (ii) can
tolerate moderate delays. Such applications typically involve
spreading (or, delivering) a content to a set of nodes. The
following are three examples of such applications that involve
the spread of the same message to multiple destinations, i.e.,
intended recipients. A widely studied problem is the spread of
influence in social networks, e.g., spread of a popular video
clip, or diffusion of an alert about a free medical “camp” in
a developing country, or an advertisement of a new product.
Venkatramanan and Kumar [3] study the joint evolution of
content popularity and delivery in mobile peer-to-peer (P2P)
networks. The creator of the content aims to maximize its
popularity at one level of the model, while at another level the
parameters of the spreading process govern the dissemination
of the content to those who desire it. Karnik and Dayama [4]
study efficient campaigning to yield a desired level of “buzz”
at a specified time, and also the diffusion of system-wide traffic
updates or security alerts through wireless vehicular networks.
In another work, Khouzani et al. [5] study the dissemination of
security patches in mobile wireless networks, and seek optimal
trade-offs between security risks and resource consumption.

While each instance has its own resource constraints and
performance objectives, we consider one such multiple des-
tination problem. The introduction of multiple sources and
destinations also facilitates study of scaled network dynamics
that yields an asymptotically optimal open loop policy.

B. Related Work

Analysis and control of DTNs with a single-source and
a single-destination has been widely studied. Groenevelt et
al. [6] modeled epidemic relaying and two-hop relaying using
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Markov chains. They derived the average delay and the number
of copies generated until the time of delivery. Zhang et al. [7]
developed a unified framework based on ordinary differential
equations (ODEs) to study epidemic routing and its variants.

Neglia and Zhang [8] were the first to study the optimal
control of relaying in DTNs with a single destination. They
assumed that all the nodes have perfect knowledge of the
number of nodes carrying the packet. Their optimal closed
loop control is a threshold policy - when a relay that does
not have the packet is met, the packet is copied if and only if
the number of relays carrying the packet is below a threshold.
Due to the assumption of complete knowledge, the reported
performance is a lower bound for the cost in a real system.

Spyropoulos et al. [9] introduced the Spray and Wait
and Spray and Focus routing algorithms for intermittently
connected mobile networks. Their algorithms disseminate the
message to a predetermined number of relays, and then rely
on direct delivery from any of these nodes to the destination.
In this paper, we propose a finer control of spraying, that
depends on the instantaneous network state. Consequently, our
proposed policy is expected to outperform those in [9].

Altman et al. [10] addressed the optimal relaying prob-
lem for a class of monotone relay strategies which includes
epidemic relaying and two-hop relaying. In particular, they
derived static and dynamic relaying policies. Altman et al. [11]
considered optimal discrete-time two-hop relaying. They also
employed stochastic approximation to facilitate online esti-
mation of network parameters. In another paper, Altman et
al. [12] considered a scenario where active nodes in the net-
work continuously spend energy while beaconing. Their paper
studied the joint problem of node activation and transmission
power control. These works ([10], [11], [12]) heuristically
obtain fluid approximations for DTNs and study open loop
controls. Li et al. [13] considered several families of open
loop controls and obtain optimal controls within each family.

Deterministic fluid models expressed as ordinary differential
equations have been used to approximate large Markovian
systems. Kurtz [14] obtained sufficient conditions for the con-
vergence of Markov chains to such fluid limits. Darling [15]
and subsequently, Darling and Norris [16] generalized Kurtz’s
results. Darling [15] considered the scenario when the Marko-
vian system satisfies the conditions in [14] only over a subset.
He showed that the scaled processes converge to a fluid
limit until they exit from this subset. Darling and Norris [16]
generalized the conditions for convergence, e.g., uniform con-
vergence of the mean drifts of Markov chains and Lipschitz
continuity of the limiting drift function, prescribed in [14].
Gast and Gaujal [17] addressed the scenario where the limiting
drift functions are not Lipschitz continuous. They proved that
under mild conditions, the stochastic system converges to the
solution of a differential inclusion. Gast et al. [18] studied
an optimization problem on a large Markovian system. They
showed that solving the limiting deterministic problem yields
an asymptotically optimal policy for the original problem.

C. Our Contributions
We formulate the problem as a controlled continuous time

Markov chain (CTMC) [19], and obtain the optimal pol-

icy (Section III). The optimal policy relies on complete knowl-
edge of the network state at every node, but availability of such
information is constrained by the same connectivity problem
that limits packet delivery. In the incomplete information
setting, the decisions of the nodes would have to depend upon
their beliefs about the network state. The nodes would need to
update their beliefs continuously with time, and also after each
meeting with another node. Such belief updates would involve
maintaining a complex information structure and are often
impractical for nodes with limited memory and computation
capability. Moreover, designing closed loop controls based on
beliefs is a difficult task [20], even more so in our context
with multiple decision makers and all of them equipped with
distinct partial information.

In view of the above difficulties, we adopt the following
approach. We show that when the number of nodes is large,
the optimally controlled network evolution is well approx-
imated by a deterministic dynamical system (Section IV).
The existing differential equation approximation results for
Markovian systems [14], [15] do not directly apply, as, in the
optimally controlled Markov chain that arises in our problem,
the mean drift rates are discontinuous and do not converge
uniformly. We extend the results to our problem setting in
our Theorem 4.1 in Section IV. Note that the differential
inclusion based approach of Gast and Gaujal [17] is not
directly applicable in our case, as it needs uniform convergence
of the mean drift rates. The limiting deterministic dynamics
then suggests a deterministic control that is asymptotically
optimal for the finite network problem, i.e., the cost incurred
by the deterministic control approaches the optimal cost as the
network size grows. We briefly consider the analogous control
of two-hop forwarding [21] in Section V. Our numerical
results illustrate that the deterministic policy performs close
to the complete information optimal closed loop policy for a
wide range of parameter values (Section VI).

In a nutshell, the ODE approach is quite common in the
modeling of such problems. Its validity in situations without
control is established by Kurtz [14], Darling and Norris [16],
etc. We aim in this paper at rigorously showing the validity
of this limit under control in a few DTN problems.

II. THE SYSTEM MODEL

We consider a set of K := M + N mobile nodes. These
include M destinations and N relays. At t = 0, a packet is
generated and immediately copied to N0 relays (e.g., via a
broadcast from an infrastructure network). Alternatively, these
N0 nodes can be thought of as source nodes.

1) Mobility model: We model the point process of the meet-
ing instants between pairs of nodes as independent Poisson
point processes, each with rate λ. Groenevelt et al. [6] validate
this model for a number of common mobility models (random
walker, random direction, random waypoint). In particular,
they establish its accuracy under the assumptions of small
communication range and sufficiently high speed of nodes.

Remarks 2.1: A few studies suggest that traces collected
from real-life mobility often demonstrate inter-contact times
with power-law distributions. However, Karagiannis et al. [22]
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have established that the inter-contact times exhibit expo-
nential tails beyond a certain characteristic time. They also
validate this finding across a diverse set of mobility traces.
The exponential decay beyond the characteristic time is of
relevance as available data traces suggest that the mean inter-
contact time is in many cases of the same order as this
characteristic time.

2) Communication model: Two nodes may communicate
only when they come within transmission range of each other,
i.e., at meeting instants. The transmissions are assumed to be
instantaneous. We assume that that each transmission of the
packet incurs unit energy expenditure at the transmitter.

3) Relaying model: We assume that a controlled epidemic
relay protocol is employed.

Throughout, we use the terminology relating to the spread
of infectious diseases. A node with a copy of the packet is said
to be infected. A node is said to be susceptible until it receives
a copy of the packet from another infected node. Thus at t = 0,
N0 nodes are infected while M +N −N0 are susceptible.

A. The Forwarding Problem
Our goal is to disseminate the packet to all the M destina-

tions while minimizing the duration until a fraction α (α < 1)
of the destinations receive the packet.1

At each meeting epoch with a susceptible relay, an infected
node (relay or destination) has to decide whether to copy the
packet to the susceptible relay or not. Copying the packet to a
relay incurs a cost, but promotes early delivery of the packet
to the destinations. We wish to find the trade-off between these
costs by minimizing

E{Td + γEc} (1)

where Td is the time until which at least Mα := dαMe
destinations receive the packet, Ec is the total number of copies
made to relays, and γ is the parameter that relates the number
of copies to delay cost. Varying γ helps studying the trade-off
between the delay and the copying costs.

