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Abstract—We consider a scenario in which a wireless sensor

network is formed by randomly deploying n sensors to measure
some spatial function over a field, with the objective of compting a
function of the measurements and communicating it to an opeator
station. We restrict ourselves to the class of type-thresha functions
(as defined in [2]), of whichmax, min, and indicator functions are
important examples; our discussions are couched in terms dhe max
function. We view the problem as one of message passing diktuted
computation over a geometric random graph. The network is
assumed to be synchronous; the sensors synchronously megsu
values, and then collaborate to compute and deliver the furtion
computed with these values to the operator station. Compution
algorithms differ in (i) the communication topology assumel, and
(i) the messages that the nodes need to exchange in order tary
out the computation. The focus of our paper is to establish (i
probability) scaling laws for the time and energy complexiy of the
distributed function computation over random wireless netvorks,
under the assumption of centralised contention-free scheding
of packet transmissions. Firstly, without any constraint o the
computation algorithm, we establish scaling laws for the caoputation
time and energy expenditure for one time maximum computatio.
We show that, for an optimal algorithm, the computation time and

energy expenditure scale, respectively, as—)( n and O(n)

logn

asymptotically as the number of sensorsn — oo. Secondly, we
analyze the performance of three specific computation alg@hms
that may be used in specific practical situations, namely, ta Tree
algorithm, Multi-Hop transmission, and the Ripple algorithm (a type
of gossip algorithm), and obtain scaling laws for the compution
time and energy expenditure asn — oo. In particular we show that

the computation time for these algorithms scales a® (\/nlog n),

I. INTRODUCTION

A wireless sensor network is formed by a set of miniature smar
sensor devices, each equipped with a digital wireless ¢eavesr,
that are deployed in an ad hoc fashion and cooperate in gensin
the environment, in computing some quantity of global iestr
and in transporting this to a designated “base station” néate
a survey see [1]). Sensor nodes have limited, and in manycase
irreplaceable power sources. Power consumption occurstaue
radio transmission, reception, sensing and computingc&jly
in decreasing order. As a node spends the maximum energy in
communication, it is desirable to have local interactioesaeen
the sensors to process the damtathe network rather than to
transmit the raw data to the base station. This is because, by
reducing the number of packets that need to be transported in
the network, in-network computations reduce the packettrart
load and thus increase the lifetime of the network. In thipgra
we focus on the distributed computation approach for sensor
information processing.

The work reported in this paper is in the context of the folow
ing model. There are. sensor nodes distributed independently
and uniformly over a 2-dimensional field. It is assumed that
time is slotted and the sensors are synchronised at slotlaoias.
The sensors synchronously sample the environment varielge
temperature. The measurements are assumed to be quamtied a

©(n) and © (vnlogn), respectively; whereas the energy expended take values in a givefinite sef V. At sampling instant, each

scales as©O(n), 6(n oe. ) and © (nynlogn), respectively.

Finally, simulation results are provided to show that our aralysis
indeed captures the correct scaling; the simulations also igld
estimates of the constant multipliers in the scaling laws. Or analyses
throughout assume a centralized optimal scheduler and hercour
results can be viewed as providing bounds for the performane with
practical distributed schedulers.
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sensor measures a value, yielding a vector of valugs) =
(v1(k),va(k), -, vn(k)). The objective is to collaboratively
compute and delivanax{v, (k), v2(k), - - -, v, (k) } to an operator
station, for each such vector of sampled values. See [4] eviiner
need for a distributed maximum computation arises as a gart o
a distributed self-tuning algorithm for the optimal opéwat of
a sensor network. If the sensors calculate local maximaewhil
routing the values to the operator station, we can reduce the
traffic in the network and thereby decrease the computation
delay and increase the network lifetime. In the case of the
function max, this is possible because the maximum function
is insensitive to the order of computation and can be caledla
recursively by using partial results obtained by using taaby
subsets of the data, i.emax{a,b,c,d,e} can be calculated as
max{max{a, b}, max{c, max{d,e}}}.

Although max will be a convenient example for us to discuss
throughout the paper, the class of functions our algoritizmg
analyses cover is wider. It includes the class of type-tiokb



functions, as defined in [2] We also consider a gossip algorithnothers in terms of the computation time and energy expeglitur
that we callRipplethat works only for the subclass of the abovand is suitable for data aggregation in sensor networks, but
functions whose result does not change if the elements in tleguires the maintenance of the tree. The Multi-Hop algarit
argument vectov are repeated during the computation. Since, f@reserves the entire data at the operator station, and,ehenc
examplemax{a, b, c} = max{a, b, a, c, b}, the Ripple algorithm imposes no restrictions on the function to be computed. The
applies to the computation ahax, min or set union and set Ripple algorithm, though inefficient compared to the othgo t
intersection. algorithms, has the advantage of being completely dig&ibu
We adopt the message passing distributed computing modwlt requiring any organization in network; the Ripple algon
The sensors communicate by sending packets to each other @lsd provides the result of the computation to every node. As
then performing computations based on the received data &tated above, all the analyses assume a centralized,i@ollis
the partial results they already have. The computationrilgns free medium access scheduler. Thus the scaling orders va@nobt
we consider differ in the way the computations are organisethn be viewed as lower bounds when some practical distdbute
and hence in the message transmissions that are requiredngslium access protocol is implemented. Finally, we protide
carry out the task. When successive results for several lsgimpesults of a simulation study of the three algorithms; theseilts
values need to be computed then separate pipelined congmstatconfirm our scaling results, and also provide estimates ef th
are performed for each vector of sampled values. Thus, we gigconstants.
not exploit block computation, as has been done in [2]. We The work we report in this paper is closely related to the one
assume a centralized optimal scheduler, which schedulgsmab presented in [2]. We will discuss the relationships aftenfally
independent sets of links in the network. Thus, there are peesenting our distributed computation model in Sectiorwe
collisions in the model. will then discuss some background results in Section Ill. In
The following is a summary of our contributions in this paperSection 1V, we obtain the optimal order expressions for the
All our results are of the nature of providing asymptoticlsep Performance measures. The performance of some algorithms
laws (that hold in the “in probability” sense) as the numbep analyzed in Section V. Simulation results are presented i
of nodesn — 0. As has been established in [7] and [6]Section VI. We conclude the paper in Section VII.
to maintain the connectivity of the network, the transnussi
Il. THE MODEL AND PERFORMANCEMEASURES

] ] ] ~ We considem sensors deployed in a circular or square field.
and under our assumptions, we establish that the time @WjUij sensor located at the coordinatemeasures the value of some
for one computation (e.g., initiated by a query) by an oplimapaiia| function (say, temperaturg)X). We are interested in ob-
algorithm is © (1/ 10’;’”)- The minimum energy expended intaining the maximum of the measured values and communigatin
the network during a computation 8(n). All these orders are the maximum to an operator station located at the centre ef th
tight bounds in the sense that there exist (centralizedyrihgns field.

that achieve these orders. We also analyse the performandetwork Model: The two dimensional field in which the
(scaling orders withn, of the single computation time andsensors are located is denoted By The sensor network is
energy expended) of some candidate computation algorjtines characterized by an indexed set of sensor locatiSnsensor
providing a comparison between them. We consider the Treehas locationX;, X; € A, 1 < i < n. The networkS is
Multi-Hop and Ripple algorithms, and obtain scaling laws foa random vector(X,,...,X,) € A" where theX;s are i.i.d.
the computation time and energy expenditurenas— oo. In random variables, each uniformly distributed overThe random
particular we show that the computation time for these aflgors  experiment of deploying a network of sensors is charaadriz
scale as® (y/nlogn), ©(n) and © (y/nlogn), respectively, by the probability spac&™ := (A", 7", P") where A" is the

whereas the energy expended scale®és), © (n /L_) and Ssample spacef™ is the event space (a Borel field) aft is the
logn probability measure. We index the whole experimentriythe

© (ny/nlogn), respectively. The Tree algorithm outperforms the , \ber of nodes deployed in the field. Asincreases, we get

a sequence of experiments. We wish to study the asymptdtics o
1The type of a vector of observations = (v1,v2,---,v,) € V" is a|V| certain performance measuresmas- oco.

