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Abstract—We provide new analytical results concerning the
spread of information or influence under the linear threshold
social network model introduced by Kempe et al. in [1], in
the information dissemination context. The seeder starts by
providing the message to a set of initial nodes and is interested
in maximizing the number of nodes that will receive the message
ultimately. A node’s decision to forward the message depends
on the set of nodes from which it has received the message.
Under the linear threshold model, the decision to forward the
information depends on the comparison of the total influence of
the nodes from which a node has received the packet with its own
threshold of influence. We derive analytical expressions for the
expected number of nodes that receive the message ultimately,
as a function of the initial set of nodes, for a generic network.
We show that the problem can be recast in the framework of
Markov chains. We then use the analytical expression to gain
insights into information dissemination in some simple network
topologies such as the star, ring, mesh and on acyclic graphs.
We also derive the optimal initial set in the above networks, and
also hint at general heuristics for picking a good initial set.

I. INTRODUCTION

Social networks are used to model interactions or in-
terdependencies between individuals or organizations. Each
individual is represented by a node, and it is connected through
links to all the nodes with which it can potentially interact.
Social networks play a fundamental role as a medium for
the spread of information, ideas and influence among its
members. Network diffusion processes have been investigated
extensively in the past, with focus on spread of epidemics,
diffusion of innovation and decision models.

We can imagine a social network sitting atop a commu-
nication network. The communication network governs the
connectivity between any two nodes, while the social network
determines whether the nodes actually leverage the connec-
tivity. Consider the scenario in which we are interested in
spreading a global information to all the nodes in the network.
We seed a chosen set of initial nodes in the network with the
message. The nodes in the network are socially aware i.e., a
node chooses to forward the message only to those nodes with
which it has a link in the social network. A node is said to be
active, if it is ready to forward the message to its neighbours.
The initial seed set is active by default. Other nodes will get
activated only after a certain condition is met by the set of
neighbours who have already forwarded the message to it,

described by the activation process. The activation process
could wait till a sufficient number of neighbours have sent
the packet or till a highly trusted neighbour has forwarded the
packet. The level of trust a node has on each of its neighbours
is indicated by the weight of the edge from that neighbour, and
is a measure of influence of that neighbour on the node. With
this preferential forwarding and activation, it is interesting to
study the process of information dissemination through the
network. One quantity of interest is the expected number of
nodes that would ultimately receive the message, provided we
start by seeding a given initial set of nodes. Following the
terminology used in [1], the term influence is used to refer to
the potential of the set to reach out to other nodes in the
network and the set that maximizes the spread is referred
to as the most influential set. The problem of choosing the
optimal initial set to maximize the spread of information, will
be referred to as the influence maximization problem.

One possible choice for activation process is the Linear
Threshold(LT) model. The concept of using threshold mod-
els to explain collective behaviour was first put forward by
Granovetter in [2], where he discusses the spread of binary
decisions among a group of rational agents, as in voting
models. In LT model, a node will become activated only if
the sum of edge weights from all the forwarding neighbours
exceeds a particular threshold chosen by the node at the
beginning.

This paper extends upon the body of literature in the area of
viral marketing, where the word-of-mouth effects help spread
the information to a wider set of individuals. Domingos and
Richardson [3] were the first to study information diffusion
under the viral marketing perspective, and were also the first
to pose the combinatorial optimization problem of choosing
the initial set of customers to maximize the net profits. Kempe
et al. [1] studied the problem of choosing the most influential
initial set using two different activation processes, and showed
that the problem is NP-hard and the objective function is
submodular. They proposed a greedy approximation algorithm
that was shown to achieve an approximation factor of (1−1/e).
In [4] the authors propose a general framework for optimal
sensor deployment for cost effective outbreak detection and
show that the influence maximization problem is a special case
of the outbreak detection problem.



Our Contributions:We build upon the Linear Threshold
model studied by Kempe et al. [1]. Our major contributions
are as follows:
• We derive recursive expressions for the expected influ-

ence of a given initial set and provide an interpretation
via Acyclic Path Probabilities in Markov chains.

