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Abstract—We provide a simple and accurate analytical model
for multi-cell IEEE 802.11 WLANs. Our model applies if the cell
radius, R, is much smaller than thecarrier sensing range, Rcs. We
argue that, the condition Rcs >> R is likely to hold in a dense
deployment of Access Points (APs). We develop a scalablecell
level model for such WLANs with saturated nodes as well as for
TCP-controlled long file downloads. The accuracy of our model is
demonstrated by comparison withns-2 simulations. Based on the
insights provided by our analytical model, we propose a simple
channel assignment algorithm which providesstatic assignments
that are Nash equilibria in pure strategies for the objective of
maximizing normalized network throughput, and requires only
as many steps as there are channels. Furthermore, our channel
assignment algorithm does not require any a priori knowledge
of topology and can be implemented in a decentralized manner.
In contrast to prior work, our approach to channel assignment
is based on thethroughput metric.

Index Terms—throughput modeling, fixed point analysis, chan-
nel assignment algorithm, Nash equilibria

I. I NTRODUCTION

This paper is concerned withinfrastructure modeWireless
Local Area Networks (WLANs) that use the Distributed Co-
ordination Function (DCF) Medium Access Control (MAC)
protocol as defined in the IEEE 802.11 standard [1]. Such
WLANs contain a number of Access Points (APs). Every
client station (STA) in the WLAN associates with exactly
one AP. Each AP, along with its associated STAs, defines
a cell. Thus, in our setting, DCF is used only forsingle-
hop communication within the cells, and STAs can access
the Internet only through their respective APs. The APs are
connected to the Internet by a high-speed wireline local area
network. Figure 1 depicts such amulti-cell infrastructure
WLAN. Each cell operates on a specific channel. Cells that
operate on the same channel are calledco-channel.

To support the ever-increasing user population at high access
speeds, WLANs are resorting to dense deployments of APs
where, for every STA, there exists an AP close to the STA
with which the STA can associate at a high Physical (PHY)
rate [2]. However, as the density of APs increases, cell sizes
become smaller and, since the number of non-overlapping
channels is limited1, co-channel cells become closer. Nodes
in two closely located co-channel cells can suppress each
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1For example, the number of non-overlapping channels in 802.11b/g is 3
and that in 802.11a is 12.
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Fig. 1. A multi-cell infrastructure WLAN: DCF is used only for
communication within the cells. A high-speed wireline local area
network connects the APs to the Internet through a LAN router.

other’s transmissions via carrier sensing and interfere with
each other’s receptions causing packet losses. Clearly, effective
planning and management are essential for achieving the
benefits of dense deployments of APs. However, large-scale
WLANs are difficult to plan and manage since good network
engineering models are lacking. In this paper, we first develop
an analytical model for multi-cell WLANs and then apply our
model to the task of channel assignment.
Our Contributions: We make the following contributions:

• We develop a scalablecell level model for multi-cell
WLANs with arbitrary cell topologies(Section V).

• We extend the single cell TCP analysis of [3] to multiple
interfering cells (Section V-B).

• Based on the insights provided by our analytical model,
we propose a simple decentralized algorithm which can
provide faststatic channel assignments (Section VII).

The remainder of this paper is organized as follows. In
Section II, we elaborate on our contributions by comparing our
work with the existing literature. In Section III, we provide the
motivation for our simple cell level model. In Section IV, we
provide our network model and summarize our key modeling
assumptions. The analytical model is developed in Section
V. In Section VI, we validate our model by comparing with
ns-2simulations. We propose a simple and fast decentralized



channel assignment algorithm in Section VII, and summarize
the conclusions in Section VIII. A more detailed version of
this paper is available as a technical report [4].

II. COMPARISON WITH RELATED L ITERATURE

Much of the earlier work on modeling WLANs deals with
single-AP networks or the so-calledsingle cells [5], [6].
Modeling of multi-hop ad hoc networksis closely related to
that of multi-cell WLANs. In the context of CSMA-based
multi-hop packet radio networks, Boorstyn et al. [7] proposed
a Markovian model with Poisson packet arrivals and arbitrary
packet length distributions. Wang et al. [8], Garetto et al.[9]
and Durvy et al. [10] adopted and extended the Boorstyn
model to 802.11-based multi-hop ad hoc networks. In the
context of multi-cell WLANs, Nguyen et al. [11] proposed a
model for dense 802.11 networks assuming all the APs to be
operating on the same channel. Bonald et al. [12] proposed
to model a multi-cell WLAN as a network of multi-class
processor-sharing queues with state-dependent service rates.

Since the activities of each node in a multi-hop ad hoc
network (or in a multi-cell WLAN) with general topology
evolves over time in a different specific way, one needs to
model the network at thenode level[7], [9], or at the link
level [8], [10], i.e., the activities of every single node or link
and the interactions among them need to be modeled. This
requires determining all theindependent setsof nodes or links
and the complexity of the model increases exponentially with
the number of nodes or links [13]. We identify a geometric
property, which we call thePairwise Binary Dependence
(PBD) condition (see A.3 in Section IV), under which multi-
cell WLANs can be modeled at thecell level. Unlike a node
level (resp. link level) model, our cell level model requires
determining all the independent sets ofcells, and thus, the
complexity of our model increases with the number of cells
rather than nodes (resp. links).

We argue that the PBD condition is likely to hold in a dense
deployments of APs, at least approximately. Hence, our cell
level model can be applied to obtain afirst-cut understanding
of large-scale WLANs with a dense deployment of APs. Our
cell level model is based on the channel contention model
of Boorstyn et al. [7] and the transmission attempt model
of [6]. Thus, our approach is similar to that of Garetto et
al. [9]. However, our model is much simpler than that in [9]
(see Discussion 5.1 following Equation 2) and the closed-form
expressions for collision probabilities and cell throughputs that
we derive are new. We also extend the single cell TCP analysis
of [3] to multiple interfering cells (Section V-B).