dimensional vector. For an element € V the type of the given observation All radio communication is over a common channel and any
v is given by, (v) = > If, _,y, i.e., the number of times the value

occurs inv. The functions that we are concerned with are such that taeit  fadio transceiver can either transmit or receive at a timee T
certain thresholdg,,,v € V, and the result of evaluating the function on thefransmission rangeof the sensors is fixed for fixed and is

observationsv depends on the observations only vian{r,(v),t,},v € V. i ;
It follows that the number bits required to represent the jpored value of the denoted byr(n). If any two sensors are within a dIStandew of

function is bounded even as increases. each other then there is a bidirectional link between thehusT
2A positive function f(n) = O(g(n)) implies that there exist, positive the neighbours of a node are nodes within a distar{eg from

constantsc and no such that0 < f(n) < cg(n) for all n > no. A positive  that node. The form of(n) we use follows from the results of
function f(n) = Q(g(n)) implies that there exist, positive constantsnd ng

such that0 < cg(n) < f(n) for all n > ng. We say that the functiorf(n) = [6]. o ) o

O(g(n)), if and only if f(n) = O(g(n)) and f(n) = Q(g(n)), i.e. there exist  Definition 2.1: Given a network realisatio§, the graphG(S)
positive constants:, cz andng such thatd < cig(n) < f(n) < c29(n) s formed by then nodes at the locations defined 8y with links

([3]). These notations are used here in the following prdlséic sense : we say . . . .
f(n) = ©(g(n)) if and only if there exist positive constants andcz such that joining the nodes that are separated by a distance not gteate

limp—co P(0 < c1g9(n) < f(n) < cag(n)) =1 r(n). Thus, we have a random graph, denotedthy

ranger(n) must scale a® k’% 2, Adopting these results,




Interference Model: Let | X; —X;| denote the Euclidean distancethat only the links in this subgraph are activated. For eXamp

between the nodesand j. We adopt theprotocol modelwhich in a Tree algorithm (see Section V) a tree subgrapl@z6f) is

defines the interference constraints as follows. defined and only the links in this tree are activated, progines
Definition 2.2 (Gupta and Kumar [7]): Protocol Model of In-from the leaves up to the root.

terference When nodei transmits to nodeg (i.e., i — j), then Scheduling Assumptions A synchronisedtime slottedsystem

the transmission is successful if is assumed, with a packet transmission between any pair of
1) |X; — X,| < r(n) and nodes requiring one slot. For the purpose of obtaining oalirsg
2) For every nodek that transmits simultaneouslyX;, — results, we assume perfect scheduling of transmissioas, in
X,| > (1 + A)r(n) for some fixedA > 0. every slot certain links are scheduled and these transmissire

Distributed Computation Model: We work with the model of guaranteed to succeed. The perfect scheduler has amsetahal

message passingistributed computation. Nodes explicitly sendfctivation setsi.e., a set of transmitter-receiver pairs which can

packets to each other, and do not exploit any extra infoonaticommunicate simultaneously without violating the intesfece
available on the wireless medium by way of listening to tHesot constraints. The activation sets that are scheduled arenmbx

nodes’ transmissions or to collisions. Nodes perform cdmpui” the sense that addition of any transmitter-receiver paguch

tions based only on the packets that are explicitly sent émth & Set will violate the interference constraints. Also, thefect
This necessitates that to complete a computation, eachmade Scheduler is assumed to be optimal in the sense that giverote

influencethe computation. As a simple example, suppose theficements and the set of transmissions to be activatethdses
are three collocated sensors with valuesb, and ¢, such that @ Sequence of activation sets that schedules the tranemsssi
a>b> ¢ and a collocated operator station. Suppose alsodthat’® Minimum number of slots. Owing to these assumptions, our
is the maximum element of the set in which these values agntakSc@ling laws should be viewed as bounds on what is pragticall

Then, evidently, if the operator station hears that a statias the 2chievable. _ _ _
valuea it can declare thenax without waiting to hear from any Computation and Scheduling Interaction The computation

other node. In our message passing computation model, lemwe@rogresses istageseach stage requiring the transmission of mes-
we require that the operator station hears at least oncedibtine ~ S2ges from certain transmitters to designated receivectuding,
nodes, before declaring that the computation is completite N POSsibly, multicasts to a set of receivers in the neighbooh
that this does not imply that the operator station must eitpli ©f €ach transmitter as in the Ripple algorithm (see Sectign V
receive each value, only that the computation it receivestm@Ven the transmissions to be scheduled at each stage, the
have beerinfluencedby every sensor's value. Further, when th&Cheduler provides a deterministic sequence of maximadicn
computations are performed for several set of measuremniets sets that need to be activated in the successive slots i orde
computation of the maximum for each set of measured valueds cOmplete this stage of computation. Thus, a stage of a
carried out separately, and block computation is not exgioas computation would be executed over several slots. After the
in [2]. completion of a stage in the computation, the computation

Formally, suppose that the result delivered to the operal%'gorithm defines the next set of transmissions to be schddul
station isy = maxi<i<, v, Wherev; is the measured value FOr €xample, in the Tree algorithm (see Section V), eachestag
at nodei and is obtained ag = max{y1, Y2, -, Ym}, With corresponds to the activation of links at one level in thee.tre

yi = max;e;, vj, where, forl <i <m, I, C {1,2,3,---,n}. The scheduling algorithm then determines the number of slot

Now, even thoughy = y; for some particularj,1 < j < m required to compute this stage. o

(i.e., the maximum is determined by the subset of sensgrs When a stage of computation involves one transmlsspn from
we require that every node,1 < k < n, belongs to some set€very node, we call such a stageraund Note that since
I;,1 < i < m, in the final computation. We will then say that® computation algorithm requires each node to transmit its
every node has had influence on the computation. This impli&@asured value at least once (see the discussion of théoDistt
that every node must transmit at least once for each maxim&Rmputation Model above), a computation involves at least o
computation to be complete. round.

Further, we define\/’j(k), the k hop neighborhood of nodgas Energy Expenditure Model: We consider the foIIowin_g _
follows. Let \ denote the set of nodes/\/j(o) = [}, J\/j(l) :: componentg of energy e>.<pend|ture per packet tran§m|SS|on
_ *) . and reception. F,pit—radio: the transmit energy radiated.

{iteN: X=Xl <r(n)}, - andN;" :={i € N Thus E,mit_redic = ad’, whered is the distance between
|X; —X;| < r(n),l ej\/j(k_l)}. We note that, from the beginningthe transmitter and the receiver, is the path loss exponent
of the slot in which nodg first transmits its value, it takeat (2 <7 < 4), and« is the energy corresponding to the received
leastk hops until the computations in the ge@“” —Nj(k’l) are power level at the receiver required for successful recepin
influenced by the value of nodg i.e., in each slot the influencethe presence of receiver noise (also sometimes called tedves
of node;j can spread by at most one hop. sensitivity). Eymit—pke: Energy required in the transmitter’s
A computation algorithmdefines the sequence of messagelectronics to transmit a packef, cccive—pit: Energy required in
passing transactions, between specified transmitteivexggairs, the receiver’s electronics to receive a packes, ._,:: Energy
that leads to the function being computed and the resuligedetl required by the on-board computer to perform the computatio
to the operator station. A computation algorithm may haveask triggered by a received packet.
associated with it a subgraph 6f(S) (see Definition 2.1) such Performance MeasuresFor a given node placemeSt a compu-



tation algorithm along with the optimal centralized sched{see block coding cannot be implemented and the scaling laws lwhic
Computation and Scheduling Interaction above), will resuthe can be obtained from the schemes in [2] will coincide with our
maximum being computed in some number of slots. We denatealing laws.