Remarks 2.2: Alternatively, we may interpret γ as a pa-
rameter that accounts for the cost of making a copy, and
also relates this cost to the delivery delay. The cost could
include the energy cost of transmission and reception, the
cost of storage, the price charged by a receiver for carrying a
message, etc. Then γEc represents the scaled (for comparison
with delay) total cost of copying to relays. In some later
discussions, we take this alternative viewpoint.

Remarks 2.3: Copying the packet to the destinations also
incurs a cost. However, this cost is fixed irrespective of the
forwarding policy, and thus, is not included in our objective
function.

III. OPTIMAL EPIDEMIC FORWARDING

We derive the optimal forwarding policy under the as-
sumption that, at any instant of time, all the nodes have full
information about the number of relays carrying the packet
and the number of destinations that have received the packet.
This assumption will be relaxed in Section IV.

1Subsequently, we analyze a scaled version of the network in order to obtain
a distributed policy. See Footnote 9 for why we restrict to α < 1.
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Fig. 1. Evolution of the controlled Markov chain {sk}. Note that (mk, nk)
is embedded at tk−, i.e., just before the meeting epoch.

A. The MDP Formulation

Let t0 := 0 and tk, k = 1, 2, . . . denote the meeting
epochs of the infected nodes (relays or destinations) with the
susceptible nodes. Define δk := tk− tk−1 for k ≥ 1. Let m(t)
and n(t) be the numbers of infected destinations and relays,
respectively, at time t. Thus m(0) = 0 and n(0) = N0, and the
forwarding process stops at time t if m(t) = M . We use mk

and nk to mean m(tk−) and n(tk−) which are the numbers
of infected destinations and relays, respectively, just before the
meeting epoch tk. Let ek be the type of the susceptible node
that an infected node meets at tk; ek ∈ E := {d, r} where d
and r stand for destination and relay, respectively. The state
of the system at a meeting epoch tk is given by the tuple

sk := (mk, nk, ek).

Since the forwarding process stops at time t if m(t) = M , the
state space is [M − 1]× [N0 : N ]× E .2

Let uk be the action of the infected node at meeting epoch
tk, k = 1, 2, . . . . The control space is U = {0, 1}, where 1 is
for copy and 0 is for do not copy. The embedding convention
described above is shown in Figure 1.

We treat the tuple (δk+1, ek+1) as the random disturbance
at epoch tk. Note that for k = 1, 2, . . . , the time between suc-
cessive decision epochs, δk, is independent and exponentially
distributed with parameter (mk + nk)(M +N −mk − nk)λ.
Furthermore, with “w.p.” standing for “with probability”,

ek =

{
d w.p. pmk,nk(d) := M−mk

M+N−mk−nk ,

r w.p. pmk,nk(r) := N−nk
M+N−mk−nk .

1) Transition structure: From the description of the system
model, the state at time k+ 1 is sk+1 = (mk + uk, nk, ek+1)
if ek = d, and sk+1 = (mk, nk + uk, ek+1) if ek = r. Recall
that ek+1 is a component in the random disturbance. Thus the
next state is a function of the current state, the current action
and the current disturbance as required for an MDP .

2) Cost Structure: For a state-action pair (sk, uk) the
expected single stage cost is given by

g(sk, uk) = E
{
δk+11{mk+1<Mα}

}
+ γuk1{ek=r},

where the expectation is taken with respect to the random
disturbance (δk+1, ek+1). It can be observed that

2We use notation [a] = {0, 1, . . . , a} and [a : b] = {a, a+ 1, . . . , b} for
b ≥ a+ 1 and a, b ∈ Z+.
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g(sk, uk) =


γuk1{ek=r} if mk ≥Mα,

0 if mk = Mα − 1, ek = d and uk = 1,

Cd(sk, uk) + γuk1{ek=r} otherwise,

where

Cd(sk, uk) =
1

(mk + nk + uk)(M +N −mk − nk − uk)λ

is the mean time until the next decision epoch. The quantity
γ is expended whenever uk = 1, i.e., the action is to copy.

3) Policies: A policy π is a sequence of mappings {uπk , k =
0, 1, 2, . . . }, where uπk : [M − 1] × [N0 : N ] × E → U . The
cost of a policy π for an initial state s = (m,n, e) is

Jπ(s) =

∞∑
k=0

E
{
g(sk, u

π
k (sk))

∣∣s0 = s
}
.

Let Π be the set of all policies. Then the optimal cost function
is defined as

J(s) = min
π∈Π

Jπ(s).

A policy π is called stationary if uπk are identical, say u, for
all k. For brevity we refer to such a policy as the stationary
policy u. A stationary policy u∗ ≡ {u∗, u∗, . . . } is optimal if
Ju∗(s) = J(s) for all states s.

4) Total Cost: We now translate the optimal cost-to-go from
the first decision instant t1 into the optimal total cost. Recall
that at t1, the state s1 is (0, N0, r) or (0, N0, d) depending
on whether the susceptible node that is met is a relay or a
destination. The objective function (1) can then be restated as

Eπ{Td + γEc} =
1

λN0(M +N −N0)
+

(
N −N0

M +N −N0

Jπ(0, N0,r) +
M

M +N −N0
Jπ(0, N0, d)

)
, (2)

where the subscript π shows dependence on the underlying
policy. In the right hand side, the first term 1

λN0(M+N−N0) is
the average delay until the first decision instant which has to
be borne under any policy.

B. Optimal Policy
Since the cost function g(·) is nonnegative, Proposition 1.1

in [19, Chapter 3] implies that the optimal cost function will
satisfy the following Bellman equation. For s = (m,n, e),

J(s) = min
u∈{0,1}

A(s, u)

where A(s, u) = g(s, u) + E (J(s′)|s, u) .

Here s′ denotes the next state which depends on s, u and the
random disturbance in accordance with the transition structure
described above. The expectation is taken with respect to the
random disturbance. Since the action space is finite, there
exists a stationary policy u∗ such that, for all s, u∗(s) attains
minimum in the above Bellman equation (see [19, Chapter 3]).
Now we characterize this stationary optimal policy.

First, observe that it is optimal to copy whenever a sus-
ceptible destination is encountered; it does not incur any cost

and increases the number of infected nodes, which in turn also
expedites the packet delivery process. Moreover, every destina-
tion has to be infected at some time. Thus u∗(m,n, d) = 1 for
all (m,n) ∈ [M − 1]× [N0 : N ]. Next, once Mα destinations
have been infected, no further delay cost is incurred, and so
further copying to relays does not help. Thus u∗(m,n, r) = 0
for all (m,n) ∈ [Mα : M − 1]× [N0 : N ].

Focus now on a reduced state space [Mα− 1]× [N0 : N ]×
{r}. Consider the following one step look ahead policy [19,
Section 3.4]. At a meeting with a susceptible relay, when the
state is (m,n, r), compare the following two action sequences.

1) 0s: stop, i.e., do not copy to this relay or to any suscep-
tible relays met in the future,

2) 1s: copy to this relay and then stop.
The costs to go corresponding to the action sequences 0s and
1s are, respectively,

J0s(m,n, r) =

Mα−1∑
j=m

1

λ(n+ j)(M − j)

and J1s(m,n, r) = γ +

Mα−1∑
j=m

1

λ(n+ j + 1)(M − j) .

The stopping set SS is defined to be

SS := {(m,n, r) : Φ(m,n) ≤ 0} (3)

where

Φ(m,n) := J0s(m,n, r)− J1s(m,n, r)

=

Mα−1∑
j=m

1

λ(n+ j)(n+ j + 1)(M − j) − γ (4)

for all (m,n) ∈ [Mα−1]× [N0 : N ]. The one step look ahead
policy is to copy to relay when (m,n, r) /∈ SS , and to stop
copying otherwise.3

One step look ahead policies are shown to be optimal for
stopping problems under certain conditions (see [23, Sec-
tion 4.4] and [19, Section 3.4]). But our problem is not a
stopping problem as an action 0 is not equivalent to stop; even
if the susceptible relay met now is not copied, the resulting
state is not a terminal state, and one met in the future may be
copied. However, we exploit the cost structure to prove that
when an infected node meets a susceptible relay, it can restrict
attention to two actions: 1 (i.e., copy now) and stop (i.e., do
not copy now and never copy again). Subsequently, we also
show that the above one step look ahead policy is optimal.

Theorem 3.1: The optimal policy u∗ : [M − 1] × [N0 :
N ]× E → U satisfies

u∗(m,n, e) =


1, if e = d,

1, if e = r and Φ(m,n) > 0,

stop if e = r and Φ(m,n) ≤ 0.

