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Abstract— We consider the problem of several users transmit-
ting packets to a base station, and study an optimal scheduling
formulation involving three communication layers, namely, the
medium access control, link and physical layers. We assume
Markov models for the packet arrival processes and the channel
gain processes. Perfect channel state information is assumed to be
available at the transmitter and the receiver. The transmissions
are subject to a long-run average transmitter power constraint.
The control problem is to assign power and rate dynamically as
a function of the fading and the queue lengths so as to minimize
a weighted sum of long run average packet transmission delays.

First, we study the problem for a single user system and
obtain structural properties of the optimal policy. We obtain
numerical results for the delay-power tradeoff. Then, we consider
the multiuser system and obtain a value iteration algorithm for
computing the optimal policy. We identify that the problem is
computationally intractable and consider an approximation for
the cost to go function. The approximating function provides a
tight upped bound for the optimal cost function and thus a one-
step value iteration could result in a close to optimal policy. A
one-step value iteration is then carried out to improve upon the
policy. We obtain structural properties of the one-step iterated
policy and show that the resulting policy can be obtained via
solving a fixed point iteration on a family of suitably modified
single user optimal control policies.

Keywords: power and rate control in wireless networks,
constrained Markov decision processes

I. INTRODUCTION

The dream of “anyone, anywhere, anytime communication”
can only be realized by the widespread deployment of high
quality wireless access networks. The traditional approach to
network architecture is based on a stack of protocol layers with
well defined layer functionality and interlayer interfaces. This
flexible and transparent approach is mainly responsible for the
success of today’s wired networks. In the context of wireless
networks, however, it has been observed that truly efficient
use of the wireless communication resources (spectrum and
power) requires adaptability to changing channel and network
characteristics in all layers. This leads to a concept called
cross-layer design, the idea of joint optimization at two or
more of the layers of communication. Such an approach can
help address the unique challenges of the wireless environment
such as the time-varying or fading nature of wireless channels,
and the limited battery energy available in wireless handsets.

One of the main ideas of cross layer design is to permit
the exchange of information across layers, something that
would be considered a “layer violation” in traditional design.

This additional information is used by the layers to better
adapt to varying transmission conditions. In this work, we
will concentrate on cross layer design problems involving
three of the wireless communication system layers: the data
link layer, the medium access control (MAC) layer and the
physical layer. The approach combines fundamental commu-
nication limits of physical layer capacity (captured via the
information theoretic channel capacity), with a higher layer
quality of service measure, namely, long run average packet
delay. We consider random packet arrivals and queueing at the
transmitters and incorporate the effect of temporal variations
in the channel. The physical layer constraint is the average
transmission energy available (which relates to battery life).
The control variables are the amount of data released from
the link layer and the transmission power used at the physical
layer. An information theory based analysis helps in obtaining
the limits of what could possibly be achieved using an efficient
channel coding-decoding scheme, and also provides insight
into good rate and power control policies.
Background Literature: In [18] Tse and Hanly considered a
resource allocation problem for a multiaccess fading channel
with the objective of maximizing the throughput capacity,
and in the sequel [10], they went on to discuss the capacity
region when users need delay guarantees. They considered
a framework in which delay guarantees are achieved if each
user transmits at a fixed guaranteed rate. This is a restrictive
assumption and can lead to the wastage of resources. Collins
and Cruz [7] considered a rate and power scheduling problem
for a point-to-point wireless system with the objective of
minimizing average transmitter power subject to an average
transmission delay constraint. They assumed that the received
power is always constant. Our research has been in the spirit
of Berry and Gallager [3] who considered a problem similar
to the one considered in [7] but without the constant received
power assumption. Berry and Gallager [3] obtain structural
results exhibiting a tradeoff between the optimal transmitter
power and the mean queueing delay. They show that the
optimal power versus the optimal delay curve is convex, and
as the average power available for transmission increases, the
achievable mean delay decreases. They also provide some
structural results for the optimal policy that achieves any point
on the power-delay curve. In [2], Berry further considered
the wireless multiaccess fading system with the objective of
minimizing a weighted sum of average packet transmission
delays and transmission power. The author obtained a class of
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simple rate and power scheduling policies that were shown to
be nearly optimal when the average delay constraint is large. A
recent survey paper [4] discusses fundamental limits of cross-
layer design algorithms for multiaccess wireless networks. The
survey paper contains a good list of references on cross-layer
design problems in wireless networks. The work presented
in this paper is an extension of our earlier work reported
in [12] on power and delay optimal transmission policies for a
wireless link. In this paper we extend the work in [12] to the
Markov arrival and fading settings and also to the multiuser
case.
Contributions: In this paper, we provide several new results
on the single user problem introduced in [3] and then we
develop the multiuser problem. We cast the single user prob-
lem as a constrained Markov decision process and draw upon
results from average cost Markov decision theory to establish
detailed structural results for the optimal policy in the single
user case. Our approach permits us to go beyond the results
in [3] in the following ways.

1) We obtain a complete structural characterization of the
policy in the i.i.d. arrival and fading case. Further new
structural results are obtained in the Markov arrivals and
fading case in Theorem 3.2.

2) In Section III-E, we utilise a relative value iteration
algorithm to obtain numerical results for the average cost
problem.

3) We then develop the constrained Markov decision prob-
lem approach for the multiuser case. In Section IV,
we approximate the cost to go function by replacing
it with an additive separable function that tightly upper
bounds the original cost to go function. A one-step value
iteration is then carried out to obtain an improved policy
which could be close to optimal since the cost to go
function tightly upper bounds the original cost to go
function.

4) We obtain structural properties of the one-step iterated
policy and show that the policy is obtained essentially
via a fixed point iteration on a family of single user
control policies.

5) In a special case of on-off control, the control policy of
a tagged user, given the control decisions of all the other
users, is shown to possess a simple threshold form.

Paper Outline: This paper is organized as follows. In Sec-
tion II, we discuss the model of the system under considera-
tion and formulate the controller objectives as a constrained
optimization problem. In Section III, we analyse the single
user system with a mean delay objective. We use a result
from [15] to convert the single user problem into a family
of unconstrained optimization problems. This unconstrained
problem is a Markov decision problem (MDP) with the
average cost criterion. We show the existence of stationary
average cost optimal policies and their structural properties
in Section III-B. A corresponding discounted cost problem is
studied in Appendix C. In Section III-C, we obtain conditions
for the existence of a Lagrange multiplier such that the
optimal policy corresponding to that value for the multiplier
is also optimal for the original constrained MDP. We provide

numerical results for the optimal policy and obtain the power-
delay tradeoff curve in Section III-E.

We analyse the M user mean delay minimization problem
in Section IV. We observe that the general problem is too
complicated to work with. We approximate the cost to go
function with an additive separable function and carry out a
one-step value iteration to derive the control policy. The proofs
of theorems are given in Appendix D.

II. THE SYSTEM MODEL

We consider a discrete time model of a multiaccess fading
channel with M users communicating to a receiver as shown
in Figure 1. Time is divided into slots of length τ units
each. Let N be the number of channel uses per slot. Packets
generated at the higher layer arrive at the link layer at the
end of every slot as shown in the top part of Figure 1
(the process A[n]). The link layer is modeled as a queue of
infinite capacity where the arriving packets are kept before
forwarding to the medium access control (MAC) layer. A
controller co-located at the receiver decides about the number
of packets to be forwarded to the MAC for transmission
in any given slot. The decision is based on the number of
packets buffered at each user’s queue and the channel gain
(attenuation) for each transmit-receive pair. The queue length
information is communicated through the header of the last
packet transmitted in a slot whereas the channel gain for
each transmit-receive pair is measured at the receiver. The
control decisions are communicated to the transmitters during
a control period at the beginning of each slot (see Figure 1). In
practice, WIMAX based on an orthogonal frequency division
multiple access (OFDMA) scheme provides such a mechanism
for exchange of information between a centralized controller
and spatially distributed transmitters. The physical layer has
the responsibility of transmitting bits on the multipath fading
wireless channel. The transmission power is constrained by
battery life.

We use bold symbols to represent vectors of length M (the
number of users); i.e. x represents {x1, x2, · · · , xM}. Each
source generates fixed size packets (each of length b bits)
according to a finite state ergodic Markov chain A[n]; let Pa
be the transition probability matrix. At time nτ , let Q[n] be
the queue length and R[n] be the number of packets to be
released in the current slot as per the control decision. The
evolution equation of the buffer length process is given by

Q[n+ 1] = (Q[n]−R[n])+ + A[n], (1)

where (x)+ is a notation for max{x, 0}.
We assume a long run average transmitter power constraint

of P̄ at each transmitter. Let the transmitted signal from the
ith transmitter be Xi[n]. Let Hi[n] be the fading process seen
by the ith user’s transmission and Z[n] be an additive white
Gaussian noise (receiver noise) process with zero mean and
variance σ2. The signal received at the receiver is then

Y [n] =
M∑
i=1

√
Hi[n]Xi[n] + Z[n].
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Fig. 1. System model for an M user multiaccess fading channel. The
controller, based on the channel gain vector h[k] and the queue length vector
q[k], decides upon ri[k], the number of packets to be transmitted during slot
k and pi[k], the transmitter power during slot k from the ith user.

We assume that the channel state information is available
perfectly at both the transmitter as well as the receiver end. We
model the fading process as block-fading where the channel
gain (fade) stays constant over the duration of a slot, i.e, for τ
time units. The channel gain process Hi[n], embedded at the
slot boundaries, is assumed to be a finite state ergodic Markov
chain; let Ph be the transition probability matrix. We assume,
for each n, (A1[n], H1[n], A1[n], H1[n], . . . , AM [n], HM [n])
are mutually independent random variables. We will make an
additional assumption that the fading is bounded away from
zero and takes values in a finite subset of [h0, 1] where h0 > 0.

We address the optimal power and rate allocation problem
for the M user multiaccess system with the objective of min-
imizing mean packet transmission delay subject to an average
power constraint. The receiver acts as a central controller,
which, depending upon the transmitter buffer lengths and the
channel gains of each user, allocates the packet transmission
rates R[n] and powers P[n] to individual users. Based on
the control decisions, the controller informs the physical layer
as to what transmission rate and power to use. The physical
layer then encodes the data coming from the MAC layer at
that rate and transmits the encoded data over the channel at
the scheduled power level.

The random processes R[k],Q[k],P[k] correspond to
packet transmission rate vector, queue length vector and
power allocation vector respectively. We have the following
scheduling constraints. First, there is the natural constraint
that R[k] ≤ Q[k], where the representation R[k] ≤ Q[k]
means Ri[k] ∈ {0, 1, · · · , Qi[k]} for i ∈ {1, 2, · · · ,M}.
Further, we will have the multiple users capacity constraint
in each slot, i.e., the allowed values of R[k] given a power
allocation vector P[k]. The capacity of a multiaccess system
depends upon the decoding scheme employed at the receiver.
Given a power vector p and a channel gain vector h, we
assume that the maximum number of packets r that can be
transmitted “reliably” for a system that employs successive
decoding should satisfy the capacity constraint r ∈ Cg(h,p)

where Cg(h,p) is the set of rate vectors satisfying,∑
j∈S

rj ≤
1
θ

ln
(

1 +

∑
j∈S hjpj

σ2

)
(2)

for every S ⊂ {1, 2, · · · ,M} and θ := 2 ln(2)b
N .