• We use the analytical expression on simple networks such
as star, ring and mesh to obtain optimal initial sets, and
provide a better understanding of the model itself.

II. THE NETWORK MODEL

A. The Communication Link Model
Here we assume that the nodes are connected by a commu-

nication infrastructure, e.g., the short message service over a
cellular network. This enables any of the nodes to potentially
interact with any other node in the network. An alternative
is a Delay Tolerant Network (DTN), where nodes are able
to transfer messages only on meeting, which also requires
a mobility model to be defined. Making the communication
infrastructure non-restrictive allows us to deal with restrictions
in message forwarding only in the social network layer.

B. The Social Network Model
The social network is a weighted directed graph N =

(V,E), where the edge weight wi,j gives a measure of
influence of node i on node j. The activation process begins
with an initial set of active nodes A0 and takes place in
discrete time steps. Each active node forwards the message
to each of its inactive neighbours. By the activation process,
some of the neighbours become activated, and will forward
the message in the next step. At the end of each step there
are three sets of nodes: nodes that were just activated in that
step (also referred to as infectious nodes), active nodes that
are no longer infectious and the set of inactive nodes. The set
of active nodes (both infectious and non-infectious) at time
step k is denoted by Ak and the set of infectious nodes is
denoted by Dk. The activation process stops when there are
no more infectious nodes, i.e., DS = ∅ and a terminal set AS
is reached, from where the activation process cannot proceed
further. We also assume that once a node has become active,
it cannot become inactive (progressive case).

C. Activation Models
There are two widely used activation models, namely, the

Linear Threshold model and the Independent Cascade model.
We will be interested in the Linear Threshold(LT) model. In
the Linear Threshold model,

∑
i 6=j wi,j ≤ 1. In this model,

each node j randomly chooses a threshold Θj uniformly from
[0,1] at the beginning. A given inactive node, receives the
message from all its active neighbours, and gets activated once
the net influence of the nodes that sent it the message exceeds
the chosen threshold. In other words, a node j gets activated
in step k if, it had been inactive until step k− 1, i.e. does not
belong to Ak−1 and ∑

i∈Ak−1

wi,j ≥ Θj

∑
iwi,j ≤ 1, ∀j
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Fig. 1. Linear Threshold model

D. Problem Statement

Given the initial set A0, and the LT activation process, let
Ak denote the set of all active nodes at time k. Since we
are dealing with the progressive case, it is clear that A0 ⊂
A1 ⊂ . . . ⊆ N . Dk denotes the set of infectious nodes at
time k, i.e., Dk = Ak\Ak−1 and D0 = A0. Let S denote the
random stopping time at which the activation process stops,
i.e., S = arg mink{Ak = Ak−1}. Then we define σ(N ,A0) =
E(N ,A0)[|AS |] to be the expected size of the terminal set AS ,
starting with A0 as the initial set in the network N .

The influence maximization problem [1] is then formulated
as follows. Given a K ≥ 1,

maxσ(N ,A0) (1)

s.t. A0 ⊂ N
|A0| = K

In [1], a greedy hill-climbing approach was proposed for
choosing the most influential set. This involves starting with
an empty set X0 , and at each stage t add the node that gives
maximum marginal contribution to Xt−1. It is proved that this
achieves an approximation factor of (1− 1/e), and the proof
involves the submodularity and monotonicity of σ(N ,A).

Glossary of Notation

N : weighted directed graph of the entire social network
wi,j : edge weights of N indicating influence from i to j
W: influence matrix with wi,j as entries
Θj : random threshold chosen by j uniformly from [0, 1]

bj(A): =
∑
i∈A wi,j , total influence into node j from set A

A0: Initial active set
Ak: Set of all active nodes at time step k
Dk: Set of infectious nodes at time step k
S: = arg mink{Ak = Ak−1}, Random time at which

the activation process stops
g
(N ,A)
j (k): = P(N )(j ∈ Dk

∣∣A0 = A)

g
(N ,A)
j : = P(N ,A)(j ∈ AS)

σ(N ,A): = E(N ,A)[|AS |]

III. RECURSIVE EXPRESSION FOR σ(N ,A0)

To the best of our knowledge, there is no work on ana-
lytically characterising σ(N ,A0) for the models introduced in



[1]. Moreover, σ(N ,A0) is generally obtained by simulating the
activation process. In this section, we derive an expression for
σ(N ,A0) in recursive form. Such an expression can be useful,
since it helps us decide on the optimality for several special
cases, and might also help in development of better heuristics
to choose the optimal initial set, for a general case.