Proof: See Appendix A.

3Convention: A sum over an empty set is 0. Thus Φ(m,n) = −γ if
m ≥ Mα. Consequently, for the states [Mα : M − 1] × [N0 : N ] × {r},
one step-look ahead policy prescribes stop. This is consistent with our earlier
discussion.
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Fig. 2. An illustration of the optimal policy. The symbols ’X’ mark the
states in which the optimal action (at meeting with a relay) is to copy.

Remarks 3.1: We can define Φ(m,n) also for the case α =
1, i.e., when we attempt to minimize the delay until all the
destinations receive the packet. Theorem 3.1 continues to hold.

We illustrate the optimal policy using an example. Let
M = 15, N = 50, N0 = 10, α = 0.8, λ = 0.001 and
γ = 1. The “×” in Figure 2 are the states where the optimal
action (at meeting with a relay) is to copy. For example, if only
5 destinations have the packet, then relays are copied to if and
only if there are 24 or less infected relays. If 7 destinations
already have the packet and there are 19 infected relays, then
no further copying to relays is done.

IV. ASYMPTOTICALLY OPTIMAL EPIDEMIC FORWARDING

In states [Mα − 1] × [N0 : N ] × {r}, the optimal action,
which is governed by the function Φ(m,n), requires perfect
knowledge of the network state (m,n). This may not be avail-
able to the decision maker due to intermittent connectivity. In
this section, we derive an asymptotically optimal policy that
does not require knowledge of network’s state but depends
only on the time elapsed since the generation of the packet.
Such a policy is implementable if the packet is time-stamped
when generated and the nodes’ clocks are synchronized.

A. Asymptotic Deterministic Dynamics

Our analysis closely follows Darling [15]. It is straightfor-
ward to show that the equations that follow are the conditional
expected drift rates of the optimally controlled CTMC. For
(m(t), n(t)) ∈ [M − 1] × [N0 : N ], using the optimal policy
in Theorem 3.1, we get

dE(m(t)|(m(t), n(t)))

dt
= λ(m(t) + n(t))(M −m(t)),

(5a)
dE(n(t)|(m(t), n(t)))

dt
= λ(m(t) + n(t))(N − n(t))

1{Φ(m(t),n(t))>0}. (5b)

Recalling that K = M + N , the total number of nodes,
we study large K asymptotics. More precisely, we consider

a sequence of problems with increasing M,N,N0 (and thus
also K := M +N ) such that the ratios M

K ,
N
K and N0

K remain
constant. The problems are indexed by K. The parameters
of the Kth problem are denoted using the superscript K.
Normalized versions of these parameters, and normalized
versions of the system state are denoted as follows:

X =
MK

K
, Y =

NK

K
,

Xα =
αMK

K
, Y0 =

NK
0

K
,

λK =
Λ

K
, γK =

Γ

K
,

xK(t) =
mK(t)

K
and yK(t) =

nK(t)

K
.


(6)

Remarks 4.1: The pairwise meeting rate and the copying
cost must both scale down as K increases. Otherwise, the
delivery delay will be negligible and the total transmission cost
will be enormous for any policy, and no meaningful analysis
is possible.

For each K, we define scaled two-dimensional integer
lattice

∆K =

{(
i

K
,
j

K

)
: (i, j) ∈ [MK − 1]× [NK

0 : NK ]

}
.

Clearly, (xK(t), yK(t)) ∈ ∆K . Now, using the notation in (6),
the drift rates in (5a)-(5b) can be rewritten as follows.

dE(xK(t)|(xK(t), yK(t)))

dt
= fK1 (xK(t), yK(t))

:= Λ(xK(t) + yK(t))(X − xK(t)), (7a)
dE(yK(t)|(xK(t), yK(t)))

dt
= fK2 (xK(t), yK(t))

:= Λ(xK(t) + yK(t))(Y − yK(t))1{φK(xK(t),yK(t))>0},
(7b)

where, for (x, y) ∈ ∆K ,

φK(x, y) :=

dKXαe−1∑
j=Kx

1

KΛ(y + j
K )(y + j+1

K )(X − j
K )
− Γ.

(8)
We also define (x(t), y(t)) ∈ [0, X] × [Y0, Y ] as functions
satisfying the following ODEs: x(0) = 0, y(0) = Y0, and for
t ≥ 0,

dx(t)

dt
= f1(x(t), y(t)) := Λ(x(t) + y(t))(X − x(t)), (9a)

dy(t)

dt
= f2(x(t), y(t)) := Λ(x(t) + y(t))(Y − y(t))

1{φ(x(t),y(t))>0} (9b)

where4

φ(x, y) =

∫ Xα

z=x

dz

Λ(y + z)2(X − z) − Γ. (10)

4Convention: An integral assumes the value 0 if its lower limit exceeds the
upper limit. So, φ(x, y) = −Γ if x ≥ Xα.
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Finally, we redefine the delivery delay Td (see (1)) to be

τK = inf{t ≥ 0 : xK(t) ≥ Xα}, (11)
and τ = inf{t ≥ 0 : x(t) ≥ Xα}. (12)

Note that τK is a stopping time for the random process
(xK(t), yK(t)), whereas τ is a deterministic time instant.
Since fK1 (x, y) is bounded away from zero, τK < ∞ with
probability 1. Similarly, on account of f1(x, y) being bounded
away from zero, τ <∞.

Kurtz [14] and Darling [15] studied convergence of CTMCs
to the solutions of ODEs. The following are the hypotheses for
the version of the limit theorem that appears in Darling [15].

(i) limK→∞ P
(
‖(xK(0), yK(0)− (x(0), y(0))‖ > ε

)
= 0;

(ii) In the scaled process (xK(t), yK(t), the jump rates are
O(K) and drifts are O(K−1);

(iii) (fK1 (x, y), fK2 (x, y)) converges to (f1(x, y), f2(x, y))
uniformly in (x, y);

(iv) (f1(x, y), f2(x, y)) is Lipschitz continuous.
Observe that, in our case, only the first two hypotheses are
satisfied. In particular, fK2 (x, y) does not converge uniformly
to f2(x, y), and f2(x, y) is not Lipschitz over [0, Xα]×[Y0, Y ].
Hence, the convergence results do not directly apply in our
context. Thankfully, there is some regularity we can exploit
which we now summarize as easily verifiable facts.
(a) φK(x, y) converges uniformly to φ(x, y);
(b) the drift rates f1(x, y) and f2(x, y) are bounded from

below and above;
(c) f1(x, y) is Lipschitz and f2(x, y) is locally Lipschitz; and
(d) for all small enough ν ∈ R, and all (x, y) on the graph of

“φ(x, y) = ν”, the direction in which the ODE progresses,
(f1(x, y), f2(x, y)), is not tangent to the graph.

We then prove the following result which is identical to [15,
Theorem 2.8].

Theorem 4.1: Assume that α < 1 and Y0 > 0. Then,
for every ε, δ > 0, for the optimally controlled epidemic
forwarding process,

lim
K→∞

P
(

sup
0≤t≤τ

‖(xK(t), yK(t))− (x(t), y(t))‖ > ε

)
= 0,

lim
K→∞

P
(
|τK − τ | > δ

)
= 0.

Proof: See Appendix B.
We illustrate Theorem 4.1 using an example. Let X =

0.2, Y = 0.8, α = 0.8, Y0 = 0.2,Λ = 0.05 and Γ = 50.
In Figure 3, we plot (x(t), y(t)) and sample trajectories of
(xK(t), yK(t)) for K = 100, 200 and 500. We indicate the
states at which the optimal policy stops copying to relays,
i.e., ΦK(xK(t), yK(t)) goes below 0 (see Theorem 3.1) and
the states at which the fraction of infected destinations crosses
Xα. We also show the corresponding states in the fluid model.
The plots show that for large K, the fluid model captures the
random dynamics of the network very well.