Remark 2.1: Note that, by our model, a codeword can at
the most stretch to a slot to ensure decoding at the end of
every slot. This assumption of finite length code would result
in a strictly positive decoding error probability [8]. Since the
capacity function is averaged only over Gaussian noise, a
relatively short code block lengths are required to approximate
the asymptotic capacity results. Under an assumption that
the coding/scheduling frame time is shorter than the channel
coherence time and the number of channel uses in this time
are large enough for reliable communication, the capacity
formula could be a reasonable approximation for the purpose
of exploring this problem [3]. Further, We need to pay a
marginal rate or a power penalty to achieve a target decoding
error probability while using codewords of length N (channel
uses per slot). The penalty factors could also be incorporated
easily by using the error exponent bounds on the probability
of error [8].
The Multiuser Problem: At time nτ , the state of the system
is represented by X[n] := (Q[n],H[n],A[n]). Recall that the
process Q[n] is the queue length process at time instant nτ . At
the nth decision instant (time instant nτ , n ≥ 0), the controller
decides upon the number of packets R[n] to be transmitted in
the current slot and P[n], the transmitter power required for
reliable transmission depending on the entire history of state
evolution, i.e., X[k] for k = {0, 1, 2, · · · , n} that minimizes
a weighted sum of a long run average delay subject to the
average power constraint P̄. Now since delay is related to
the amount of data in the buffer by Little’s formula [20], the
control objective is equivalent to minimizing a weighted sum
of the average queue lengths. The controller’s objective is to
obtain an optimal sequence of pairs (R[n],P[n]) that solves
the following optimization problem.

min

{
lim sup

n

1
n
E

n−1∑
k=0

M∑
i=1

ωiQi[k]

}
subject to

R[k] ≤ Q[k] and R[k] ∈ Cg(H[k],P[k]); for k ≥ 0

lim sup
n

1
n
E

[
n−1∑
k=0

P[k]

]
≤ P̄, (3)

where wi are nonnegative weights associated with user i and
define the relative importance of user i over other users.
The Single User Problem: We first analyse the single user
system with one transmitter and one receiver (controller) and
then specialize the results obtained to the multiuser scenario
employing successive decoding at the receiver. The single user
model is shown in Figure 2.

In the single user setting, the power, p, required for reliable
transmission of r packets in a slot gets fixed as p = σ2

h (eθr−
1). Thus the control objective is to obtain the sequence R[n] as
a function of {X[0],X[1], · · · ,X[n]}, that solves the following
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Fig. 2. Model of a single user point to point wireless link.

optimization problem.

min

{
lim sup

n

1
n
E

n−1∑
k=0

Q[k]

}
subject to R[k] ≤ Q[k] for k ≥ 0

and lim sup
n

1
n
E

[
n−1∑
k=0

σ2

H[k]
(eθR[k] − 1)

]
≤ P̄ . (4)

III. THE SINGLE USER SYSTEM

The single user control problem, as stated in Equation 4, is
a constrained dynamic optimization problem. We first convert
it into a family of unconstrained optimization problems and
analyse them. The unconstrained optimization problems be-
long to a category of average cost Markov decision problems
(MDP). We characterize the optimal policies for these MDPs.
We then show how these policies result in a solution to the
original constrained problem.

A. Formulation as a Markov Decision Process (MDP)

Let {X[n], n ∈ {0, 1, 2, · · ·}} denote a controlled Markov
chain, with state space X = Z

+ × (h0, 1] × Z+, and action
space Z+, where Z+ denotes the set of nonnegative integers.
The set of feasible actions r in state x = (q, h, a) is the set of
all integers belonging to R(x) = {0, 1, · · · , q}. Let K be the
set of all feasible state-action pairs. The transition kernel on
X given an element (x, r) ∈ K is denoted by Γ. Define the
mapping p : K → R

+ by p(x, r) = σ2

h (eθr − 1), the power
required to transmit r in a slot with θ = 2 ln(2)b

N .
Define a policy π = (π0, π1, π2, · · ·) that at time instant n

generates an action r[n] depending upon the entire history
of the process, i.e., at decision instant n ∈ {0, 1, 2, · · ·},
πn is a mapping from Kn × X to R(X[n]). Let Π be the
space of all such policies. A stationary policy is of the form
π = (f, f, f, · · ·) where f is a measurable mapping from X
to R(X[n]). For a policy π ∈ Π, and initial state x ∈ X , we
define two cost functions Bπx , the buffer cost, and Kπ

x , the
power cost by,

Bπx = lim sup
n

1
n
E
π
x

n−1∑
k=0

Q[k];

Kπ
x = lim sup

n

1
n
E
π
x

n−1∑
k=0

p(X[k], R[k]).

Given the power constraint P̄ > 0, denote by ΠP̄ the set of
all admissible control policies π ∈ Π which satisfy the long
run transmitter power constraint Kπ

x ≤ P̄ . Then the controller
objective can be restated as a constrained optimization problem
(CP) defined as,

(CP ) : Minimize Bπx subject to π ∈ ΠP̄ (5)

The problem (CP) can be converted into a family of uncon-
strained optimization problems through a Lagrangian relax-
ation [15]. For every β > 0, define a mapping cβ : K → R+

as cβ(x, r) = q+ βp(x, r). Define a corresponding functional
for any policy π ∈ Π by,

Jπβ (x) = lim sup
n

1
n
E
π
x

n−1∑
k=0

cβ(X[k], R[k]).

Given β > 0, define the unconstrained problem (UPβ)

(UPβ) : Minimize Jπβ (x) subject to π ∈ Π (6)

The following theorem gives sufficient conditions under which
an optimal policy for an unconstrained problem is also optimal
for the original constrained control problem (CP).

Theorem 3.1: [15] Let, for some β > 0, π∗ ∈ Π be the
policy that solves the unconstrained problem UPβ such that π∗

yields the expressions Bπ
∗

and Kπ∗ as limits for all x ∈ X ,
and in addition, for all x, Kπ∗ = P̄ . Then the policy π∗ is
optimal for the constrained problem (CP).

Proof: See [15]
We analyse the problem (UPβ) in Section III-B. We verify

that the conditions stated in the hypothesis of the Theorem 3.1
are valid and thus obtain the constrained solution in Sec-
tion III-C.

B. Structure of the Optimal Policy for UPβ
The problem (UPβ) is a standard Markov decision problem

with an average cost criterion. We now study the unconstrained
problem and obtain the structural properties of the optimal
policy. As β > 0 is fixed for the analysis in this section,
for notational simplicity we suppress the subscript β. Define
a discounted cost MDP with discount factor α ∈ (0, 1)
corresponding to the problem (UP ), for each initial state
x = (q, h, a), with value function,

Vα(q, h, a) = min
π∈Π

E
π
x

[ ∞∑
k=0

αk (Q[k] + βp(X[k], R[k]))
]
.

(7)
We call the optimal solution for the discounted problem a
discount optimal policy. The following lemma states that the
average cost problem can be studied as a limit of discounted
cost problems as the discount factor α increases to one and
also proves its existence.

Lemma 3.1: There exists a stationary deterministic policy
r(q, h, a) that solves the unconstrained problem UP for each
β > 0. The stationary optimal policy that solves the uncon-
strained problem UP is limit discount optimal in the sense
that the policy can be obtained as a limit of discount optimal
policies as the discount factor increases to one.

Proof: (See Appendix B)
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First, we study the discounted cost problem and obtain
structural properties of the discount optimal policy (see Ap-
pendix C). In light of the result of Lemma 3.1, using the
structural properties of the discount optimal policies, we obtain
structural properties of r(q, h, a) for each (q, h, a). For a
state-action pair (x = (q, h, a), r), define u := q − r, u ∈
{0, 1, · · · , q}, as the number of packets not served when the
system is in state x. Thus u(q, h, a) = q − r(q, h, a) also
defines the optimal stationary policy for the single user prob-
lem. We note that the value function Vα(q, h, a) is convex in q
(refer Lemma C-1 in Appendix C). Define a differential of the
value function as Gα(q, h, a) = Vα(q, h, a)− Vα(q − 1, h, a)
and

Z(q, h, a) = eθq lim
α→1

αEh,a[Gα(q +A,H,A)],

where Eh,a[·] denotes expectation with respect to the transition
probability of H and A with initial state h and a respectively.

Note that Z(q, h, a) is monotone increasing in q as the value
function Vα(·) is convex in q. Define a function u∗(q, h, a) as
the value of u that solves the following inequalities, for given
(q, h, a),

Z(u, h, a) ≤ βσ2

h
eθq(eθ − 1) ≤ Z(u+ 1, h, a). (8)

The optimal policy u(q, h, a) equals min{u∗(q, h, a), q}. In
section III-D, we state an algorithm to compute u∗(q, h, a)
and hence the optimal policy using the above relation.

The following theorem gives the structural properties of the
optimal policy.

Theorem 3.2: Structural properties of the stationary optimal
policy for (UP):

i) The optimal policy u(q, h, a) is monotonic nondecreas-
ing in q and r(q, h, a) = q − u(q, h, a) is monotonic
nondecreasing in q as well.

ii) The function u∗(q, h, a) is bounded below by,

1
θ

ln


√

1 + 4β
2σ4

h η(h, a)eθq(eθ − 1)− 1

2βσ2η(h, a)

− 1

and bounded above by,

1
θ

ln
(
βσ2

h
eθq(eθ − 1)

)
,

where η(h, a) = Eh,a

[
eθA

H

]
and θ = 2 ln(2)b

N .
iii) The optimal number of packets transmitted r(q, h, a)

increases to infinity as q increases to infinity.
iv) The optimal solution u(q, h, a) is monotone nondecreas-

ing with β (the power price).
v) If the fading and the arrival processes are i.i.d:

a) The function Z(q, h, a) is only a function of q and
W (y) defined as the value of u that solves Z(u) ≤
eθy ≤ Z(u+1) is a monotone nondecreasing in y.

b) Given any (q, h), the optimal policy u(q, h), is

u(q, h) = min
{
q,W

(
q − 1

θ
ln
(
h/βσ2

(eθ − 1)

))}
.

c) The optimal solution is (see Figure 4):

u(q, h) =


0 if eθq

h < Z(0)
βσ2(eθ−1)

q if eθq

h > Z(q)
βσ2(eθ−1)

u∗(q, h) o.w.
Proof: Let x = (q, h, a). Denote by uα(x), the discount

optimal policy. Theorem A-2 states that the average cost
optimal policy u(x) is the limit of discount optimal policies
which might be optimal for some close neighbourhood of x
rather than x itself. Lemma D-1 provides a stronger result that
u(x) is limit of discount optimal policies uα(x) as discount α
increases to one. The results of the theorem now follow from
the analysis of the discounted cost problem (see Appendix C).

i) Follows from Theorem C-1 and Theorem C-2.
ii) Follows from Theorem C-3

iii) Follows from Lemma C-2
iv) Follows from Theorem C-5
v) Follows from Theorem C-6

Figure 3 depicts the structure of the optimal policy depicted
in terms of the unsent data u(q, h, a).

q
s s s s s s s s s ss1 2 3 4 5 6 7 8 9 100

u(
q,

h,
a)

Fig. 3. The structure of the optimal amount of buffer not served u(q, h, a)
versus q, for a fixed h and a. The dark curve plots a typical policy. Define
si(h, a) := max{q : u∗(q, h, a) ≥ q − i}. For q ≤ s0, no packets are
transmitted. The number of packets transmitted for q ∈ (si + 1, si+1) is
i+ 1. Thus, for q ∈ (s1 + 1, s2), it is optimal to serve two packets.
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Fig. 4. Depiction of the optimal policy for the scenario when the channel
gain process and the arrival processes are i.i.d.

Discussion: The structural properties of the average optimal
policy stated in Theorem 3.2 goes beyond the results stated
in [2] and [3].
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i) Given (h, a), it follows from Theorem 3.2(i) that for
any q1 and q2 satisfying q1 < q2, we have q1 −
u(q1) ≤ q2 − u(q2), i.e., u(q2) − u(q1) ≤ q2 − q1

and u(q1) ≤ u(q2). This implies that the number of
packets transmitted r(q, h, a) grows at a rate slower than
q. These characteristics of the optimal policy are shown
in Figure 3.

ii) The lower bound for the optimal policy is especially
useful in the sense that it provides information about
the rate of growth of transmission rate with the queue
length.

iii) The transmission rate does not saturate to a level as the
queue length increases to infinity. The larger the queue
the larger the number of packets transmitted.

iv) Given (q, h, a), the optimal number of packets transmit-
ted r(q, h, a) is nonincreasing in β. This is natural to
expect since the larger the power price β, the higher is
the transmission cost.

v) The following observations can be made for the i.i.d.
case,

a) it is optimal not to serve anything when the channel
is bad (i.e., 1

h is large); for each q there is a small
enough h such that for channel pairs worse than
this, it is optimal not to serve.

b) when the channel is good, it is optimal to serve
everything until a value of the buffer size q that
increases with increasing h;

c) even under poor channel conditions, as q increases
it becomes optimal to serve data as the delay
becomes costlier than power.