this time required to complete the computationltys). Thus, for

a given computation algorithni; is a random variable ovex”, [1l. BACKGROUND RESULTS

which takes a specific value for every realization®fAlso the The presentation of these results is interspersed with nksna
node placemens and the computation algorithm (along with the, ¢ the intuition behind them. In writing these remarksuse
centralised schedule) determine the number of transmissiod 1, notation®(-) loosely; it only means “of the order,” the “in
receptions by each node, and, thereby, the total energy.dpsn probability” qualification being implied.
E(S) be the total energy spent in the network while performingongs on the number of hops in the shortest pathConsider
one computation, with? denoting the random variable ovBr', 5 network realizations and consider all the pairs of points in
akin toI". We seek “in probablhty" scalm_g laws, as increases the field A separated by a distancé these points need not
to oo, for I' and £ for different computation algorithms. be locations of nodes. If a sender at one such point were to
Remark:n [2], Giridhar and Kumar have addressed the problegymmunicate with a receiver at the other point at a distance
of finding scaling laws for the rate of distributed compuwiati ; the packets will be transmitted along a multihop path using
(or data fusion). The functions they consider agmmetrié. some intermediate nodes. The number of hops in the shortest
Further, two subclasses of summetric functions, namye- path joining these points and using the intermediate nodels a
sensitive functionsnd type-threshold functiorisare considered. |inks in G(S) will be finite and will depend on the distance
Scaling laws for upper and lower bounds on the computatit raye definef (d) (H(d), resp.) as the supremum (infimum, resp.)
are obtained in [2] for these subclasses of functions. over the number of hops in the shortest paths connectingiell s
In our paper we consider only type-threshold functions. M/hipajrs of points. Thus7(d) and H(d) are random variables over
[2] focuses on the the rate of computations, our focus in thi$ defined for the distance. We need probabilistic bounds
paper is to obtain scaling laws for one time computation.nSugn 77(4) and H(d) as a function ofd and r(n). Evidently
a measure is of interest if a computation is triggered by ayque; < H(d) <H(d) <n+1.
In addition, we also consider the energy expenditure for-one | emma 3.1:For a square field of unit area, withr(n) =
time computation as a performance measure and obtain gcalin x 1og
laws for it. Further, we also analyze three practical corapan n
algorithms, namely, Tree, Multi-Hop and Ripple, with respe 1) lim,—oc P" (G is connected = 1
to the performance measures for one time computation. The2) lim, ., P" (% < H(d) <H(@d)< (\/1—0—’_6)7“(11)) =
reasons for studying such alternative algorithms are éxgthin 1
Section V. Remark:This result has the obvious intuition. The transmission
The overlap between our work and [2] is the optimal scalingnge of a node i8(n). Hence, the number of hops in the shortest
law for the rate of computation. We view the rate of computati path between any two nodes separated by a distdrst®uld be
as an extension of the time for one-time computation. When thy Ln . We neglect edge effects in the proof.

computations are pipelined, our message passing modds trea * prgof: The first part follows easily from the results in [6].

each computation separately and does not maximally utiiee The proof of the second part is provided in the Appendix.Cl
information available by virtue of the radio being a broasica corollary 3.1: In acircular field of unit radius if» nodes are

medium, and we do not exploit techniques such as block codi&g | Krlogn i 5 -

: : oyed and-(n) = {/=2=282 with K > —;, the followin
across measurements. Under these assumptions, it can me%oﬁjs):‘or an (:)0 n w log £ wing
from [2] and was also established independently in [5], that 1 1 yep ('G . ted — 1

im,_ P" (G is connected =

maximum computation rate would b@ ( —— ). However, [2 —
P () )t P (2 < H(D) < A < (VT4 95) =

, With K > @, the following holds for any > 0.

logn /*°

further establishes that, for the class of type-threshoittfions,
we can take advantage of a technique like block coding toongr ) )
Proof: For any convex field, only the node density, and

. 1 . .
this bound 106 (loglog”)' Thus, while the message PassINg o the shape of the field determines the relation between the
(iransmission range and the number of hops. (See the proof of

model performs well for one-time computation, it is styctl
emma 3.1.) Thus, the result follows for the circular fieldal

suboptimal if the aim of the network is to perform pipeline
computations. &emark:ln this paper, we have chosdt = 20 > —>+. Thus,

However, it can be noted that the advantage of the blo log()
coding scheme of [2] over the message passing model canfimen Corollary 3.1, we have(n) = ,/% for a circular field
exploited only when there are multiple computations pipesdi
in the network. When we consider only one time computatio

n

for a square field of unit area. This form ofr), as established in
3A function is said to be symmetric if the function value isensitive to the [6] and [7], represents the fastest rate of decreas€/of such that
order in which data is processed or to the identity of node theasures the the probability of the random graph being connected appresc
data.(2]) . N . _ 1 asn — oco. Thus this scaling of-(n) maximizes spatial reuse
Type-threshold functions were defined in an earlier foanaind, informally, hil L ivity, Wi h h hoicefofd
type-sensitive functions are those that require almost éméire data for Wi '? retaining Conne.Ct'V'ty' e note that the choice oes
computation, e.g., the mode of the measurements. not influence the scaling laws.

Rf unit radius, and from Lemma 3.1, we havgn) = /22en



Bounds on the number of simultaneous transmissionsi-or a number of simultaneous transmissions shouldebé%) =
given realisatiors, consider a round of the computation algorithnz9 ( "
in which each node has to transmit once to a designated sxcelv \logn

node. For example, if the computation is performed over a tr&chedule the transmissions of all the nodes onde(isgn).
in G(S), then a round may involveachnode sending a packetFartheSt nodes:We will need the following observation about the

to its parent node. The centralised scheduler describedeabiti  S€duence of random node locations characterised by thesegu

schedule the transmissions by scheduling a sequence wdmti  ©f Probability spaces™, n > 1.

sets. This sequence of activation sets will of course depend-€mma 3.4:Consider a square field of unit area. For a given
on a particular transmitter-receiver pairing. We are ietted in € >~ 0, the probability that the farthest node from the center of
obtaining bounds on the cardinalities of these activatiets.s the field lies at a distance greater théﬂ\}—g - 6) goes to 1 as
These are bounds on the number of simultaneous transngssibn— o°-

possible in the network. Consider all transmitter-recepairings

in which each node appears as a transmitter exactly oncea. Ove IV. OPTIMAL ORDERS FORPERFORMANCEMEASURES

all such pairings, denote by(S) and7(S), the minimum and | this section, we obtain the optimal order results for perf

maximum sizes of the activation sets scheduled by the stétredunance measures such as computation time, energy expenditur

Thus, the quantities and? also are random variables ovEr,  and the rate (throughput) of maximum calculation. Initialve

that take specific values for a given network realization. obtain the results for a square of unit area and obtain a boand
Lemma 3.2:For a circular field of unit radius, with the pro-the computation time. We then extend this to a circular fighe

tocol model of interference, and with perfect scheduling fansmission range(n) in each case is as provided by Lemma

transmissions, if the transmission range) = /276" there 3.1 and Corollary 3.1.

. This implies that the number of slots required to

exist positive constants; anda, such that For computation time and energy expenditure, we shall first
n n obtain absolute lower bounds in order sense (i.e., we éstabl
nleréo A <a1 oan <y<y<a o n) = Q(-) relations). These bounds are absolute in the sense that no
Remark: 8 8 algorithm can do better than these bounds. We then construct

centralized algorithms that achieve te@meorder as that of the
lower bounds (but with a different leading constant). Thigeg

an upper bound on computation time and energy expenditure fo
an optimal algorithm (i.eQ(+) relation). Thus we obtain an exact

1) We will provide the intuition for this result after
Lemma 3.3.
2) The result holds for any fieldd with finite area, but we

prove it only for the circular field of unit radius. order (i.e.,0(-) relation) for an optimal algorithm.

Proof. See_the Appgndlx. . . Optimal order for computation time:
Bounds on the time required for a round: The time required to ~Theorem 4.1:If n nodes are uniformly distributed in a square
complete a round of a computation will depend on the padiculfield of unit area, then there exist positive constamtsand s
transmitter-receiver pairing. LeE'(S) (Z(S), resp.) denote the such that the number of slots required for an optimal algarit
maximum (minimum, resp.) of the time required to complet® calculate the maximum measured value under the assumptio

a round, with maximum (minimum, resp.) being taken over aﬂf perfect scheduling obeys the following relation

possible transmitter-receiver pairings. We note that fagieen lim P" e n\_y

network realizationS and optimal link scheduling algorithm, the e “N\ogn = ="\ logn ) =

boundsT'(S) and I'(S) are well defined. Thus]' and T’ are Proof: Let d,,,, denote the distance between the operator

random variables over™. station and the farthest node in the network. Consider tleaitev
Lemma 3.3:For a circular field of unit radius, with the pro- 1 1

tocol model of interference, with perfect scheduling ohsmis- {F > (E - 6) T(n)}

sions, and with the transmission range) = /227%™ the

1 1
bounds on the time required to schedule transmission ohall t 2 {F > H(dmaz) > (E - 6) T(n)}
nodesT’ andT satisfy the relation

p— d'm.a..r 1
lim P" (57A%logn < T <T < 80m(1+ p)(2+ A)*logn) =1 {I' > H(dmaz)} N {ﬂ(dmam) 2 —} n {dmam 2 7B 6}

o r(n)
Proof: See the Appendix.