B. Asymptotically Optimal Policy

Observe that φ(x, y) is decreasing in x and y, both of
which are nondecreasing with t. Consequently φ(x(t), y(t))

0 20 40 60
0

0.05

0.1

0.15

0.2

t

x
(t

) 
a
n
d
 x

K
(t

)

 

 

x(t)

K=100

K=200

K=500

0 20 40 60
0

0.2

0.4

0.6

0.8

t

y
(t

) 
a
n
d
 y

K
(t

)

 

 

y(t)

K=100

K=200

K=500

Fig. 3. Simulation results: The top and bottom subfigures respectively
show the fractions of infected destinations and relays as a function of time.
(xK(t), yK(t)) are obtained from a simulation of the controlled CTMC, and
(x(t), y(t)) from the ODEs. The marker ’X’ indicates the states at which
copying to relays is stopped whereas ’O’ indicates the states at which a
fraction α of destinations have the packet.

decreases with t. We define

τ∗ := inf{t ≥ 0 : φ(x(t), y(t)) ≤ 0}. (13)

The limiting deterministic dynamics suggests the following
policy u∞ for the original forwarding problem.5

u∞(m,n, e) =


1 if e = d,

1 if e = r and t ≤ τ∗,
0 if e = r and t > τ∗.

We show that the policy u∞ is asymptotically optimal in the
sense that its expected cost approaches the expected cost of
the optimal policy u∗ as the network grows. Let us restate (2)
as

EKπ {Td + γEc} =
1

KΛY0(1− Y0)
+

(
Y − Y0

1− Y0

JKπ (0, Y0, r) +
X

1− Y0
JKπ (0, Y0, d)

)
.

We have used superscript K to show the dependence of cost on
the network size. We then establish the following asymptotic
optimality result.

5Observe that the policy u∞ does not require knowledge of m and n. The
infected node readily knows the type of the susceptible node (d or r) at the
decision epoch.
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Theorem 4.2: Assume that α < 1 and Y0 > 0. Then

lim
K→∞

EKu∗{Td+γEc} = lim
K→∞

EKu∞{Td+γEc} = τ + Γy(τ∗).

Proof: See Appendix C.
Remarks 4.2: Observe that we do not compare the limiting

value of the optimal cost with the optimal cost on the (limit-
ing) deterministic system. In general, these two may differ.6

However, the deterministic policy u∞ can be applied on the
finite K-node system. The above theorem asserts that given
any ε > 0, cost of the policy u∞ is within ε of the optimal
cost on the K-node system for all sufficiently large K.

Distributed Implementation: The asymptotically optimal
policy can be implemented in a distributed fashion. We assume
that the system parameters M,N,α,N0, λ and γ are known at
the source, and also that all the nodes are time synchronized.7

Suppose that the packet is generated at the source at time
t0 (we assumed t0 = 0 for the purpose of analysis). Given the
system parameters, the source first extracts X,Y,Xα, Y0,Λ
and Γ as in (6). Then, it calculates τ∗ (see (13)), and stores
t0 + τ∗ as a header in the packet.

The packet is immediately copied to N0 relays, perhaps by
means of a broadcast from an infrastructure “base station”.
When an infected node meets a susceptible relay, it compares
t0 + τ∗ with the current time. The susceptible relay is not
copied to if the current time exceeds t0 + τ∗; the nodes do
not need to know the transient numbers of infected relays and
infected destinations. However, all the infected nodes continue
to carry the packet, and to copy to susceptible destinations as
and when they meet.

Remarks 4.3: Consider a scenario, where the interest is
in copying packet to only a fraction α of the destinations.
Observe from Theorem 4.1 that for every ε > 0,

lim
K→∞

P
(∣∣∣∣mK(τ)

M
− α

∣∣∣∣ > ε

)
= 0.

Thus, in large networks, copying to destinations can also be
stopped at time τ (see (12)) while ensuring that with large
probability the fraction of infected destinations is close to α.
Consequently, all the relays can delete the packet and free
their memory at τ . This helps when packets are large and
relay (cache) memory is limited.

V. OPTIMAL TWO-HOP FORWARDING

Instead of epidemic relaying one can consider two-hop
relaying [21]. Here, the N0 source nodes can copy the packet
to any of the N −N0 relays or M destinations. The infected
destinations can also copy the packet to any of the susceptible
relays or destinations. However, the relays are allowed to
transmit the packet only to the destinations. Here also a similar
optimization problem as in Section II-A arises.

6In our case these two indeed match. See [24, Appendix D] for a proof.
7In practice, due to variations in the clock frequency, the clocks at

different nodes will drift from each other. But the time differences are
negligible compared to the delays caused by intermittent connectivity in the
network. Moreover, when an infected node meets a susceptible node, clock
synchronization can be performed before the packet is copied. Distributed
algorithms for time synchronization are also available (e.g., see [25]).

Now, the decision epochs tk, k = 1, 2, . . . are the meeting
epochs of the infected nodes (sources, relays or destinations)
with the susceptible destinations and the meeting epochs of the
sources or infected destinations with the susceptible relays. We
can formulate an MDP with state

sk := (mk, nk, ek).

at instant tk where mk, nk and ek are as defined in Sec-
tion III-A. The state space is [Mα − 1] × [N0 : N ] × E . The
control space is U = {0, 1}, where 1 is for copy and 0 is for
do not copy. We also get a transition structure identical to that
in Section III-A.

For a state action pair (sk, uk) the expected single stage
cost is given by

g(sk, uk) = E
{
δk+11{mk+1<Mα}

}
+ γuk1{ek=r}

=


γuk1{ek=r} if mk ≥Mα,

0 if mk = Mα − 1, ek = d and uk = 1,

Cd(sk, uk) + γuk1{ek=r} otherwise,

where
Cd(sk, uk) =(

(mk + nk + uk)(M −mk − uk1{sk=d})λ

+ (mk + uk1{sk=d} +N0)(N − nk − uk1{sk=r})λ
)−1

is the mean time until the next decision epoch. As before, the
quantity γuk accounts for the transmission energy.

Let u∗ : [Mα − 1] × [N0 : N ] × E → U be a stationary
optimal policy. As in Section III-B, the optimal policy satisfies
u∗(m,n, d) = 1 for all (m,n) ∈ [M − 1] × [N0 : N ], and
u∗(m,n, r) = 0 for all (m,n) ∈ [Mα : M − 1] × [N0 : N ].
Thus, we focus on a reduced state space [Mα − 1] × [N0 :
N ] × {r}. As before, we look for the one step look ahead
policy which turns out to be the same as that for epidemic
relaying. Finally, Theorem 3.1 holds for two-hop relaying as
well (see the proof in Appendix A).

Next, we turn to the asymptotically optimal control for two-
hop relaying. The following are the conditional expected drift
rates. For (m(t), n(t)) ∈ [Mα − 1]× [N0 : N ],

dE(m(t)|(m(t), n(t)))

dt
= λ(m(t) + n(t))(M −m(t)),

dE(n(t)|(m(t), n(t)))

dt
= λ(m(t) +N0)(N − n(t))

1{Φ(m(t),n(t))>0}.

We employ the same scaling and notations as in (6). The drift
rates in terms of (xK(t), yK(t)) ∈ [0, Xα]× [Y0, Y ] are

dE(xK(t)|(xK(t), yK(t)))

dt
= fK1 (xK(t), yK(t))

:= Λ(xK(t) + yK(t))(X − xK(t)),

dE(yK(t)|(xK(t), yK(t)))

dt
= fK2 (xK(t), yK(t))

:= Λ(xK(t) + Y0)(Y − yK(t))1{φK(xK(t),yK(t))>0},

Now, x(t), y(t) are defined as functions satisfying x(0) =
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Fig. 4. An illustration of the epidemic and two hop trajectories. The plots
also show the graph of ‘φ(x, y) = 0’.

0, y(0) = Y0 and for t ≥ 0,

dx(t)

dt
= f1(x(t), y(t)) := Λ(x(t) + y(t))(X − x(t)),

dy(t)

dt
= f2(x(t), y(t)) := Λ(x(t) + Y0)(Y − y(t))

1{φ(x(t),y(t))>0}

The analysis in Section IV applies to two-hop relaying as
well. In particular, Theorems 4.1 and 4.2 hold. However, for
the identical system parameters (M,N,α, λ and γ) and initial
state (N0), the value of the time-threshold τ∗ will be larger
due to the slower rates of infection of relays and destinations.

We illustrate the comparison between epidemic and two-
hop relaying via an example. Let X = 0.2, Y = 0.8, α =
0.8, Y0 = 0.2,Λ = 0.05 and Γ = 50. In Figure 4, we plot the
graph of “φ(x, y) = 0”, and also the ’y versus x’ trajectories
corresponding to epidemic and two-hop relayings. In Figure 5,
we plot the trajectories of x(t) and y(t) corresponding to
epidemic and two-hop relayings. As anticipated, the value
of the time-threshold τ∗ is larger for two-hop relaying than
epidemic relaying. Moreover, the number of transmissions is
less while the delivery delay is more under the controlled two-
hop relaying.