In [12], MAC contention is modeled by the following
heuristic: the mean time between consecutive packet trans-
missions correponding to a tagged user is proportional to the
number of other contending users plus 1(“plus 1” accounts
for the tagged user). Thus, the mean throughput obtained by a
tagged user is inversely proportional to “the number of other
contending users plus 1.” We show that throughputs cannot be
accurately computed based only on the number of contending
users (see ObservationO-5 in Section VI).

Channel assignment has been extensively studied (see, e.g.,
[14], [15], [16], [17], [18] and the references therein). Much
of the existing work on channel assignment proposes to
minimize the global interference power or maximize the global
Signal to Noise and Interference Ratio (SINR) without taking
into account the combined effect of the PHY and the MAC
layers. Due to carrier sensing, nodes in 802.11 networks get
opportunity to transmit for only a fraction of time, and this
must be accounted for when computing the global interference
power or SINR. Such an approach is found only in [14] where
the authors propose to maximize a quantity called “effective
channel utilization”. In reality, however, end users are more
interested in the “throughputs”. In contrast to prior work,our
approach to channel assignment is based on thethroughput
metric (see Section VII).

III. M OTIVATION FOR A CELL LEVEL MODEL

In a dense deployment of APs with denser user population,
it seems practically impossible to apply a node or a link level
model for planning and managing the network. However, we
can exploit a specific characteristics of dense deployments.
Let R denote thecell radius, i.e.,R is the maximum distance
between an AP and the STAs associated to it. LetRcs denote
thecarrier sensing range. We observe that,Rcs >> R is likely
to hold in a dense deployment of APs where, for every STA,
there is an AP very close to the STA. WithRcs >> R, the
network model can be simplified in the following ways:

1) Since any transmitter ‘T’ is within a small distance
R from its receiver ‘R’, a node ‘H’ that is beyond a
distanceRcs from ‘T’ (i.e., a potentialhidden node)
is unlikely to interfere with ‘R’2, i.e., carrier sensing
would avoid much of the co-channel interference and
we may ignore collisions due to hidden nodes.

2) If Node-1 in Cell-1 can sense the transmissions by Node-
2 in Cell-2, then it is likely that all the nodes in Cell-1
can sense the transmissions from all the nodes in Cell-2
and vice versa, i.e., we may assume thatnodes belonging
to the same cell have an identical view of the rest of the
network and interact with the rest of the network in an
identical manner.

The assumption that the AP and all its associated STAs have
an identical view of the network has been applied in a dense
AP setting [2] where the authors approximate STA statistics
by statistics collected at the APs for efficiently managing their
network. We adopt this idea of [2] to develop an analytical
model. We identify the locations of the STAs with the locations
of their respective APs, and treat a cell as a single entity, thus
yielding a scalablecell levelmodel. A simple cell level model
is particularly suitable for the task of channel assignmentsince
channels are assigned to cells rather than to nodes. At the
network planning stage, the locations of the users are not
known but the locations of the APs and the expected number
of users per cell might be known. Furthermore, much of the

2Ignoring noise, we have, SINR≥
“

Rcs

R

”ν
, whereν is called thepath

loss exponentand takes a value between 2 to 4.



traffic in today’s WLANs is downlink, i.e., from the APs to
the users, and a large fraction of channel time is occupied by
transmissions from the APs. It is then reasonable to developa
model based only on the topology of the APs and the expected
number of users per cell, assuming that the users are located
close to their respective APs.

IV. N ETWORK MODEL AND ASSUMPTIONS

We consider scenarios withRcs >> R. Based on our
discussion in Section III, we assume that simultaneous trans-
missions by nodes that are farther thanRcs from each other
result in successful receptions at their respective receivers. We
also assume that simultaneous transmissions by nodes that are
within Rcs always lead to packet losses at their respective
receivers, i.e., we ignore the possibility ofpacket capture.
We say that two nodes aredependentif they are withinRcs;
otherwise, the two nodes are said to beindependent. Two cells
are said to be independent if every node in a cell is independent
w.r.t. every node in the other cell; otherwise, the two cells
are said to be dependent. Two dependent cells are said to
be completely dependentif every node in a cell is dependent
w.r.t. every node in the other cell. In this broad setting, our
key assumptions are the following:

A.1 Only non-overlapping channels are used.
A.2 Associations of STAs with APs are static. This implies

that the number of STAs in a cell is fixed.
A.3 Pairwise Binary Dependence (PBD):Any pair of cells

is either independent or completely dependent.
A.4 The STAs are so close to their respective APs that packet

losses due to channel errors are negligible.

In a dense deployment of APs, due to small cell radiusR
and Rcs >> R, two cells would be completely dependent
if the corresponding APs lie withinRcs of each other and
independence would hold beyondRcs, i.e., the PBD condition
would hold, at least approximately. The PBD condition is a
geometric property that enables modeling at the cell level
since, if the PBD condition holds, the relative locations of
the nodes within a cell do not matter. Also, any interferer
‘I’, which must be withinRcs of a receiver ‘R’, will also be
within Rcs of the transmitter ‘T’ if the PBD condition holds.
Hence, either (i) ‘I’ can start transmitting at the same time
as ‘T’ causingsynchronouscollisions at ‘R’, or (ii) ‘I’ gets
suppressed by T’s RTS (or DATA) transmission followed by
R’s CTS (or ACK) transmission since CTS and ACK frames
are given higher priority through SIFS (< DIFS < EIFS).
Thus, if the PBD condition holds, nodes do not require deferral
by EIFS; deferral by DIFS would suffice. Thus, we assume that
contention for medium access always begins after deferral by
DIFS and we do not model the impact of EIFS.