a
) onsider the last expression above. We recall that we redoidt
Remark:The above two results can be understood as fOIIOWt 'e computation must have the influence of all nodes in it &nd i

It has been shown in [7] (ti‘)at for simultaneous reception, thexes at least (d,..) slots until the farthest node influences the
receivers should be at Iea@fQ— distance apart. Thus, the numbetomputation at the operator station. Hence, and from Lemrha 3

of simultaneous transmissions is upper bounded by the numtiee first and second events have probability 1. From Lemma 3.4

of disjoint disks of radius#. This bound is tight only for a the probability of the third event goes to 1as— co. Combining

specific realisatio and specific transmitter-receiver pairing. It isthese, fore >0

easy to see that if the transmitters or the receivergareA )r(n) lim " ( ( 1 > 1 ) B
. . . . . imP'|II'>—=—-€¢)]—— ] =1 QD

apart, then any transmitter-receiver pairing is possiflaus, n—oo V2 r(n)

very loosely, we can say that the number disjoint disks of

radiusw will lower bound the number of simultaneous The upper bound on the computation time can be obtained

transmissions. These disks have an are@(@fr%(n)). Hence the by giving an actual computation algorithm. The details of th

1]



algorithm are provided in the Appendix. Here we considgreriodic and which will complete the computations periadlic
a centralized algorithm and obtain its computation timee Tiwith minimum inter-departure time. ThuSy,;pciine IS @ random
computation time of an optimal algorithm will be less thaisth variable overX™ which takes valudp;,ciine (S) for a givenS.

time. O We state the result for a square field of unit area (with the
The above result can be very easily extended to the circutesnsmission range as per Lemma 3.1). The result for a arcul
field. We state the result as a corollary. field follows similarly.

Corollary 4.1: If n nodes are uniformly distributed in a circu- Theorem 4.3:If n nodes are uniformly distributed in a square
lar field of unit radius, then there exist positive constantand field of unit area, then there exist positive constantsand w,

vz such that the number of slots required for an optimal albanit , . s )
0 calculate the maximum measurc(]ad value unde? the asgunnpt?HCh that the following relation bounds the pipelined cotapan

of perfect scheduling obeys the following relation time for an optimal algorithm performing pipelined maximum
computations, under the assumption of perfect scheduling

lim P" (v n <T < L)—l

n—oo logn —  — log n lim P" (wylogn < Tpipetine < welogn) =1
Optimal Order for Energy Expenditure : Remark:We skip the proof of the above theorem as the result

We will now consider the optimal order for the energy expensan pe easily deduced from Theoretnin [2]. It has also
diture. The result is stated below as a theorem. From thefpitoo pheen independently proved in [5]. Recall the observaticat th
is clear that the energy expenditure does not depend on &meshg complete a computation each node has to transmit at least
of the field. once. From Lemma 3.3, the time required to schedule a round
Theorem 4.2:If n nodes are uniformly distributed in a field.,in a square field i€2(logn). The scheme used in obtaining the
then the total energy expenditure in the network by an optimgpper bound on the computation time in Theorem 4.1 can be
algorithm to calculate the maximum measured value, under tfised to show that the pipelined computation timeDifog n),
assumption of perfect scheduling@(n). thus proving the result. Let us call the in-network time of a
Proof: In any algorithm, every node has to transmit at leagpmputation as the time between the first transmission from a
once and at least to one of its one hop neighbour. Hence, we ggich of measurements (anywhere in the network) and the time
a lower bound as when the batch departs the network after computation is. over
E > n(Eymit—radio + Exmit—pkt + Ereceive—pht) It has been shown in [5] that tha-networktime of a batch of
measurements in this algorithm also is of the or&b(r(n
We shall see that the Tree algorithm (see Section V) has \jener% o (

expenditure logn , the same as the time for one time computation.

A very similar result can also be established for a circuleidfi
ETree = n(Ewmitfradio'i_Ewmitfpkt +Ereceivefpkt +Eprocfpkt)

An optimal algorithm will have energy expenditure at most@lq V- PERFORMANCE OFSPECIFICPROTOCOLS WITHPERFECT

to the Tree algorithm. Hence, SCHEDULING

In Section IV we provided scaling laws for the performance

E < n(Bamit—radio + Bomit—pkt + Brcceive—pit + Eproc—pkt) ¢ 5 optimal algorithm. We analyze the performance of some

Hence,E = ©(n) and this is a deterministic scaling. O specific computation algorithms in this section. We will yide

Optimal Order for the Achievable Pipelined Throughput: scaling results and the intuition behind them. In this sective

Sometimes the network is required to perform the computatioconsider a circular field with unit radius. The detailed gfeoare

continuously. This can be viewed as a complex queueingmsystemitted, and can be found in [5]. The motivation behind cliogs

in which a batch of measurements arrives at sampling irstathese algorithms and their usefulness are mentioned irowsri

in the sampling buffers of the nodes with the arrival rate haf t remarks.

batches being equal to the sampling rate. The batch leaees thLet D;,1 < i < n, denote the distance of nodé&om the centre

system when the corresponding maximum computation is ttverof A (i.e., from the operator station). Evidently;,1 < i < n

is of interest to obtain the saturation throughput of thistesn, is a sequence of i.i.d. random variables X¥f with a common

which will dictate the permissible sampling rate of the seas distribution. Letgp(s) denote the density of this distribution. For

That is, our interest is to characterize the interdepartime of a circular field of unit radius, this is easily seen to giqe( )

the batches of the measurements when the nodes are infinigaly0 < s < 1 (To see this, note that the CDF @&p (s) = =)

backlogged with measurements. We denote this inter-degartTree Algorithm: The communication topology is a tree W|th the

time (also called as pipelined computation time)Ihy,cii.. (S). operator station as the root. We call the nodes attfie level

The sampling interval between the two measurements shauldii the tree as parent nodes of the nodes at(ther- 1)*" level,

at leastlpiperine (S). Thus, the reciprocal of the inter-departurend the nodes at then + 1)t* level as the children nodes of

time will give us the rate of computations, which we call giped those at leveln, with the root being the node at level 1. Here the

throughput. children of a sensor are amongst its one hop neighbours. Each
We view this as an extension of one time function computati@ensor gets values from its children, compares them witbvits

where the computations are pipelined in the network. Given tvalue and forwards only the maximum value to its parent. 8o, f

realisationS, the computation algorithm along with the schedulexach maximum computation, each sensor transmits only once.

comes up with a determistic sequence of transmissions whichThe slowest computation will be over a tree that is a striray. F




a faster computation, we need a shallow tree. Hence, we thke aWe recall that for circular field with unit radius, the trans-

the neighbours of the operator station as its children anld Bu mission range-(n) = , /W_ Let H(d) denote the random

breadth-first tree (See [3] for the properties of breadtst-fees). variable denoting the number of hops in the shortest patin fo
We also note that nodes with different parents are not adsurebde at a distancé from the centre to the operator station. From

to have simultaneous transmissions. Simultaneous trasgms Corollary 3.1, if a node is at a distaneefrom the center of the
occur only if the nodes have different parents and the iaterfce field, then fore >0,

constraints are met. ( s

. n S -
The following result provides the asymptotic order for tioere Jim_ P () < H(s) < H(s) < (VIO + E)m> =1

putation time and energy expenditure for maximum comporati _

over a breadth-first tree. The number of hops required for th&here(s) and H(s) are lower and upper bounds the number

farthest node to reach the centre is the depth of the treen Fr8f hOpS in the shortest path from that node to the operattiosta

Corollary 3.1, we know upper and lower bounds on the numb¥fe define

of hops, i.e., the depth of the tree. We analy3g... in both

the cases, one for the lower bound on depth and the other for ;

the upper bound on de.pth, wh|ch. combl_ned t_ogether provide t\Whefe,Emitfmdw — /207 log n

following result. A detailed proof is provided in [5]. "
Proposition 5.1:For the Tree algorithm, ifn sensors are

distributed uniformly over a circular field of unit radiushen

there exist positive constants, b; andb, such that the energy 1

expenditureE and the computation timg required to compute E(E) = E(H(D)-Enop) = Ehoz}/ E(H(s)) 2sds (2)

the maximum of the measured values satisfy the relations. 0

Ehop = Ligmit—pkt + Ea:mitfradio + Ereceivefpkt

The average energy spent in t2e node’s transmission to the
operator station is calculated as follows

whereE(-) denotes expectation of a random variable. From the

Eryec = ©(n). Moreover,Eryee = ain as n — oo definition of H(s) and H(s), it follows that