VI. SIMULATION AND NUMERICAL RESULTS

We start with simulations that validate the independent
Poisson point process model for the meeting instants in the
presence of control. We then show a few numerical results to
demonstrate the good performance of the deterministic control,
and also to compare the performance of optimal epidemic and
two-hop relayings.

For simulation we use the mobility traces generated us-
ing OMNeT++ according to the random waypoint mobility
model [6]. In our setup K = 200 nodes move at a speed 10 m/s
in a square of size 2 Km × 2 Km, and have a communication
radius 28.7115 m. These values are chosen to yield a pair-wise
meeting rate λ = 0.00025/s. We take M = 20, N = 180,
α = 0.8 and N0 = 20, and assume quarter a unit cost per
copy (γ = 0.25). We perform 1000 runs of the simulation, and
average m(t) and n(t); averaging leads to fractional values of
these otherwise integer variables. We choose destinations and

0 20 40 60
0

0.05

0.1

0.15

0.2

t

x
(t

)

 

 

epidemic

two−hop

0 20 40 60
0

0.2

0.4

0.6

0.8

t
y
(t

)

 

 

epidemic

two−hop

Fig. 5. The top and bottom subfigures respectively show the fractions of
infected destinations and relays as a function of time. The marker ’X’ indicates
the states at which copying to relays is stopped (i.e., the states at τ∗), and ’O’
indicates the states at which α fraction of destinations have been copied (i.e.,
the states at τ ).

initially infected relays uniformly at random from among all
the nodes for each iteration. We consider both epidemic and
two-hop relayings. As Figure 6 depicts, in both the cases, the
Poisson point process model for the meeting instants quite
accurately predicts the dynamics of the fraction of infected
destinations and relays under optimal control.

Now, we use the Poisson point process model for the
meeting instants to illustrate the performance of optimal and
deterministic open loop controls. We set M = 20, N =
80, α = 0.8, N0 = 10 and λ = 0.0005, and vary γ from 0.01
to 10. In Figure 7, we plot the total number of copies to relays,
delivery delays and total costs. The subfigures on the left are
for epidemic relaying while those on the right are for two-
hop relaying. Each subfigure contains four plots: the optimal
policy, the deterministic open loop policy, the spray and wait
policy [9], and uncontrolled forwarding policy (copying to
all the relays).8 The authors in [9] propose spray and wait
and spray and focus routings for single destination networks,
and select the number of copies to meet certain expected
delay target. We have adapted these for a multi-destination
network, and we choose the number of copies to minimize
the weighted sum of delivery delay and copying cost as in (1).
In the spray phase, we use binary spraying in the left hand

8In our symmetric Poisson meeting model, spray and wait and spray and
focus routings are identical; no relays are copied in the focus phase.
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Fig. 6. The top and bottom subfigures, respectively, show the numbers of
infected destinations and relays as a function of time. The simulation plots are
based on traces generated according to random waypoint mobility, while the
analysis plots are based on the Poisson point process model for the meeting
instants. The left plots are for optimally controlled epidemic relaying and the
right plots are for optimally controlled two-hop relaying. We also show 95%
confidence intervals for our simulation.

side plots and source spraying in the right hand side plots.
Clearly, the deterministic policy performs close to the optimal
policy for all the considered parameter sets. Both these policies
outperform spray and wait routing as well as uncontrolled
forwarding. Performance improvements with respect to spray
and wait routing are substantial for small values of γ. On
the other hand, performance improvements with respect to the
uncontrolled forwarding are meager for small values of γ; for
small copying costs the controlled protocols also make a large
number of copies (because the difference in the number of
copies affects the total cost only marginally), and hence the
controlled protocols incur approximately the similar delivery
delays as the uncontrolled one. However, for higher values of
γ, optimal control brings in considerable performance benefits.

Often static (probabilistic) controls have been considered
in the literature (e.g., see [10]). In our context, probabilistic
controls end up copying to all the relays, but incur higher
delivery delay than uncontrolled forwarding. In particular, such
controls incur higher total cost than uncontrolled forwarding,
and are clearly suboptimal.

Our results also characterize a few typical features of
epidemic and two-hop relayings. As expected, for each set
of parameters, the optimal number of copies is less and the
optimal delivery delay is more under two-hop relaying when
compared with epidemic relaying. We also observe that the
optimal epidemic relaying always preforms better than the
optimal two-hop relaying. This also is expected because in
epidemic relaying we optimally control forwarding without the
constraint that relays cannot copy to other susceptible relays.
However, for large values of γ, controlled epidemic as well as
controlled two-hop relayings provision few copies to relays.
Thus, in this regime, both these schemes incur almost same
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Fig. 7. The top, middle and bottom subfigures, respectively, show expected
total number of copies to relays, expected delivery delays and expected total
costs corresponding to the optimal, the deterministic and spray and wait
policies, and also corresponding to uncontrolled forwarding. The left plots
are for epidemic relaying and the right plots are for two-hop relaying.

delivery delays, and so incur almost same total costs.
Now, we investigate the effect of α on the number of copies

made and the delivery delay. Towards this, we set M =
40, N = 160, N0 = 20, λ = 0.00001 and γ = 2, and vary α
from 0.02 to 0.97 such that Mα assumes all the integral values
from 1 to 39. We focus only on epidemic relaying. Expectedly,
both the number of copies and the delivery delay increase with
α (see Figure 8). In particular, as α approaches one, even the
optimal policy copies to almost all the susceptible relays (in
this example, 140), and all the policies (including uncontrolled
forwarding) incur huge delivery delays.9

Finally, we study the effect of varying the network size K
and the pair-wise meeting rate λ. Let X = 0.2, Y = 0.8, α =
0.8, Y0 = 0.1 and γ = 0.1. We vary λ from 0.0001 to 0.1 and
use K =50, 100 and 200. In Figure 9, we plot the number
of copies to relays and the delivery delays corresponding to
both the optimal and the asymptotically optimal deterministic
policies in the case of epidemic relaying. We observe that, for
a fixed K, both the mean delivery delay and the mean number
of copies decrease as λ increases. We also observe that, for

9 As α approaches one, φ(x, y) approaches infinity (see (10)), and
consequently τ∗ also approaches infinity (see (13)). Thus, the deterministic
policy prescribes copying to all the relays in an attempt to mitigate the
enormous delivery delay. This illustrates why we restrict to α < 1 to get
a meaningful distributed policy.
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Fig. 8. The left and right subfigures, respectively, show the expected total
number of copies to relays and expected delivery delays corresponding to both
the optimal and the deterministic policies under controlled epidemic relaying.
The mean delivery delay under uncontrolled epidemic relaying is also shown.

a fixed λ, the mean delivery delay decreases as the network
size grows. Finally, for smaller values of λ, the mean number
of copies to relays increases with the network size, and for
larger values of λ, the opposite happens.

VII. CONCLUSION

We studied the epidemic forwarding in DTNs, formulated
the problem as a controlled continuous time Markov chain,
and obtained the optimal policy (Theorem 3.1). We then
developed an ordinary differential equation approximation for
the optimally controlled Markov chain, under a natural scaling,
as the population of nodes increases to ∞ (Theorem 4.1).
This o.d.e. approximation yielded a forwarding policy that
does not require global state information (and, hence, is
implementable), and is asymptotically optimal (Theorem 4.2).

The optimal forwarding problem can also be addressed
following the result of Gast et al. [18]. They study a gen-
eral discrete time Markov decision process (MDP) [19].
However, they do not solve the finite problem citing the
difficulties associated with obtaining the asymptotics of the
optimally controlled process (see [18, Section 3.3]). Instead,
they consider the fluid limit of the MDP, and analyze optimal
control over the deterministic limiting problem. They then
show that the optimal reward of the MDP converges to the
optimal reward of its mean field approximation, given by the
solution to a Hamilton-Jacobi-Bellman (HJB) equation [23,
Section 3.2]. On the other hand, our approach is more direct.
We have a continuous time controlled Markov chain at our
disposal We explicitly characterize the optimal policy for the
finite (complete information) problem, and prove convergence
of the optimally controlled Markov chain to a fluid limit. An
asymptotically optimal deterministic control is then suggested
by the limiting deterministic dynamics, and does not require
solving HJB equations. Our notion of asymptotic optimality
is also stronger in the sense that we apply both the optimal
policy and the deterministic policy to the finite problem, and
show that the corresponding costs converge.