Note that Figure 3 would represent the policy for a small value
of h, with nothing being served until q ≥ s0.

C. The Power Constrained Delay Optimal Policy

We have given structural results for the optimal policy
for the unconstrained problem (UPβ). Now (invoking The-
orem 3.1) we show that there exists a β > 0 for which
the optimal policy obtained above is also optimal for the
constrained problem (CP ). We reintroduce the dependence
on the multiplier β. Recollect that the solution to the problem
(UPβ) is rβ(q, h, a) = q − uβ(q, h, a). We show that the
conditions under which Theorem 3.1 holds are satisfied. First,
we need to show that for each β > 0, the lim sup and lim inf
are equal. This is true if the controlled chain is ergodic as it
would imply uβ(q, h, a) yields the expressions Buβ and Kuβ

as limits. Theorem 3.2(ii) states that the optimal number of
packets transmitted increases to infinity as q tends to infinity.
By a standard drift argument, it is easy to show [12] that the
system is ergodic for all finite arrival rates. This is natural to
expect as the relaxed problem is an unconstrained system and
one can carry any arrival rate by spending more and more
power.

Next, we need to show the existence of a β such that
the average power cost is equal to the power constraint, i.e.,
Kuβ = P̄ . We know that the policy rst(h) = 1

θ

(
ln
(
h
λσ2

))+
is stabilising [9], where λ solves for the power constraint P̄ .

Define

Pst(R) = min
{
E

(
σ2

H

(
eθr

st(H) − 1
))

: E[rst(H)] ≥ R
}
,

Rst(P ) = max
{
E[rst(H)] : E

(
σ2

H

(
eθr

st(H) − 1
))
≤ P

}
,

If the mean arrival rate E[A] < Rst(P̄ ), the mean queue
length is finite under the stabilizing policy. The mean delay
increases as β increases since the power gets costlier whereas
the power cost decreases to Pst(E[A]) as β increases to
infinity. Note that Pst(E[A]) is the minimum power required
to keep the queue stable for an arrival rate E[A] and we need
Pst(E[A]) < P̄ . It has been shown [3] that the average power
is monotone nonincreasing convex function of mean delay.
Further, it is easy to see that the average transmitter power
required is monotone nonincreasing in β and converges to
Pst(E[A]) as β →∞. If this power cost function is continuous
in β, there always exists a β > 0 such that the average power
cost for the optimal policy corresponding to that β equals P̄ .
But a monotone function may have jump discontinuities and
thus there may not be a value of β for which the average power
constraint is satisfied with equality. This is a very standard
situation that even arises in knapsack packing problems.

In case there is no β for which the average power constraint
is satisfied with equality, we have two possible solutions. The
first one is to change the power constraint itself by choosing
one of the nearest (usually a lower one) number for which
there is a β satisfying the average power cost with equality
and say that there is no advantage in having a constraint value
larger than that number. Thus the hypothesis of Theorem 3.1
would be satisfied and we have an optimal solution for the
constrained problem. The second approach is to define a
randomized policy. Since there always exist a β for which
the power cost Kuβ < P̄ because otherwise it contradicts the
existence of stabilizing policy. Thus define β0 as the smallest
value of β for which Kuβ ≤ P̄ . If the equality holds then
we are done. But due to possibility of a discontinuity at β0,
K
u
β
+
0 < P̄ and K

u
β
−
0 > P̄ . Define a new randomized policy

that randomizes between uβ+
0

and uβ−0
and the probabilities

are chosen so that the power constraint is met with equality.
This randomized policy defines a constrained solution.

Remark 3.1: The monotonic nature of optimal delay and
optimal power usage with respect to beta yields a simple
iterative algorithm to compute an appropriate choice for beta
that satisfies the average power constraint (or delay constraint).
Start with an arbitrary choice of β such that β > 0 and
compute the optimal policy and the long run average power
required. If the average power required is more(less) than the
constraint, decrease(increase) the value of beta and recompute.
Repeat till we converge to a value of β where monotonicity
property guarantees the convergence of this iteration. If there
is a discontinuity, a randomized policy needs to be considered
as discussed and explained above.

D. An Algorithm for Computing u∗(·)
In order to compute u∗(q, h, a), as per the definition in

Equation 19 we need to compute Z(q, h, a). To compute
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Z(q, h, a) we need an algorithm to compute Vα(q, h, a) as
defined by Equation 7 for each α ∈ (0, 1). Consider the fol-
lowing iterative algorithm to compute Vα(q, h, a). We suppress
the subscript α. For n ≥ 0,

Vn(q, h, a) = min
u∈{0,1,···,q}

{
q +

βσ2

h

(
eθ(q−u) − 1

)
+αEh,a[Vn−1(u+A,H,A)]} , (9)

with V0(q, h, a) = 0. Let Gn(q, h, a) = Vn(q, h, a)− Vn(q −
1, h, a) and Zn(q, h, a) = eθqEh,a[Gn(q + A,H,A)]. Define
u∗n(q, h, a) be the value of u that solves the following inequal-
ities,

αZn(u, h, a) ≤ βσ2

h
eθq(eθ − 1) ≤ αZn(u+ 1, h, a).

Note that Z(q, h, a) = limα→1,n→∞ Zn(q, h, a). Define
s(i,n)(h, a) = max{q : u∗n(q, h, a) ≥ q − i}. Thus based on
the constrained solution as defined earlier, given a value of
(h, a), we have,
• For q ≤ s(0,n) (no packet transmission (r(·) = 0)),

Gn+1(q, h, a) = 1 + αEh,a[Gn(q +A,H,A)]

• For q = s(i,n) + 1 and i ∈ {0, 1, 2, · · ·} implying that the
number of packets transmitted at q is one larger than those
transmitted for a queue length of q − 1 (See Figure 3),

Gn+1(q, h, a) = 1 +
βσ2

h

(
eθ(i+1) − eθ(i)

)
• For q ∈ {s(i,n) + 2, · · · , s(i+1,n)} and i ∈ {0, 1, 2, · · ·}

implying that given i, the number of packets transmitted
for this range of queue lengths is the same,

Gn+1(q, h, a) = 1 + αEh,a[Gn(u∗n(q, h, a) +A,H,A)]

• Further by definition,

Zn+1(q, h, a) = eθqEh,a[Gn+1(q +A,H,A)]

The sequence u∗n(q, h, a) converges to the optimal solution
u∗(q, h, a) in the limit as n tends to ∞ followed by the limit
as α increases to 1.

E. Numerical Evaluation

We numerically evaluate the optimal policy and the power-
delay trade-off as the multiplier β is varied. We will use
an average cost value iteration algorithm for numerical com-
putation. The value iteration algorithm is similar to the it-
eration in Equation 9 with α set to 1. One expects that if
Vn(x)− Vn−1(x) converges and is independent of x then the
limiting policy is the average cost optimal and the limiting
difference would be the average cost. The convergence of
such an algorithm is known to be considerably difficult to
analyse. Chen and Meyn [6] have given sufficient condition for
the convergence of the value iteration algorithm for problems
arising in queueing networks. The essential idea is to initialize
the algorithm with a value function corresponding to a stable
policy, i.e., V0(x) needs to be appropriately chosen. They give
counterexamples to show that the value iteration if initialized
with V0(x) = 0 may never converge.

Theorem 3.3: Suppose (h, a) assumes only finitely many
values and there exists a pair (h0, a0) among possible pairs
of (h, a) for which the transition probability matrix for h and
a has a positive entry at the diagonal. Let there be a positive
probability of arrivals a being equal to 0. Further, suppose
there exists a t such that for any given η̄ > 0 and starting the
dynamic system in state q ∈ {0, · · · , η̄} and in any (h, a), we
can reach z = (0, h0, a0) at time t with a positive probability.
Then the value iteration algorithm if initialized with V0(x)
(the cost corresponding to a policy r(q, h, a) = q) results
in convergence and the limiting policy is optimal. Further,
Vn(z)− Vn−1(z) converges to the optimal average cost.

Proof: See Appendix D
We consider the following numerical example. The ambient

noise power σ2 = 1. The number of channel uses per slot is
N = 10. The channel gain process is assumed to be i.i.d. and
h take values in the set {.4, .7, 1} with probabilities {.3, .4, .3}
respectively. The packet arrival process is also assumed to
be i.i.d. and takes values {0, 100} with probabilities {.5, .5}
respectively.

In order to verfiy the convergence of the numerical algo-
rithm, we note that the hypothesis of Theorem 3.3 is satisfied.
Since the arrival process is i.i.d., the optimal control related
functions are independent of variable a. The value function
V0(q, h) is q + βσ2

h (eθq − 1) + EV0[A,H] with G0(q, h) =
V0(q, h) − V0(q − 1, h) = 1 + βσ2

h eθq(1 − e−θ). Set state
z = (0, 1) and Vn+1(z) is computed from Gn(q, h) as follows.

Vn+1(0, h) = E[Vn(A,H)] = E[
A∑
k=1

Gn(k,H) + Vn(0, H)].

The optimal average cost is thus the limit of Vn+1(z)−Vn(z)
as n tends to infinity.

The plot for optimal number of packets transmitted versus
the queue length for various values of β and channel gain equal
to 1 are shown in Figure 5. The optimal policy r(q, h) for
other values of h is r

((
q − 1

θ ln 1
h

)+)
. The power and delay

versus β is shown in Figure 6 and the power-delay tradeoff
curve is shown in Figure 7. Recall that the mean queue length
is proportional to the mean transmission delay.

IV. THE MULTIACCESS SYSTEM

We now consider the M user delay minimization problem
with an average power constraint (Equation 3). Based on the
structural properties for the single user system, we wish to
obtain similar structural results for the multiaccess system. We
convert the problem into a family of unconstrained problems
(see [15]) by associating multipliers λi, i ∈ {1, 2, · · · ,M}
with the average power constraints. The controller objective is
to allocate optimal rate vector R[n] and a power vector P[n]
given the state X[n] = (Q[n],H[n],A[n]) while minimizing
a weighted sum of the average delay and the average power.
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Fig. 5. The optimal number of packets transmitted r(q) versus q for various
values of the Lagrange multiplier β (power price) for the numerical example
in Section III-E. Note that r(q) = q for lower values of q and this 45 degree
line is shown. The values of β chosen are ((2n mod 9) + 1) × 10−3+ 2n
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for n = {0, 1, 2, · · · , 18}. As β increases, the number of packets transmitted
decreases.
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Fig. 6. The average transmitter power required and the mean queue length
for various choices of β for the numerical example in Section III-E. Given a
power constraint, one can find a smallest value of β for which the average
power constraint is satisfied and the policy corresponding to that β would
yields the minimum mean queue length as shown in the plot against that
choice of β. Similarly, if the mean queue length constraint is given, one can
find a largest value of β for which the queue length constraint is met and
the policy corresponding to that β would yield a minimum average power
required as per the curve shown in the plot against that choice of β.

