
Time and Energy Complexity of
Distributed Computation of a Class of Functions

in Wireless Sensor Networks∗
Nilesh Khude1, Anurag Kumar2, Aditya Karnik 1

Abstract— We consider a scenario in which a wireless sensor
network is formed by randomly deploying n sensors to measure
some spatial function over a field, with the objective of computing a
function of the measurements and communicating it to an operator
station. We restrict ourselves to the class of type-threshold functions
(as defined in [2]), of whichmax, min, and indicator functions are
important examples; our discussions are couched in terms ofthe max
function. We view the problem as one of message passing distributed
computation over a geometric random graph. The network is
assumed to be synchronous; the sensors synchronously measure
values, and then collaborate to compute and deliver the function
computed with these values to the operator station. Computation
algorithms differ in (i) the communication topology assumed, and
(ii) the messages that the nodes need to exchange in order to carry
out the computation. The focus of our paper is to establish (in
probability) scaling laws for the time and energy complexity of the
distributed function computation over random wireless networks,
under the assumption of centralised contention-free scheduling
of packet transmissions. Firstly, without any constraint on the
computation algorithm, we establish scaling laws for the computation
time and energy expenditure for one time maximum computation.
We show that, for an optimal algorithm, the computation time and

energy expenditure scale, respectively, asΘ
(

√

n

log n

)

and Θ(n)

asymptotically as the number of sensorsn → ∞. Secondly, we
analyze the performance of three specific computation algorithms
that may be used in specific practical situations, namely, the Tree
algorithm, Multi-Hop transmission, and the Ripple algorit hm (a type
of gossip algorithm), and obtain scaling laws for the computation
time and energy expenditure asn → ∞. In particular we show that
the computation time for these algorithms scales asΘ

(√
n log n

)

,
Θ(n) and Θ

(√
n log n

)

, respectively; whereas the energy expended

scales asΘ(n), Θ
(

n
√

n

log n

)

and Θ
(

n
√

n log n
)

, respectively.
Finally, simulation results are provided to show that our analysis
indeed captures the correct scaling; the simulations also yield
estimates of the constant multipliers in the scaling laws. Our analyses
throughout assume a centralized optimal scheduler and hence our
results can be viewed as providing bounds for the performance with
practical distributed schedulers.

Keywords: distributed maximum computation, scaling laws
for sensor networks

∗This work was supported by the Indo-French Centre for Promotion of
Advanced Research (IFCPAR) under research contract No. 2900-IT. This is a
revised version of a paper that appeared in IEEE Infocom 2005([9]).

1 This work was done when these authors were with ECE Department, Indian
Institute of Science, Bangalore, INDIA

2ECE Department, Indian Institute of Science, Bangalore, INDIA

I. I NTRODUCTION

A wireless sensor network is formed by a set of miniature smart
sensor devices, each equipped with a digital wireless transceiver,
that are deployed in an ad hoc fashion and cooperate in sensing
the environment, in computing some quantity of global interest,
and in transporting this to a designated “base station” node(for
a survey see [1]). Sensor nodes have limited, and in many cases,
irreplaceable power sources. Power consumption occurs dueto
radio transmission, reception, sensing and computing, typically
in decreasing order. As a node spends the maximum energy in
communication, it is desirable to have local interactions between
the sensors to process the datain the network rather than to
transmit the raw data to the base station. This is because, by
reducing the number of packets that need to be transported in
the network, in-network computations reduce the packet transport
load and thus increase the lifetime of the network. In this paper
we focus on the distributed computation approach for sensor
information processing.

The work reported in this paper is in the context of the follow-
ing model. There aren sensor nodes distributed independently
and uniformly over a 2-dimensional fieldA. It is assumed that
time is slotted and the sensors are synchronised at slot boundaries.
The sensors synchronously sample the environment variable, e.g.,
temperature. The measurements are assumed to be quantized and
take values in a givenfinite set, V . At sampling instantk, each
sensor measures a value, yielding a vector of valuesv(k) =
(v1(k), v2(k), · · · , vn(k)). The objective is to collaboratively
compute and delivermax{v1(k), v2(k), · · · , vn(k)} to an operator
station, for each such vector of sampled values. See [4] where the
need for a distributed maximum computation arises as a part of
a distributed self-tuning algorithm for the optimal operation of
a sensor network. If the sensors calculate local maxima while
routing the values to the operator station, we can reduce the
traffic in the network and thereby decrease the computation
delay and increase the network lifetime. In the case of the
function max, this is possible because the maximum function
is insensitive to the order of computation and can be calculated
recursively by using partial results obtained by using arbitrary
subsets of the data, i.e.,max{a, b, c, d, e} can be calculated as
max{max{a, b}, max{c, max{d, e}}}.

Although max will be a convenient example for us to discuss
throughout the paper, the class of functions our algorithmsand
analyses cover is wider. It includes the class of type-threshold

functions, as defined in [2]1. We also consider a gossip algorithm
that we callRipple that works only for the subclass of the above
functions whose result does not change if the elements in the
argument vectorv are repeated during the computation. Since, for
example,max{a, b, c} = max{a, b, a, c, b}, the Ripple algorithm
applies to the computation ofmax, min or set union and set
intersection.

We adopt the message passing distributed computing model.
The sensors communicate by sending packets to each other and
then performing computations based on the received data and
the partial results they already have. The computation algorithms
we consider differ in the way the computations are organised,
and hence in the message transmissions that are required to
carry out the task. When successive results for several sampled
values need to be computed then separate pipelined computations
are performed for each vector of sampled values. Thus, we do
not exploit block computation, as has been done in [2]. We
assume a centralized optimal scheduler, which schedules maximal
independent sets of links in the network. Thus, there are no
collisions in the model.

The following is a summary of our contributions in this paper:
All our results are of the nature of providing asymptotic scaling
laws (that hold in the “in probability” sense) as the number
of nodesn → ∞. As has been established in [7] and [6],
to maintain the connectivity of the network, the transmission

ranger(n) must scale asΘ

(

√

log n
n

)

2. Adopting these results,

and under our assumptions, we establish that the time required
for one computation (e.g., initiated by a query) by an optimal
algorithm is Θ

(
√

n
log n

)

. The minimum energy expended in

the network during a computation isΘ(n). All these orders are
tight bounds in the sense that there exist (centralized) algorithms
that achieve these orders. We also analyse the performance
(scaling orders withn, of the single computation time and
energy expended) of some candidate computation algorithms, thus
providing a comparison between them. We consider the Tree,
Multi-Hop and Ripple algorithms, and obtain scaling laws for
the computation time and energy expenditure asn → ∞. In
particular we show that the computation time for these algorithms
scale asΘ

(√
n logn

)

, Θ(n) and Θ
(√

n log n
)

, respectively,

whereas the energy expended scales asΘ(n), Θ
(

n
√

n
log n

)

and

Θ
(

n
√

n log n
)

, respectively. The Tree algorithm outperforms the

1The type of a vector of observationsv = (v1, v2, · · · , vn) ∈ Vn is a |V|
dimensional vector. For an elementv ∈ V the type of the given observation
v is given byτv(v) =

∑n

i=1
I{vi=v}, i.e., the number of times the valuev

occurs inv. The functions that we are concerned with are such that thereexist
certain thresholdstv, v ∈ V , and the result of evaluating the function on the
observationsv depends on the observations only viamin{τv(v), tv}, v ∈ V .
It follows that the number bits required to represent the computed value of the
function is bounded even asn increases.

2A positive function f(n) = O(g(n)) implies that there exist, positive
constantsc and n0 such that0 ≤ f(n) ≤ cg(n) for all n ≥ n0. A positive
function f(n) = Ω(g(n)) implies that there exist, positive constantsc and n0

such that0 ≤ cg(n) ≤ f(n) for all n ≥ n0. We say that the functionf(n) =
Θ(g(n)), if and only if f(n) = O(g(n)) andf(n) = Ω(g(n)), i.e. there exist
positive constantsc1, c2 and n0 such that0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)
([3]). These notations are used here in the following probabilistic sense : we say
f(n) = Θ(g(n)) if and only if there exist positive constantsc1 andc2 such that
limn→∞ P (0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)) = 1

others in terms of the computation time and energy expediture,
and is suitable for data aggregation in sensor networks, but
requires the maintenance of the tree. The Multi-Hop algorithm
preserves the entire data at the operator station, and, hence,
imposes no restrictions on the function to be computed. The
Ripple algorithm, though inefficient compared to the other two
algorithms, has the advantage of being completely distributed,
not requiring any organization in network; the Ripple algorithm
also provides the result of the computation to every node. As
stated above, all the analyses assume a centralized, collision-
free medium access scheduler. Thus the scaling orders we obtain
can be viewed as lower bounds when some practical distributed
medium access protocol is implemented. Finally, we providethe
results of a simulation study of the three algorithms; theseresults
confirm our scaling results, and also provide estimates of the
preconstants.

The work we report in this paper is closely related to the one
presented in [2]. We will discuss the relationships after formally
presenting our distributed computation model in Section II. We
will then discuss some background results in Section III. In
Section IV, we obtain the optimal order expressions for the
performance measures. The performance of some algorithms
is analyzed in Section V. Simulation results are presented in
Section VI. We conclude the paper in Section VII.