There are several directions in which this work can be
extended. In the same DTN framework, there could be a
deadline on the delivery time of the packet (or message); the
goal of the optimal control could be to maximize the fraction
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Fig. 9. The left and right subfigures, respectively, show the expected total
number of copies to relays and expected delivery delays corresponding to both
the optimal and the deterministic policies under controlled epidemic relaying.

of destinations that receive the packet before the deadline
subject to an energy constraint. Our work in this paper assumes
that network parameters such as M,N, λ etc., are known; it
will be important to address the adaptive control problem when
these parameters are unknown.

APPENDIX A
PROOF OF THEOREM 3.1

We first prove that for the optimal policy it is sufficient to
consider two actions 1 (i.e., copy now) and stop (i.e., do not
copy now and never copy again). More precisely, under the
optimal policy, if a susceptible relay that is met is not copied,
then no susceptible relay is copied in the future as well. Let
us fix a N0 ≤ n ≤ N − 1. Let m∗n be the maximum j such
that u∗(j, n, r) = 1.10 We show that u∗(j, n, r) = 1 for all
0 ≤ j < m∗n; see Figure 2 for an illustration of this fact. The
proof is via induction.

Proposition A.1: If u∗(j, n, r) = 1 for all m+1 ≤ j ≤ m∗n,
then u∗(m,n, r) = 1.

Proof: Define

ψ(m,n) := J0s(m,n, r)− J(m,n, r),

θ0(m,n) := J0s(m,n, r)−A((m,n, r), 0),

and θ1(m,n) := J1s(m,n, r)−A((m,n, r), 1).

The action sequences that give rise to J0s(m,n, r) and
A((m,n, r), 0), do not copy to the susceptible relay that was
just met. More formally,11

J0s(m,n, r) =Cd((m,n, r), 0) +

Mα−1∑
j=m

(
j−1∏
l=m

pl,n(d)

)

× pj,n(r)

(
j−1∑
l=m

Cd((l, n, d), 1) + J0s(j, n, r)

)
and

10Note that, for a given n, m∗n could be 0, in that case we do not copy to
any more relays.

11Convention: A sum over an empty index set is 0 and a product over an
empty index set is 1, which happen when j = m.
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A((m,n, r), 0) =Cd((m,n, r), 0) +

Mα−1∑
j=m

(
j−1∏
l=m

pl,n(d)

)

× pj,n(r)

(
j−1∑
l=m

Cd((l, n, d), 1) + J(j, n, r)

)
Thus, subtracting the latter from the former,

θ0(m,n) =

Mα−1∑
j=m

(
j−1∏
l=m

pl,n(d)

)
pj,n(r)ψ(j, n). (14)

Since A((m,n, r), 0) ≥ J(m,n, r), it follows that ψ(m,n) ≥
θ0(m,n), and so

ψ(m,n) ≥
Mα−1∑
j=m

(
j−1∏
l=m

pl,n(d)

)
pj,n(r)ψ(j, n)

= pm,n(r)ψ(m,n)

+ pm,n(d)

Mα−1∑
j=m+1

(
j−1∏

l=m+1

pl,n(d)

)
pj,n(r)ψ(j, n)

which implies upon rearrangement

ψ(m,n) ≥
Mα−1∑
j=m+1

(
j−1∏

l=m+1

pl,n(d)

)
pj,n(r)ψ(j, n) (15)

Next, we establish the following lemma.

Lemma A.1: θ1(m,n) ≥ θ1(m+ 1, n).

Proof: Note that both the action sequences that lead to
the two cost terms in the definition of θ1(m,n) copy at state
(m,n, r). Subsequently, both incur equal costs until a decision
epoch when an infected node meets a susceptible relay. Also,
at any such state (j, n + 1, r), j ≥ m, the costs to go differ
by ψ(j, n+ 1). Hence,

θ1(m,n) =

Mα−1∑
j=m

(
j−1∏
l=m

pl,n+1(d)

)
pj,n+1(r)ψ(j, n+ 1)

= pm,n+1(r)ψ(m,n+ 1) + pm,n+1(d)θ1(m+ 1, n)

where

θ1(m+1, n) =

Mα−1∑
j=m+1

(
j−1∏

l=m+1

pl,n+1(d)

)
pj,n+1(r)ψ(j, n+1).

Thus it suffices to show that
ψ(m,n+ 1) ≥ θ1(m+ 1, n).

which is same as (15) with n replaced by n+ 1.

Next, observe that for all m ≤ j ≤ m∗n,

ψ(j, n) = J0s(j, n, r)−min{A((j, n, r), 0), A((j, n, r), 1)}
= max{θ0(j, n),Φ(j, n) + θ1(j, n)}. (16)

Moreover, from the induction hypothesis, the optimal policy
copies at states (j, n, r) for all m+ 1 ≤ j ≤ m∗n. Hence, for
m+ 1 ≤ j ≤ m∗n,

ψ(j, n) = Φ(j, n) + θ1(j, n).

Finally, ψ(j, n) = 0 for all m∗n < j ≤Mα − 1 as the optimal
policy does not copy in these states. Hence, from (14),

θ0(m,n)

= pm,n(r) max{θ0(m,n),Φ(m,n) + θ1(m,n)}+ pm,n(d)

×
m∗n∑

j=m+1

(
j−1∏

l=m+1

pl,n(d)

)
pj,n(r)

(
Φ(j, n) + θ1(j, n)

)
< pm,n(r) max {θ0(m,n),Φ(m,n) + θ1(m,n)}+ pm,n(d)

×
(
Φ(m,n) + θ1(m,n)

) m∗n∑
j=m+1

(
j−1∏

l=m+1

pl,n(d)

)
pj,n(r)

≤ pm,n(r) max {θ0(m,n),Φ(m,n) + θ1(m,n)}
+ pm,n(d)

(
Φ(m,n) + θ1(m,n)

)
= max

{
pm,n(r)θ0(m,n) + pm,n(d)

(
Φ(m,n) + θ1(m,n)

)
,

Φ(m,n) + θ1(m,n)} , (17)

where the first (strict) inequality holds because Φ(m,n) is
strictly decreasing (see (4)) and θ1(m,n) is decreasing (see
Lemma A.1) in m for fixed n. The second inequality follows
because the summation term is a probability which is less than
1. Now suppose that θ0(m,n) ≥ Φ(m,n) + θ1(m,n). Then

max
{
pm,n(r)θ0(m,n) + pm,n(d)

(
Φ(m,n) + θ1(m,n)

)
,

Φ(m,n) + θ1(m,n)}
= pm,n(r)θ0(m,n) + pm,n(d)

(
Φ(m,n) + θ1(m,n)

)
≤ θ0(m,n)

which contradicts (17). Thus, we conclude that

θ0(m,n) < Φ(m,n) + θ1(m,n).

This further implies that ψ(m,n) = Φ(m,n) + θ1(m,n)
(see (16)), and so that u∗(m,n, r) = 1.

We now return to the proof of Theorem 3.1. We show that
the one-step look ahead policy is optimal for the resulting
stopping problem. To see this, observe that Φ(m,n) is de-
creasing in m for a given n and also decreasing in n for a
given m. Thus, if (m,n, r) ∈ SS , i.e, Φ(m,n) ≤ 0 (see (3)),
and the susceptible relay that is met is copied, the next
state (m,n + 1, r) also belongs to the stopping set SS . In
other words, SS is also an absorbing set [19, Section 3.4]).
Consequently, the one-step look ahead policy is optimal.

APPENDIX B
PROOF OF THEOREM 4.1

We start with a preliminary result and a few definitions.
Proposition B.1: Let α < 1 and Y0 > 0. Let φK and φ

be as given in (8) and (10), respectively. Then, the functions
φK(·) converge to φ(·) uniformly, i.e., for every ν > 0, there
exists a Kν such that

sup
(x,y)∈∆K

|φK(x, y)− φ(x, y)| < ν

for all K ≥ Kν .
Proof: See [24, Appendix B].

In the following, to facilitate a parsimonious description, we
use the notation zK(t) = (xK(t), yK(t)), z(t) = (x(t), y(t))
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and Z = [0, Xα]× [Y0, Y ]. Let us define, for a ν ∈ R,

Sν = {z ∈ Z : φ(z) > ν},
τν = inf{t ≥ 0 : z(t) /∈ Sν},

and a stopping time

τKν = inf{t ≥ 0 : zK(t) /∈ Sν},
the time when zK(t) exits the limiting set Sν . Observe that

∂φ

∂x
= − 1

Λ(x+ y)2(X − x)
≤ − 1

Λ(Xα + Y )2X
, (18)

and fK1 (x, y) (see (7a)) is positive and bounded away from
zero. These imply τKν <∞ with probability 1. Similarly, τν <
∞. The following assertion is a corollary of Proposition B.1.