Jim P" (b1/ilogn < v < bay/mlogn) = 1 E(H(s)) < E(H(s)) < E(H(s))
Remark: )

1) Intuition for the scaling law: In the Tree algorithm Consider
every node transmits only once. There areransmissions, E(H(s)) > E(H(s)I{p(s)>—= })
n receptions and» — 1 comparisons. Hence the energy T
expenditure isO(n). For computation time we know that > 2 _pn (_(S) > L)
the number of hops between the farthest node and the r(n) r(n)

operator station is of the orderrlT. It can be shown ([5]) where I}, is and indicator function. Now consider
that the time required to schedule the nodes at a level is

of the orderlogn. Hence the computation time is of theE(ﬁ(s)) = E(ﬁ(s),] < (VTOL0)s > +E<ﬁ(s),1 s (VTOL)s )
order L logn, i.e. /nlogn. This is because the nodes at =0y H)>"G
a level cannot be scheduled before all the descendant nodes < (V10 + e)spn <ﬁ(s) < (V10 + e)8>
of this level are scheduled. - r(n) - ()

2) Discussion on the algorithm The Tree algorithm mini- = (V10 + €)s
mizes the number of transmissions required and the energy P <H(S) Z T)

engnc_isd '3 computation hby compuktmglthel fur_wct_|onbs "he above equation uses the fact that the maximum number of
a distributed manner in the network. Clearly, 1t Is bef{gps in shortest path between any node and the operatarstati
suited for sensor networks in terms of energy efficiencgannot be more than, the number of nodes. It can be shown

The computation time depends largely on the structure gfat P™ (H(s) > %) is at mostO (1) . Hence
the tree and the Tree algorithm builds a breadth-first tree

in the network. 5 _pn (E(s) >_° ) < E(H(s))

This algorithm requires the nodes to self organise into 3 r(n)

tree and also to involve themselves in computations. Such < (\/ﬁﬂ)spn (ﬁ(s) < (\/E+e)s) T
self organizations may not always be desirable as tree r(n) r(n)

mam}enance (_con5|der!ng th.e practical fact of n_ode fa)lurWhere 2, = O(1). Hence asn — oo, E(H(s)) = @< R )
requires algorithms which will themselves require energy. A ) T r(n)

Multi-Hop Transmission: In this computation algorithm the Thus SUbSt'tL_‘t'ng in Equation 2 and simplifying, we §&&) =

value at each node is transported via multihop transmissiof ﬁ) This gives the total energy, as— oo, as

to the operator station. No computations are performed at th

intermediate nodes. Each transmission follows a shortast p E(Epuiti—mop) = nE(E) = © (L) = ( o >

from a node to the operator station. Since the breadth-fiest t r(n)

gives the shortest path between the root and any node in th&Ve now obtain bounds on the computation tifng i+ mop-

tree, this computation algorithm also involves a tree rda@tethe Each sensor sends its value to the operator station via tréesh

operator station. path. These paths can be found by constructing a breadtlréiest

logn



with operator station as root. Thus, the transmissions tdiee
on the same tree as in the Tree algorithm but with the diffezen operator station. Each transmission requires fixed energy.
that now the values do not merge as they travel along the tree. Hence, the energy expenditure is of the ordr%, ie.,

The computation is complete when all themeasurements are n.
received at the operator station. Since, the operatorostatan V logn . . .
receive at most one packet in a slot, it will take at leastots to 2) Discussion on the algorithm The Multi-Hop algorithm

complete the computation. Thus, we get the obvious lowendou rcno?lz(zlts tthr:dg':tgalaizn?g:wr;gwirktz Vrﬁsri;;‘s a?oo(je(esr:a()tglry
on the computation time as P

station where all the processing is done. Such a procedure
requires nodes to form a topology, e.g., a tree rooted at the
operator station, and to act as routers. This self-orgéiniza

is not always desirable as maintenance of the tree requires
energy. However, the advantage is that there is absolutely
no restriction on the functions being computed, multiple

transmissions, one at each hop between the node and the

P]WultifHop >n foralln

We now obtain an upper bound. The computation algorithm
progresses in stages. In each stage, all nodes that havetpaak
send to the operator station transmit one packet to thegmar
in the tree. Thus in the first stage, all the nodes transmit. Le functions can be computed for each set of sample values
the number of neighbours of the operator stationme(ng is a and the functions to be computed can be easily changed '
random variable defined ov&F" that takes specific value for each ] i ) o
network realisation.) Then in the first round the operatatisn RiPPIe Algorithm :In this algorithm, sensors keep on exchanging
receivesn, new values; these are the values of its neighbours. §ifi" current estimates of the maximum values and everytadll
the next stage, the leaf nodes have no packets, but the wext ihe sensors know the maximum value. .The .transm|.55|ons take
of nodes will have one or more packets. During this stageraga'?'ace in stages that are rour_1ds as deflne_d in Sectu_m Il. In a
the operator station receives new values. Then the number off ©Und, every node broadcasts its current estimate of thermuam
stages are™ and the number of slots required for each stage Y&lue to from its neighbours; receives their estimates dreh t

bounded b@? the number of slots required for a full round whiich updates its own estimate of the maximum value at the end of the

provided by Lemma 3.3. Note that all the nodes do not transrfund- We note that the influence of the values of all the sanso
in all the stages. propagates one hop distance in every round, like a Ripplacéle
The number of neighbours of the operator station is of theordnce the influence of the value of the farthest node reaches th

logn ([8]). A simple expression has been obtained in [5] that centre, the computation is over. We need not continue ulfitil a
the nodes know the actual maximum.

Jim P"(10mlogn < no < 30mlogn) = 1 (3)  We note that what we call the Ripple algorithm is related
Thus using Lemma 3.3 and Equation 3, we get bounds on toeGoss;ip algorithms (see, for example, [10]) and Consensus
computation time as ' ' algorithms (see, for example, [11]). In these algorithngjas ex-

change partial computations with their neighbours (syocbusly

or asynchronously) in order to compute some function of the

values at nodes, so that eventually the function value isvkno

. all the nodes. Thus with reference to the maximum computatio
We summarize the above results as follows. . _problem in our paper we can say that Ripple achieves “max-
_Propc_)smop 5.2:For multi-hop transmission in a circular field .o hsensus” The analyses of Gossip and Consensus algsrithm

with unit radius, as: — oo in [10] and [11], however, do not consider the transmission

n scheduling aspect which is a key issue that we are concerned
E(Eklulti—Hop) = O|n 1ogn

with in our work.
) - ) To analyse the performance of the Ripple algorithm, comside
and there exists a positive constahtsuch that the computationa circular field with unit radius. For am > 0, the probability
time I'aruiti— Hop required to compute the maximum satisfies ththat the farthest node has a distance of at léast ¢) unit

AQ
lim P"(Fn < Taguiti—Hop < 8(1 4+ p)(2 + A)Qn) =1

n— oo

relation, from the centre approaches 1 as— oo (extension of Lemma
. 3.4). In Lemma 3.3, we have obtained bounds on the number
lim P" (n < Carutti—mop < din) =1 of slots required to schedule a round. Since the influencengf a
Remark: nee node’s value propagates by one hop in a round, the number of

1) Intuition for the scaling law: We know that the time Corollary 3.1 (withd > 0),
required to schedule the transmissions in an area is of the or /o
-9 i < number of rounds< W10+9) 9) i =1 4
72 (n) . . n—oo V207 logn V201 logn
receives one value from each of its one hop neighbours,
i.e., node densityx the area covered by the transmissioiiMme
range. Hence the number of rounds required for receiving
time required for each round, we find that the computation
time is of the ordem. For, energy expenditure, we notice

rounds required to complete the computation is calculagidgu
der —1—, i.e., log n. After each round, the operator station i, P
the number of which is of the ordef x 7r?(n)=logn, This combined with Lemma 3.3 gives bounds on the computation
all the n values is of the ordem. Multiplying by the
that each node’s packet requires on an aver@g(eq,(lT))

AQ
lim P" ((1 — )Y 57; V/nlogn < Trippre

< (V10 + 8)4vV20m (1 4 p) (2 + A)Q\/nlogn) =1

To calculate the energy expenditure, we need to know bounds



on the number of nelghbourS' For this we use a result from [SQ)RDER EXPRESSIONS FOR ENERGY EXPENDITURE AND COMPUTATIONME

to bound the number of neighbours.