V. A NALYSIS OF MULTI -CELL WLAN S WITH ARBITRARY

CELL TOPOLOGY

In this section, we develop a cell level model for WLANs
that satisfy the PBD condition. We provide a generic model
and demonstrate the accuracy of our model by comparing
with simulations of specific cell topologies pertaining to:(i)
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Fig. 2. Examples of multi-cell systems: (a) four linearly placed co-channel
cells, (b) five linearly placed co-channel cells, (c) seven hexagonally placed
co-channel cells, and (d) seven co-channel cells with an arbitrary cell topology.
The co-channel contention graphs have also been shown wherethe dots
represent the cells. Neighbors have been joined by edges. For example (a),
the pairs{1, 2}, {2, 3} and{3, 4} are dependent and the pairs{1, 3}, {1, 4}
and{2, 4} are independent.

networks with linear or hexagonal layout of cells (see Figures
2(a)-2(c)), and (ii) networks with arbitrary layout of cells
(see Figure 2(d)). We index the cells by positive integers
1, 2, . . . , N , in some arbitrary fashion whereN denotes the
number of cells. LetN = {1, 2, . . . , N} denote the set of cells.
We form acontention graphG by representing every cell by
a vertex and joining every pair of completely dependent cells
by an edge. Given the topology of the APs,G can be obtained.

Let M andC = {1, 2, . . . , M} denote the number and the
set of available channels, respectively. Letc = (c1, c2, . . . , cN )
denote achannel assignment, where,∀i ∈ N , ci ∈ C, denotes
the channel assigned to Cell-i. Two completely dependent co-
channel cells are said to beneighbors. Note that,two com-
pletely dependent cells operating on different non-overlapping
channels arenot neighbors. Let Ni (⊂ N ) denote the set of
neighboring cells of Cell-i (i ∈ N ). Note thati /∈ Ni. The key
to modeling the MAC contention in a multi-cell network, given
a channel assignmentc, is the co-channel contention graph
G(c) in which only neighbors (i.e., completely dependent co-
channel cells) are joined by edges3. Figures 2(a)-2(d) also
depict the corresponding co-channel contention graphs.

We emphasize that determining a channel assignmentc is
not part of our analytical model. Given a channel assignment
c, we can obtainG(c), and our model applies to anyG(c).
In Section V-A, we model the case where nodes are infinitely
backlogged and are transferring packets to one or more nodes
in the same cell using UDP connection(s). In Section V-B, we
extend to the case when STAs download long files through
their respective APs usingpersistentTCP connections.

3In particular, withM = 1 channel, we have,G(c) = G.



A. Modeling with Saturated MAC Queues

Due to the PBD condition, nodes belonging to the same cell
have an identical view of the rest of the network. When one
node senses the medium idle (resp. busy) so do the other nodes
in the same cell and we say that a cell is sensing the medium
idle (resp. busy). Since the nodes are saturated, whenever acell
senses the medium idle, all the nodes in the cell decrement
their back-off counters per idle back-off slot that elapsesin
their local medium4 and we say that the cell is in back-off.
If the nodes were not saturated, a node with an empty MAC
queue would not count down during the “medium idle” periods
and the number ofcontendingnodes would be time-varying.
With saturated AP and STA queues, the number of contending
nodes in each cell remains constant.

We say that a cell transmits when one or more nodes in
the cell transmit(s). When two or more nodes in the same
cell transmit, anintra-cell collision occurs. Consider Figure
2(a). There are periods during which all the four cells are in
back-off. We model these periods, when none of the cells is
transmitting, by the stateΦ whereΦ denotes theempty set. The
system remains in StateΦ until one or more cell(s) transmit(s).
When a cell transmits, its neighbors sense the transmission
after a propagation delay and they defer medium access.
We then say that the neighbors areblocked due to carrier
sensing. When a cell is blocked, the back-off counters of all
the nodes in the cell arefrozen. Two neighboring cells can
start transmitting together before they could sense each other’s
transmissions resulting insynchronous inter-cellcollisions.

We observe that a cell can be in one of the three states: (i)
transmitting, (ii) blocked, or (iii) in back-off. Modelingsyn-
chronous inter-cell collisions requires a discrete time slotted
model. However, this would require a large state space since
the cells change their states in an asynchronous manner. For
example, consider Figure 2(a) and suppose that Cell-1 starts
transmitting and blocks Cell-2 after a propagation delay. How-
ever, Cell-3 is independent of Cell-1 and can start transmitting
at any instant during Cell-1’s transmission. Thus, the evolution
of the system is partly asynchronous and partly synchronous.
To capture both, we follow atwo-stageapproach along the
lines of [9]. In the first stage, we ignore inter-cell collisions and
assume that blocking due to carrier sensing is immediate. We
develop a continuous time model as in [7] to obtain the fraction
of time each cell is transmitting/blocked/in back-off. In the
second stage, we obtain the fraction ofslots in which various
subsets of neighboring cells can start transmitting together.
This would allow us to compute the collision probabilities
accounting for synchronous inter-cell collisions. We combine
the above through a fixed-point equation and compute the
throughputs using the solution of the fixed-point equation.

We define the following as in [6]:

βi := (transmission) attempt probability (over the back-off
slots) of the nodes in Cell-i

4Nodes belonging to different cells, in general, have different views of the
network activity.

γi := collision probability as seen by the nodes in Cell-i
(conditioned on an attempt being made)

The attempt probabilityβi of the nodes in Cell-i, ∀i ∈ N ,
can be related toγi by (see [6])

βi =
1 + γi . . . + γK

i

b0 + γib1 . . . + γk
i bk + . . . + γK

i bK

(1)

whereK denotes theretry limit and bk, 0 ≤ k ≤ K, denotes
the mean back-off sampled afterk collisions.