We have the following formulation.

min
R[k],P[k]

{
lim sup

n

1
n
Ex

n−1∑
k=0

M∑
i=1

(ωiQi[k] + λiPi[k])

}
, (10)

subject to
R[k] ∈ Cg(H[k],P[k]);
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Fig. 7. Power-Delay trade-off curve for the numerical example in Section III-
E

Ri[k] ∈ {0, 1, · · · , Qi[k]} for i ∈ {1, 2, · · · ,M},

where subscript x denotes the initial state of the system.
This is a standard average cost constrained Markov decision

problem. As before we consider the corresponding discounted
cost problem.

min
R[k],P[k]

{
Ex

∞∑
k=0

M∑
i=1

αk (ωiQi[k] + λiPi[k])

}
, (11)

subject to
R[k] ∈ Cg(h[k],P[k]);

Ri[k] ∈ {0, 1, · · · , Qi[k]} for i ∈ {1, 2, · · · ,M}.

The corresponding discounted cost optimality equation is,

Vα(q,h,a) = min
(r,p):{r≤q;r∈Cg(h,p)}

{
M∑
i=1

(ωiqi + λipi)

+αEh,a[Vα(q− r + A,H,A))]} , (12)

where Eh,a[f(A,H)] denote the expectation of f(·, ·) condi-
tioned upon (h,a), and Vα(x) is the discounted cost value
function with discount factor α ∈ (0, 1) when starting in state
x.

A. Analysis of the Multiuser Problem

Observe that if we fix r, the objective function in Equa-
tion 12 is minimized by that choice of p which solves

min
p

{
M∑
i=1

λipi; subject to {p : r ∈ Cg(h,p)}

}
.

This is true since the cost to go only depends upon the choice
of r. But we know (see [18]) that, given h,r, and λ, and
reindexing the users so that

λ1

h1
≥ λ2

h2
≥ · · · ≥ λM

hM
,



9

the optimal value for the above problem is,
M∑
i=1

σ2λi
hi

{
eθ(
∑i
k=1 rk) − eθ(

∑i−1
k=1 rk)

}
. (13)

Recall that the decoding is sequential where a user with
the lowest value of λ

h is decoded first and the decoded
signal is then subtracted from the received signal (see [18]).
While decoding a signal, the interference only comes from
transmissions of users having higher value of λ

h than the
user whose signal is being decoded. For each ordering of λi

hi
,

we can similarly obtain the optimal cost. There are at most
M ! distinct orderings possible. We enumerate the possible
orderings and define ν(k, i), the index of the user with the
ith order in the kth ordering. As an example, for M = 2,
there are two possible orderings (1, 2) and (2, 1) indexed by
k = 1 and k = 2 respectively. Then ν(1, 1) = 1, ν(1, 2) = 2,
ν(2, 1) = 2 and ν(2, 2) = 1. Given r, and h satisfying
order k, the optimal value of λ · p for the kth ordering
is
∑M
i=1

σ2λν(k,i)
hν(k,i)

{
eθ(
∑i
j=1 rν(k,j)) − eθ(

∑i−1
j=1 rν(k,j))

}
. We can

rewrite the optimal value for the kth ordering in the following
convenient form,
M∑
i=1

σ2

(
λν(k,i)

hν(k,i)
−
λν(k,i+1)

hν(k,i+1)

)
eθ(
∑i
j=1 rν(k,j)) −

σ2λν(k,1)

hν(k,1)
,

(14)
where, by convention, λν(k,M+1)

hν(k,M+1)
is zero.

The set of all possible channel gain vectors can be par-
titioned into M ! subsets such that each subset corresponds
to one of the ordering, i.e., kth ordering corresponds to kth

subset sayHk with
⋃M !
k=1Hk = H, the whole set. The channel

gain transition probability matrix needs to be redefined. Let
Ph,k(H) define the probability that the next state of the
channel gain vector is H ∈ Hk given that the current channel
gain vector is h. Let Eh,k[f(H)] defined the conditional
expectation of f(·) with respect to this transition probability
matrix.

We define M ! value functions indexed by k say Vk(q,h,a)
where k signifies the fact that the channel gain vector h ∈
Hk. We now have a family of M ! coupled discounted cost
optimality equations corresponding to the optimality equation
of Equation 12. We drop the subscript α for convenience.
Given q,a and h ∈ Hk for k ∈ {1, 2, · · · ,M !}, we have

Vk(q,h,a) = min
r≤q

{
M∑
i=1

(
ωiqi + σ2λν(k,i)

hν(k,i)

{
eθ
∑i
j=1 rν(k,j)

-eθ
∑i−1
j=1 rν(k,j)

})
+ α

M !∑
l=1

Eh,l,a[Vl(q− r + A,H,A)]

}
, (15)

where we note that the rate-power constraint has been elim-
inated. The corresponding value iteration algorithm, for k ∈
{1, 2, · · · ,M !}, is given by,

Vk,n(q,h,a) = min
r≤q

{
M∑
i=1

(
ωiqi + σ2λν(k,i)

hν(k,i)

{
eθ
∑i
j=1 rν(k,i)

-eθ
∑i−1
j=1 rν(k,j)

})
+ α

M !∑
l=1

Eh,l,a[Vl,n−1(q− r + A,H,A)]

}
,

where Vl,0(x) = 0 for all x. Recall from MDP theory that the
first expression within the parentheses on the right hand side
of the above value iteration is called the single stage cost while
the second expression is called the cost to go. The convergence
of the algorithm can be easily shown as in single user case.

The above problem appears intractable for structural analy-
sis mainly due to a high degree of nonlinearity and coupling
of the single stage cost function resulting in a highly complex
cost to go expression

∑M !
l=1Eh,l,a[Vl(q− r + A,H,A)]. Fur-

ther, the huge state space associated with the above said control
problem renders it impractical and computationally inefficient.
Hence, there is a need for some near-optimal approximating
scheme to it that addresses these analytical and computational
difficulties.

We proceed as follows:
i) Obtain an additive separable approximation of the cost

to go expression also known as the value function and
study its structural properties. By an additive separable
function we mean that it can be divided into additive
terms with each being a function of only one user’s
variables. Such approximations exist in the literature [1].

ii) Carry out one-step value iteration with the approximated
cost to go function and obtain the structural properties
of the resulting policy. This idea of one-step of value
iteration was introduced by Krishnan and Ott [13],
and has been used in many papers since then. The
remarkable fact about applying one-step value iteration
is that the resulting policy could be very close to optimal
if the cost to go function is chosen appropriately.

We assume that available rate set is bounded above. This
is not an unrealistic assumption owing to the fact that only
finite rate codewords are practical. Without loss of generality
we assume that the bound is the same for all the users.

B. Cost to Go Approximation

Let r̂ be the upper bound on the available rates set. Using
the result obtained in Equation 13, the discounted cost problem
(Equation 11) can be restated as,

min
R[n]

{
Ex

∞∑
n=0

M∑
i=1

αn
(
ωiQi[n] +

σ2λν(k[n],i)

Hν(k[n],i)
{

eθ
∑i
j=1 Rν(k[n],j)[n] − eθ

∑i−1
j=1 Rν(k[n],j)[n]

})}
(16)

subject to Ri[n] ∈ min{r̂, {0, 1, · · · , Qi[n]}} for i ∈
{1, 2, · · · ,M}, where k[n] is the ordering during nth slot.

In order to obtain the additive separable cost to go func-
tion, we first replace, for each i ∈ {1, 2, · · · ,M}, the rates
Rν(k[n],j)[n] with r̂ for j 6= i, and obtain a reasonable upper
bound for the above objective function. This replacement
is equivalent to an assumption that every transmission sees
maximum possible interference. For example, a user with
the highest value of λ

h observes no interference whereas a
user with smallest value of λ

h assumes that all the other
users transmit at the highest possible rate r̂. This will be the
scenario when users are unaware of the queue length of other
users. Next, we optimize the resulting function and obtain
a tight uniform bound for the cost to go function. Define
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µ(k, i) = {j : ν(k, j) = i}, the order of user i in the kth

ordering. We obtain the following optimization problem and
refer to it as a cost bounding problem.

min
R[n]

{
Ex

∞∑
n=0

M∑
i=1

αn
(
ωiQi[n] +

σ2λi
Hi[n]

eθ(µ(k[n],i)−1)r̂(

eRi[n] − 1)
)}

.

Note that eθ(µ(k[n],i)−1)r̂ is the total power received from
all the users to be decoded after decoding user i with the
assumption that the users transmit at the rate r̂, the maximum
allowed transmission rate. The term σ2λi

Hi[n]e
θ(µ(k[n],i)−1)r̂ upper

bounds the other user interference to user i since µ(k[n], i)−1
is the number of users decoded after decoding the signal of
user i. Observe that the objective function of the cost bounding
problem can be separated user wise and yields a cost that upper
bounds the minimal cost achievable by the original discounted
cost problem (Equation 16).

We now study the cost bounding problem and obtain a
value function which will serve as the approximate cost to go
function. Since the objective function is separable, we tag user
1 and analyse the corresponding discounted cost optimality
equation. The state vector includes the tagged user’s queue
length q1, the arrival state a1 and the channel gain vector h
since the ordering k is determined by the complete channel
gain vector. For notational simplicity, we represent µ(k, 1) by
µ(k) and set the weight of user 1, ω1 = 1. Define β(h), for
h ∈ Hk representing kth ordering, as,

β(h) =
σ2λ1

h1
eθ(µ(k)−1)r̂.

We drop the subscript 1 for notational simplicity. The dis-
counted cost optimality equation is given by,

V (q,h, a) = q + min
r≤min{q,r̂}

{
β(h)(eθr − 1)

+αEh,a[V ((q − r)+ +A,H, A)],
}
, (17)

Note that the Equation 17 has a close resemblance to the single
user problem (Equation B-1 in the Appendix) where the only
difference is that the rate is now constrained to r̂ and β(h)
has replaced β

h . Along the lines of results for the single user
problem, it is easy to prove the following result.

Theorem 4.1: The value function V (q,h, a) is convex and
monotone nondecreasing in q.

We now carry out one-step value iteration with V (·) serving
as the approximating cost to go function.

C. One-Step Value Iteration

Recall the actual discounted cost problem (Equation 16)
restated below for convenience. Given x = (q,h,a),

V (x) = min
R[n]

{
Ex

∞∑
n=0

M∑
i=1

αn
(
ωiQi[n] +

σ2λν(k[n],i)

Hν(k[n],i)
{

eθ
∑i
j=1 Rν(k[n],j)[n] − eθ

∑i−1
j=1 Rν(k[n],j)[n]

})}
.

We write the above objective function as a sum of two
components, namely, n = 0 representing the first stage cost

and n > 0 representing the aggregate expected cost to go.
By definition of the initial state of the system x = (q,h,a),
we have Qi[0] = qi, Hi[0] = hi and Ai[0] = ai for
i = {1, 2, · · · ,M}. Let the ordering k[0], corresponding to
h, be k. Thus, given a rate vector r ≤ min{q, r̂}, the first
stage cost equals

M∑
i=1

(
ωiqi + σ2λν(k,i)

hν(k,i)

{
eθ
∑i
j=1 rν(k,j) − eθ

∑i−1
j=1 rν(k,j)

})
.

Now that the vector r is the transmission rate vector for the
first stage, the queue length vector at the end of the first stage
equals q − r + a. The channel gain vector and the arrival
rate vector for the second stage will be random variables with
transition density conditional on h and a respectively. The
aggregate expected cost to go thus equals

αEh,aV (q− r + a,H,A).

We substitute the above cost to go function with the separable
approximation carried out in Section IV-B. The approximated
cost to go function is,

M∑
i=1

αEh,aiVi(qi − ri +Ai,H, Ai),

where Vi(·) is as obtained in Equation 17 and satisfies the
properties stated in Theorem 4.1. The approximation as stated
earlier provides a tight upper bound for the actual cost to go
function and a one step optimization would further result in a
close to optimal solution.