In each round, every node broadcasts its current maximum

value and receives its neighbours’ values. It calculatesntw
maximum value and broadcasts it in the next round, i.e., aftgr

it has got values from all neighbours. So, in a round each node
has one transmission and receives and compares its neighbou
values to compute the current maximum. To find the maximum

of m values, we nee@n — 1) computations. IfV; is the number
of neighbours of nodé, then node; compareg N; + 1) values
(neighbours’ values and its own value). Hence, nodmesN;
computations in each round.

The energy spent by noden a round,

Ez' = E:Emit—radio + Emrnit—pkt + Nz . Ereceiue—pkt + Nz . Eproc—pk:t

n
207 logn
Where, Ewmitfradio = O[(\/W) . Let Ea:mitter =

Emnmlt—ra,dio + E:Emit—pkt and Ereceiuer Ereceiue—pkt +
E;m’oc—pkt-

From the bound on the number of neighbours from [8] (see

TABLE |

FOR VARIOUS PROTOCOLS

Algorithm Energy Expenditure] Computation Time
Optimum Algorithms O (n) (€] ( logn)
Multi-Hop Algorithm (€] (n 10; n) O(n)

Tree Algorithm O(n) @(\/n logn)
Ripple Algorithm @(n\/n log n) @(\/n log n)
TABLE Il

EXPRESSIONS FOR ENERGY EXPENDITURE AND COMPUTATION TIME

OBTAINED FROM SIMULATIONS WITHA = 0.5

Algorithm

Energy Expenditure

Computation Time

Multi-Hop Algorithm

0.24(n o )
og n

1.64(n)

Tree Algorithm

0.75(n)

3.15(y/nlogn)

Ripple Algorithm

1.44(n\/n log n)

9.6(\/71 log n)

Theorem 8.1 in Appendix), we obtain the following result for

E;

lim P" (Ezmitter + (1 — )20 log n(Ereceiver) <

n—oo

Ei S Ea:mitte'r + (]- + /14)2077 log n(Erecei'ue'r)) =1

where . satisfies the condition given in Theorem 8.1. This

equation combined with the Equation 4 gives the boundgvpn
for any ¢ which in turn gives the bound oBgippic )

1— )
lim P" (( <) n i

n— oo 207 log n

(Bamitter + (1 = w207 108 n.(Breceiver)) <

V10 4§ n
n
V207

ERipple < (Eunnitte'r + (1 + p)207 log "-(ETeue'ive'r))) =1

logn

We summarize the above results as a proposition.

Proposition 5.3: There aren sensors distributed independently

and uniformly over a circular field of unit radius and the Rip

algorithm is used to compute the maximum value of the sensor

measurements. There exist positive constadntskq, [; and s
such that the energy expenditufer;,,. and the computation

time T'gippe required to compute the maximum satisfy the
relations.

Remark:
1) Intuition for the scaling laws: We know that the number of

lim P" (kln\/nlogn < ERripple < kgn\/nlogn) =

n—oo

n—oo

lim ’P”(llx/nlogngf‘mpple§12\/nlogn) = 1

slots required to schedule the transmissions in an area is
the order——, i.e.,logn. After each round, the influence

r2(n) o
of the nodes’ values propagate an additional hop. The
number of hops between the farthest node and the operator
station is of the ordeﬁ. Hence the rounds required are of

the orderﬁ. This shows that the computation time is of

the orderﬁ logn, i.e. v/nlogn. For energy expenditure,

we notice that for each node in each round there is one
transmission and(logn) receptions. Asn — oo, the
energy spent in reception is dominant over that of radio
transmissions. Hence, the energy expenditure of the nktwor
is of the ordemn logn ﬁ i.e., ny/nlog n.

2) Discussion on the algorithm: The Ripple algorithm

is highly inefficient in computation time and the energy
expended. However, in order to execute the algorithm, no
specific topology needs to be discovered and maintained.
In some applications this may be a more desirable mode
of operation (e.g., applications where the nodes fail fre-
qguently). Also, we note that the Ripple algorithm provides
the value of the function to every node in the network,
which may be useful in an application where the entity
that needs to use the results of the computation moves
through the network. There is a restriction on the class of
the functions that can be computed, however; the result of
the computation should be insensitive to the repetitions of
the arguments; e.gmax, min, k" largest value etc. This

is because each value measured at a node influences the
partial results of various sets of nodes, and also returns to
influence the results of the node that measured the value
originally.

VI. SIMULATION RESULTS

Table | summarizes the order expressions obtained in the
Section IV and V for all the algorithms. However, the conssan
multiplying these expressions are not known. In this secti@
validate these order results from a simulation, and as arbgiyt
aJ) 0 obtain estimates of the constants.
he simulations are conducted as follows.

1) Forthe Tree algorithm, we build a breadth first tree roated

the operator station. To calculate the computation time, we
schedule the nodes at the same levels by building activation
sets. We use the protocol model for interference. The
schedule is suboptimal as we ensure that the transmissions
are successful irrespective of the location of the recsiver
i.e., all the transmitters are at lea@ + A)r(n) distance
apart from any other transmitter. We start from the leaf
level and go on scheduling the nodes up the tree. This gives
the computation time. Since, each node has only one fixed
energy transmission, the energy can be readily calculated.



2) For Multi-Hop transmissions, the breadth first tree used .
in the Tree algorithm gives the shortest path to the root
for each node. We note that all nodes do not always .
have packets to transmit. Hence, while scheduling, we L
consider only those nodes which have packets to send. The
transmissions are carried on until all the values reach
the operator station. This gives the computation time. Each
transmission requires fixed energy. Hence the total number
of transmissions give the total energy expenditure. .
3) Inthe Ripple algorithm, we have rounds in which each node
transmits once. We schedule all the nodes using activation
sets as before. In a round, each node has one transmission

and as many receptions as the number of its neighbours. .

This gives the round time and energy per round which R
are the same for all rounds. Since the number of rounds °

required is the number of hops required for the farthest

uuuuuuuuuuuuuu

node to reach the operator station, the depth of the treeis th

number of rounds required. This gives the total computatiomy. 1. Multihop transmission: (top panel) Ratio of obsergemputation time to
time and energy. the corresponding asymptotic order, and (bottom panelydtie of the observed
. . . . energy expenditure per computation and the correspondiynatotic order. The

The simulation plots are obtained by taking an average @rer fiat lines show the estimate of the constant multiplying tegnaptotic order.

realizations of the node locations. The parameters usedhfor

simulations are as followsE it—pkt = 0.25, Ereceive—pht =

0.5, Eproc—pkt = 0.00001, A = 0.5, Eymit—radio = 100r3(n) Figure 4 compares time and energy requirements of all tlethr
éadgorithms. From these figures, it is clear that purely frdme t
viewpoint of computation time and energy a tree is the pedfler
way to arrange the computations of the bounded informatie r
recursively divisible functions. However, as discussedattion

V, there are several pros and cons to all the algorithms densd.
Our results can guide a designer in weighing these agaiest th
performance measuresure we have studied.

andr(n) = ,/2“%. The energy values can be viewed as scal
versions of practical values.

Suppose®(n) is the value of some performance measu
obtained from the simulation as described above @ng is the
scaling law we obtain (e.gv(n) = v/nlogn for the computation
time for the Tree algorithm), then we p@%. The theoretical
results suggest the existence of constantda and functions
I(n) = o(v(n)) andu(n) = o(v(n)) such that

Tree Algorithm - Computation Time

lim P" (av(n) +1(n) < G(n) <av(n) +u(n)) =1
lim 7 (g4 L0 L G0 o )y
n—oo v(n v(n) v(n) ¢
lim P" (g < G(n) < a) =
nso v(n)

Thus for largen, the value <) should be confined between the )

L v(n) . - _
two limits ¢ anda.

In Figures 1, 2 and 3 we plot the ratios of the observed com-
putation times and the asymptotic orders for the three @lyuos.
The plots show that in each case the interval within whicls¢he R
ratios should lie appears to collapse to a constant, an &sim . RS
of which is shown by the flat lines. The computation time has
converged in all the cases.