II. T HE MODEL AND PERFORMANCEMEASURES

We considern sensors deployed in a circular or square field.
A sensor located at the coordinateX measures the value of some
spatial function (say, temperature)f(X). We are interested in ob-
taining the maximum of the measured values and communicating
the maximum to an operator station located at the centre of the
field.
Network Model: The two dimensional field in which then

sensors are located is denoted byA. The sensor network is
characterized by an indexed set of sensor locationsS; sensor
i has locationXi, Xi ∈ A, 1 ≤ i ≤ n. The networkS is
a random vector(X1, . . . ,Xn) ∈ An where theXis are i.i.d.
random variables, each uniformly distributed overA. The random
experiment of deploying a network of sensors is characterized
by the probability spaceΣn := (An,Fn,Pn) whereAn is the
sample space,Fn is the event space (a Borel field) andPn is the
probability measure. We index the whole experiment byn, the
number of nodes deployed in the field. Asn increases, we get
a sequence of experiments. We wish to study the asymptotics of
certain performance measures asn → ∞.

All radio communication is over a common channel and any
radio transceiver can either transmit or receive at a time. The
transmission rangeof the sensors is fixed for fixedn and is
denoted byr(n). If any two sensors are within a distancer(n) of
each other then there is a bidirectional link between them. Thus,
the neighbours of a node are nodes within a distancer(n) from
that node. The form ofr(n) we use follows from the results of
[6].

Definition 2.1: Given a network realisationS, the graphG(S)
is formed by then nodes at the locations defined byS, with links
joining the nodes that are separated by a distance not greater than
r(n). Thus, we have a random graph, denoted byG.

Interference Model: Let |Xi−Xj | denote the Euclidean distance
between the nodesi and j. We adopt theprotocol modelwhich
defines the interference constraints as follows.

Definition 2.2 (Gupta and Kumar [7]): Protocol Model of In-
terference: When nodei transmits to nodej (i.e., i → j), then
the transmission is successful if

1) |Xi − Xj | ≤ r(n) and
2) For every nodek that transmits simultaneously,|Xk −

Xj | ≥ (1 + ∆)r(n) for some fixed∆ > 0.
Distributed Computation Model : We work with the model of
message passingdistributed computation. Nodes explicitly send
packets to each other, and do not exploit any extra information
available on the wireless medium by way of listening to the other
nodes’ transmissions or to collisions. Nodes perform computa-
tions based only on the packets that are explicitly sent to them.
This necessitates that to complete a computation, each nodemust
influencethe computation. As a simple example, suppose there
are three collocated sensors with valuesa, b, and c, such that
a > b > c, and a collocated operator station. Suppose also thata
is the maximum element of the set in which these values are taken.
Then, evidently, if the operator station hears that a station has the
valuea it can declare themax without waiting to hear from any
other node. In our message passing computation model, however,
we require that the operator station hears at least once fromall the
nodes, before declaring that the computation is complete. Note
that this does not imply that the operator station must explicitly
receive each value, only that the computation it receives must
have beeninfluencedby every sensor’s value. Further, when the
computations are performed for several set of measurements, the
computation of the maximum for each set of measured values is
carried out separately, and block computation is not exploited as
in [2].

Formally, suppose that the result delivered to the operator
station isy = max1≤i≤n vi, where vi is the measured value
at nodei and is obtained asy = max{y1, y2, · · · , ym}, with
yi = maxj∈Ii

vj , where, for1 ≤ i ≤ m, Ii ⊂ {1, 2, 3, · · · , n}.
Now, even thoughy = yj for some particularj, 1 ≤ j ≤ m
(i.e., the maximum is determined by the subset of sensorsIj),
we require that every nodek, 1 ≤ k ≤ n, belongs to some set
Ii, 1 ≤ i ≤ m, in the final computation. We will then say that
every node has had influence on the computation. This implies
that every node must transmit at least once for each maximum
computation to be complete.

Further, we defineN (k)
j , thek hop neighborhood of nodej as

follows. LetN denote the set ofn nodes.N (0)
j := {j}, N (1)

j :=

{i ∈ N : |Xi − Xj | ≤ r(n)} , · · · andN (k)
j := {i ∈ N :

|Xi−Xl| ≤ r(n), l ∈ N (k−1)
j }. We note that, from the beginning

of the slot in which nodej first transmits its value, it takesat
leastk hops until the computations in the setN (k)

j −N (k−1)
j are

influenced by the value of nodej, i.e., in each slot the influence
of nodej can spread by at most one hop.

A computation algorithmdefines the sequence of message
passing transactions, between specified transmitter-receiver pairs,
that leads to the function being computed and the results delivered
to the operator station. A computation algorithm may have
associated with it a subgraph ofG(S) (see Definition 2.1) such

that only the links in this subgraph are activated. For example,
in a Tree algorithm (see Section V) a tree subgraph ofG(S) is
defined and only the links in this tree are activated, progressing
from the leaves up to the root.
Scheduling Assumptions: A synchronisedtime slottedsystem
is assumed, with a packet transmission between any pair of
nodes requiring one slot. For the purpose of obtaining our scaling
results, we assume perfect scheduling of transmissions, i.e., in
every slot certain links are scheduled and these transmissions are
guaranteed to succeed. The perfect scheduler has a set ofmaximal
activation sets, i.e., a set of transmitter-receiver pairs which can
communicate simultaneously without violating the interference
constraints. The activation sets that are scheduled are maximal
in the sense that addition of any transmitter-receiver pairin such
a set will violate the interference constraints. Also, the perfect
scheduler is assumed to be optimal in the sense that given thenode
placements and the set of transmissions to be activated, it chooses
a sequence of activation sets that schedules the transmissions in
the minimum number of slots. Owing to these assumptions, our
scaling laws should be viewed as bounds on what is practically
achievable.
Computation and Scheduling Interaction: The computation
progresses instages, each stage requiring the transmission of mes-
sages from certain transmitters to designated receivers (including,
possibly, multicasts to a set of receivers in the neighbourhood
of each transmitter as in the Ripple algorithm (see Section V)).
Given the transmissions to be scheduled at each stage, the
scheduler provides a deterministic sequence of maximal activation
sets that need to be activated in the successive slots in order
to complete this stage of computation. Thus, a stage of a
computation would be executed over several slots. After the
completion of a stage in the computation, the computation
algorithm defines the next set of transmissions to be scheduled.

For example, in the Tree algorithm (see Section V), each stage
corresponds to the activation of links at one level in the tree.
The scheduling algorithm then determines the number of slots
required to compute this stage.

When a stage of computation involves one transmission from
every node, we call such a stage around. Note that since
a computation algorithm requires each node to transmit its
measured value at least once (see the discussion of the Distributed
Computation Model above), a computation involves at least one
round.
Energy Expenditure Model: We consider the following
components of energy expenditure per packet transmission
and reception. Exmit−radio: the transmit energy radiated.
Thus Exmit−radio = α dη, where d is the distance between
the transmitter and the receiver,η is the path loss exponent
(2 ≤ η ≤ 4), andα is the energy corresponding to the received
power level at the receiver required for successful reception in
the presence of receiver noise (also sometimes called the receiver
sensitivity). Exmit−pkt: Energy required in the transmitter’s
electronics to transmit a packet.Ereceive−pkt: Energy required in
the receiver’s electronics to receive a packet.Eproc−pkt: Energy
required by the on-board computer to perform the computational
task triggered by a received packet.
Performance Measures: For a given node placementS, a compu-

tation algorithm along with the optimal centralized scheduler (see
Computation and Scheduling Interaction above), will result in the
maximum being computed in some number of slots. We denote
this time required to complete the computation byΓ(S). Thus, for
a given computation algorithm,Γ is a random variable overΣn,
which takes a specific value for every realization ofS. Also the
node placementS and the computation algorithm (along with the
centralised schedule) determine the number of transmissions and
receptions by each node, and, thereby, the total energy spent. Let
E(S) be the total energy spent in the network while performing
one computation, withE denoting the random variable overΣn,
akin to Γ. We seek “in probability” scaling laws, asn increases
to ∞, for Γ and E for different computation algorithms.
Remark:In [2], Giridhar and Kumar have addressed the problem
of finding scaling laws for the rate of distributed computation
(or data fusion). The functions they consider aresymmetric3.
Further, two subclasses of summetric functions, namely,type-
sensitive functionsand type-threshold functions4 are considered.
Scaling laws for upper and lower bounds on the computation rate
are obtained in [2] for these subclasses of functions.

In our paper we consider only type-threshold functions. While
[2] focuses on the the rate of computations, our focus in this
paper is to obtain scaling laws for one time computation. Such
a measure is of interest if a computation is triggered by a query.
In addition, we also consider the energy expenditure for one-
time computation as a performance measure and obtain scaling
laws for it. Further, we also analyze three practical computation
algorithms, namely, Tree, Multi-Hop and Ripple, with respect
to the performance measures for one time computation. The
reasons for studying such alternative algorithms are explained in
Section V.