The First Stage: When Cell-i and some (or all) of its
neighboring cells are in back-off they contend until one of
the cells, say, Cell-j, j ∈ Ni ∪ {i}, starts transmiting. Since,
we ignore inter-cell collisions in the first stage, the possibility
of two or more neighboring cells starting transmission together
is ruled out. When Cell-i starts transmitting, we say that it has
becomeactive. When Cell-i becomes active, it gains control
over its local medium byimmediatelyblocking its neighbors
that are not yet blocked. We assume that the time until Cell-i
goes from the back-off state to the active state is exponentially
distributed with mean1

λi
. The activation rateλi is given by

λi =
1 − (1 − βi)

ni

σ
(2)

whereni denotes the number of nodes in Cell-i, σ denotes
the duration of a back-off slot (in seconds) and1− (1−βi)

ni

is the probability that there is an attempt in Cell-i per back-
off slot. Notice that we have converted the aggregate attempt
probability in a cell per (discrete) back-offslot to an attempt
rate over (continuous) back-offtime. Also notice that, our
assumption of “exponential time until transition from the back-
off state to the active state” is the continuous time analogue of
the assumption of “geometric number of slots until attempt”
in the discrete time model of [6].

Discussion 5.1:In [9], the authors use an unconditional
activation rateλ over all times as well as a conditional
activation rateg over the back-off times and relate the two
rates through a throughput equation which makes their model
complicated. We use a single activation rateλ which is
conditional on being in the back-off state and our model is
much simpler than that of [9].

When Cell-i becomes active, its neighboring cells remain
blocked (due to Cell-i) until Cell-i’s transmission finishes and
an idle DIFS period elapses. When Cell-i becomes active
through a successful transmission (resp. an intra-cell collision)
its neighbors remain blocked for asuccess timeTs (resp. a
collision timeTc)5. The active periods of Cell-i are of mean
duration 1

µi
given by

1

µi

=

(

niβi(1 − βi)
ni−1

1 − (1 − βi)ni

)

· (Ts)

+

(

1 −
niβi(1 − βi)

ni−1

1 − (1 − βi)ni

)

· (Tc) (3)

5For theBasic Access(resp.RTS/CTS) mechanism,Ts corresponds to the
time DATA-SIFS-ACK-DIFS (resp. RTS-SIFS-CTS-SIFS-DATA-SIFS-ACK-
DIFS) andTc corresponds to the time DATA-DIFS (resp. RTS-DIFS).
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Fig. 3. The CTMC describing the cell level contention for thefour
linearly placed cells given in Figure 2(a).

where niβi(1−βi)
ni−1

1−(1−βi)ni
is the probability that Cell-i becomes

active through a success given that it becomes active. It is
worthwhile now to mention theinsensitivityresult of Boorstyn
et al. [7] which says that the product-form solution provided
by their model is insensitive to the packet length distribution
and depends only on the mean packet lengths. Applying their
insensitivity argument, we take the active periods of Cell-i to
be i.i.d. exponential random variables with mean1

µi
.

Due to carrier sensing, at any point of time, only a set
A (⊂ N ) of mutually independent cells can be active together,
i.e.,A must be anindependent set(of vertices) ofG(c). From
G(c), we can determine the set of cellsBA that get blocked
due toA, and the set of cellsUA that remain in back-off, i.e.,
the set of cells in which nodes can continue to decrement their
back-off counters. Note thatA, BA andUA form a partition
of N . We takeA(t), i.e., the setA of active cells at timet, as
the state of the multi-cell system at timet. Due to exponential
activation rates and active periods, at any timet, the rate of
transition to the next state is completely determined by the
current stateA(t). For example, Cell-j, j ∈ UA, joins the set
A (and its neighboring cells that are also inUA join the set
BA) at a rateλj . Similarly, Cell-i, i ∈ A, leaves the setA (and
its neighboring cells that are blocked only due to Cell-i leave
the setBA) to join the setUA at a rateµi. In summary,the
process{A(t), t ≥ 0} has the structure of a Continuous Time
Markov Chain (CTMC). This CTMC contains a finite number
of states and is irreducible. Hence, it is stationary and ergodic.
The set of all possible independent sets which constitutes the
state space of the CTMC{A(t), t ≥ 0} is denoted byA.
For a given contention graph,A can be determined. For the
topology given in Figure 2(a), we haveN = {1, 2, 3, 4} and
A = {Φ, {1}, {2}, {3}, {4}, {1, 3}, {1, 4}, {2, 4}} where we
recall thatΦ denotes the empty set. The CTMC{A(t), t ≥ 0}
corresponding to this example is given in Figure 3.

It can be checked that the transition structure of the CTMC
{A(t), t ≥ 0} satisfies the Kolmogorov Criterion for re-
versibility (see [19]). Hence, the stationary probabilitydistri-
bution π(A),A ∈ A, satisfies the detailed balance equations,

π(A)λi = π(A ∪ {i})µi , (∀i ∈ UA)

and the stationary probability distribution has the form

π(A) =

(

∏

i∈A

ρi

)

π(Φ), (∀A ∈ A) (4)

where ρi := λi

µi
and π(Φ) (which denotes the stationary

probability that none of the cells is active) is determined from
the normalization equation

∑

A∈A

π(A) = 1. (5)

Combining Equations 4 and 5, we obtain

π(A) =

(

∏

i∈A

ρi

)

∑

A∈A





∏

j∈A

ρj





(∀A ∈ A). (6)

Convention:A product
∏

over an empty index set is taken to
be equal to 1.

The Second Stage:We now compute the collision proba-
bilities γi’s accounting for inter-cell collisions. Note thatγi

is conditional on an attempt being made by a node in Cell-
i. Hence, to computeγi, we focus only on those states in
which Cell-i can attempt. Clearly, Cell-i can attempt in State-
A iff it is in back-off in State-A, i.e., iff i ∈ UA. In all
such states a node in Cell-i can incur intra-cell collisions
due the other nodes in Cell-i. Furthermore, some (or all) of
Cell-i’s neighbors might also be in back-off in State-A. If
a neighboring cell, say, Cell-j, j ∈ Ni, is also in back-off
in State-A, i.e., if j ∈ UA, then a node in Cell-i can incur
inter-cell collisions due to the nodes in Cell-j. The collision
probabilityγi is then given by Equation 7 (appears at the top
of the next page). A formal derivation of Equation 7 can be
found in Appendix A of [4].