The energy curves in case of Tree and Multi-Hop algorithms T ey
have not Converged because for any finitethe Eopmit—radio Fig. 2. Tree Algorithm: (top panel) Ratio of observed congpion time to
is finite. Since E..it—radio decays withn, we observe that the corresponding asymptotic order, and (bottom panelyatie of the observed
the energy curves are decaying. The energy curve in caseefioy exﬁle”ditﬁre per °°mPLf“5;fi°” and the COI"_eISPO”d’E@F"O“‘? Ordjr- The
Ripple algorithm has converged because unlike the other two es show the estimate of the constant multiplying thgnaptotic order.
algorithm, Ripple has broadcast transmissions. Hence dteg t
energy spent in reception dominates 0¥&¥,;:—rqdio- Of COUrse,
these observations also help to corroborate our scalingtses VII. CONCLUSION

In Table Il we display the order results along with the consta We have provided scaling laws for the computation time and
multipliers estimated from the simulation. energy consumption for the one shot distributed compuiadio
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Ripple Algorithm - Computation Time

Ratio
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Ripple Algorithm - Energy per Computation

Ratio

°
1000 2000 3000 2000 5000

Number of nodes n

6000 7000 8000

Fig. 3. Ripple Algorithm: (top panel) Ratio of observed cartgiion time to
the corresponding asymptotic order, and (bottom panelydtie of the observed
energy expenditure per computation and the correspondipmtotic order. The
flat lines show the estimate of the constant multiplying tegnaptotic order.
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Fig. 4. Comparison of energy consumption (top panel) andpegation time
(bottom panel) per computation for the three algorithmse €hergy required for
the Ripple algorithm is not shown because of the very lardeega

type-threshold functions. We have taken thex function as the

representative member of this class that we use throughmout i

the presentation of our work. Our results are derived unber t

assumption of centralised optimal scheduling. We showed th

the optimal (in probability) scaling law for the computatitime
is 6)( ") and for energy expenditure i®(n) (Theorem

logn

4.1 and 4.2). We also considered three practical algoritants

derive the scaling laws for the same measures. These aredhe T

Multi-Hop and Ripple algorithms. The scaling laws are dedin
Propositions 5.1, 5.2 and 5.3, respectively, and are surmsethr
in Table I. We also provide simulation results that corratier

We have assumed that the operator station is at the centre of
the field, but even when the operator station is not at thereent
the distances between the farthest nodes and the operaionst
and change by at most a constant factor, and hence do notehang
the scaling laws.

In the present work, we have assumed that the scheduler
has global knowledge of the network topology. Hence, the
results can be viewed as bounds on the performance when
some distributed scheduler is implemented. The performaric
distributed computing with a distributed medium accessquol
(such as random access), which does not assume any global
knowledge and algorithms for self-organisation of commpati
topologies, are topics of some of our ongoing work in this
direction.

VIIl. A PPENDIX

Proof: (Lemma 3.1): Part(2):
Consider any two pointgl and B separated by distanek Since
the transmission range ign), in one hop a packet can cover the
distance of at most(n). Clearly, by the triangle inequality,

> 4
—r(n)

To obtain an upper bound on the number of hops, we proceed
as follows. We have a square field with unit area. We choose
the transmission range(n) = 1/%, where K > F;g We
tessellate the field with a grid whose cells are of gige) x c(n)
wherec(n) = " — | /K

pn (ﬂ(d) ) —1 forall n (5)

= /228" as shown in Figure 5. Note that
we have chosea(n) such that any two points in the neighbouring

cells are within range of each other. (We call two cells as
neighbouring cells if they share a common edge. Thus, arniante
cell has four neighbouring cells.)

Now consider two pointsd and B separated by a distance
d. Let 6 be the angle made by the line segmef® with the
horizontal axis. Consider the shortest path joinidgand B.
Clearly, if each cell is nonempty, the shortest path can goutph
at most[4sind] 4 [deosb] cells. So if each cell is nonempty,

c(n) c(n)

there exists a path whose number of hops is bounded above by

c(n)

r(n,
dsin@

~ 0
VARABRE RS

L

| dcosd

Fig. 5. The construction for obtaining the upper bound onrthmber of hops

the scaling laws and also provide the preconstants which &gBveen any two nodes separated by distah¢e.g., the nodes A and B). Here,
summarised in Table Il. We also discussed some pros and cefg = /232" where K > é

of the various algorithms we have analysed.



[‘d:‘(i:)@" + I‘dcc(c:)9‘| < dcs(i:)e 4 dcc((f)G +2< ( /104—6)#2) hOpS,
wheree > 2001 5 '

However, we need to ensure that each cell is nonempty with ‘1
probability 1 asn — co. Since we have chosetfn) = |/ £10an 1

with K > F;g it follows from a result by Xue and Kumar [8]
(stated at the end of the Appendix as Theorem 8.1) that

s@ 1

lim P" (Number of nodes in any celt (1 — u)logn) =1 Fig. 6. (Left) Construction for lower bound on the number @hsltaneous

" o . . transmissionsd = (2+ A)r(n). (Right) Tessellation into squares of sidé¢o get
where(0 < p <1 satisfies certain conditions. the bounds on the number of neighbours of a node. Here2r(n) = /2187
Thus, where K = 80.

P (@ < (Vi0+9- )

approach avoids the cells which are at the boundary and dre no

" . . d completely within the field.
> P"(There exists a path going throughl0 + 6)@%"8) From the Theorem 8.1 by Xue and Kumar [8], the probability
> P"(No cell is empty th)a2t the number (zf nod()e(s in ar;;zl cell is betwesn (1 — u)(247r
n ; A)*logn and207(1 + p)(2 + A)“logn goes to 1 as — oo ‘.
= P"(Number of nodes in any celt (1 — ) logn) Now we index the cells by theiX andY coordinates. The pair
— 1 as n—oo (i,4), wherei andj are integers, denotes a cell. The origin can be
Thus, chosen to be any cell. We mark the cells whose coordinates are
of the form (21, 2k) (say, the hashed cells in Figure 6). We note
lim P" (H(d) < (V10 + €)i) =1 (6) that any node from one such marked cell is at ldast A)r(n)
nmee r(n) distance away from any node in some other marked cell. Thus, i
Equations 5 and 6 prove the lemma. O we schedule one node from each of the marked cells to transmit
Proof: (Lemma 3.2): In order to provey = © (2 these nodes can have simultaneous transmissions irrespett

the locations of their receivers. After scheduling thesksceve
can schedule the transmissions of the nodes in the cells with

(a) Consider the two simultaneous transmissions j andk — coordinates of the fornf2i + 1,2k + 1) (the filled cells in this

I. By the triangle inequality, it has been shown in [7] that thg3S€)(2l; 2k + 1) and (2( + 1, 2k) (unfilled cells) in three slots.
simultaneous transmissioris— j and k — [ necessitate the Thus in four slots, a node from each cell is scheduled. The fac

condition |X; — X;| > Ar(n). This means that the minimum that the transmissions are successful irrespective obitaibn of
j | > .

distance between any two receivers receiving simultarigousst 1€ r€ceivers gives a lower bound on the number of simultasieo
be at least\r(n), i.e., the disks of radiu§r(n) centered around ransmissions possible.
the receivers should be disjoirft The sides of the square arg2. Thus the total number of
. . . 2 _
The area of a disk of radiu§r(n) is Z22r2(n). Hence, the cells that can be accommodated in the squaz o m) =
trivial upper bound on the number of simultaneous transiomss mﬁ. In one slot, nodes from only ™ of the cells
in the field is the maximum number of the disjoint disks that cacan transmit. We also need to show that the probability of any

asymptotically, we need two inequalities which we obtaipants
(a) and (b) as follows.

fit in A. cell being empty is zero a8 — oo. This is also evident from
Theorem 8.1. Thus
T 1 n 1 n

7(S) < = 7 lim P" <7)=1 8

nS8) < m2%r2(n)  5mA%logn Q) P <407T(2+ A)2logn — l) ®
The bound above actually is an unachievable upper bouné siddus, Equations 7 and 8 prove the lemma. o
the actual number of the disks that can be accommodated in the Proof: (Lemma 3.3): In a round, each node transmits once
field will be less than the above bound. to one of its neighbours. There aretransmissions in a round.