We have, by definition,
σ(N ,A0) = E(N ,A0)[|AS |]

Note that, since Dk’s are disjoint, and
⋃∞
k=0Dk = AS , we

can write,

σ(N ,A0) =

|N |∑

k=0

E(N ,A0)[|Dk|]

=

|N |∑

k=0

E(N ,A0)[
∑

j∈N
I{j∈Dk}]

=

|N |∑

k=0

∑

j∈N
g
(N ,A0)
j (k) (2)

In the above expressions, I{E} denotes the indicator variable
for the event E, and we also use the fact that the total number
of time steps of the activation process is bounded above by
|N |. We define g(N ,A0)

j (k) to be the probability that node j is
activated at the time step k, given that we start with A0 as the
initial set in the network N . The following lemma provides a
recursive characterisation of g(N ,A0)

j (k).

Lemma 3.1: In a network N with influence matrix W ,
starting with A0 as the initial set, we have,

1) For j ∈ A0,
a) g

(N ,A0)
j (0) = 1

b) for all k > 0, g(N ,A0)
j (k) = 0

2) For j /∈ A0,
a) g

(N ,A0)
j (0) = 0

b) for all k > 0,
g
(N ,A0)
j (k) =

∑

l∈N\{j}

g
(N\{j},A0)
l (k − 1) wl,j

Proof: Note that 1(a) and 2(a) are obvious, since D0 =
A0, chosen deterministically. 1(b) follows from 1(a) and the
observation that

∑∞
k=0 g

(N ,A0)
j (k) ≤ 1 by definition. For 2(b),

since A0 ⊂ N\{j} and recalling the definition of bj(.),

g
(N ,A0)
j (k) = P(N\{j},A0)

(
bj(Ak−2) < Θj ≤ bj(Ak−1)

)

Here, Θj is independent of the processes Ak and Dk, since
j is excluded from the network. Since Dk−1 = Ak−1\Ak−2,
and Θj is chosen uniformly from [0,1], we can write,

g
(N ,A0)
j (k) = E(N\{j},A0)[bj(Dk−1)]

= E(N\{j},A0)

[ ∑

l∈N\{j}

I{l∈Dk−1}wl,j

]

=
∑

l∈N\{j}

g
(N\{j},A0)
l (k − 1) wl,j

Remark: It can be seen that this result depends crucially on
the fact that the activation threshold of a node is distributed
uniformly on [0, 1].

Remark: Now, substituting recursively, by using Lemma 3.1
and suitably rearranging terms, we can write, For j /∈ A0,

g
(N ,A0)
j (1) =

∑

i∈A0

wi,j

g
(N ,A0)
j (2) =

∑

i∈A0

∑

k1 6=j

k1 /∈A0

wi,k1wk1,j

g
(N ,A0)
j (3) =

∑

i∈A0

∑

k1 6=j

k1 /∈A0

∑

k2 6=j,k1
k2 /∈A0

wi,k1wk1,k2wk2,j

and so on. Note that the terms in g(N ,A0)
j (k) can be understood

as representing the influence of nodes i ∈ A0 reaching node
j through an acyclic path of k steps, without passing through
any other node in A0. For each such acyclic path from A0

to j, we have a term on the right hand side, which is just
the product of edge weights along that path. These can also
be understood as acyclic path probabilities in a Discrete Time
Markov Chain(DTMC) derived from the social network by
reversing the edges. For more details on the equivalent DTMC
framework and how it can be used, refer to [5].