The overlap between our work and [2] is the optimal scaling
law for the rate of computation. We view the rate of computation
as an extension of the time for one-time computation. When the
computations are pipelined, our message passing model treats
each computation separately and does not maximally utilizethe
information available by virtue of the radio being a broadcast
medium, and we do not exploit techniques such as block coding
across measurements. Under these assumptions, it can be deduced
from [2] and was also established independently in [5], thatthe
maximum computation rate would beΘ

(

1
log n

)

. However, [2]
further establishes that, for the class of type-threshold functions,
we can take advantage of a technique like block coding to improve
this bound toΘ

(

1
log log n

)

. Thus, while the message passing
model performs well for one-time computation, it is strictly
suboptimal if the aim of the network is to perform pipelined
computations.

However, it can be noted that the advantage of the block
coding scheme of [2] over the message passing model can be
exploited only when there are multiple computations pipelined
in the network. When we consider only one time computation,

3A function is said to be symmetric if the function value is insensitive to the
order in which data is processed or to the identity of node that measures the
data.([2])

4Type-threshold functions were defined in an earlier footnote, and, informally,
type-sensitive functions are those that require almost theentire data for
computation, e.g., the mode of the measurements.

block coding cannot be implemented and the scaling laws which
can be obtained from the schemes in [2] will coincide with our
scaling laws.

III. B ACKGROUND RESULTS

The presentation of these results is interspersed with remarks
about the intuition behind them. In writing these remarks weuse
the notationΘ(·) loosely; it only means “of the order,” the “in
probability” qualification being implied.
Bounds on the number of hops in the shortest path: Consider
a network realizationS and consider all the pairs of points in
the field A separated by a distanced; these points need not
be locations of nodes. If a sender at one such point were to
communicate with a receiver at the other point at a distance
d, the packets will be transmitted along a multihop path using
some intermediate nodes. The number of hops in the shortest
path joining these points and using the intermediate nodes and
links in G(S) will be finite and will depend on the distanced.
We defineH(d) (H(d), resp.) as the supremum (infimum, resp.)
over the number of hops in the shortest paths connecting all such
pairs of points. ThusH(d) andH(d) are random variables over
Σn defined for the distanced. We need probabilistic bounds
on H(d) and H(d) as a function ofd and r(n). Evidently
1 ≤ H(d) ≤ H(d) ≤ n + 1.

Lemma 3.1:For a square field of unit area, withr(n) =
√

K log n

n
, with K > 5

log 4
e

, the following holds for anyǫ > 0.

1) limn→∞ Pn (G is connected) = 1

2) limn→∞ Pn
(

d
r(n) ≤ H(d) ≤ H(d) ≤ (

√
10 + ǫ) d

r(n)

)

=

1
Remark:This result has the obvious intuition. The transmission
range of a node isr(n). Hence, the number of hops in the shortest
path between any two nodes separated by a distanced should be
Θ

(

d
r(n)

)

. We neglect edge effects in the proof.
Proof: The first part follows easily from the results in [6].

The proof of the second part is provided in the Appendix.2
Corollary 3.1: In a circular field of unit radius ifn nodes are

deployed andr(n) =

√

Kπ log n

n
, with K > 5

log 4
e

, the following
holds for anyǫ > 0.

1) limn→∞ Pn (G is connected) = 1

2) limn→∞ Pn
(

d
r(n) ≤ H(d) ≤ H(d) ≤ (

√
10 + ǫ) d

r(n)

)

=

1
Proof: For any convex field, only the node density, and

not the shape of the field determines the relation between the
transmission range and the number of hops. (See the proof of
Lemma 3.1.) Thus, the result follows for the circular field also.
Remark: In this paper, we have chosenK = 20 > 5

log(4
e
)
. Thus,

from Corollary 3.1, we haver(n) =
√

20π log n
n

for a circular field

of unit radius, and from Lemma 3.1, we haver(n) =
√

20 log n
n

for a square field of unit area. This form ofr(n), as established in
[6] and [7], represents the fastest rate of decrease ofr(n) such that
the probability of the random graph being connected approaches
1 asn → ∞. Thus this scaling ofr(n) maximizes spatial reuse
while retaining connectivity. We note that the choice ofK does
not influence the scaling laws.

Bounds on the number of simultaneous transmissions:For a
given realisationS, consider a round of the computation algorithm
in which each node has to transmit once to a designated receiver
node. For example, if the computation is performed over a tree
in G(S), then a round may involveeachnode sending a packet
to its parent node. The centralised scheduler described above will
schedule the transmissions by scheduling a sequence of activation
sets. This sequence of activation sets will of course depend
on a particular transmitter-receiver pairing. We are interested in
obtaining bounds on the cardinalities of these activation sets.
These are bounds on the number of simultaneous transmissions
possible in the network. Consider all transmitter-receiver pairings
in which each node appears as a transmitter exactly once. Over
all such pairings, denote byγ(S) and γ(S), the minimum and
maximum sizes of the activation sets scheduled by the scheduler.
Thus, the quantitiesγ andγ also are random variables overΣn

that take specific values for a given network realization.
Lemma 3.2:For a circular field of unit radius, with the pro-

tocol model of interference, and with perfect scheduling of

transmissions, if the transmission ranger(n) =
√

20π log n
n

, there
exist positive constantsa1 anda2 such that

lim
n→∞

Pn

(

a1
n

log n
≤ γ ≤ γ ≤ a2

n

log n

)

= 1

Remark:
1) We will provide the intuition for this result after

Lemma 3.3.
2) The result holds for any fieldA with finite area, but we

prove it only for the circular field of unit radius.
Proof: See the Appendix. 2

Bounds on the time required for a round: The time required to
complete a round of a computation will depend on the particular
transmitter-receiver pairing. LetT (S) (T (S), resp.) denote the
maximum (minimum, resp.) of the time required to complete
a round, with maximum (minimum, resp.) being taken over all
possible transmitter-receiver pairings. We note that for agiven
network realizationS and optimal link scheduling algorithm, the
boundsT (S) and T (S) are well defined. Thus,T and T are
random variables overΣn.

Lemma 3.3:For a circular field of unit radius, with the pro-
tocol model of interference, with perfect scheduling of transmis-

sions, and with the transmission ranger(n) =
√

20π log n
n

, the
bounds on the time required to schedule transmission of all the
nodesT andT satisfy the relation

lim
n→∞

Pn
(

5π∆2 log n ≤ T ≤ T ≤ 80π(1 + µ)(2 + ∆)2 log n
)

= 1

Proof: See the Appendix. 2

Remark: The above two results can be understood as follows.
It has been shown in [7] that for simultaneous reception, the
receivers should be at least∆r(n)

2 distance apart. Thus, the number
of simultaneous transmissions is upper bounded by the number
of disjoint disks of radius∆r(n)

2 . This bound is tight only for a
specific realisationS and specific transmitter-receiver pairing. It is
easy to see that if the transmitters or the receivers are(2+∆)r(n)
apart, then any transmitter-receiver pairing is possible.Thus,
very loosely, we can say that the number disjoint disks of
radius (2+∆)r(n)

2 will lower bound the number of simultaneous
transmissions. These disks have an area ofΘ(πr2(n)). Hence the

number of simultaneous transmissions should beΘ
(

1
r2(n)

)

=

Θ
(

n
log n

)

. This implies that the number of slots required to

schedule the transmissions of all the nodes once isΘ(log n).
Farthest nodes:We will need the following observation about the
sequence of random node locations characterised by the sequence
of probability spacesΣn, n ≥ 1.

Lemma 3.4:Consider a square field of unit area. For a given
ǫ > 0, the probability that the farthest node from the center of
the field lies at a distance greater than

(

1√
2
− ǫ

)

goes to 1 as
n → ∞.

IV. OPTIMAL ORDERS FORPERFORMANCEMEASURES

In this section, we obtain the optimal order results for perfor-
mance measures such as computation time, energy expenditure
and the rate (throughput) of maximum calculation. Initially we
obtain the results for a square of unit area and obtain a boundon
the computation time. We then extend this to a circular field.The
transmission ranger(n) in each case is as provided by Lemma
3.1 and Corollary 3.1.

For computation time and energy expenditure, we shall first
obtain absolute lower bounds in order sense (i.e., we establish
Ω(·) relations). These bounds are absolute in the sense that no
algorithm can do better than these bounds. We then construct
centralized algorithms that achieve thesameorder as that of the
lower bounds (but with a different leading constant). This gives
an upper bound on computation time and energy expenditure for
an optimal algorithm (i.e.,O(·) relation). Thus we obtain an exact
order (i.e.,Θ(·) relation) for an optimal algorithm.
Optimal order for computation time:

Theorem 4.1:If n nodes are uniformly distributed in a square
field of unit area, then there exist positive constantsu1 and u2
such that the number of slots required for an optimal algorithm
to calculate the maximum measured value under the assumption
of perfect scheduling obeys the following relation

lim
n→∞

Pn

(

u1

√

n

log n
≤ Γ ≤ u2

√

n

log n

)

= 1

Proof: Let dmax denote the distance between the operator
station and the farthest node in the network. Consider the event

{

Γ ≥
(

1√
2
− ǫ

)

1

r(n)

}

⊇
{

Γ ≥ H(dmax) ≥
(

1√
2
− ǫ

)

1

r(n)

}

⊇ {Γ ≥ H(dmax)} ∩
{

H(dmax) ≥ dmax

r(n)

}

∩
{

dmax ≥ 1√
2
− ǫ

}

Consider the last expression above. We recall that we require that
the computation must have the influence of all nodes in it and it
takes at leastH(dmax) slots until the farthest node influences the
computation at the operator station. Hence, and from Lemma 3.1,
the first and second events have probability 1. From Lemma 3.4,
the probability of the third event goes to 1 asn → ∞. Combining
these, forǫ > 0

lim
n→∞

Pn

(

Γ ≥
(

1√
2
− ǫ

)

1

r(n)

)

= 1 (1)

The upper bound on the computation time can be obtained
by giving an actual computation algorithm. The details of the

algorithm are provided in the Appendix. Here we consider
a centralized algorithm and obtain its computation time. The
computation time of an optimal algorithm will be less than this
time. 2

The above result can be very easily extended to the circular
field. We state the result as a corollary.