Fixed Point Formulation: Equations 2, 3, 6, 7 andρi := λi

µi

can express theγi’s as functions of only theβi’s. Together with
Equation 1, they yield anN -dimensional fixed point equation
where we recall thatN is the total number of cells. In all of
the cases that we have considered, the fixed point iterations
were observed to converge to the same solutions irrespective
of starting points. However, we have not yet been able to
analytically prove the uniqueness of solutions.

Calculating the Throughputs: The stationary probabilities
of the CTMC{A(t), t ≥ 0} can provide the fraction of time
xi for which Cell-i is unblocked. A cell is said to be unblocked
when it belongs to eitherA or UA. Thus,∀i ∈ N ,

xi =
∑

A∈A : i∈A∪UA

π(A). (8)

Definition 5.1: Let Gi(c), i ∈ N , denote the subgraph
obtained by removing Cell-i and its neighboring cells inNi

from G(c). For a givenG(c), let ∆ be defined as follows:

∆ :=
∑

A∈A





∏

j∈A

ρj



 (9)



γi =

∑

A∈A : i∈UA
π(A)

[

1 − (1 − βi)
ni−1

∏

j∈Ni : j∈UA
(1 − βj)

nj

]

∑

A∈A : i∈UA
π(A)

(∀i ∈ N ) (7)

Let ∆i denote the∆ corresponding to the subgraphGi(c).
An important observation which facilitates the computation

of the xi’s is given by the following theorem.
Theorem 5.1:The fraction of timexi for which Cell-i is

unblocked is given by

xi =
(1 + ρi)∆i

∆
, ∀i ∈ N . (10)

Proof: See Appendix B of [4].
Let Θi denote the aggregate throughput of Cell-i in a given

multi-cell network and letΘni,singlecell denote the aggregate
throughput of Cell-i if it was an isolated cell containing
ni nodes. BothΘi and Θni,singlecell are in packets/sec. We
approximateΘi by

Θi = xi · Θni,singlecell (11)

and Θi divided by ni gives the per node throughputθi in
Cell-i, i.e., θi = Θi

ni
(packets/sec).

Discussion 5.2:Equation 11 is justified as follows. If Cell-
i is indeed an isolated cell, then we havexi = 1 and
Θi = Θni,singlecell . However, in general, Cell-i remains
unblocked only for a fraction of timexi. If we ignore the
time wasted in inter-cell collisions, the times during which
Cell-i is unblocked would consist only of the back-off slots
and the activities of Cell-i by itself. Thus, we approximate the
aggregate throughput of Cell-i, over the times during which
it is unblocked, byΘni,singlecell andΘni,singlecell multiplied
with xi gives the aggregate throughputΘi of Cell-i in the
multi-cell network. Clearly, Equation 11 is an approximation
since the time wasted in inter-cell collisions have been ignored.
However, (1) it is quite accurate when compared with the
simulations (see Section VI), and (2) it allows efficient com-
putation of throughputs sinceΘni,singlecell can be obtained
from a single cell analysis and the∆ as well as the∆i’s can
be computed using efficient algorithms [13].

Large ρ Regime: Let η (resp.ηi) denote the number of
Maximum Independent Sets (MISs) ofG(c) (resp.Gi(c)) (see
Definition 5.1). Notice that,ηi is also equal to the number of
MISs of G(c) to which Cell-i belongs. From Equation 6 it is
easy to see that, asρi → ∞, ∀i ∈ N , we have,

π(A) →







1

η
if A is an MIS,

0 otherwise.

i.e., only an MIS of cells can be active at any point of time.
Also, from Equations 6, 8, 9 and 10, we observe that, as
ρi → ∞, ∀i ∈ N , we have,

xi →
ηi

η
,

where we recall thatxi is the fraction of time for which Cell-i
is unblocked. The quantity

xi =
Θi

Θni,singlecell

can be interpreted as the throughput of Cell-i, normalized
with respect to Cell-i’s single cell throughput. Thus, a cell
which belongs to every MIS ofG(c) (resp. does not belong
to any MIS of G(c)) obtains a normalized throughput 1
(resp. 0). Similar observations have been made in [8] for link
throughputs. Defining thenormalized network throughput̄Θ
by

Θ̄ :=

N
∑

i=1

xi , (12)

and recalling that an MIS ofG(c) is active at any point of
time, we further observe that, asρi → ∞ for all i ∈ N , we
have,

Θ̄ → α(G(c)) ,

whereα(G) denotes the cardinality of an MIS (of vertices) in
a graphG and is also called theindependence numberof G.
Notice that,α(G) is a measure ofspatial reusein a network
with contention graphG, and thus,α(G(c)) is a measure of
spatial reuse induced by the assignmentc.

B. Extension to TCP Traffic

Our extension to TCP-controlled long file downloads is
based on the single cell TCP-WLAN interaction model of [3].
The model proposed in [3] has been shown to be quite accurate
when: (1) the TCP server is connected to the AP by a high-
speed wireline LAN such that the AP in the WLAN is the
bottleneck, (2) every STA has asingle persistentTCP con-
nection, (3) there are no packet losses due to buffer overflow,
(4) the TCP timeouts are set large enough to avoid timeout
expirations due to Round Trip Time (RTT) fluctuations, and
(5) the delayed ACK mechanism is disabled. We keep the
above assumptions in this paper.

In [3], the authors propose to model a single cell having an
AP and an arbitrary number of STAs with long-lived TCP con-
nections by an “equivalent saturated network” which consists
of a saturated AP and a single saturated STA. “This equivalent
saturated model greatly simplifies the modeling problem since
the TCP flow control mechanisms are now implicitly hidden
and the total throughput can be computed using the saturation
analysis [3].” Using the equivalent saturated model of [3],the
analysis of Section V-A can be applied to TCP-controlled long
file downloads, takingni = 2, ∀i ∈ N .