Corollary B.1: Let Kν be as in Proposition B.1. For K ≥
Kν ,

φK(z) > 0 for all z ∈ Sν ,
and φK(z) ≤ 0 for all z /∈ S−ν .

We define the uncontrolled dynamics (i.e., the one in which
the susceptible relays are always copied) as a Markov process
z̄K(t) = (x̄K(t), ȳK(t)), t ≥ 0 for which z̄K(0) = zK(0).
Let z̄(t) = (x̄(t), ȳ(t)), t ≥ 0 be the corresponding limiting
deterministic dynamics. Formally, z̄(0) = z(0), and for t ≥ 0,

dx̄(t)

dt
= Λ(x̄(t) + ȳ(t))(X − x̄(t)),

dȳ(t)

dt
= Λ(x̄(t) + ȳ(t))(Y − ȳ(t)).

The quantities on the right-hand side of the above equations
are at most Λ, and so

∥∥dz̄
dt

∥∥ ≤ √2Λ. Also observe that
the processes z̄K(t) and z̄(t) satisfy the hypotheses of Dar-
ling [15] (see Section IV-A), and thus convergence of z̄K(t)
to z̄(t) follows.

We also define a Markov process z̃K(t) = (x̃K(t), ỹK(t)),
t ≥ τν for which z̃K(τν) = zK(τν) and

dE(x̃K(t)|(x̃K(t), ỹK(t))

dt
= Λ(x̃K(t) + ỹK(t))(X − x̄K(t))

dE(yK(t)|(xK(t), yK(t))

dt
= 0

In other words, z̃K(t) is the process in which relays are not
copied after τν . Similarly, we define z̃(t) = (x̃(t), ỹ(t)), t ≥
τν as the solution of the corresponding differential equations.
In other words, z̃(τν) = z(τν), and for t ≥ τν ,

dx̃(t)

dt
= f1(x̃(t), ỹ(t)) := Λ(x̃(t) + ỹ(t))(X − x̃(t)),

dỹ(t)

dt
= f2(x̃(t), ỹ(t)) := 0

We define

τ̃K−ν = inf{t ≥ τν : z̃K(t) /∈ S−ν},
τ̃−ν = inf{t ≥ τν : z̃(t) /∈ S−ν}.

Since
ΛY0(X −Xα) ≤ dx̃

dt
≤ Λ,

TABLE I
VARIABLES AND THEIR DESCRIPTION

variables description
zK(t) controlled dynamics with discontinuity at τK

z(t) zK(t)’s fluid limit with discontinuity at τ∗

τKν instant when zK(t) exits Sν
τν instant when z(t) exits Sν
z̄K(t) uncontrolled dynamics with no discontinuity

z̄(t) z̄K(t)’s fluid limit with no discontinuity

z̃K(t) identical to zK(t) until τν at which copying to

relays is stopped

z̃(t) z̃K(t)’s fluid limit with discontinuity at τν
τ̃K−ν instant when z̃K(t) exits S−ν
τ̃−ν instant when z̃(t) exits S−ν
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Fig. 10. An illustration of the trajectories of the controlled CTMC and the
corresponding ODE, and the associated variables.

the lower bound implies that there is a strictly positive increase
in x̃ after time τν . Since Φ(x, y) decreases with increasing
x at a rate bounded away from 0 (see 18), z̃(t) must exit
S−ν within a short additional duration. Thus, we have that
τ̃−ν − τν ≤ bν for a suitably chosen b <∞.

We summarize the variables in Table I. We also illustrate
sample trajectories of a controlled CTMC and the correspond-
ing ODE via an example (Figure 10). We choose M =
40, N = 160, α = 0.8, N0 = 40, λ = 0.00025 and γ = 0.25.
We plot the graphs of ’φ(x, y) = ν’ and ’φ(x, y) = −ν’ for
ν = 0.2. We also show the trajectories “yK vs xK”, “y vs x”,
“ỹ vs x̃” and the epochs τν , τ−ν and τ̃−ν .

We also need the following lemmas.
Lemma B.1: For every ε > 0, there exists a τ̄ε such that for

all t ≥ 0, 0 ≤ u ≤ τ̄ε,
P
(
‖z̄K(t+ u)− z̄K(t)‖ > ε

)
= O(K−1).

Proof: See [24, Appendix B].
Lemma B.2: Suppose u is a fixed time and uK is a random

time that satisfies P
(
|u− uK | > δ

)
= O(K−1) for every δ >
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0. Then, for every ε > 0,

P
(
‖z̄K(u)− z̄K(u ∧ uK)‖ > ε

)
= O(K−1)

Proof: See [24, Appendix B].

We now prove the assertion in Theorem 4.1 in three steps:
(a) over [0, τν ], (b) over [τν , τ̃−ν ] and (c) over [τ̃−ν , τ ].

(a) First, we prove the convergence of zK(t) to z(t) over
[0, τν ]. Fix a ν > 0. Then Corollary B.1 implies that zK(t)
converges to z(t) in the region Sν . Following [15, Theo-
rem 2.8] we have, for all ε, δ > 0,

P
(

sup
0≤t≤τν

‖zK(t ∧ τKν )− z(t)‖ > ε

)
= O(K−1) (19a)

and P(|τKν − τν | > δ) = O(K−1). (19b)

Since, for all t ≥ 0,

‖zK(t)−z(t)‖ ≤ ‖zK(t∧τKν )−z(t)‖+‖zK(t)−zK(t∧τKν )‖,
we obtain

sup
0≤t≤τν

‖zK(t)− z(t)‖ ≤ sup
0≤t≤τν

‖zK(t ∧ τKν )− z(t)‖

+ sup
0≤t≤τν

‖zK(t)− zK(t ∧ τKν )‖.

If the left side is larger than ε, at least one of the two terms on
the right side is larger than ε/2, and so by the union bound,
we get

P
(

sup
0≤t≤τν

‖zK(t)− z(t)‖ > ε

)
≤ P

(
sup

0≤t≤τν
‖zK(t ∧ τKν )− z(t)‖ > ε

2

)
+ P

(
sup

0≤t≤τν
‖zK(t)− zK(t ∧ τKν )‖ > ε

2

)
≤ O(K−1) + P

(
‖zK(τν)− zK(τν ∧ τKν )‖ > ε

2

)
(20)

where the first term in the last inequality follows from (19a).
Also, from corollary B.1, for K ≥ Kν , φK(zK(τKν )−) > 0,
i.e., the process zK(t) follows uncontrolled dynamics until
τKν . Thus, for K ≥ Kν , zK(τKν ) = z̄K(τKν ) and

‖zK(τν)− zK(τν ∧ τKν )‖ ≤ ‖z̄K(τν)− z̄K(τν ∧ τKν )‖
sample path wise. The inequality is an equality if τν ≤ τKν ;
both sides equal 0 in this case. Otherwise, it is an inequality
because the possible change in dynamics of zK(t) after τKν
makes it increase (in both its components) at a slower pace
than the uncontrolled z̄K(t). Thus

P
(
‖zK(τν)− zK(τν ∧ τKν )‖ > ε

2

)
≤ P

(
‖z̄K(τν)− z̄K(τν ∧ τKν )‖ > ε

2

)
≤ O(K−1),

where the last inequality follows from (19b) and Lemma B.2.
Using this in (20) we get

P
(

sup
0≤t≤τν

‖zK(t)− z(t)‖ > ε

)
≤ O(K−1) +O(K−1)

= O(K−1)

(b) Now we prove the convergence of zK(t) to z(t) over
[τν , τ̃−ν ]. Observe that, for t ∈ [τν , τ̃−ν ],

‖zK(t)− z(t)‖
≤ ‖zK(τν)− z(τν)‖+ ‖zK(t)− zK(τν)‖+ ‖z(t)− z(τν)‖.