Corollary 4.1: If n nodes are uniformly distributed in a circu-
lar field of unit radius, then there exist positive constantsv1 and
v2 such that the number of slots required for an optimal algorithm
to calculate the maximum measured value under the assumption
of perfect scheduling obeys the following relation

lim
n→∞

Pn

(

v1

√

n

log n
≤ Γ ≤ v2

√

n

log n

)

= 1

Optimal Order for Energy Expenditure :
We will now consider the optimal order for the energy expen-

diture. The result is stated below as a theorem. From the proof, it
is clear that the energy expenditure does not depend on the shape
of the field.

Theorem 4.2:If n nodes are uniformly distributed in a field,
then the total energy expenditure in the network by an optimal
algorithm to calculate the maximum measured value, under the
assumption of perfect scheduling isΘ(n).

Proof: In any algorithm, every node has to transmit at least
once and at least to one of its one hop neighbour. Hence, we get
a lower bound as

E ≥ n(Exmit−radio + Exmit−pkt + Ereceive−pkt)

We shall see that the Tree algorithm (see Section V) has energy
expenditure

ETree = n(Exmit−radio+Exmit−pkt+Ereceive−pkt+Eproc−pkt)

An optimal algorithm will have energy expenditure at most equal
to the Tree algorithm. Hence,

E ≤ n(Exmit−radio + Exmit−pkt + Ereceive−pkt + Eproc−pkt)

Hence,E = Θ(n) and this is a deterministic scaling. 2

Optimal Order for the Achievable Pipelined Throughput :
Sometimes the network is required to perform the computations
continuously. This can be viewed as a complex queueing system
in which a batch of measurements arrives at sampling instants
in the sampling buffers of the nodes with the arrival rate of the
batches being equal to the sampling rate. The batch leaves the
system when the corresponding maximum computation is over.It
is of interest to obtain the saturation throughput of this system,
which will dictate the permissible sampling rate of the sensors.
That is, our interest is to characterize the interdeparturetime of
the batches of the measurements when the nodes are infinitely
backlogged with measurements. We denote this inter-departure
time (also called as pipelined computation time) byΓpipeline(S).
The sampling interval between the two measurements should be
at leastΓpipeline(S). Thus, the reciprocal of the inter-departure
time will give us the rate of computations, which we call pipelined
throughput.

We view this as an extension of one time function computation
where the computations are pipelined in the network. Given the
realisationS, the computation algorithm along with the scheduler
comes up with a determistic sequence of transmissions whichis

periodic and which will complete the computations periodically
with minimum inter-departure time. Thus,Γpipeline is a random
variable overΣn which takes valueΓpipeline(S) for a givenS.

We state the result for a square field of unit area (with the
transmission range as per Lemma 3.1). The result for a circular
field follows similarly.

Theorem 4.3:If n nodes are uniformly distributed in a square
field of unit area, then there exist positive constantsw1 and w2

such that the following relation bounds the pipelined computation
time for an optimal algorithm performing pipelined maximum
computations, under the assumption of perfect scheduling

lim
n→∞

Pn (w1 log n ≤ Γpipeline ≤ w2 log n) = 1

Remark: We skip the proof of the above theorem as the result
can be easily deduced from Theorem2 in [2]. It has also
been independently proved in [5]. Recall the observation that
to complete a computation each node has to transmit at least
once. From Lemma 3.3, the time required to schedule a round
in a square field isΩ(log n). The scheme used in obtaining the
upper bound on the computation time in Theorem 4.1 can be
used to show that the pipelined computation time isO(log n),
thus proving the result. Let us call the in-network time of a
computation as the time between the first transmission from a
batch of measurements (anywhere in the network) and the time
when the batch departs the network after computation is over.
It has been shown in [5] that thein-network time of a batch of
measurements in this algorithm also is of the orderΘ

(

1
r(n)

)

,

i.e.,Θ
(
√

n
log n

)

, the same as the time for one time computation.

A very similar result can also be established for a circular field.

V. PERFORMANCE OFSPECIFICPROTOCOLS WITHPERFECT

SCHEDULING

In Section IV we provided scaling laws for the performance
of an optimal algorithm. We analyze the performance of some
specific computation algorithms in this section. We will provide
scaling results and the intuition behind them. In this section, we
consider a circular field with unit radius. The detailed proofs are
omitted, and can be found in [5]. The motivation behind choosing
these algorithms and their usefulness are mentioned in various
remarks.

Let Di, 1 ≤ i ≤ n, denote the distance of nodei from the centre
of A (i.e., from the operator station). EvidentlyDi, 1 ≤ i ≤ n
is a sequence of i.i.d. random variables onΣn with a common
distribution. LetgD(s) denote the density of this distribution. For
a circular field of unit radius, this is easily seen to begD(s) =

2s, 0 ≤ s ≤ 1 (To see this, note that the CDF isGD(s) = πs2

π.12 .)
Tree Algorithm : The communication topology is a tree with the
operator station as the root. We call the nodes at themth level
in the tree as parent nodes of the nodes at the(m + 1)th level;
and the nodes at the(m + 1)th level as the children nodes of
those at levelm, with the root being the node at level 1. Here the
children of a sensor are amongst its one hop neighbours. Each
sensor gets values from its children, compares them with itsown
value and forwards only the maximum value to its parent. So, for
each maximum computation, each sensor transmits only once.
The slowest computation will be over a tree that is a string. For

a faster computation, we need a shallow tree. Hence, we take all
the neighbours of the operator station as its children and build a
breadth-first tree (See [3] for the properties of breadth-first trees).

We also note that nodes with different parents are not assured
to have simultaneous transmissions. Simultaneous transmissions
occur only if the nodes have different parents and the interference
constraints are met.

The following result provides the asymptotic order for the com-
putation time and energy expenditure for maximum computation
over a breadth-first tree. The number of hops required for the
farthest node to reach the centre is the depth of the tree. From
Corollary 3.1, we know upper and lower bounds on the number
of hops, i.e., the depth of the tree. We analyseΓTree in both
the cases, one for the lower bound on depth and the other for
the upper bound on depth, which combined together provide the
following result. A detailed proof is provided in [5].

Proposition 5.1:For the Tree algorithm, ifn sensors are
distributed uniformly over a circular field of unit radius, then
there exist positive constantsa1, b1 and b2 such that the energy
expenditureE and the computation timeΓ required to compute
the maximum of the measured values satisfy the relations.

ETree = Θ(n). Moreover,ETree = a1n as n → ∞
lim

n→∞
Pn

(

b1

√

n log n ≤ ΓTree ≤ b2

√

n log n
)

= 1

Remark:
1) Intuition for the scaling law : In the Tree algorithm

every node transmits only once. There aren transmissions,
n receptions andn − 1 comparisons. Hence the energy
expenditure isΘ(n). For computation time we know that
the number of hops between the farthest node and the
operator station is of the order1

r(n) . It can be shown ([5])
that the time required to schedule the nodes at a level is
of the orderlog n. Hence the computation time is of the
order 1

r(n) log n, i.e.
√

n log n. This is because the nodes at
a level cannot be scheduled before all the descendant nodes
of this level are scheduled.

2) Discussion on the algorithm: The Tree algorithm mini-
mizes the number of transmissions required and the energy
expended in computation by computing the functions in
a distributed manner in the network. Clearly, it is best
suited for sensor networks in terms of energy efficiency.
The computation time depends largely on the structure of
the tree and the Tree algorithm builds a breadth-first tree
in the network.
This algorithm requires the nodes to self organise into a
tree and also to involve themselves in computations. Such
self organizations may not always be desirable as tree
maintenance (considering the practical fact of node failure)
requires algorithms which will themselves require energy.

Multi-Hop Transmission : In this computation algorithm the
value at each node is transported via multihop transmissions
to the operator station. No computations are performed at the
intermediate nodes. Each transmission follows a shortest path
from a node to the operator station. Since the breadth-first tree
gives the shortest path between the root and any node in the
tree, this computation algorithm also involves a tree rooted at the
operator station.