VI. RESULTS AND DISCUSSION

We carried out simulations usingns-2.31[20]. We created
the example topologies given in Figure 2(a)-2(d) by setting
the cell radii and the distances among the cells such that the
PBD condition holds. Nodes were randomly placed within the
cells. The saturated case was simulated with high rate CBR



TABLE I
RESULTS FOR THEFOUR L INEARLY PLACED CELLS GIVEN IN FIGURE

2(A) WHEN EACH CELL CONTAINS n = 5 NODES

Cell γsim γana θsim θana θ∞
index (pkts/sec) (pkts/sec) (pkts/sec)

1 0.2351 0.2399 94.48 97.41 93.53
2 0.3005 0.3146 41.21 46.66 46.76
3 0.2999 0.3146 41.66 46.66 46.76
4 0.2359 0.2399 93.99 97.41 93.53

TABLE II
RESULTS FOR THEFIVE L INEARLY PLACED CELLS GIVEN IN FIGURE

2(B) WHEN EACH CELL CONTAINS n = 5 NODES

Cell γsim γana θsim θana θ∞
index (pkts/sec) (pkts/sec) (pkts/sec)

1 0.1882 0.1897 129.35 131.35 140.29
2 0.3321 0.3975 8.69 8.64 0
3 0.1892 0.1925 123.35 126.41 140.29
4 0.3321 0.3975 8.72 8.64 0
5 0.1884 0.1897 129.31 131.35 140.29

TABLE III
RESULTS FOR THESEVEN ARBITRARILY PLACED CELLS GIVEN IN

FIGURE 2(D) WHEN CELL-i, 1 ≤ i ≤ 7 CONTAINS ni = i + 1 NODES

Cell ni γsim γana θsim θana θ∞
index i (pkts/sec) (pkts/sec) (pkts/sec)

1 2 0.0669 0.0666 320.66 325.26 349.94
2 3 0.1163 0.1163 216.19 219.65 236.09
3 4 0.2764 0.3280 12.48 12.97 0
4 5 0.3105 0.3318 34.29 40.20 46.76
5 6 0.2505 0.2585 83.77 84.92 77.26
6 7 0.3574 0.3787 28.67 32.40 32.81
7 8 0.3062 0.3139 56.87 59.21 56.90

over UDP connections. For the TCP case, we created one TCP
download connection per STA. Each TCP connection was fed
by an FTP source with the TCP source agent attached directly
to the AP to emulate a local server. The AP buffer was set
large enough to avoid buffer losses. The EIFS deferral and
the delayed ACK mechanism were disabled. Each case was
simulated 20 times, each run for 200 sec of “simulated time”.
We took 11 Mbps data rate and packet payloads of 1000 bytes.

We computed the single cell throughputs for the saturated
case as in [6] and that for the TCP case as in [3]. The single
cell throughputs thus obtained from known analytical models
and thexi’s computed by our multi-cell model were plugged
into Equation 11 to obtain cell throughputs in the multi-cell
scenarios. The function “fsolve()” of MATLAB was used for
solving theN -dimensional fixed point equation. We report the
results for “Basic Access”. Similar results were obtained with
“RTS/CTS”. We do not report the results for the hexagonal
topology given in Figure 2(c) which can be found in [4]. In
the following, quantities denoted with a subscript“sim” (resp.
“ana” ) correspond to results obtained fromns-2 simulations
(resp. fixed point analysis). In each case,θ∞ represents the
throughput per-node obtained by takingρi → ∞, ∀i ∈ N .

A. Results for the Saturated Case

Tables I and II summarize the results for the example multi-
cell cases depicted in Figures 2(a) and 2(b), respectively,when
each cell containsn = 5 saturated nodes. Table III summarizes
the results for the example case given in Figure 2(d) when
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Fig. 4. Comparing collision probabilityγ for the scenario in Figure
2(d) when Cell-i, 1 ≤ i ≤ 7, containsni = i + 1 saturated nodes.
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Fig. 5. Comparing throughput per nodeθ for the scenario in Figure
2(d) when Cell-i, 1 ≤ i ≤ 7, containsni = i + 1 saturated nodes.

Cell-i, 1 ≤ i ≤ 7, containsni = i + 1 saturated nodes.
We show the plots corresponding to Table III in Figures 4
and 5 which compare the collision probabilityγ and the
throughput per nodeθ, respectively. In Figures 4 and 5, we
also show the relevant single cell results, i.e., the results one
would expect had the seven cells been mutually independent.
Referring Tables I-III, and Figures 4 and 5, we make the
following observations:
O-1.) Collision probabilities (resp. throughputs) in the multi-
cell scenarios are always higher (resp. lower) than the corre-
sponding single cell values (see Figures 4 and 5) because (a)
inter-cell collisions can be significant, and (b) due to blocking,
cells get opportunity to transmit only a fraction of time.
O-2.) Our analytical model is quite accurate (less than 10%
error in most cases) in predicting the collision probabilities and
throughputs. The throughput predictions withρi → ∞, ∀i ∈
N , is fairly accurate but the fixed point analysis provides more
accurate predictions. Furthermore, our model works well with
either equal or unequal number of nodes per cell.
O-3.) Our analytical model always over-estimates the through-
puts since the time wasted in inter-cell collisions have been
ignored. Ignoring inter-cell collisions in the first stage of the



TABLE IV
RESULTS FOR THEAP CORRESPONDING TOFIGURE 2(A) WHEN EACH

CELL CONTAINS 1 AP AND n = 5 STAS

Cell γsim,AP γana,AP θsim,AP θana,AP θ∞,AP

index (pkts/sec) (pkts/sec) (pkts/sec)

1 0.1038 0.1033 306.33 318.73 304.35
2 0.1560 0.1574 153.16 169.18 152.18
3 0.1555 0.1574 153.06 169.18 152.18
4 0.1038 0.1033 306.41 318.73 304.35

TABLE V
RESULTS FOR THEAP CORRESPONDING TOFIGURE 2(B) WHEN EACH

CELL CONTAINS 1 AP AND n = 5 STAS

Cell γsim,AP γana,AP θsim,AP θana,AP θ∞,AP

index (pkts/sec) (pkts/sec) (pkts/sec)