Given any q,a and h ∈ Hk, the one-step value iteration is
to obtain the rate vector r ≤ min{q, r̂} that minimizes,

M∑
i=1

(
ωiqi + σ2λν(k,i)

hν(k,i)

{
eθ
∑i
j=1 rν(k,j) − eθ

∑i−1
j=1 rν(k,j)

}
+αEh,aiVi(qi − ri +Ai,H, Ai)) . (18)

This is an approximate multiuser problem. The solution that
we obtain by solving this problem will provide a close upper
bound to the optimal system performance. We refer to the
solution to this problem as an one-step iterated policy.

Theorem 4.1 implies that the objective function (Equa-
tion 18) is strictly convex in r which, along with the fact the
decision space in compact, implies the existence of a unique
minimizer r∗. We now derive structural properties of the one-
step iterated policy. Since h is given and fixed, without loss
of generality we assume that h ∈ Hk and the ordering k
is such that ν(k, i) = i. Define r−i := {rj , j 6= i}. Given
r−i, we study the structural properties of ri and show that the
optimal one-step iterated policy is the solution to a fixed point
equation.

We factor out terms involving ri (the decision variable) in
the objective function.

min
ri≤{qi,r̂}

{
eθri

[
eθ
∑i−1
l=1 rl

(
σ2λi
hi

+
∑M
j=i+1

σ2λj
hj

(

e
θ
∑j
l=i+1 rl−eθ

∑j−1
l=i+1 rl

))]
+αEh,ai

Vi(qi−ri+Ai,H,Ai)
}
,
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where Vi is the solution of Equation 17. If we denote the ex-
pression within the square brackets by g(r−i), the optimization
problem becomes,

min
ri≤{qi,r̂}

{
eθrig(r−i) + αEh,aiVi(qi − ri +Ai,H, Ai)

}
.

The analysis of the problem is similar to the analysis of
the single user problem. As in Section III-B, we define for
i = {1, 2, · · · ,M} a differential of the value function as
Gi(qi,h, ai) = Vi(qi,h, ai)− Vi(qi − 1,h, ai) and

Zi(qi,h, ai) = eθqiαEh,ai [G(qi +Ai,H, Ai)],

where Eh,ai [·] denotes expectation with respect to the tran-
sition probability of H and Ai with initial state h and ai
respectively.

Note that Z(qi,h, ai) is monotone increasing in qi as the
value function V (qi,h, ai) is convex in qi. Define a function
u∗i (qi, hi, ai) as the value of u that solves the following
inequalities, for given (qi,h, ai),

Zi(u,h, ai) ≤ eθqi(eθ − 1) ≤ Zi(u+ 1,h, ai). (19)

The minimizing policy ri(qi,h, ai) equals

min
{
r̂,max

{
qi − u∗i

(
qi +

1
θ

log(g(r−i)),h, ai

)
, 0
}}

.

We state the following results.
Theorem 4.2: Given the transmission rates of all the other

users r−i and the channel gain vector, the structural properties
of the optimal one-step iterated policy for user i is as follows.

i) The optimal policy ri(qi,h, ai) is monotonic nonde-
creasing in qi and ui(qi,h, ai) = qi − ri(qi,h, ai) is
monotonic nondecreasing in qi as well.

ii) The optimal number of packets transmitted ri(qi,h, ai)
increases to r̂ as qi increases to infinity.

iii) The optimal solution ri(qi,h, ai) is monotone nonin-
creasing in g(r−i).

Proof: The proofs of i) and ii) are along the lines
of single user discounted cost analysis (Refer Appendix C).
Result iii) follows from the fact that as g(r−i) increases, the
first stage cost increases while the cost to go remains the same.

Remark 4.1: According to result iii), if any of the rj , j 6= i
increases, the function g(r−i) increases and hence ri de-
creases.

We obtain similar results by tagging other users one-by-
one. Given the system state (q,h,a), the unique minimizer
r∗ = {r1, r2, · · · , rM} is obtained by solving the following
family of nonlinear equations. For each i = {1, 2, · · · ,M},
we solve,

ri = min
{
r̂,max

{
qi − u∗i

(
qi +

1
θ

log(g(r−i)),
)
, 0
}}

.

We now turn our attention to a special case of on-off control.

D. On-Off Control

In practice, one cannot change the coding rate every slot
and in most systems, only one code book is available at each
of the transmitters implying only one transmission rate. In this
section, we assume that only one transmission rate is possible.
The transmitter is allowed to decide whether to transmit at that
rate, or not to transmit at all in a given slot. We call a user as
ON over a slot if it transmits at the allowed rate otherwise the
user is OFF, i.e., it does not transmit anything in that slot. At
the start of each slot, depending upon the state of the system,
the controller make the on-off decisions.

1) Analysis of Cost Bounding Problem: We solve the cost
bounding problem to get an approximate cost to go function.
Tag user 1. Based on the system state (q,h, a), the tagged
user may decide to be ON and transmit at a fixed rate r1 = r
or it may just decide to be OFF meaning it does not transmit
r1 = 0. Given the system state, let the ordering be k and
define µ(k) := {i : ν(k, i) = 1}, the index of the tagged user
under kth ordering. Recall earlier definition of β(h).
• If ON: The queue length at the end of current slot would

be (q − r)+ + A where A is a random variable with
probability distribution corresponding to the ath row of
the arrival state transition probability matrix. The costs
incurred are the holding cost q and the power price
β(h)(eθr − 1).

• If OFF: The queue length at the end of current slot
would be q + A where A is a random variable with
probability distribution corresponding to the ath row of
the arrival state transition probability matrix. The costs
incurred would be the holding cost q.

The above problem can now be formulated as the following
Markov decision problem. Let V (q,h, a) be the discounted
cost value function. The discounted cost optimality equation
is,

V (q,h, a) = q + min
{
β(h)(eθr − 1) + αEh,a[V ((q − r)+

+A,H, A)], αEh,a[V (q +A,H, A)] } , (20)

where by definition the optimal action is ON if β(h)(eθr −
1) +αEh,a[V ((q− r)+ +A,H, A)] is less than αEh,a[V (q+
A,H, A)], and is OFF otherwise. Note that β(h) > 0.
Consider the corresponding discounted cost value iteration
algorithm. Let V0(q,h, a) = 0. Then for n ≥ 1,

Vn+1(q,h, a) = q + min
{
β(h)(eθr − 1) + αEh,a[

Vn((q − r)+ +A,H, A)], αEh,a[Vn(q +A,H, A)] } . (21)

Define x = (h, a) and Wn(q,x) = Eh,a[Vn(q + A,H, A)].
Let W (q,x) be the limiting function. Thus

Vn+1(q,x) = q + min{β(h)(eθr − 1) + αWn((q − r)+,x),
αWn(q,x)}. (22)

We now state structural results. The proofs are given in
Appendix D.

Theorem 4.3: Given x, the function W (q,x) is monotone
increasing in q.

Theorem 4.4: Given x, the difference W (q,x) −W ((q −
r)+,x) is nondecreasing in q.
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The channel gain vector h appearing in the state space does
not contain any more information then contained in β(h).
Since the set H is finite, we enumerate it. Define ζj = β(hj).
The transition probability matrix for the Markov chain h,
yields a new Markov chain Z[n] with states space ζj for all j ∈
{1, 2, · · · , |H|}. Let Pζ be the transition probability matrix.
The new state space is (q, ζ, a). The optimality equation is

Vn+1(q, ζ, a) = q + min{ζ(eθr − 1) + αWn((q − r)+, ζ, a),
αWn(q, ζ, a)}, (23)

where Wn(q, ζ, a) = Eζ,a[Vn(q +A,Z,A)].
Theorem 4.5: The difference W (q+r,ζ,a)−W (q,ζ,a)

ζ is nonin-
creasing in ζ.

2) One-Step Value Iteration: As discussed for the general
multiuser case, the cost to go function is approximated by
W (q, ζ, a). Without loss of generality, let h ∈ Hk with
ν(k, i) = i. The one-step control problem is to obtain ri ∈
{0, r} for i ∈ {1, 2, · · · ,M} that minimizes,

M∑
i=1

(
ωiqi + σ2λi

hi

{
eθ
∑i
j=1 rj − eθ

∑i−1
j=1 rj

}
+α

M∑
i=1

Wi(qi − ri + ai, ζi, ai)

}
, (24)

where ζi = βi(h). We now obtain the structural properties of
one-step iterated ON/OFF policy. Define r−i = {rj , j 6= i}
and

g(r−i) = eθ
∑i−1
l=1 rl

σ2λi
hi

+
M∑

j=i+1

σ2λj
hj

(
eθ
∑j
l=i+1 rl

-eθ
∑j−1
l=i+1 rl

))
.

Thus given r−i, the one step control problem is to obtain
ri ∈ {0, r} for i ∈ {1, 2, · · · ,M} that minimizes,

eθrig(r−i) + α

M∑
i=1

Wi(qi − ri + ai, ζi, ai)

Theorem 4.6: Given any i and r−i, the optimal one-step
iterated policy ri is a threshold policy, i.e., for each (h,a)
there exists a threshold q∗i (h,a) such that the user is ON if
and only if qi ≥ q∗i (h,a).

Proof: Result follows directly from Theorem 4.4.
Theorem 4.7: Given i, the threshold q∗i increases with

g(r−i).
Proof: As g(r−i) increases, the first stage cost increases

while the cost to go remains the same.
Remark 4.2: Given the channel gain vector and the arrival

vector, if ri = r for all i 6= j, g(r−j) is the maximum and
hence the ON threshold q∗j is the largest. Since user j transmits
only if qj is larger than q∗j , this largest threshold suggests that
user j transmits if its queue length is larger than the largest
threshold irrespective of the decision of the other users.

V. CONCLUSION

We considered the mean packet transmission delay opti-
mization problem for a multiaccess fading communication
system with the objective of designing cross-layer algorithms
by jointly optimizing two or more of the layers of the
communication system. The control objective is to minimize
the mean packet transmission delay subject to a long run
average transmission power constraint. First, we studied the
problem for a single user system by formulating it as a
constrained Markov decision problem. We analysed a family of
corresponding unconstrained problems and obtained structural
properties of the optimal policy in Section III. Further, given
(h, a), the channel state and the number of arrivals, the optimal
policy r(q, h, a) is monotone nondecreasing in q; q−r(q, h, a)
is monotone nondecreasing in q; and for any state vector
(q, h, a), r(q, h, a) is monotone nonincreasing in the power
price (shadow) β; r(q, h, a) goes to zero as the price goes to
infinity. Particularly for the i.i.d. fading and arrival model,
we could completely characterize the optimal policy (see
Figure 4). We showed the existence of a problem among
the family of unconstrained problems such that the optimal
policy for that problem also solves the constrained problem.
We numerically evaluated the optimal policy and obtained an
optimal delay-power tradeoff curve.

Next, we studied the multiuser problem and obtained the
value iteration algorithm for computing the optimal policy.
Due to high complexity of the cost to go function, we
approximate it with an additive separable function that upper
bounds the original cost function. A one-step value iteration is
then carried out to obtain a ’good’ control policy. We studied
the structural properties of the control policy and showed
that the control policy is obtained by solving M nonlinear
equations. We also studied an on-off multiuser system and
showed that the control policy is of threshold form.
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APPENDIX A
MDP: SOME KEY RESULTS

Consider a discrete time controlled Markov process
{X[n], A[n], n ∈ {0, 1, 2, · · ·}}, with state space X , and action
spaceA. The set of feasible actions a in state x ∈ X is A(x) ⊂
A. Let K be the set of all feasible state-action pairs. The
transition kernel on X given an element (x, a) ∈ K is denoted
by Γ. The immediate one step cost c : K → R

+ is c(x, a).
At time n, given x[n] and a[n], the system moves to the next
state x[n + 1], a X valued random variable with distribution
Γ(B|(x, a)) := Prob(x[n + 1] ∈ B|x[n] = x, a[n] = a) and
a cost c(x, a) is incurred. A policy π = {a[n]} generates at
time n an action a[n] depending upon the entire history of
the process, i.e., at decision instant n ∈ {0, 1, 2, · · ·}, πn is
a mapping from Kn × X to A(x). Let Π be the space of all
such policies. A stationary policy is a measurable mapping
f : {x ∈ X : x → A(x)}, i.e., π = {f, f, · · ·} is a
stationary policy. In addition to the dynamic system and a
set of policies, we need a performance criterion, also called
objective function. The average cost Markov decision problem
(MDP) is to minimize,

Jπ(x) = lim sup
n

1
n
E
π
x

n−1∑
k=0

c(X[k], A[k]),

over all π ∈ Π. The discounted cost problem is,

Vα(x) = min
π∈Π

E
π
x

[ ∞∑
k=0

αkc(X[k], A[k])

]
,

where α ∈ (0, 1). Dynamic programming is an algorithm to
compute the optimal value functions V ∗(x) or J∗(x) and the
corresponding optimal policies π∗ ∈ Π.