We recall that for circular field with unit radius, the trans-
mission ranger(n) =

√

20π log n

n
. Let H(d) denote the random

variable denoting the number of hops in the shortest path from a
node at a distanced from the centre to the operator station. From
Corollary 3.1, if a node is at a distances from the center of the
field, then forǫ > 0,

lim
n→∞

Pn

(

s

r(n)
≤ H(s) ≤ H(s) ≤ (

√
10 + ǫ)

s

r(n)

)

= 1

whereH(s) andH(s) are lower and upper bounds the number
of hops in the shortest path from that node to the operator station.
We define

Ehop := Exmit−pkt + Exmit−radio + Ereceive−pkt

where,Exmit−radio = α

(

√

20π log n
n

)η

The average energy spent in the node’s transmission to the
operator station is calculated as follows

E(E) = E(H(D).Ehop) = Ehop

∫ 1

0

E(H(s)) 2sds (2)

whereE(·) denotes expectation of a random variable. From the
definition of H(s) andH(s), it follows that

E(H(s)) ≤ E(H(s)) ≤ E
(

H(s)
)

Consider

E(H(s)) ≥ E

(

H(s).I{H(s)≥ s
r(n)

}
)

≥ s

r(n)
.Pn

(

H(s) ≥ s

r(n)

)

whereI{·} is and indicator function. Now consider

E

(

H(s)
)

= E

(

H(s).I
{H(s)≤ (

√
10+ǫ)s

r(n)
}

)

+ E

(

H(s).I
{H(s)>

(
√

10+ǫ)s

r(n)
}

)

≤ (
√

10 + ǫ)s

r(n)
Pn

(

H(s) ≤ (
√

10 + ǫ)s

r(n)

)

+nPn

(

H(s) >
(
√

10 + ǫ)s

r(n)

)

The above equation uses the fact that the maximum number of
hops in shortest path between any node and the operator station
cannot be more thann, the number of nodes. It can be shown
thatPn

(

H(s) > (
√

10+ǫ)s
r(n)

)

is at mostO
(

1
n

)

. Hence

s

r(n)
Pn

(

H(s) ≥ s

r(n)

)

≤ E(H(s))

≤ (
√

10 + ǫ)s

r(n)
Pn

(

H(s) ≤ (
√

10 + ǫ)s

r(n)

)

+ xn

where xn = O(1). Hence asn → ∞, E(H(s)) = Θ
(

s
r(n)

)

.

Thus substituting in Equation 2 and simplifying, we getE(E) =

Θ
(

1
r(n)

)

. This gives the total energy, asn → ∞, as

E(EMulti−Hop) = nE(E) = Θ

(

n

r(n)

)

= Θ

(

n

√

n

log n

)

We now obtain bounds on the computation timeΓMulti−Hop.
Each sensor sends its value to the operator station via the shortest
path. These paths can be found by constructing a breadth firsttree

with operator station as root. Thus, the transmissions takeplace
on the same tree as in the Tree algorithm but with the difference
that now the values do not merge as they travel along the tree.
The computation is complete when all then measurements are
received at the operator station. Since, the operator station can
receive at most one packet in a slot, it will take at leastn slots to
complete the computation. Thus, we get the obvious lower bound
on the computation time as

ΓMulti−Hop ≥ n for all n

We now obtain an upper bound. The computation algorithm
progresses in stages. In each stage, all nodes that have packets to
send to the operator station transmit one packet to their parents
in the tree. Thus in the first stage, all the nodes transmit. Let
the number of neighbours of the operator station ben0. (n0 is a
random variable defined overΣn that takes specific value for each
network realisation.) Then in the first round the operator station
receivesn0 new values; these are the values of its neighbours. In
the next stage, the leaf nodes have no packets, but the next level
of nodes will have one or more packets. During this stage again,
the operator station receivesn0 new values. Then the number of
stages aren

n0
and the number of slots required for each stage is

bounded by the number of slots required for a full round whichis
provided by Lemma 3.3. Note that all the nodes do not transmit
in all the stages.

The number of neighbours of the operator station is of the order
log n ([8]). A simple expression has been obtained in [5] that

lim
n→∞

Pn(10π log n < n0 < 30π log n) = 1 (3)

Thus using Lemma 3.3 and Equation 3, we get bounds on the
computation time as

lim
n→∞

Pn(
∆2

6
n < ΓMulti−Hop < 8(1 + µ)(2 + ∆)2n) = 1

We summarize the above results as follows.
Proposition 5.2:For multi-hop transmission in a circular field

with unit radius, asn → ∞

E(EMulti−Hop) = Θ

(

n

√

n

log n

)

and there exists a positive constantd1 such that the computation
time ΓMulti−Hop required to compute the maximum satisfies the
relation,

lim
n→∞

Pn (n ≤ ΓMulti−Hop ≤ d1n) = 1

Remark:
1) Intuition for the scaling law : We know that the time

required to schedule the transmissions in an area is of the or-
der n

1

r2(n)

, i.e., log n. After each round, the operator station

receives one value from each of its one hop neighbours,
the number of which is of the ordern

π
× πr2(n)= log n,

i.e., node density× the area covered by the transmission
range. Hence the number of rounds required for receiving
all the n values is of the order n

log n
. Multiplying by the

time required for each round, we find that the computation
time is of the ordern. For, energy expenditure, we notice
that each node’s packet requires on an averageΘ

(

1
r(n)

)

transmissions, one at each hop between the node and the
operator station. Each transmission requires fixed energy.
Hence, the energy expenditure is of the ordern

r(n) , i.e.,

n
√

n
log n

.

2) Discussion on the algorithm: The Multi-Hop algorithm
models traditional sensor networks where the nodes only
collect the data and forward it to the central operator
station where all the processing is done. Such a procedure
requires nodes to form a topology, e.g., a tree rooted at the
operator station, and to act as routers. This self-organization
is not always desirable as maintenance of the tree requires
energy. However, the advantage is that there is absolutely
no restriction on the functions being computed, multiple
functions can be computed for each set of sample values,
and the functions to be computed can be easily changed.

Ripple Algorithm : In this algorithm, sensors keep on exchanging
their current estimates of the maximum values and eventually all
the sensors know the maximum value. The transmissions take
place in stages that are rounds as defined in Section II. In a
round, every node broadcasts its current estimate of the maximum
value to from its neighbours; receives their estimates and then
updates its own estimate of the maximum value at the end of the
round. We note that the influence of the values of all the sensors
propagates one hop distance in every round, like a Ripple. Hence,
once the influence of the value of the farthest node reaches the
centre, the computation is over. We need not continue until all
the nodes know the actual maximum.

We note that what we call the Ripple algorithm is related
to Gossip algorithms (see, for example, [10]) and Consensus
algorithms (see, for example, [11]). In these algorithms, nodes ex-
change partial computations with their neighbours (synchronously
or asynchronously) in order to compute some function of the
values at nodes, so that eventually the function value is known to
all the nodes. Thus with reference to the maximum computation
problem in our paper we can say that Ripple achieves “max-
consensus.” The analyses of Gossip and Consensus algorithms
in [10] and [11], however, do not consider the transmission
scheduling aspect which is a key issue that we are concerned
with in our work.

To analyse the performance of the Ripple algorithm, consider
a circular field with unit radius. For anǫ > 0, the probability
that the farthest node has a distance of at least(1 − ǫ) unit
from the centre approaches 1 asn → ∞ (extension of Lemma
3.4). In Lemma 3.3, we have obtained bounds on the number
of slots required to schedule a round. Since the influence of any
node’s value propagates by one hop in a round, the number of
rounds required to complete the computation is calculated using
Corollary 3.1 (withδ > 0),

lim
n→∞

Pn

(

(1 − ǫ)√
20π

√

n

log n
≤ number of rounds≤ (

√
10 + δ)√
20π

√

n

log n

)

= 1 (4)

This combined with Lemma 3.3 gives bounds on the computation
time

lim
n→∞

Pn

(

(1 − ǫ)

√
5π∆2

2

√

n log n ≤ ΓRipple

≤ (
√

10 + δ)4
√

20π(1 + µ)(2 + ∆)2
√

n log n

)

= 1

To calculate the energy expenditure, we need to know bounds

on the number of neighbours. For this we use a result from [8]
to bound the number of neighbours.

In each round, every node broadcasts its current maximum
value and receives its neighbours’ values. It calculates the new
maximum value and broadcasts it in the next round, i.e., onlyafter
it has got values from all neighbours. So, in a round each node
has one transmission and receives and compares its neighbours’
values to compute the current maximum. To find the maximum
of m values, we need(m−1) computations. IfNi is the number
of neighbours of nodei, then nodei compares(Ni + 1) values
(neighbours’ values and its own value). Hence, nodei doesNi

computations in each round.
The energy spent by nodei in a round,

Ei = Exmit−radio+Exmit−pkt+Ni.Ereceive−pkt+Ni.Eproc−pkt

where, Exmit−radio = α

(

√

20π log n
n

)η

. Let Exmitter :=

Exmit−radio + Exmit−pkt and Ereceiver := Ereceive−pkt +
Eproc−pkt.