(b) To obtain the lower bound, we consider the constructidi Lemma 3.2 we have obtained the bounds on the number of
shown in Figure 6. We inscribe a square field inside the carculSimultaneous transmissions in the network. We will use ehes

field .4 and partition the square field into small square cells &ounds to get the bounds on the round time.

sides(2 + A)r(n) by a grid. We shall find a lower bound on A lower bound can be obtained from Equation 7. We know that
the number of simultaneous transmissions possible onliyiénsthf number of simultaneous transmissions is boundeg(& <

the square. Clearly, This is also a lower bound g$). This 377 og7- Hence a lower bound on the round tiri&s) for all

Sis
SHere we have used the fact thah 6 + cos§ < /2 for 0 < 6 < 5 and that n

c(n) = TS) Asn — oo,r(n) << d and # — 0.

the transmitters and receivers must be located in a specdimar, which is the 7One can easily show that the condition &hin Theorem 8.1 is satisfied in

most compact arrangement of receivers possible. this case.

= 5mA%logn 9)

2|

7(S) >
r(n . -

(S)
6For this condition to suffice for the successful receptionaliathe receivers,



(A YA 4 4 >L . j(% All nodes within a circle can reach their cluster-heads i on
A @ ST T hop. Since we have assumed zero interference outside the tra
n e 1] mission range, non-overlapping circles can have simuttage
4 \gg N TR T transmissions. This means all Type A clusters can have one
(HY® transmission in each cluster simultaneously. After Typdusier-
ﬁ%%% Bl W Pl BN 2 heads have received the values from the cluster memberst{whi
SN ﬁ T ﬁ will take at most(1 + u)K logn slots), the same procedure can

be repeated for Type B clusters. Hence, all the clusterseait
Fig. 7. The construction for an upper bound on the computdtiime. get the values in their clusters in less ﬂfﬂ(ﬂ + M)K logn slots
and will compute the local partial results.
) L The Type A cluster-heads will now report their values to the
To find an upper bound, we follow the construction in the pro%fssigned Type B cluster-heads as shown in the right sidegof&i
of Lemma 3.2 and split the fieldd into squares with sides 7 g5 Type A cluster-head has to send the value to a node
(2 + A)r(n). We know that in four slots all the cells get on€, hich, is at a distance/2r(n) apart. Hence, the path will have
transmission scheduled, hence the time required to complet (v/20+2) = 2(v/5 + 1) hops with high probability as — oo
round is determined by the maximum number of nodes a cell Ca_%mma 3.1). Thus, it will require at mostv/5+ 1) slots. As the
have. From Theorem 8.1, we know thtr (1+ 1) (2+A)?log . jerference is assumed to be zero outside the distapceand
bounds this number with high probability. Hence we get aneppye ransmitting Type A cluster-heads assigned to diffefgpe B
bound on the round time. cluster-heads are at least at a distaReg:), these transmissions

lim P™(T < 807 (1 + 11)(2 + A)?logn) = 1 (10) can be scheduled simultaneously. _
n—0o0 Now only Type B cluster-heads have the partial results. They
Equations 9 and 10 together prove the lemma. g are alingEd in the Straight lines. The Type B cluster-headishv

Proof: (Construction of a computation algorithm to achiev@re near the left and right edge of the line transmit theiueal
the upper bound on computation time given in Theorem 4.1 )fowards the central part (of the line) horizontally. As thedues
For the simplicity of presentation, we assume that there f@ach other cluster-heads in the path, the new maximum value
no interference outside the transmission range, e.= 0 in Propagated ahead. These transmissions can occur sinliiye
protocol model of interference. This assumption does nfeicaf @S the paths are confined in the squares of aide = 7&%) (Proof

the order of the computation time. (See the remark below.) V@é Lemma 3.1), aQE(cin)the minimum distance between any two

divide the field into the square cells of sid2s(n) — /Kl;)gn, squares i2r(n) — 75 > r(n). Hence there is no interference.

where K = 80, as shown in Figure 6. The number of cells in the Since the transmission range ign) and the values have
field M, = 2. It follows from Theorem 8.1 that the number©® Propagate a distance 1/2 units, the probability that thee t
ogn

of nodes in a cell is bounded Y + 1) K logn w.p. 1 asn — oo, '€QUired for the propagatiort Yo slots approaches 1 as

2r(n)
Now, we draw circles as shown in the left part of Figure 7" Once these values merge on the central vertical line, the

As shown in Figure 7, we classify these circles as Type A aRdme procedure can be used to get all the values at the center.
Type B circles. Type A circles have the centres of the cells &bnsidering that the probability of occurrence of all theerets

their centres and Type B circles have the corners of the esllsapproaches 1 as — oo we can say that
their centres. Type A and B circles together cover the whota.a

Also, lim P" (r <2014 p)Klogn +8(vV5+1) +

n— oo

V10 + € \/ﬁ+e) .
2r(n) 2r(n) )

P™ (Number of nodes _|n any circl€ (1 + u)K logn) p— (I‘ < 160(1 + 1) logn + 8(VE 4 1) + (m+€)\/T) _,
> P"(Number of nodes in any ceft (1 + p)K logn) n—oo 20log n

= 1 asn—o From Equations 1 and 11,

Hence 1 n
’ li "= — /=——<T
ngrolop <<\/§ 61) 20logn —

lim P"(Number of nodes in any circlg (14 p)Klogn) =1
e <160(1+/L)10gn+8(\/5+1)+(\/m+6)1/ﬁ) =1
We choose the node which is nearest to the center of the circle og 1

as the cluster-head. Note that Type A and Type B circles aperl O

Let all nodes in Type A circles form clusters, which we calpéy Remark:The assumption af = 0 is to simplify the presentation,

A clustures, and the nodes in Type B circles that do not lidnén tand does not change the order of the computation tima. i 0,

Type A circles form type B clusters. Thus Type B clusters hathen the transmissions in a Type A cluster will interfere hwit

a smaller number of nodes. some constant number of other Type A clusters and this consta
It can be shown similar to Lemma 3.4 that the probability thatepends only ormA. Thus, in this case, all the Type A clusters

the cluster-head lies in the circle of radiast the center of the can be activated in a constant number of slots (which depends

circle goes to 1 as — oo for all values ofe and hence when only on A), rather than in 1 slot as assumed in the proof. Thus,

e — 0. we obtain the same scaling order ever\if> 0.



Intuition about thelogn term in the upper bound expressioni0] S. Boyd, A. Ghosh, B. Prabhakar, D. Shah. Gossip Alpari: Design,
can be obtained as follows. Since we form clusters of nodats th __Analysis and Applications. IHEEE Infocom 2005. .

. [11] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. if§&lis,
are one hop neighbours of the cluster-heads, the numbeustecl Convergence in Multiagent Coordination, Consensus, armtkffg. in
members is the number of nodes that lie in a circle of rad{us Proceedings of the Joint 44th IEEE Conference on Decisiod @nntrol
drawn around the cluster-head. The node density. idence, the ~ and European Control Conference (CDC-ECC'02D05.
number of cluster members would 672 (n)n) = O(logn).

Since only one node in a cluster can transmit in a shitogn)
slots are needed to complete the collection of values from a
cluster. The clusterheads need to transmit the values to the
operator station. Since the clusterheads are sparselybdistd,
simultaneous transmissions are possible and value of theef
clusterhead needs to travel unit distance which reqlﬁeﬁ%)
slots.

We have extensively used the following result establishgd b
Xue and Kumar [8] stated here for completeness. In this set
up, the square field of unit area is split into small cells aesi

Klogn \/Klzg" by a grid as shown in Figure 6. The cells
are indexed by € {1,..., 1}

Theorem 8.1 (Xue and Kumar [8]Let K > @, and let
u* € (0,1) be the only root of the equation

—p* 4 (1 +p*)log(l +p*) =1/K

We tessellate the square field of unit area as mentioned above
There aren nodes deployed uniformly in the square field. Let
N; be the number of nodes in th&" cell; and M,, be the total
number of ceIIs(Mn = ) Then the following holds for

any /> p*

n
Klogn

: n L < _
nh_)rréO”P  Jax |N; — K'logn| < uKlogn 1

Remark: This implies that the number of nodes lying in any cell
is uniformly bounded betweefi — 1) K logn and(1+ ) K logn
w.p. 1 asn — oco. We note that the expected number of nodes in
a cell is K log n; thusu captures the range of variation from the
mean. We note that this result also holds in our case of @rcul
field of unit radius.
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