Definition 1.1: A function c(x, a) is said to be inf-compact
on K if for every x ∈ X and r ∈ R, the set {a ∈ A(x) :
c(x, a) ≤ r} is compact.

First, we give sufficient conditions for the existence of a
stationary discounted cost optimal policy and that it can be
obtained using a value iteration algorithm.

Theorem A-1: [14] Suppose

D1. c(x, a) is lower semi-continuous, nonnegative and inf-
compact (see Definition 1.1) on K

D2. Γ is strongly continuous
D3. There exists a policy π such that the discounted cost is

finite for each initial state x ∈ X
then the discount value function V ∗(x) is the minimal solution
of the following optimality equation (DCOE)

v(x) := min
a∈A(x)

{
c(x, a) + α

∫
X
v(y)Q(dy|(x, a))

}
.

Further, the minimizer to the DCOE is the stationary discount
optimal policy f∗(x). The following iterative algorithm called
the discounted cost value iteration algorithm converges to
V ∗(x), the discount value function and satisfies the DCOE.

vn(x) := min
a∈A(x)

{
c(x, a) + α

∫
X
vn−1(y)Q(dy|(x, a))

}
,

(A-1)
where v0(x) := 0.

The average cost problems are normally studied as a limit
of discount cost problems as the discount factor α tends to
one. We need some conditions to ensure such a convergence.
We use subscript α to denote discount value function or a
discount optimal policy.

Lemma A-1: [[17], Proposition 2.1] Suppose

W1. X is a locally compact space with a countable base.
W2. A(x), the set of feasible actions in state x, is a compact

subset of A (the action space), and the multifunction
x→ A(x) is upper semi-continuous.

W3. Q is continuous in a with respect to weak convergence
in the space of probability measures.

W4. c(x, a) is lower semi-continuous

then there exists a discounted cost stationary optimal policy
fα for each α ∈ (0, 1).

Now we state a result related to the existence of stationary
average optimal policies which can be obtained as limit of
discounted cost optimal policies fα. Define

wα(x) = Vα(x)− inf
x∈X

Vα(x).

Theorem A-2: [[17],Theorem 3.8] Suppose there exists a
policy Ψ and an initial state x ∈ X such that the average cost
JΨ(x) <∞. Further suppose supα<1 wα(x) <∞ for all x ∈
X and the hypothesis of Lemma A-1 is satisfied. Then there
exists a stationary policy f1 which is average cost optimal
and the optimal cost is independent of the initial state. Also
f1 is limit discount optimal in the sense that, for any x ∈ X
and given any sequence of discount factors converging to one,
there exists a subsequence {αm} of discount factors and a
sequence xm → x such that f1(x) = limm→∞ fαm(xm).

Remark A-1: In Theorem A-2, the subsequence of discount
factors depends upon the choice of x.
The following theorem gives a useful bound on wα(x).



14

Theorem A-3: [17] Given a constant η > 0, define a
stopping time ς as,

ς = inf{n ≥ 0, Vα(X[n]) ≤ Vα(x0) + η},

where Vα(X[n]) is the discount value function for discount
α and x0 is a state for which Vα(x) is minimum. Define
wα(x) = Vα(x) − Vα(x0). Then for x in the state space,
we have

wα(x) ≤ η + inf
π
E
π
x

[
ς−1∑
n=0

c(X[n], A[n])

]
.

APPENDIX B
PROOF OF LEMMA 3.1

Consider the discounted cost MDP and the corresponding
value function as defined in Equation 7. First, we verify the
conditions W of Lemma A-1 for the existence of stationary
discount cost optimal policies. Condition W1 holds since the
set of feasible actions in any state is finite. All functions are
continuous since the underlying topology is discrete and thus
implying W2,W3,W4. The single stage cost c(·) is non-
negative. Next we verify applicability of Theorem A-2 (see
Appendix A) to ascertain the existence of a stationary average
optimal policy and that it can be obtained as a limit of discount
optimal policies as the discount factor increases to one.

The first hypothesis of Theorem A-2 should hold in most
practical problems because otherwise the cost is infinite for
any choice of the policy, and thus any policy is optimal.
To verify that supα<1 wα(x) < ∞ for x ∈ X , consider
the following discounted cost optimality equation (DCOE) for
Vα(x),

Vα(q, h, a) = min
r∈{0,1,···,q}

{
q + β

σ2

h
(eθr − 1)

+αEh,a[Vα(q − r +A,H,A))]} ,(B-1)

where Eh,a[f(H,A)] denote the expectation of f(·, ·) condi-
tioned upon (h, a).

Given (h, a), Vα(q, h, a) is clearly increasing in q since
the larger the initial buffer the larger will be the cost to go.
We will later prove this as well. Thus arg infy∈X Vα(y) =
(0, h0, a0) := x0, i.e., the infimum is achieved when the
system starts with an empty buffer, and for some channel
state h0 and arrival state a0. Also when the buffer is empty,
the set of feasible actions is {0} and c(x0, 0) = 0, we have,
Vα(x0) = αEh0,a0 [Vα(A,H,A)]. In addition, as the policy
r(q, h, a) = q is feasible for state (q, h, a), we have from B-1
that

Vα(x) ≤ q +
βσ2

h
(eθq − 1) + αEh,a[Vα(A,H,A)].

Let the system start in state (a, h, a) and we take an action
r[n] = a[n] at time nτ for all n. Thus at any time instant
nτ , the state would be (a[n], h[n], a[n]). Let ν(h, a) be the
expected number of slots to hit the state (a0, h0, a0) for the
first time when starting in state (a, h, a). Note that ν(h, a)
depends entirely on the transition probability matrices. Note
that ν(h, a) is finite for all values of h and a. Define cmax =

maxh,a
{
a+ βσ2

h (eθa − 1)
}

. Then from Wald’s lemma [20]
we have

αEh,a[Vα(A,H,A)]
≤ cmaxν(h, a) + αEh0,a0 [Vα(A,H,A)]
≤ cmaxν(h, a) + Vα(x0).

Thus substituting the above expression in the upper bound for
Vα(x) we get,

Vα(x) ≤ q +
βσ2

h
(eθq − 1) + cmaxν(h, a) + Vα(x0).

Implying for all x ∈ X ,

wα(x) := Vα(x)−Vα(x0) ≤ q+βσ2

h
(eθq−1)+cmaxν(h, a) <∞.

Thus all the conditions of Theorem A-2 are satisfied. We have
proved the existence of a stationary average optimal policy
which can be obtained as a limit of discount optimal policies
as described in Theorem A-2.

APPENDIX C
ANALYSIS OF THE UNCONSTRAINED PROBLEM

We now study the discounted cost MDP and obtain the
structural properties of discount optimal policies. As the
discount factor α is fixed for the analysis of the remaining
section, we drop the subscript α. Recall the definition of u
as defined in Section III-B. The discounted cost optimality
equation (DCOE) in the control variable u is,

V (q, h, a) = min
u∈{0,1,···,q}

{
q +

βσ2

h

(
eθ(q−u) − 1

)
+αEh,a[V (u+A,H,A)]} .(C-1)

and the corresponding value iteration algorithm is,

Vn(q, h, a) = min
u∈{0,1,···,q}

{
q +

βσ2

h

(
eθ(q−u) − 1

)
+αEh,a[Vn−1(u+A,H,A)]} ,(C-2)

with V0(q, h, a) = 0. It can be easily seen that the control
problem satisfies the hypothesis of the Theorem A-1 and
thus the convergence of the value iteration. We now provide
structural results.

Lemma C-1: The value function V (q, h, a) is an increasing
convex function of q for each (h, a).

Proof: It is easy to see that the value function V (q, h, a)
is increasing in q. Consider the value iteration algorithm
(Equation C-2). For n = 0, V0(q, h, a) = 0. This implies
that V1(q, h, a) = q and thus increasing. Let Vn−1(q, h, a)
be increasing in q. Fix (h, a). The set of feasible actions in
state q+1 is {0, 1, · · · , q+1} whereas for state q, the feasible
action set is {0, 1, · · · , q}. We show that for any action in state
q + 1, the value Vn(q, h, a) is less than Vn(q + 1, h, a). Let
the optimal action in state q + 1 be u ∈ {0, 1, · · · , q}. Thus

Vn(q + 1, h, a) = q + 1 +
βσ2

h

(
eθ(q+1−u) − 1

)
+αEh,a[Vn−1(u+A,H,A)].
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Since this u is also feasible for state q, we have,

Vn(q, h, a)

≤ q +
βσ2

h

(
eθ(q−u) − 1

)
+ αEh,a[Vn−1(u+A,H,A)]

≤ Vn(q + 1, h, a).

Now let the optimal action in state q + 1 be u = q + 1. Thus
Vn(q + 1, h, a) = q + 1 + αEh,a[Vn−1(q + 1 + A,H,A)].
Also since u = q is a feasible action in state q, we have
Vn(q, h, a) = q + αEh,a[Vn−1(q + A,H,A)]. Now from the
increasing property of Vn−1(q, h, a) in q, we have the result.
Induction hypothesis implies that V (q, h, a) is increasing in q.

We prove convexity of V (q, h, a) by induction. For n = 0,
V0(q, h, a) = 0 and hence convex. Assume Vn−1(q, h, a) is
convex in q. Fix (q, h, a). Let u1 and u2 be the optimal policy
for q − 1 and q + 1.

Vn(q + 1, h, a) + Vn(q − 1, h, a)

= 2q +
βσ2

h

(
eθ(q−1−u1) + eθ(q+1−u2) − 2

)
+αEh,a[Vn−1(u1 +A,H,A) + Vn−1(u2 +A,H,A)],

≥ 2q+ βσ2

h

(
eθ(q−b

u1+u2
2 c)−1

)
+ βσ2

h

(
eθ(q−d

u1+u2
2 e)−1

)
+αEh,a[Vn−1(bu1+u2

2 c+A,H,A)+Vn−1(du1+u2
2 e+A,H,A)],

≥∗ 2Vn(q, h, a),

where we use the fact that the function eθ(q−u) is convex in
u and for a convex function f(x), the following is true.

f(x1) + f(x2) ≥ f
(⌊

x1 + x2

2

⌋)
+ f

(⌈
x1 + x2

2

⌉)
.

Also ∗ follows since the policies
⌈
u1+u2

2

⌉
and

⌊
u1+u2

2

⌋
are

feasible for q. The results follows from induction.
Define G(q, h, a) = V (q, h, a) − V (q − 1, h, a) and

Z(q, h, a) = eθqEh,a[G(q +A,H,A)].
Corollary C-1: G(q, h, a) is nondecreasing in q.

The unconstrained minimizer u∗(q, h, a) (i.e., u do not satisfy
u ∈ {0, 1, · · · , q}) of Equation (C-1) is the value of u that
solves the following inequalities,

αZ(u, h, a) ≤ βσ2

h
eθq(eθ − 1) ≤ αZ(u+ 1, h, a). (C-3)

It is clear that for (q, h, a) satisfying βσ2

h eθq(eθ − 1) <
αZ(0, h, a), the solution is u∗(q, h, a) = 0 and for those
(q, h, a) satisfying αZ(u + 1, h, a) < βσ2

h eθq(eθ − 1) for
all u, u∗(q, h, a) = ∞. By convexity, the solution for the
constrained problem (u ∈ {0, 1, · · · , q}) is, u(q, h, a) =
min{q, u∗(q, h, a)}. For a given value for the pair (h, a), we
have the following monotonicity results.