A. Singleton Initial Set

Theorem 3.1: Given a social network N , with influence
matrix W, the total influence of any node i in the network
under the LT model is given by

σ(N ,i) = 1 +
∑

j∈N\{i}

wi,jσ
(N\{i},j) (3)

Remark:According to theorem, under LT model, the total
influence of any node i in the network, is one (for the node i
itself) plus the weighted sum of the influences of its neighbours
in the network without i. It is interesting to see that (Figure 2),
this allows us to decompose the problem into those involving
i’s neighbours. It is to be noted that the uniform distribution
of the activation threshold is critical in allowing us to add up
all influences exerted by i through its different neighbours.

Proof: From Equation (2) we have,
σ(N ,i)

=

∞∑

k=0

∑

j∈N
g
(N ,i)
j (k)

= 1 +
∑

j∈N\{i}

g
(N ,i)
j (1) +

∑

j∈N\{i}

g
(N ,i)
j (2) + · · ·

= 1 +
∑

j∈N\{i}

wi,j +
∑

j∈N\{i}

∑

k1∈N\{i,j}

wi,k1wk1,j + · · ·

By changing variables and rearranging summations, this is
equivalent to

σ(N ,i) = 1 +
∑

k1∈N\{i}

wi,k1

[
1 +

∑

k2∈N\{i,k1}

wk1,k2

[
· · ·
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Fig. 2. Influence of a single node evaluated through its neighbours (Theorem 3.1)
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Fig. 3. Evaluating set influences through individual influences (Theorem 3.2)

Note that this equation is recursive in nature, and hence we
get the above theorem.

B. Initial Set A0

Theorem 3.2: Given a social network N with influence
matrix W and an initial set A0, define sub-networks NA0

i ,
for all i ∈ A0, such that,

NA0
i = {N\A0} ∪ {i}

Then the influence of the initial set A0 is given by,
σ(N ,A0) =

∑

i∈A0

σ(NA0
i ,i) (4)

Remark: It is interesting to see that some nodes might be left
with a very small part of the network to directly influence. In
Figure 3, by including k in the initial set, we have essentially
restricted i’s spread of influence to only two other nodes. To
reach any other node, the influence has to pass through k,
which is already included in the initial set.

Proof: The proof follows by substituting the g(N ,A0)
j (k)

expressions and noting that the edge weights {wi,j , j ∈ A0}
do not have any effect on σ(N ,A0). This allows us to split the
problem of evaluating influences into K sub-problems each
involving only one node from A0.

C. Replacing an initial set with a supernode

Theorem 3.3: Given a social network N , with influence
matrix W, a given initial set A0 can be replaced by a
supernode X where,

wX,v =
∑

i∈X
wi,v

wv,X =
∑

i∈X
wv,i

and, σ(N ,A0) is equal to the influence of X in the modified
network, with X being counted as |X| nodes instead of 1.

Remark: The theorem allows us to reduce the initial problem
of evaluating influence of a set into a problem of evaluating
a node’s influence(see Figure 4). This is possible because

j

i

k X

Fig. 4. Replacing the initial set with a supernode (Theorem 3.3)

of the uniform distribution of the activation threshold and the
fact that influence spreads in an acyclic manner branching out
from the initial set.

Proof: The proof follows directly by using Theorem 3.1
for each sub-network in Theorem 3.2 and combining the
common terms.

IV. EXAMPLES

In this section, we will use the σ(N ,A0) expressions on
some simple networks, and obtain insights into the spread of
influence and the optimal initial set in such networks.

A. Star Topology

Let us consider the star topology N with N nodes including
the hub (see Figure 5). Let α be the influence exerted by
the hub node on each of the peripheral nodes and let β be
the influence of any one peripheral node on the hub. By LT
model, α ≤ 1 and β ≤ 1

N−1 . Such a setting is possible in
authorization based social networks, where any data transfer
between two nodes, has to pass through a central authority.

Given K as the size of initial set, we can either have one
hub node and K−1 peripheral nodes, or K peripheral nodes.
Call the former set H(K) and the latter H̃(K). The influence
functions can be readily written as follows using Theorem 3.3.