From the bound on the number of neighbours from [8] (see
Theorem 8.1 in Appendix), we obtain the following result for
Ei

lim
n→∞

Pn (Exmitter + (1 − µ)20π log n(Ereceiver) ≤

Ei ≤ Exmitter + (1 + µ)20π log n(Ereceiver)) = 1

where µ satisfies the condition given in Theorem 8.1. This
equation combined with the Equation 4 gives the bounds onEi

for any i which in turn gives the bound onERipple)

lim
n→∞

Pn

(

(1 − ǫ)
√

20π
n

√

n

log n

(

Exmitter + (1 − µ)20π log n.(Ereceiver)

)

≤

ERipple ≤
√

10 + δ
√

20π
n

√

n

log n

(

Exmitter + (1 + µ)20π log n.(Ereceiver)

)

)

= 1

We summarize the above results as a proposition.
Proposition 5.3:There aren sensors distributed independently

and uniformly over a circular field of unit radius and the Ripple
algorithm is used to compute the maximum value of the sensor
measurements. There exist positive constantsk1, k2, l1 and l2
such that the energy expenditureERipple and the computation
time ΓRipple required to compute the maximum satisfy the
relations.

lim
n→∞

Pn
(

k1n
√

nlog n ≤ ERipple ≤ k2n
√

nlog n
)

= 1

lim
n→∞

Pn
(

l1
√

n log n ≤ ΓRipple ≤ l2
√

n log n
)

= 1

Remark:
1) Intuition for the scaling laws: We know that the number of

slots required to schedule the transmissions in an area is of
the order n

1

r2(n)

, i.e., log n. After each round, the influence

of the nodes’ values propagate an additional hop. The
number of hops between the farthest node and the operator
station is of the order 1

r(n) . Hence the rounds required are of
the order 1

r(n) . This shows that the computation time is of
the order 1

r(n) log n, i.e.
√

n log n. For energy expenditure,
we notice that for each node in each round there is one
transmission andΘ(log n) receptions. Asn → ∞, the
energy spent in reception is dominant over that of radio
transmissions. Hence, the energy expenditure of the network
is of the ordern log n 1

r(n) , i.e., n
√

nlog n.

TABLE I

ORDER EXPRESSIONS FOR ENERGY EXPENDITURE AND COMPUTATION TIME

FOR VARIOUS PROTOCOLS

Algorithm Energy Expenditure Computation Time

Optimum Algorithms Θ (n) Θ

(

√

n
log n

)

Multi-Hop Algorithm Θ

(

n
√

n
log n

)

Θ(n)

Tree Algorithm Θ(n) Θ(
√

n log n)

Ripple Algorithm Θ(n
√

n log n) Θ(
√

n log n)

TABLE II

EXPRESSIONS FOR ENERGY EXPENDITURE AND COMPUTATION TIME

OBTAINED FROM SIMULATIONS WITH ∆ = 0.5

Algorithm Energy Expenditure Computation Time

Multi-Hop Algorithm 0.24

(

n
√

n
log n

)

1.64(n)

Tree Algorithm 0.75(n) 3.15(
√

n log n)

Ripple Algorithm 1.44(n
√

n log n) 9.6(
√

n log n)

2) Discussion on the algorithm : The Ripple algorithm
is highly inefficient in computation time and the energy
expended. However, in order to execute the algorithm, no
specific topology needs to be discovered and maintained.
In some applications this may be a more desirable mode
of operation (e.g., applications where the nodes fail fre-
quently). Also, we note that the Ripple algorithm provides
the value of the function to every node in the network,
which may be useful in an application where the entity
that needs to use the results of the computation moves
through the network. There is a restriction on the class of
the functions that can be computed, however; the result of
the computation should be insensitive to the repetitions of
the arguments; e.g.,max, min, kth largest value etc. This
is because each value measured at a node influences the
partial results of various sets of nodes, and also returns to
influence the results of the node that measured the value
originally.

VI. SIMULATION RESULTS

Table I summarizes the order expressions obtained in the
Section IV and V for all the algorithms. However, the constants
multiplying these expressions are not known. In this section we
validate these order results from a simulation, and as a by-product
also obtain estimates of the constants.

The simulations are conducted as follows.
1) For the Tree algorithm, we build a breadth first tree rootedat

the operator station. To calculate the computation time, we
schedule the nodes at the same levels by building activation
sets. We use the protocol model for interference. The
schedule is suboptimal as we ensure that the transmissions
are successful irrespective of the location of the receivers,
i.e., all the transmitters are at least(2 + ∆)r(n) distance
apart from any other transmitter. We start from the leaf
level and go on scheduling the nodes up the tree. This gives
the computation time. Since, each node has only one fixed
energy transmission, the energy can be readily calculated.

2) For Multi-Hop transmissions, the breadth first tree used
in the Tree algorithm gives the shortest path to the root
for each node. We note that all nodes do not always
have packets to transmit. Hence, while scheduling, we
consider only those nodes which have packets to send. The
transmissions are carried on until all then values reach
the operator station. This gives the computation time. Each
transmission requires fixed energy. Hence the total number
of transmissions give the total energy expenditure.

3) In the Ripple algorithm, we have rounds in which each node
transmits once. We schedule all the nodes using activation
sets as before. In a round, each node has one transmission
and as many receptions as the number of its neighbours.
This gives the round time and energy per round which
are the same for all rounds. Since the number of rounds
required is the number of hops required for the farthest
node to reach the operator station, the depth of the tree is the
number of rounds required. This gives the total computation
time and energy.

The simulation plots are obtained by taking an average over ten
realizations of the node locations. The parameters used forthe
simulations are as follows:Exmit−pkt = 0.25, Ereceive−pkt =
0.5, Eproc−pkt = 0.00001, ∆ = 0.5, Exmit−radio = 100r3(n)

andr(n) =
√

2π log n
n

. The energy values can be viewed as scaled
versions of practical values.

SupposeΦ(n) is the value of some performance measure
obtained from the simulation as described above andv(n) is the
scaling law we obtain (e.g.,v(n) =

√
n log n for the computation

time for the Tree algorithm), then we plotΦ(n)
v(n) . The theoretical

results suggest the existence of constantsa anda and functions
l(n) = o(v(n)) andu(n) = o(v(n)) such that

lim
n→∞

Pn (av(n) + l(n) ≤ G(n) ≤ av(n) + u(n)) = 1

lim
n→∞

Pn

(

a +
l(n)

v(n)
≤ G(n)

v(n)
≤ a +

u(n)

v(n)

)

= 1

lim
n→∞

Pn

(

a ≤ G(n)

v(n)
≤ a

)

= 1

Thus for largen, the valuesG(n)
v(n) should be confined between the

two limits a anda.
In Figures 1, 2 and 3 we plot the ratios of the observed com-

putation times and the asymptotic orders for the three algorithms.
The plots show that in each case the interval within which these
ratios should lie appears to collapse to a constant, an estimate
of which is shown by the flat lines. The computation time has
converged in all the cases.

The energy curves in case of Tree and Multi-Hop algorithms
have not converged because for any finiten the Exmit−radio

is finite. SinceExmit−radio decays withn, we observe that
the energy curves are decaying. The energy curve in case of
Ripple algorithm has converged because unlike the other two
algorithm, Ripple has broadcast transmissions. Hence the total
energy spent in reception dominates overExmit−radio. Of course,
these observations also help to corroborate our scaling results.

In Table II we display the order results along with the constant
multipliers estimated from the simulation.

0

0.5

1

1.5

2

2.5

3

1000 2000 3000 4000 5000 6000 7000 8000

Ra
tio

Number of nodes n

Multi hop Transmissions - Computation Time

th
simulation values

0

0.2

0.4

0.6

0.8

1

1000 2000 3000 4000 5000 6000 7000 8000

Ra
tio

Number of nodes n

Multi hop Transmissions - Energy per Computation

th
simulation values

Fig. 1. Multihop transmission: (top panel) Ratio of observed computation time to
the corresponding asymptotic order, and (bottom panel) theratio of the observed
energy expenditure per computation and the corresponding asymptotic order. The
flat lines show the estimate of the constant multiplying the asymptotic order.

Figure 4 compares time and energy requirements of all the three
algorithms. From these figures, it is clear that purely from the
viewpoint of computation time and energy a tree is the preferable
way to arrange the computations of the bounded information rate,
recursively divisible functions. However, as discussed inSection
V, there are several pros and cons to all the algorithms considered.
Our results can guide a designer in weighing these against the
performance measuresure we have studied.

0

1

2

3

4

5

6

7

8

1000 2000 3000 4000 5000 6000 7000 8000

Ra
tio

Number of nodes n

Tree Algorithm - Computation Time

th
simulation values

0

0.5

1

1.5

2

2.5

3

1000 2000 3000 4000 5000 6000 7000 8000

Ra
tio

Number of nodes n

Tree Algorithm - Energy per Computation

th
simulation values

Fig. 2. Tree Algorithm: (top panel) Ratio of observed computation time to
the corresponding asymptotic order, and (bottom panel) theratio of the observed
energy expenditure per computation and the corresponding asymptotic order. The
flat lines show the estimate of the constant multiplying the asymptotic order.

VII. CONCLUSION

We have provided scaling laws for the computation time and
energy consumption for the one shot distributed computation of

0

5

10

15

20

1000 2000 3000 4000 5000 6000 7000 8000

Ra
tio

Number of nodes n

Ripple Algorithm - Computation Time

th
simulation values

0

0.5

1

1.5

2

2.5

3

3.5

4

1000 2000 3000 4000 5000 6000 7000 8000

Ra
tio

Number of nodes n

Ripple Algorithm - Energy per Computation

th
simulation values

Fig. 3. Ripple Algorithm: (top panel) Ratio of observed computation time to
the corresponding asymptotic order, and (bottom panel) theratio of the observed
energy expenditure per computation and the corresponding asymptotic order. The
flat lines show the estimate of the constant multiplying the asymptotic order.