Theorem C-1: The optimal policy u(q, h, a) := q −
r(q, h, a) is nondecreasing in q.

Proof: We need to show that u(q, h, a) is nondecreasing
in q. Since (h, a) are fixed, we suppress their dependence.
We argue by contradiction. Let there be q1 and q2 such that
q1 < q2 but u(q1) > u(q2). Thus a policy which uses u(q2) in
state q1 and u(q1) in state q2 is feasible. Since u(·) is optimal,

it follows that

q1 +
βσ2

h

(
eθ(q1−u(q1)) − 1

)
+ αEh,a[V (u(q1) +A,H,A)] <

q1 +
βσ2

h

(
eθ(q1−u(q2)) − 1

)
+ αEh,a[V (u(q2) +A,H,A)]

q2 +
βσ2

h

(
eθ(q2−u(q2)) − 1

)
+ αEh,a[V (u(q2) +A,H,A)] ≤

q2 +
βσ2

h

(
eθ(q2−u(q1))) − 1

)
+ αEh,a[V (u(q1) +A,H,A)].

Adding the two equations we get,

eθq1(e−θu(q1) − e−θu(q2)) < eθq2(e−θu(q1) − e−θu(q2))

But since u(q1) > u(q2), it implies q1 > q2, which is a
contradiction. Thus u(q1) ≤ u(q2).

Theorem C-2: The optimal rate allocation policy
r(q, h, a) = s− u(q, h, a) is nondecreasing in q.

Proof: We need to show that r(q, h, a) is nondecreasing
in q. We again suppress the dependence on (h, a). We prove
by contradiction. Let there be q1 and q2 such that q1 < q2 but
r(q1) > r(q2). The policy that takes an action r(q2) in state
q1 and r(q1) in state q2 is also feasible. Since r(·) is optimal,
it follows that

q1 +
βσ2

h

(
eθr(q1) − 1

)
+ αEh,a[V (q1 − r(q1) +A,H,A)] <

q1 +
βσ2

h

(
eθr(q2) − 1

)
+ αEh,a[V (q1 − r(q2) +A,H,A)]

q2 +
βσ2

h

(
eθr(q2) − 1

)
+ αEh,a[V (q2 − r(q2) +A,H,A)] ≤

q2 +
βσ2

h

(
eθr(q1) − 1

)
+ αEh,a[V (q2 − r(q1) +A,H,A)],

Now by adding the two equations we get,

Eh,a[V (q1−r(q2)+A,H,A)]−Eh,a[V (q1−r(q1)+A,H,A)]>

Eh,a[V (q2−r(q2)+A,H,A)]−Eh,a[V (q2−r(q1)+A,H,A)]

Since V (q, h, a) is convex in q, the function Eh,a[V (y +
A,H,A)] is convex in y. But the above relation contradicts
the convexity of Eh,a[V (y+A,H,A)] in y. Hence proved.

Theorem C-3: The function u∗(q, h, a) as defined earlier
satisfies the following bounds.

1
θ

ln(f(q, h))− 1 ≤ u∗(q, h, a) ≤ 1
θ

ln
(
βσ2

hα
eθq(eθ − 1)

)
,

where η(h, a) = Eh,a

[
eθA

H

]
and

f(q, h, a) =

√
1 + 4β

2σ4

αh η(h, a)eθq(eθ − 1)− 1

2βσ2η(h, a)
.

. Proof: We need to show the desired bounds on
r(q, h, a). Consider the functions G(q, h, a) and V (q, h, a).
Consider a feasible policy that serves everything, i.e., u(x) = 0
for all x ∈ X .

V (q, h, a) ≤ q +
βσ2

h
(eθq − 1) + αEh,a[V (A,H,A)];

Also V (0, h, a) = αEh,a[V (A,H,A)]. Since V (q, h, a)
is increasing in q, we also have V (q, h, a) ≥ q +
αEh,a[V (A,H,A)] independent of the choice of the policy.
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Thus G(q, h, a) ≤ 1 + βσ2

h (eθq − 1). Convexity of V (q, h, a)
in q implies that G(q, h, a) is monotone nondecreasing. Thus
as G(1, h, a) ≥ 1 implies G(q, h, a) ≥ 1 for all q. Hence for
Z(u, h, a) as defined earlier, we have

eθu ≤ Z(u, h, a) ≤ eθu
(

1 + βσ2eθuEh,a

[
eθA

H

])
.

Fix (h, a). Define η := Eh,a

[
eθA

H

]
. Now consider Equation C-

3. The bounds for Z(u, h, a) would result in bounds on
u∗(q, h, a). First consider the upper bound of Z(u, h, a). This
would yield a lower bound on u∗(q, h, a).

αeθu(1+βσ2eθuη) ≤ βσ2

h
eθq(eθ−1) ≤ αeθ(u+1)(1+βσ2eθ(u+1)η).

Solving the above equations, we get

u∗(q, h, a) ≥ 1
θ

ln


√

1 + 4β
2σ4

αh ηeθq(eθ − 1)− 1

2βσ2η

− 1.

Now the lower bound of Z(u, h, a) would yield an upper
bound on u∗(q, h, a), i.e., u ≤ 1

θ ln
(
βσ2

αh e
θq(eθ − 1)

)
. The

function f(q, h, a) as defined earlier is

√
1+4 β

2σ4
αh ηeθq(eθ−1)−1

2βσ2η .

Lemma C-2: Given ε > 0, there exists q∗ < ∞ such that
the the optimal number of packets transmitted r(q, h, a) is
greater than

(⌈
1
θ ln

(
αh

(1−α)βσ2(eθ−1)

)⌉)
− ε for q > q∗.

Proof: We need to show that the existence of a q∗

such that r(q, h, a) is larger than a number for q > q∗.
Consider the algorithm with G0(q, h, a) = 0. This implies that
Z0(q, h, a) = 0 and hence u∗0(q, h, a) =∞ for all (q, h, a) and
s(i,0) =∞ for i = {0, 1, 2, · · ·}. It follows from the algorithm
that G1(q, h, a) = 1. Thus

u∗1(q, h, a) = q −
⌈

1
θ

ln
(

αh

βσ2(eθ − 1)

)⌉
;

r1(q, h, a) = min

{(⌈
1
θ

ln
(

αh

βσ2(eθ − 1)

)⌉)+

, q

}
.

Define Ln(h) =
(⌈

1
θ ln

(
α(1−αn)h

(1−α)βσ2(eθ−1)

)⌉)+

and Ln =
maxLn(h). Thus for q > L1, r1(q, h, a) = L1(h) for all
a. Moreover, G2(q, h, a) = 1 + α for q > L1 and for all
(h, a).
Iterating one step further, we get,

u∗2(q, h, a) = q−
⌈

1
θ

ln
(
α(1 + α)h
βσ2(eθ − 1)

)⌉
if u∗2(q, h, a) > L1.

Thus for q > L2 + L1, r2(q, h, a) = L2(h) for all a.
Moreover, G3(q, h, a) = 1 + α+ α2 for q > L2 + L1 and all
(h, a). Thus we get rn(q, h, a) = Ln(h) for q >

∑n
k=1 Lk.

As we know rn(q, h, a) converges to optimal r(q, h, a) as n
goes to infinity and LN converges to L∞, find N large enough
such that r(q, h, a) > rN (q, h, a)− ε

2 , and LN > L∞− ε
2 for

q =
∑N
k=1 Lk. Define q∗ =

∑N
k=1 Lk. Now the result follows

form the monotone increasing property of r(q, h, a) in q.

Theorem C-4: As β → 0, the solution u∗(q, h, a) → 0
and u∗(q, h, a) ≥ q (nothing is transmitted) for all q if
β > eθασ2

(eθ−1)(1−α)
.

Proof: We need to show the behaviour of the optimal
policy as β decreases to zero or increases to infinity. As β → 0,
Equation B-1 implies that the cost of serving decreases to zero
except that the constraint should be satisfied. Thus the solution
would be to serve as much as possible, i.e., u(q, h, a) = 0.
Thus the action is to transmit all buffered packets. To show
the other part, observe from Equation C-3 that it is enough
to show G(q, h, a) ≤ 1

1−α . Since G(q, h, a) ≤ 1
1−α would

imply Z(u, h, a) ≤ eθu

1−α and hence u∗(q, h, a) > q. We
show the above upper bound for G(q, h, a) by induction. Since
G0(q, h, a) = 0, if β > eθασ2

(eθ−1)(1−α)
, then u∗0(q, h, a) =∞ and

G1(q, h, a) = 1. Let Gn(q, h, a) = 1−αn
1−α . Thus Zn(u, h, a) =

eθu 1−αn
1−α . This implies that u∗n(q, h, a) ≥ q for all q and hence

Gn+1(q, h, a) = 1−αn+1

1−α . By induction hypothesis it follows
that Gn(q, h, a) increases to 1

1−α and u∗(q, h, a) ≥ q for all
q. Thus nothing in transmitted for any state vector (q, h, a).

Theorem C-5: (Parametric Monotonicity) The
unconstrained minimizer u∗(q, h, a) is monotonically
nondecreasing with β.

Proof: We need to prove that the optimal policy
u∗(q, h, a) is monotone nondecreasing in β. We introduce the
parameter β as a variable in the functions defined earlier to
indicate its dependence. Observe that the recursive algorithm
stated for Gn(q, h, a) in Section III-D is equivalent to the
following recursion (obtained by dividing throughout by β as
β > 0). Initialize G0(q, h, a, β) = 0. Let u∗n(q, h, a, β) be the
value of u that solves the following inequalities,

αZn(u, h, a, β) ≤ 1
h
eθq(eθ − 1) ≤ αZn(u+ 1, h, a, β).

Let s(i,n) = max{q : u∗n(q, h, a, β) ≥ q − i}. The algorithm
for computing u∗(q, h, a) as stated in Section III-D can be
rewritten as,
• For q ≤ s(0,n),

Gn+1(q, h, a, β) =
1
β

+ αEh,a[Gn(q +A,H,A, β)]

• For q = s(i,n) + 1 for i ∈ {0, 1, 2, · · ·},

Gn+1(q, h, a, β) =
1
β

+
σ2

h

(
eθ(i+1) − eθ(i)

)
• For q ∈ {s(i,n) + 2, · · · , s(i+1,n)} and i ∈ {0, 1, 2, · · ·},

Gn+1(q,h,a,β)= 1
β+αEh,a[Gn(u∗n(q,h,a)+A,H,A,β))]

• Further by definition,

Zn+1(q, h, a, β) = eθqEh,a[Gn+1(q +A,H,A, β)]

We fix (h, a). Using Corollary C-1 (similar result holds
for each n as well), it follows that in order to show that
u∗n(q, h, a, β) is monotonically nondecreasing in β, it is
enough to show that the function Gn(q, h, a, β) is nonincreas-
ing in β for all n. We show this by induction. The function
G0(u, h, a, β) = 0. Let Gn(q, h, a, β) be nonincreasing in β.
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This implies Zn(u, h, a, β) is nonincreasing in β and hence,
u∗n(q, h, a, β) is monotone nondecreasing in β. Thus s(i,n)

is nondecreasing in β. Also by monotonicity of u∗(q, h, a)
in q, s(i+1,n) > s(i,n). The values of β for which q =
s(i,n) + 1 is an interval. Further, the values of β for which
q ∈ (s(i,n) + 2, · · · , s(i+1,n)) is also an interval with the left
end point corresponding to s(i+1,n). Now, given (q, h, a), the
above recursive algorithm seen as a function of β is,
• For β satisfying q ∈ (s(i+1,n), · · · , s(i,n) + 2) and i ∈
{0, 1, 2, · · ·},

Gn+1(q, h, a, β) =
1
β

+αEh,a[Gn(q−(i+1)+A,H,A, β)],

since in this range of β, u∗n(q, h, a, β) = q − (i+ 1).
• For β such that q = s(i,n) + 1 and i ∈ {0, 1, 2, · · ·},

Gn+1(q, h, a, β) =
1
β

+
σ2

h

(
eθ(i+1) − eθ(i)

)
• For β satisfying q ≤ s(0,n),

Gn+1(q, h, a, β) =
1
β

+ αEh,a[Gn(q +A,H,A, β)]

If we show that the following inequalities hold,
i) For β satisfying last bullet above, σ2

h

(
eθ − 1

)
≥

αEh,a[Gn(q +A,H,A, β)]
ii) For β satisfying first bullet above, σ

2

h e
θ(i+1)

(
eθ − 1

)
≥

αEh,a[Gn(s(i+1,n) − (i+ 1) +A,H,A, β)]
iii) For β satisfying second bullet above, αEh,a[Gn(s(i,n) +

2− (i+ 1) +A,H,A, β)] ≥ σ2

h e
θ(i)
(
eθ − 1

)
then we are done. Since each of these components are
decreasing in β, pasting them together would result in
Gn+1(q, h, a, β) nonincreasing in β and hence the desired
result would follow from induction hypothesis.
Over the region where β satisfies item 1, u∗n(q, h, a, β) ≥ q,
i.e.,

αZn(q,h,a,β)=αeθqEh,a[Gn(q+A,H,A,β)]≤σ2
h e

θq(eθ−1).