Hence,

sup
τν≤t≤τ̃−ν

‖zK(t)− z(t)‖

≤ ‖zK(τν)− z(τν)‖+ sup
τν≤t≤τ̃−ν

‖zK(t)− zK(τν)‖

+ sup
τν≤t≤τ̃−ν

‖z(t)− z(τν)‖

= ‖zK(τν)− z(τν)‖+ ‖zK(τ̃−ν)− zK(τν)‖
+ ‖z(τ̃−ν)− z(τν)‖

≤ ‖zK(τν)− z(τν)‖+ ‖zK(τ̃−ν)− zK(τν)‖+
√

2Λbν

where the equality follows because the z(t) and z(t) are
nondecreasing. The last inequality holds because ‖dz/dt‖ ≤
‖dz̄/dt‖ ≤

√
2Λ and τ̃−ν − τν ≤ bν. Moreover,

P

(
sup

τν≤t≤τ̃−ν
‖zK(t)− z(t)‖ >

√
2Λbν +

ε

2

)
≤ P

(
‖zK(τν)− z(τν)‖ > ε

4

)
+ P

(
‖zK(τ̃−ν)− zK(τν)‖ > ε

4

)
= O(K−1) + P

(
‖zK(τ̃−ν)− zK(τν)‖ > ε

4

)
where the equality follows from the result of part (a). We
now redefine the Markov process z̄K(t) = (x̄K(t), ȳK(t)) for
t ≥ τν , to be the uncontrolled dynamics with initial condition
z̄K(τν) = zK(τν). Again, it can be easily observed that

‖zK(τ̃−ν)− zK(τν)‖ ≤ ‖z̄K(τ̃−ν)− z̄K(τν)‖.
Thus

P

(
sup

τν≤t≤τ̃−ν
‖zK(t)− z(t)‖ >

√
2Λbν +

ε

2

)
≤ O(K−1) + P

(
‖z̄K(τ̃−ν)− z̄K(τν)‖ > ε

4

)
≤ O(K−1) + P

(
‖z̄K(τν + bν)− z̄K(τν)‖ > ε

4

)
Set ν = min{ ε

2
√

2Λb
, τ̄ ε

4b
}, and apply Lemma B.1 to get

P

(
sup

τν≤t≤τ̃−ν
‖zK(t)− z(t)‖ > ε

)

≤ P

(
sup

τν≤t≤τ̃−ν
‖zK(t)− z(t)‖ >

√
2Λbν +

ε

2

)
≤ O(K−1) +O(K−1) = O(K−1).

(c) Finally, we prove the convergence of zK(t) to z(t)
over [τ̃−ν , τ ]. Reconsider the process z̃K(t), t ≥ τν and
the associated function z̃(t). Recall that, for any ν > 0,
z̃K(t) and z̃(t) exit S−ν at τ̃K−ν and τ̃−ν respectively. Clearly,
τ̃−ν/2 < τ̃−ν ; say τ̃−ν − τ̃−ν/2 = δν . Also, using [15,
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Theorem 2.8],

P
(
τ̃K−ν/2 − τ̃−ν/2 > δν

)
= O(K−1)

i.e., P
(
τ̃K−ν/2 > τ̃−ν

)
= O(K−1)

Furthermore, τK−ν/2 ≤ τ̃K−ν/2 sample path wise. The inequality
holds because zK(t) may continue to increase (in both its
components) at a higher pace than z̃K(t) even after τν . Thus

P
(
τK−ν/2 > τ̃−ν

)
= O(K−1),

implying that the probability that zK(t) has changed its
dynamics by τ̃−ν approaches 1 as K approaches ∞. In
these realizations, the dynamics of zK(t) and z(t) match for
t ≥ τ̃−ν . We restrict ourselves to only these realizations. We
also have from part (b) that, for every ε > 0,

P
(
‖zK(τ̃−ν)− z(τ̃−ν)‖ > ε

)
= O(K−1)

Once more using [15, Theorem 2.8], for any ε, δ > 0

P

(
sup

τ̃−ν≤t≤τ
‖zK(t)− z(t)‖ > ε

)
= O(K−1)

and P
(
|τK − τ | > δ

)
= O(K−1).

APPENDIX C
PROOF OF THEOREM 4.2

Observe that Td = τK by definition (see (11)), and that all
the destinations are copied under any policy. Hence, the total
expected cost under the optimal policy u∗ is

EKu∗{Td + γEc} = EKu∗{τK + ΓyK(τK)}.
Under the deterministic policy u∞, copying to relays is

stopped at the deterministic time instant τ∗. So, it incurs
the total expected cost

EKu∞{Td + γEc} = EKu∞{τK + ΓyK(τ∗)}.
Also, under u∞, the fluid limits of (xK(t), yK(t)) are the
same deterministic dynamics (x(t), y(t)) defined in Sec-
tion IV-A (i.e., solutions of (9a)-(9b)). Indeed, (xK(t), yK(t))
and (x(t), y(t)) satisfy the hypotheses assumed in Darling [15]
over the intervals [0, τ∗] and [τ∗,∞). Thus [15, Theorem 2.8]
applies, and we obtain12

lim
K→∞

PKu∞
(

sup
0≤t≤τ

‖(xK(t), yK(t))− (x(t), y(t))‖ > ε

)
= 0,

lim
K→∞

PKu∞
(
|τK − τ | > δ

)
= 0.

We first show that, under the control u∗, yK(τK) converge
to y(τ∗) in probability. Recall that φ(x(t), y(t)) is decreasing
in t, φ(x(τ∗), y(τ∗)) = 0 (see (13)) and φ(x(τ), y(τ)) =
−Γ (see (10) and (12)). Thus τ∗ < τ , and from (9b), y(τ) =
y(τ∗). Hence it suffices to show that yK(τK) converge to y(τ)
in probability. To see this, observe that

|yK(τK)−y(τ)| ≤ |yK(τK)−yK(τ)|+|yK(τ)−y(τ)|. (21)

12Applying [15, Theorem 2.8] over [0, τ∗] yields
limK→∞ P

(
‖(xK(τ∗), yK(τ∗)− (x(τ∗), y(τ∗))‖ > ε

)
= 0 which

is a necessary condition to apply [15, Theorem 2.8] over [τ∗,∞).

From Theorem 4.1, yK(τ) and τK converge to y(τ) and τ
respectively, in probability. The latter result and arguments
similar to those in the proof of Lemma B.2 imply that

P
(
|yK(τK)− yK(τ)| > ε

)
= O(K−1)

for every ε > 0. Using these facts in (21), we conclude that

P
(
|yK(τK)− y(τ)| > ε

)
= O(K−1).

for every ε > 0 which is the desired claim.
Further, yK(τK) are bounded uniformly over all K. Thus,

following [26, Remark 9.5.1], yK(τK) are uniformly inte-
grable under u∗. Similar arguments imply that, under u∞ also,
yK(τ∗) converge in probability to y(τ∗), and are uniformly
integrable. Then, the convergence in probability along with
[26, Theorem 9.5.1] implies that

lim
K→∞

EKu∗yK(τK) = lim
K→∞

EKu∞yK(τ∗) = y(τ∗). (22)

Next, it is shown that under both the controls u∗ and u∞,
the delivery delays τK have second moments that are bounded
uniformly over all K. To see this, consider a policy u0 that
never copies to relays. Clearly,

EKu∗(τK)2 <EKu0(τK)2,

EKu∞(τK)2 <EKu0(τK)2

for each K. Thus is suffices to show that

sup
K

EKu0(τK)2 <∞. (23)

Note that

τK =

MK
α −1∑
m=0

δ̄m,

where δ̄m is the time duration for which m(t) = m. Under
the policy u0, δ̄m is exponentially distributed with mean

1
λK(m+NK0 )(MK−m)

. So,

EKu0τK =

MK
α −1∑
m=0

1

λK(m+NK
0 )(MK −m)

≤
MK
α −1∑
m=0

1

λKNK
0 (MK −MK

α )

=
MK
α

λKNK
0 (MK −MK

α )

=
Xα

ΛY0(X −Xα)
<∞.

Also, δ̄m,m = 0, 1, . . . are independent. Thus,

VarKu0τK =

MK
α −1∑
m=0

1(
λK(m+NK

0 )(MK −m)
)2

≤ MK
α(

λKNK
0 (MK −MK

α )
)2

=
Xα

KΛ2Y 2
0 (X −Xα)2

→ 0

as K →∞. These results together imply (23).
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Again, from [26, Remark 9.5.1], τK are uniformly inte-
grable under both u∗ and u∞. Recall from Theorem 4.1
that τK converge to τ in probability. Once more using [26,
Theorem 9.5.1],

lim
K→∞

EKu∗τK = lim
K→∞

EKu∞τK = τ. (24)

Finally, combining (22) and (24), we conclude

lim
K→∞

EKu∗{Td+γEc} = lim
K→∞

EKu∞{Td+γEc} = τ + Γy(τ∗).
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