0

10000

20000

30000

40000

50000

60000

1000 2000 3000 4000 5000 6000 7000 8000

En
er

gy
 u

ni
ts

Number of nodes n

Energy comparisons

Multihop
Tree

0

2000

4000

6000

8000

10000

12000

14000

1000 2000 3000 4000 5000 6000 7000 8000

Ti
m

e
slo

ts

Number of nodes n

Time comparisons

Ripple
Multihop

Tree

Fig. 4. Comparison of energy consumption (top panel) and computation time
(bottom panel) per computation for the three algorithms. The energy required for
the Ripple algorithm is not shown because of the very large values.

type-threshold functions. We have taken themax function as the
representative member of this class that we use throughout in
the presentation of our work. Our results are derived under the
assumption of centralised optimal scheduling. We showed that
the optimal (in probability) scaling law for the computation time
is Θ

(
√

n
log n

)

and for energy expenditure isΘ(n) (Theorem

4.1 and 4.2). We also considered three practical algorithmsand
derive the scaling laws for the same measures. These are the Tree,
Multi-Hop and Ripple algorithms. The scaling laws are derived in
Propositions 5.1, 5.2 and 5.3, respectively, and are summarised
in Table I. We also provide simulation results that corroborate
the scaling laws and also provide the preconstants which are
summarised in Table II. We also discussed some pros and cons
of the various algorithms we have analysed.

We have assumed that the operator station is at the centre of
the field, but even when the operator station is not at the centre,
the distances between the farthest nodes and the operator station,
and change by at most a constant factor, and hence do not change
the scaling laws.

In the present work, we have assumed that the scheduler
has global knowledge of the network topology. Hence, the
results can be viewed as bounds on the performance when
some distributed scheduler is implemented. The performance of
distributed computing with a distributed medium access protocol
(such as random access), which does not assume any global
knowledge and algorithms for self-organisation of computing
topologies, are topics of some of our ongoing work in this
direction.

VIII. A PPENDIX

Proof: (Lemma 3.1): Part(2):
Consider any two pointsA andB separated by distanced. Since
the transmission range isr(n), in one hop a packet can cover the
distance of at mostr(n). Clearly, by the triangle inequality,

Pn

(

H(d) ≥ d

r(n)

)

= 1 for all n (5)

To obtain an upper bound on the number of hops, we proceed
as follows. We have a square field with unit area. We choose

the transmission ranger(n) =
√

K log n
n

, whereK > 5
log 4

e

. We

tessellate the field with a grid whose cells are of sizec(n)× c(n)

wherec(n) = r(n)√
5

=
√

K log n
5n

as shown in Figure 5. Note that
we have chosenc(n) such that any two points in the neighbouring
cells are within range of each other. (We call two cells as
neighbouring cells if they share a common edge. Thus, an interior
cell has four neighbouring cells.)

Now consider two pointsA and B separated by a distance
d. Let θ be the angle made by the line segmentAB with the
horizontal axis. Consider the shortest path joiningA and B.
Clearly, if each cell is nonempty, the shortest path can go through
at most⌈d sin θ

c(n) ⌉ + ⌈d cos θ
c(n) ⌉ cells. So if each cell is nonempty,

there exists a path whose number of hops is bounded above by

B

A

c(n)

r(n)

Y

X

dsinθ

dcosθ

θ

d

Fig. 5. The construction for obtaining the upper bound on thenumber of hops
between any two nodes separated by distanced (e.g., the nodes A and B). Here,
c(n) =

√

K log n

5n
whereK > 5

log 4
e

⌈d sin θ
c(n) ⌉ + ⌈d cos θ

c(n) ⌉ ≤ d sin θ
c(n) + d cos θ

c(n) + 2 ≤ (
√

10 + ǫ) d
r(n) hops,

whereǫ ≥ 2r(n)
d

. 5

However, we need to ensure that each cell is nonempty with

probability 1 asn → ∞. Since we have chosenc(n) =
√

K log n
5n

with K > 5
log 4

e

, it follows from a result by Xue and Kumar [8]
(stated at the end of the Appendix as Theorem 8.1) that

lim
n→∞

Pn (Number of nodes in any cell≥ (1 − µ) log n) = 1

where0 ≤ µ ≤ 1 satisfies certain conditions.
Thus,

Pn

(

H̄(d) ≤ (
√

10 + ǫ)
d

r(n)

)

≥ Pn(There exists a path going through(
√

10 + ǫ)
d

r(n)
cells)

≥ Pn(No cell is empty)

≥ Pn (Number of nodes in any cell≥ (1 − µ) log n)

→ 1 as n → ∞
Thus,

lim
n→∞

Pn

(

H̄(d) ≤ (
√

10 + ǫ)
d

r(n)

)

= 1 (6)

Equations 5 and 6 prove the lemma. 2

Proof: (Lemma 3.2): In order to proveγ = Θ
(

n
log n

)

asymptotically, we need two inequalities which we obtain inparts
(a) and (b) as follows.
(a) Consider the two simultaneous transmissionsi → j andk →
l. By the triangle inequality, it has been shown in [7] that the
simultaneous transmissionsi → j and k → l necessitate the
condition |Xj − Xl| ≥ ∆r(n). This means that the minimum
distance between any two receivers receiving simultaneously must
be at least∆r(n), i.e., the disks of radius∆2 r(n) centered around
the receivers should be disjoint.6.

The area of a disk of radius∆2 r(n) is π∆2

4 r2(n). Hence, the
trivial upper bound on the number of simultaneous transmissions
in the field is the maximum number of the disjoint disks that can
fit in A.

γ(S) ≤ π
π∆2

4 r2(n)
=

1

5π∆2

n

log n
(7)

The bound above actually is an unachievable upper bound since
the actual number of the disks that can be accommodated in the
field will be less than the above bound.
(b) To obtain the lower bound, we consider the construction
shown in Figure 6. We inscribe a square field inside the circular
field A and partition the square field into small square cells of
sides(2 + ∆)r(n) by a grid. We shall find a lower bound on
the number of simultaneous transmissions possible only inside
the square. Clearly, This is also a lower bound onγ(S). This

5Here we have used the fact thatsin θ + cos θ ≤
√

2 for 0 ≤ θ ≤ π
2

and that

c(n) =
r(n)√

5
. As n → ∞, r(n) << d and 2r(n)

d
→ 0.

6For this condition to suffice for the successful receptions at all the receivers,
the transmitters and receivers must be located in a specific manner, which is the
most compact arrangement of receivers possible.

���
���
���

���
���
���

��������������������

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

sqrt(2)

d

���
���
���
���

���
���
���
���

����������������������
1

d

Fig. 6. (Left) Construction for lower bound on the number of simultaneous
transmissions.d = (2+∆)r(n). (Right) Tessellation into squares of sided to get

the bounds on the number of neighbours of a node. Hered = 2r(n) =
√

K log n

n
whereK = 80.

approach avoids the cells which are at the boundary and are not
completely within the field.

From the Theorem 8.1 by Xue and Kumar [8], the probability
that the number of nodes in any cell is between20π(1− µ)(2 +
∆)2 log n and20π(1 + µ)(2 + ∆)2 log n goes to 1 asn → ∞ 7.
Now we index the cells by theirX andY coordinates. The pair
(i, j), wherei andj are integers, denotes a cell. The origin can be
chosen to be any cell. We mark the cells whose coordinates are
of the form (2l, 2k) (say, the hashed cells in Figure 6). We note
that any node from one such marked cell is at least(2 + ∆)r(n)
distance away from any node in some other marked cell. Thus, if
we schedule one node from each of the marked cells to transmit,
these nodes can have simultaneous transmissions irrespective of
the locations of their receivers. After scheduling these cells, we
can schedule the transmissions of the nodes in the cells with
coordinates of the form(2l + 1, 2k + 1) (the filled cells in this
case),(2l, 2k + 1) and(2l + 1, 2k) (unfilled cells) in three slots.
Thus in four slots, a node from each cell is scheduled. The fact
that the transmissions are successful irrespective of the location of
the receivers gives a lower bound on the number of simultaneous
transmissions possible.

The sides of the square are
√

2. Thus the total number of
cells that can be accommodated in the square is 2

(2+∆)2r2(n) =
1

10π(2+∆)2
n

log n
. In one slot, nodes from only14

th
of the cells

can transmit. We also need to show that the probability of any
cell being empty is zero asn → ∞. This is also evident from
Theorem 8.1. Thus

lim
n→∞

Pn

(

1

40π(2 + ∆)2
n

log n
≤ γ

)

= 1 (8)

Thus, Equations 7 and 8 prove the lemma. 2

Proof: (Lemma 3.3): In a round, each node transmits once
to one of its neighbours. There aren transmissions in a round.
In Lemma 3.2 we have obtained the bounds on the number of
simultaneous transmissions in the network. We will use these
bounds to get the bounds on the round time.

A lower bound can be obtained from Equation 7. We know that
the number of simultaneous transmissions is bounded asγ(S) ≤

1
5π∆2

n
log n

. Hence a lower bound on the round timeT (S) for all
S is

T (S) ≥ n

γ(S)
= 5π∆2 log n (9)

7One can easily show that the condition onK in Theorem 8.1 is satisfied in
this case.

A A A

A A

A
B

B

 BB

BB

Fig. 7. The construction for an upper bound on the computation time.