This implies that inequality 1 is true.
Over the region where β satisfies item 2, i+ 1 is the optimal
solution for q = s(i+1,n). Thus,

αZn(s(i+1,n) − (i+ 1), h, a, β) ≤ σ2

h
eθ(s(i+1,n))

(
eθ − 1

)
,

implying the inequality of item 2.
Over the region where β satisfies item 3, i+ 1 is the optimal
solution for q = s(i,n) + 1. Thus,

αZn(s(i,n)+1−(i+1)+1, h, a, β) ≤ σ2

h
eθ(s(i,n)+1)

(
eθ − 1

)
,

Implying,

αeθ(s(i,n)+1−(i+1)+1)
Eh,a[Gn(s(i,n) + 2− (i+ 1), h, a, β)]

≤ σ2

h
eθ(s(i,n)+1)

(
eθ − 1

)
,

implying the inequality of item 2.
The result now follows from induction.

Corollary C-2: The optimal policy r(x) is monotone non-
increasing in β.

Consider a special case where the arrival and the channel
gain processes are independent and identically distributed
(i.i.d.). Consider Equation C-3. Note that under the i.i.d.
assumption, the function Z(q, h, a) is independent of (h, a)
say Z(q) and G(q, h, a) is independent of a say G(q, h). The
unconstrained minimizer u∗(q, h, a) is a function of (q, h)
only, say, u∗(q, h). Define u(y), for y ≥ 0 real, a value of
u that solves Z(u) ≤ eθy ≤ Z(u+ 1). Then

u∗(q, h) = u

(
q − 1

θ
ln
(

αh

βσ2(eθ − 1)

))
. (C-4)

This solution is depicted in Figure 4. The following theorem
states the optimal solution.

Theorem C-6: Let u∗(q, h, a) be as defined by Equation C-
3. If the arrival process A[n] and the channel gain process
H[n] are i.i.d., the constrained optimal solution is u(q, h) = 0
for 1

h < αZ(0)e−θq

βσ2(eθ−1)
; u(q, h) = q for 1

h > αE[G(q+A,H)]
βσ2(eθ−1)

and
u(q, h) = u∗(q, h) otherwise.

APPENDIX D
PROOFS OF THEOREMS

Lemma D-1: Given any sequence of discount factors α
converging to one, there exists a subsequence αn converging
to 1 such that the average cost optimal policy u1(q, h, a) for
any (q, h, a) can be obtained as a pointwise limit of discount
optimal policies, i.e., u1(q, h, a) = limn uαn(q, h, a).

Proof: Since the state space is countable (q, a are integer
valued and h take values from a finite set), we can directly
modify the convergence result stated in Theorem A-2 to the
following result. Given x and a sequence of discount factors
converging to one, there exists a subsequence αn such that
uαn(q, h, a) → u1(q, h, a) as n → ∞ but the subsequence
may depend upon the choice of x = (q, h, a).

Enumerate the possible choices of x. Given x1, let {α1n} be
a subsequence such that uα1n(x1)→ u1(x1). Take x2 and find
a subsequence {α2n} ⊂ {α1n} such that uα2n(x2)→ u1(x2).
Also we have uα2n(x1)→ u1(x1). Keep on doing this till the
state space is exhausted. By Cantor diagonalization procedure,
we get a sequence {αn} such that uαn(x)→ u1(x) for all x.

Theorem D-1: [6] A controlled chain X[n] is c(x, π)
regular if for some state z, Eπz [

∑nz−1
n=0 c(X[n], π)] < ∞,

where nz is the first return time to z when starting in z and
c(x, r) is the one stage cost function as defined earlier. The
policy π is regular if X[n] is c(x, π) regular. A function f(x) is
norm-like if {x : f(x) < ∆} is finite for each ∆ finite. Define
a resolvent kernel for policy π as Mπ =

∑∞
t=0 2−(t+1)P tπ

where P tπ is the t step transition operator under policy π. We
need the following conditions.
A1. There exists a regular policy π−1. Let V0(x) be the value

function corresponding to π−1. Further, for the optimal
policy π∗, limn

1
nE

π∗V0(X[n]) = 0.
A2. The function c(x, ·) is norm-like for each x. Further, there

exist a norm-like function c(x) such that c(x, π) ≥ c(x)
for all regular policies π.

A3. For any action r, there is a positive probability of
returning to state z in the next step when starting in state
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z. Define S0 = {x : c(x) < η̄ where η̄ is the average
cost under policy π−1. Further, we need Mπ(x, z) > δ
for some δ > 0 and all Markovian policies π and x ∈ S0.
If the value iteration algorithm is initialized with V0(x)
and the conditions A1-A3 holds, then Vn(z) − Vn−1(z)
converges to the optimal average cost and the limiting
policy would be the average cost optimal policy.

Proof of Theorem 3.3

Proof: Define an initializing policy r−1(q, h, a) = q.
We must first verify conditions A1-A3 of Theorem D-1.
Note that the policy is regular. The value function V0(x) is
q + βσ2

h (eθq − 1) + Eh,aV [A,H,A], where Eh,aV [A,H,A]
is a finite number. Thus the assumption A1 holds. The cost
function c(x, r) = q+ βσ2

h (eθr − 1) is definitely norm-like in
r. Define c(x) = q, a norm-like function. Thus c(x, π) ≥ c(x)
for all π implying A2. Fix z = (0, h0, a0), where (h0, a0)
are those values of (h, a) for which the transition probability
matrix for h and a have a positive entry at the diagonal. We
assume there exists one such pair. We further assume that the
arrivals a can be 0 with a positive probability. We do not
need A3 to be satisfied for all policies but only for those
policies that would arise during the iteration. Note that the
condition required regarding the resolvent kernel would hold
if we show the existence of a t such that starting in a state
q ∈ {0, · · · , η̄} and any (h, a) we can reach z at time t with a
positive probability. Such an irreducibility condition needs to
be imposed on the underlying system. Thus the condition A3
is also satisfied under this irreducibility condition. The result
now follows from Theorem D-1.

Proof of Theorem 4.3

Proof: We need to show that the function Wn(q,x) is
monotone increasing in q for each n. The function V0(·) = 0.
Thus W0(·) = 0. This implies V1(q,x) = q and hence
W1(q,x) = q + Ea[A] is increasing in q. Let Wn(q,x)
is monotone increasing in q. The two expression within the
braces in Equation 22 are monotone nondecreasing and hence
the minimum is also nondecreasing. It follows that the function
Vn+1(q,x) is increasing in q. Thus Wn+1(q,x) is increasing
in q as it is a convex combination of increasing functions.

Proof of Theorem 4.4

Proof: If q < r then Theorem 4.3 implies that the result
holds. Thus we look for q ≥ r or show that Wn(q + r,x) −
Wn(q,x) is nondecreasing in q for all q ≥ 0. For n = 1, we
certainly have a threshold policy since W1(q,x) = q + E[A].
By induction hypothesis, let Wn−1(·) has the desired property.
Extrapolate the function Wn−1(q,x) such that Wn−1(q,x) =
Wn−1(0,x) for q ∈ [−r, 0].

Fix x and drop it as an argument. Define C = β(h)(eθr−1)
and

Gn(q) = min
{
C + αWn−1((q − r)+) , αWn−1(q)

}
.

It is enough to show that Gn(q+r)−Gn(q) is nondecreasing
in q for all nonnegative q. Let q∗ be the minimizing threshold

at the nth stage. Thus from optimality of q∗, we have,

α(Wn−1(q∗−1)−Wn−1(q∗−1−r))≤C<Wn−1(q∗)−Wn−1(q∗−r).

Also,
• For q ≥ q∗, we have Gn(q+r)−Gn(q) = α(Wn−1(q)−
Wn−1(q − r))

• For q < q∗ but q+r ≥ q∗, we have Gn(q+r)−Gn(q) =
C

• For q + r < q∗, we have Gn(q + r) − Gn(q) =
α(Wn−1(q + r)−Wn−1(q))

Thus we just need to show that

Wn−1(q∗−1)−Wn−1(q∗−1−r)≤C≤Wn−1(q∗)−Wn−1(q∗−r).

But this is true by the very definition of optimality of q∗. Thus
the result follows by induction.

A. Proof of Theorem 4.5

Proof: We first divide the optimality equation (Eq. 23)
by ζ throughout (ζ is positive).

Vn+1(q, ζ, a) =
q

ζ
+ min{(eθr − 1) + αWn((q − r)+, ζ, a),

αWn(q, ζ, a)}.

where Wn(q, ζ, a) is as defined. As a function of ζ, we need to
show that the function Wn(q+r, ζ)−Wn(q, ζ) is nonincreasing
in ζ for all n, then we are done. We use induction. We have
W1(q, ζ) = q

ζ . The desired property holds for n = 1. Let
Wn−1 has the desired property. Thus the threshold q∗n−1(ζ)
for n− 1 stage problem is nondecreasing in ζ. Let ζ1 be the
largest value of ζ such that q ≥ q∗(ζ1) and ζ2 be the smallest
value of ζ such that q + r < q∗(ζ2). Thus ζ1 < ζ2.
• For ζ ≥ ζ2, we have Gn(q+r, ζ)−Gn(q, ζ) = Wn−1(q+
r, ζ)−Wn−1(q, ζ)

• For ζ1 ≤ ζ < ζ2, we have Gn(q + r, ζ) − Gn(q, ζ) =
eθr − 1

• For ζ < ζ1, we have Gn(q + r, ζ) − Gn(q, ζ) =
Wn−1(q, ζ)−Wn−1(q − r, ζ)

The result follows since for ζ > ζ2, Wn−1(q + r, ζ) −
Wn−1(q, ζ) < (eθr−1) and for ζ < ζ1 we have Wn−1(q, ζ)−
Wn−1(q − r, ζ) > (eθr − 1). This implies Gn(q + r, ζ) −
Gn(q, ζ) is nonincreasing in ζ and Vn(·) has the same prop-
erty. Now monotone nature of the transition probability matrix
implies that Wn(q + r, ζ) −Wn(q, ζ) is nonincreasing in ζ.
Thus by induction hypothesis, W (q+r, ζ)−W (q, ζ) is nonin-
creasing in ζ and hence the threshold q∗(ζ) is nondecreasing
in ζ.