1 0.0728 0.0775 381.21 387.16 456.53
2 0.1793 0.1950 75.16 85.62 0
3 0.0744 0.0832 340.24 346.47 456.53
4 0.1786 0.1950 75.23 85.62 0
5 0.0728 0.0775 381.15 387.16 456.53

TABLE VI
RESULTS FOR THEAP CORRESPONDING TOFIGURE 2(D) WHEN EACH

CELL CONTAINS 1 AP AND n = 5 STAS

Cell γsim,AP γana,AP θsim,AP θana,AP θ∞,AP

index (pkts/sec) (pkts/sec) (pkts/sec)

1 0.0610 0.0670 421.70 425.83 456.53
2 0.0604 0.0670 421.92 425.83 456.53
3 0.2010 0.2528 33.79 38.50 0
4 0.1561 0.1685 141.80 156.41 152.18
5 0.0987 0.1028 317.39 329.06 304.35
6 0.1551 0.1644 158.55 172.64 152.18
7 0.1061 0.1099 301.15 314.10 304.35

model also over-estimates the fraction of time spent in back-
off. Thus, the collision probabilities are also over-estimated.
However, had we not accounted for the inter-cell collisionsin
the second stage, our analytical collision probababilities would
have been equal to the corresponding single cell collision
probabilities (see Figures 4 and 5).
O-4.) Throughput distribution among the cells can be very un-
fair even over long periods of time. Furthermore, introduction
of a new co-channel cell can drastically alter the throughput
distributions. For example, compare Tables I and II. Cell-2and
Cell-4 severely get blocked if Cell-5 is introduced to the four
cell network given in Figure 2(a).
O-5.)The throughput of a cell cannot be accurately determined
based only on thenumberof interfering cells. Consider, for ex-
ample, Figure 2(d). Cell-3 and Cell-4 each have two neighbors
but their per node throughputsθ are quite different (see Figure
5). In particular,θ4 > θ3 even thoughn3 = 4 < n4 = 5. This
is due to Cell-7 which blocks Cell-6 for certain fraction of time
during which Cell-4 gets opportunity to transmit whereas Cell-
1 and Cell-2 are almost never blocked and Cell-3 is almost
always blocked due to Cell-1 and Cell-2. Thus,topology plays
the key role and heuristic methods based only on the number
of neighbors would fail.

B. Results for the TCP Download Case

Tables IV-VI summarize the AP statistics for the topologies
in Figures 2(a), 2(b) and 2(d), respectively. We show the plots
corresponding to Table VI in Figures 6 and 7 which compare
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Fig. 6. Comparing collision probabilityγ for the scenario in Figure
2(d) when each cell contains an AP andn = 5 STAs.
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Fig. 7. Comparing throughput per nodeθ for the scenario in Figure
2(d) when each cell contains an AP andn = 5 STAs.

the collision probabilityγ and the throughput per nodeθ,
respectively. Referring Tables IV-VI, and Figures 6 and 7,
we conclude that the foregoing observations (O.1-O.5) for the
saturated case carry over to TCP-controlled long file transfers
as well. Referring Tables IV-VI we extend the validity of the
equivalent saturated model of [3] as follows:
O-6.) The equivalent saturated model of [3] proposed in the
context of a single cell, preserves its desirable properties, i.e.,
it predicts the AP statistics quite well when extended to a
multi-cell WLAN that satisfies the PBD condition.

C. Variation withρ

Clearly, theρi’s are functions of theβi’s and the payload
size. Theβi’s cannot be preset to desired values since they
are determined by the back-off adaptation mechanism of
DCF. Thus, we study the effect of variation ofρ by varying
the payload size. Figures 8 and 9 depict the variation with
payload size of analytically computed collision probabilities
and normalized cell throughputs, respectively, for the seven
cell network of Figure 2(d) when each cell containsn = 10
saturated nodes. Similar results were obtained for the TCP
case as well. From Figures 8 and 9, we observe that:
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Fig. 9. Variation of normalized cell throughputs with payload size
for the seven cell network in Figure 2(d).

O-7.) The results are largely insensitive to the variation in
payload size. Moreover, the normalized cell throughputs are
approximately equal to the normalized throughputs obtained
by taking ρi → ∞, 1 ≤ i ≤ 7, i.e., we have,x1 = x2 ≈
1, x3 ≈ 0, x4 ≈ x6 ≈ 1

3 , x5 ≈ x7 ≈ 2
3 . Hence, we may

assume that,̄Θ ≈ α(G(c)) for all values ofρ.

VII. A S IMPLE AND FAST CHANNEL ASSIGNMENT

ALGORITHM FOR MAXIMIZING Θ̄

Any channel assignment algorithm requires a means to
evaluate thegoodnessof an assignment based on which it
determines abetter assignment. Our analytical model can
provide such feedback. In fact, we could apply our model
in conjunction with the Linear Reward-Inaction (LR−I ) al-
gorithm [21]. However, we found theLR−I algorithm to be
extremely slow (see [4] for the details). The Linear Reward-
Penalty (LR−P ) algorithm of [17] and thesimulated annealing
algorithm of [18] guarantee convergence to a globally opti-
mum solution as the number of iterations goes to infinity.
A greedyversion of simulated annealing algorithm in [18]
converges relatively fast but still takes a large number of
iterations to converge. Moreover, theLR−I algorithm and

the greedy simulated annealing algorithm can only provide
channel assignments that areNash equilibria in pure strategies
in the sense that changing the channel of one of the cells does
not increase the expectedutility.