To find an upper bound, we follow the construction in the proof
of Lemma 3.2 and split the fieldA into squares with sides
(2 + ∆)r(n). We know that in four slots all the cells get one
transmission scheduled, hence the time required to complete a
round is determined by the maximum number of nodes a cell can
have. From Theorem 8.1, we know that20π(1+µ)(2+∆)2 log n
bounds this number with high probability. Hence we get an upper
bound on the round time.

lim
n→∞

Pn(T ≤ 80π(1 + µ)(2 + ∆)2 log n) = 1 (10)

Equations 9 and 10 together prove the lemma. 2

Proof: (Construction of a computation algorithm to achieve
the upper bound on computation time given in Theorem 4.1):

For the simplicity of presentation, we assume that there is
no interference outside the transmission range, i.e.,∆ = 0 in
protocol model of interference. This assumption does not affect
the order of the computation time. (See the remark below.) We

divide the field into the square cells of sides2r(n) =
√

K log n
n

,
whereK = 80, as shown in Figure 6. The number of cells in the
field Mn = n

K log n
. It follows from Theorem 8.1 that the number

of nodes in a cell is bounded by(1+µ)K log n w.p. 1 asn → ∞.
Now, we draw circles as shown in the left part of Figure 7.

As shown in Figure 7, we classify these circles as Type A and
Type B circles. Type A circles have the centres of the cells as
their centres and Type B circles have the corners of the cellsas
their centres. Type A and B circles together cover the whole area.
Also,

Pn (Number of nodes in any circle≤ (1 + µ)K log n)

≥ Pn(Number of nodes in any cell≤ (1 + µ)K log n)

= 1 as n → ∞

Hence,

lim
n→∞

Pn(Number of nodes in any circle≤ (1 + µ)K log n) = 1

We choose the node which is nearest to the center of the circle
as the cluster-head. Note that Type A and Type B circles overlap.
Let all nodes in Type A circles form clusters, which we call type
A clustures, and the nodes in Type B circles that do not lie in the
Type A circles form type B clusters. Thus Type B clusters have
a smaller number of nodes.

It can be shown similar to Lemma 3.4 that the probability that
the cluster-head lies in the circle of radiusǫ at the center of the
circle goes to 1 asn → ∞ for all values ofǫ and hence when
ǫ → 0.

All nodes within a circle can reach their cluster-heads in one
hop. Since we have assumed zero interference outside the trans-
mission range, non-overlapping circles can have simultaneous
transmissions. This means all Type A clusters can have one
transmission in each cluster simultaneously. After Type A cluster-
heads have received the values from the cluster members (which
will take at most(1 + µ)K log n slots), the same procedure can
be repeated for Type B clusters. Hence, all the cluster-heads will
get the values in their clusters in less than2(1 + µ)K log n slots
and will compute the local partial results.

The Type A cluster-heads will now report their values to the
assigned Type B cluster-heads as shown in the right side of Figure
7. Each Type A cluster-head has to send the value to a node
which is at a distance

√
2r(n) apart. Hence, the path will have

≤ (
√

20+2) = 2(
√

5+1) hops with high probability asn → ∞
(Lemma 3.1). Thus, it will require at most8(

√
5+1) slots. As the

interference is assumed to be zero outside the distancer(n) and
the transmitting Type A cluster-heads assigned to different Type B
cluster-heads are at least at a distance2r(n), these transmissions
can be scheduled simultaneously.

Now only Type B cluster-heads have the partial results. They
are aligned in the straight lines. The Type B cluster-heads which
are near the left and right edge of the line transmit their values
towards the central part (of the line) horizontally. As the values
reach other cluster-heads in the path, the new maximum valueis
propagated ahead. These transmissions can occur simultaneously
as the paths are confined in the squares of sidec(n) = r(n)√

5
(Proof

of Lemma 3.1), and the minimum distance between any two
squares is2r(n) − 2r(n)√

5
> r(n). Hence there is no interference.

Since the transmission range isr(n) and the values have
to propagate a distance 1/2 units, the probability that the time
required for the propagation≤

√
10+ǫ

2r(n) slots approaches 1 as
n → ∞.

Once these values merge on the central vertical line, the
same procedure can be used to get all the values at the center.
Considering that the probability of occurrence of all the events
approaches 1 asn → ∞ we can say that

lim
n→∞

Pn

(

Γ ≤ 2(1 + µ)K log n + 8(
√

5 + 1) +

√
10 + ǫ

2r(n)
+

√
10 + ǫ

2r(n)

)

= 1

lim
n→∞

Pn

(

Γ ≤ 160(1 + µ) log n + 8(
√

5 + 1) + (
√

10 + ǫ)

√

n

20 log n

)

= 1

From Equations 1 and 11,

lim
n→∞

Pn

((

1√
2
− ǫ1

)
√

n

20 log n
≤ Γ

≤ 160(1 + µ) log n + 8(
√

5 + 1) + (
√

10 + ǫ)

√

n

20 log n

)

= 1

2

Remark:The assumption of∆ = 0 is to simplify the presentation,
and does not change the order of the computation time. If∆ > 0,
then the transmissions in a Type A cluster will interfere with
some constant number of other Type A clusters and this constant
depends only on∆. Thus, in this case, all the Type A clusters
can be activated in a constant number of slots (which depends
only on ∆), rather than in 1 slot as assumed in the proof. Thus,
we obtain the same scaling order even if∆ > 0.

Intuition about thelog n term in the upper bound expression
can be obtained as follows. Since we form clusters of nodes that
are one hop neighbours of the cluster-heads, the number of cluster
members is the number of nodes that lie in a circle of radiusr(n)
drawn around the cluster-head. The node density isn. Hence, the
number of cluster members would beΘ(πr2(n)n) = Θ(log n).
Since only one node in a cluster can transmit in a slot,Θ(log n)
slots are needed to complete the collection of values from a
cluster. The clusterheads need to transmit the values to the
operator station. Since the clusterheads are sparsely distributed,
simultaneous transmissions are possible and value of the farthest
clusterhead needs to travel unit distance which requiresΘ(1

r(n))
slots.

We have extensively used the following result established by
Xue and Kumar [8] stated here for completeness. In this set
up, the square field of unit area is split into small cells of size
√

K log n
n

×
√

K log n
n

by a grid as shown in Figure 6. The cells
are indexed byi ∈ {1, . . . , n

K log n
}.

Theorem 8.1 (Xue and Kumar [8]):Let K > 1

log(4
e)

, and let

µ∗ ∈ (0, 1) be the only root of the equation

−µ∗ + (1 + µ∗) log(1 + µ∗) = 1/K

We tessellate the square field of unit area as mentioned above.
There aren nodes deployed uniformly in the square field. Let
Ni be the number of nodes in theith cell; andMn be the total
number of cells

(

Mn = n
K log n

)

. Then the following holds for
any µ > µ∗

lim
n→∞

Pn

(

max
1≤i≤Mn

|Ni − K log n| ≤ µK log n

)

= 1

Remark: This implies that the number of nodes lying in any cell
is uniformly bounded between(1−µ)K log n and(1+µ)K log n
w.p. 1 asn → ∞. We note that the expected number of nodes in
a cell isK log n; thusµ captures the range of variation from the
mean. We note that this result also holds in our case of circular
field of unit radius.

REFERENCES

[1] I. Akyildiz, W. Su, Y. Sankarasubramanian, and E. Cayirci. Wireless sensor
networks: a survey.Computer Networks, 38:393–422, 2002.

[2] Arvind Giridhar and P. R. Kumar. Data fusion over sensor networks:
Computing and communicating functions of measurements.IEEE Journal
on Selected Areas in Communications, pp. 755–764, vol. 23, no. 4, April
2005.

[3] T. Cormen, C. Leiserson, R. Rivest. Introduction to Algorithms. Second
Edition, Prentice-Hall of India Pvt. Ltd.

[4] Aditya Karnik and Anurag Kumar. Distributed optimal self-organisation in a
class of ad hoc sensor networks. InIEEE Infocom, 2004.

[5] Nilesh Khude. Distributed computation on wireless sensor networks. Master’s
thesis, ECE Department, Indian Institute of Science, Bangalore, June 2004.

[6] Piyush Gupta and P.R. Kumar. Critical Power for Asymptotic Connectivity
in Wireless Networks. A Volume in Honour of W.H.Fleming in Stochastic
Analysis, Control, Optimisation and Applications, 1998.

[7] Piyush Gupta and P.R. Kumar. The Capacity of Wireless Networks. IEEE
Transactions on Information Theory, IT46(2):388–404, March 2000.

[8] Feng Xue and P. R. Kumar. The number of neighbors needed for connectivity
of wireless networks.Wireless Networks, pp. 169–181, vol.10, no. 2, March
2004.

[9] Nilesh Khude, Anurag Kumar and Aditya Karnik. Time and Energy
Complexity of Distributed Computation in Wireless Sensor Networks. In
IEEE Infocom, 2005.

[10] S. Boyd, A. Ghosh, B. Prabhakar, D. Shah. Gossip Algorithms: Design,
Analysis and Applications. InIEEE Infocom, 2005.

[11] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis,
Convergence in Multiagent Coordination, Consensus, and Flocking. in
Proceedings of the Joint 44th IEEE Conference on Decision and Control
and European Control Conference (CDC-ECC’05), 2005.