σ(N ,H(K)) = K + α(N −K)

σ(N ,H̃(K)) = K +Kβ
(
1 + α(N −K − 1)

)

Given K and the values of α and β, one might be interested
in knowing which of H(K) or H̃(K) is optimal, i.e. whether
the hub node belongs to the optimal initial set. We see that
there exists α?, such that H̃(K) is more influential than H(K)
for α < α?.

α? =
K

(N −K) 1
β −K(N −K − 1)



It is interesting to see that, there are cases where it would be
wiser to leave out the hub node from the initial set, in order to
maximize the spread. This might seem counter-intuitive since
any message has to pass through the hub node. But, to see
why α has to be sufficiently large, consider β = 1

N−1 and
K = N − 1. Then by picking K peripheral nodes we get
influence of exactly N , whereas if α < 1,then picking K − 1
peripheral nodes and the hub node will give us an influence
strictly less than N .

B. Ring Topology

Consider a ring topology N with N homogeneous
nodes(Figure 6). Such a topology could arise in proximity
based social networks. Let α ≤ 0.5 denote the influence of
any node on each of its two neighbours.

In such a network, let A(K) be a set of K nodes chosen, and
denote the indices of the nodes in the ring by (a1, a2, . . . aK).
Let (l1, l2, . . . , lK) be the number of nodes in between the
chosen nodes in the ring, i.e. l1 = a2−a1−1, l2 = a3−a2−1
and so on, with

∑K
i=1 li = N − K. Then we can write the

influence of A(K) as,

σ(N ,A(K)) = K + 2
α

1− α
(
K −

K∑

i=1

αli
)

Note that this expression is maximized only if all li’s are equal.
For simplicity if we assume that K divides N , then this means
that in the optimal set, K nodes are equally separated along
the ring. Also note that with α = 0.5, for large N and small
K, the influence of A(K) grows as 3K. This result is not
evident from the way the network is constructed and arises
directly from the analytical expression.

C. Node Degree based Model

We now look at a specific set of models, where the edge
weight depends on the degree of the destination node. In such
a case, each node weighs all its neighbours equally, and will
become activated only if a sufficient number of copies of the
message have been received in comparison to chosen threshold
count. In this class of models, we start with an undirected
graph without self-loops, whose adjacency matrix is given by
A. Define W as follows.

wi,j = ai,j/dj (5)

where dj =
∑
i ai,j is the degree of the node j. Let us restrict

our attention to acyclic graphs. We then have the following
theorem.

Theorem 4.1: Consider an acyclic undirected graph N rep-
resented by the adjacency matrix A. Let the influence matrix
be generated by Equation (5). Then, for any node i ∈ N ,

σ(N ,i) = di + 1

The proof of the theorem follows from applying Theorem
3.1 and noting that each edge yields exactly an expected
influence of 1 irrespective of the network beyond that edge (see
example in Figure 7). Note that, the local property (degree) of
a node governs its global effect (the total influence of that node

Fig. 5. Ring topology Fig. 6. Star topology
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Fig. 7. Node degree based model. Example network for Theorem 4.1.
σ(N ,j) = 1 + 1 + 0.25(1 + 1 + 1 + 0.333(1 + 1 + 1)) = 3 = dj + 1

on the network). We direct the reader to the arXiv report[5]
for a complete proof.

We have also studied completely connected social networks,
where the edge weight wi,j is determined by influence level of
node i and susceptance level of node j. We have derived closed
form expression for influence and identified optimal initial
sets in certain special cases. We also have drawn interesting
parallels between the optimal initial set and the nodes with
high stationary probability values in the DTMC obtained by
reversing the edges of the social network. We refer the reader
to the arXiv report [5] for more details.

V. CONCLUSION

In this paper, we have studied the information dissemination
problem in a social network under the LT model and derived
analytical expressions for the expected information spread
achieved by an initial set. We have used it to gain insights
into some simple network topologies. Several extensions are
possible for this work. Firstly, we can replace the present
communication link model by a DTN, where nodes are mobile,
and can transfer messages only on meeting. The problem can
also be generalized to edge weights and threshold functions
varying with time. Finally, we can also study information
dissemination with different activation processes, and on more
generic networks to gain insights into the underlying mecha-
nisms of information dissemination.
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