Suppose that our objective is to maximize the normalized
network throughputΘ̄ (see Equation 12). As discussed in
ObservationO-7, Θ̄ ≈ α(G(c)). Hence, maximizingα(G(c))
would maximizeΘ̄. Thus, we need to determine an assignment
c to transformG to G(c) so thatα(G(c)) is maximized. To this
end, we propose the following channel assignment algorithm.
(recall thatM denotes the number of available channels)

Maximal Independent Set Algorithm (mISA) :
1. Begin withG (since we have not yet assigned channels).
2. Choose amaximalindependent set (mIS)6 of cells inG,

assign them Channel-1, and then remove them fromG.
3. Increment the channel index and repeat Step-2 above on

the residualgraph until exactly one channel is left.
4. Assign Channel-M to all the cells in the residual graph

after M − 1 steps.

Notice that mISA takes onlyM steps. Clearly, mISA is
based on a classical graph coloring technique, but the novelty
lies in our recognizing the notion of optimality that mISA
provides which is given by the following theorem.

Theorem 7.1:The channel assignments by mISA are Nash
equilibria in pure strategies for the objective of maximizing
normalized network throughput̄Θ asρi → ∞, ∀i ∈ N .

Proof: Note that the residual graph may becomenull (i.e.,
it might not have any vertices left) afterM ′ < M steps. If
the residual graph becomes null in less thanM steps, then
every cell would have a channel different from that of all its
neighbors and, we have,̄Θ = N , i.e., mISA would provide a
globally optimum solution and we are done. Hence, assume
that the residual graph afterM − 1 steps is not null.

Suppose thatNj cells are assigned Channel-j in Step-j, 1 ≤
j ≤ M−1. Let Gj be the residual graph afterj steps,1 ≤ j ≤
M −1. Let Θ̄k denote the aggregate normalized throughput of
the cells on Channel-k, 1 ≤ k ≤ M . Then, we have,̄Θj = Nj ,
1 ≤ j ≤ M − 1, due to independence, and̄ΘM = α(GM−1).
Hence,Θ̄ =

∑M

k=1 Θ̄k =
∑M−1

j=1 Nj + α(GM−1). Suppose
that a cell on Channel-j, j 6= M , is moved to Channel-k,
k 6= j. Then, Θ̄j decreases by 1 but̄Θk can increase by at
most 1. Hence,̄Θ cannot increase. Suppose now that a cell on
Channel-M is moved to Channel-j, 1 ≤ j ≤ M − 1. Clearly,
any cell on Channel-M is dependent (in the original graph
G) w.r.t. at least one of theNj cells on Channel-j since the
Nj cells that were already on Channel-j, 1 ≤ j ≤ M − 1,
form an mIS. Hence,̄Θj does not change but̄ΘM can only
decrease. Hence,̄Θ cannot increase by changing the channel
of only one of the cells and the theorem is proved.

Implementation of mISA: mISA can be implemented in
a decentralized manner as follows. APs sample random back-
offs using a contention windowW and contend for accessing
the medium using Channel-1. IfW is chosen large enough,

6The lower case ‘m’ corresponds to “maximal” as opposed to theupper
case ‘M’ which corresponds to “maximum”.



the probability that two or more neighboring APs sample
the same back-off would be small. When an AP wins the
contention it keeps transmitting broadcast packets separated
by SIFS for some durationT >> σW where we recall that
σ is the duration of a back-off slot. This emulates the infinite
ρ situation since an AP after wining the contention does not
relinquish control over its local medium, and its neighboring
APs remain blocked for the durationT . We had observed
that, asρi → ∞, ∀i ∈ N , only the cells that belong to an
MIS obtain non-zero normalized throughputs. But this holds
only in anensemble averagesense. If an AP, after wining the
contention, does not relinquish control over its local medium,
in a particularsample path, an mIS of APs (which may not
be an MIS) wouldgrab the channel duringT . This is not
surprising since with infiniteρi’s, the CTMC {A(t), t ≥ 0}
becomes absorbing with the maximal independent sets of cells
as the absorbing states and we cannot expect the time average
to be equal to the ensemble average.

At time T , APs that could transmit consecutive broadcast
packets stop contending until time(M − 1) × T and APs
that remain blocked switch to Channel-2, sample fresh back-
offs and keep contending until2T and so on. APs that remain
blocked throughout the duration(M−1)×T stick to Channel-
M . Thus, in every time durationT , a maximal independent
set of APs would be assigned a channel. Normal network
operation can begin after time(M − 1) × T . Notice that,
mISA does not require any knowledge of AP topology and runs
in a completely decentralized manner without any message
passing. In addition, if there is a central controller to which
the APs can communicate, mISA can be repeated several times
before normal network operation could begin. The central
controller, which obtains the global view of the channel
assignments, can choose the best among the solutions provided
by mISA. In absence of centralized control, mISA can be
invoked periodically. Thus, mISA can be easily implemented
in real networks in a completely decentralized manner if the
number of channels for all APs is the same and known.
However, mISA requires loose synchronization among the APs
similar to the channel assignment algorithms in [17] and [18].

VIII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we identified a Pairwise Binary Dependence
(PBD) condition that allows a scalable cell level modeling
of WLANs. The PBD condition is likely to hold at higher
PHY rates and dense AP deployments. We developed a cell
level model both under saturation condition and for TCP-
controlled long file downloads. Our analytical model was
shown to be quite accurate and insightful. Thus, we believe
that our modeling framework is a significant step toward
gaining “first-cut” analytical understanding of WLANs with
dense deployments of APs. Based on the insights provided by
our model, we also proposed a simple decentralized algorithm
called mISA which can provide channel assignments that are
Nash equilibria in pure strategies in only as many steps as there
are channels. Although mISA is based on a standard graph
coloring technique, we have formally established the notion

of optimality which mISA provides (i.e., Nash equilibria in
pure strategies) and the conditions under which the optimality
is attained (i.e., whenρi → ∞, ∀i ∈ N ). We also discussed
how mISA can be implemented in real networks. Developing
simple and practical algorithms for general objective functions,
other than maximizing the normalized network throughput,
is a topic of our ongoing research. Also, developing simple
and accurate analytical models for TCP-controlled short file
transfers is an important topic which we plan to address in
the future.
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