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Abstract—Analytical models of IEEE 802.11-based WLANs
are invariably based on approximations, such as the well-known
mean-field approximations proposed by Bianchi for saturated
nodes. In this paper, we provide a new approach for modeling
the situation when the nodes are not saturated. We study a State
Dependent Attempt Rate (SDAR) approximation to model M
queues (one queue per node) served by the CSMA/CA protocol
as standardized in the IEEE 802.11 DCF. The approximation
is that, when n of the M queues are non-empty, the attempt
probability of the n non-empty nodes is given by the long-
term attempt probability of n saturated nodes as provided by
Bianchi’s model. This yields a coupled queue system. When
packets arrive to the M queues according to independent Poisson
processes, we provide an exact model for the coupled queue
system with SDAR service. The main contribution of this paper is
to provide an analysis of the coupled queue process by studying a
lower dimensional process and by introducing a certain conditional
independence approximation. We show that the numerical results
obtained from our finite buffer analysis are in excellent agreement
with the corresponding results obtained from ns-2 simulations.
We replace the CSMA/CA protocol as implemented in the ns-2
simulator with the SDAR service model to show that the SDAR
approximation provides an accurate model for the CSMA/CA
protocol. We also report the simulation speed-ups thus obtained
by our model-based simulation.

Index Terms—IEEE 802.11, non-saturated analysis, through-
put and delay modeling, state dependent attempt rate, coupled
gueue analysis, state space reduction

I. INTRODUCTION

Analytical modeling of Wireless Local Area Networks
(WLANS) based on the IEEE 802.11 standard [1] has been
a topic of great interest in the past few years. In his seminal
work, Bianchi [2] proposed an accurate model under saturated
conditions®. The key approximations in Bianchi’s model are:
(B1) in a randomly chosen slot, each node attempts with a
constant probability 8 independent of all the other nodes,
and (B2) every attempt collides with a constant probability
~ regardless of the number of collisions already suffered.
As conjectured by Bianchi, the “independence approximation”
(B1) of his model is exact under saturated conditions in the
mean-field limit, a formal proof of which can be found in [3].
Cali et. al [4] proposed and analyzed a p-persistent version of
IEEE 802.11. Kumar et al. [5] generalized the Bianchi model
to arbitrary back-off multipliers and retry limits.

1A wireless node is said to be saturated if it is perpetually backlogged, i.e.,
if the node always contains one or more packets awaiting transmission such
that its transmission queue never becomes empty.

The saturation assumption (as taken in [2], [4] and [5]) is
not valid for many real applications (e.g., web, email, VoIP).
Consequently, modeling of the non-saturated case attracted
much attention. Important contributions in this direction in-
clude [6], [71, [8], [9]. [10], [11] for Poisson traffic; [12] for
TCP transfers; and [13] for TCP transfers as well as VolP
sessions. The models in [6]-[10] retain Approximations Bl
and B2 of the Bianchi model. The impact of traffic intensity
is modeled by the “probability of a queue being empty” which,
in turn, is obtained by queueing approximations. In [11], the
authors argue that Approximation B1 of the Bianchi model
leads to inaccurate results under non-saturated conditions.
They propose to model the attempt probability as a function
of the number of non-empty nodes in the system. Essentially,
instead of using a constant attempt probability g for all the
states of the system, they use a set of state dependent attempt
probabilities 5,,’s where the state of the system in a given time
slot is the number of non-empty nodes n in that time slot.

To our knowledge, the model proposed in [11] is by far
the most accurate under the Poisson traffic assumption and
yields results that match extremely well with ns-2 simulations.
We emphasize that the most referred work by Tickoo and
Sikdar [9] is actually inaccurate in predicting the collision
probabilities and the packet delays since they use Approx-
imation B1 of the Bianchi model. We also remark that state
dependent attempt probabilities have been successfully applied
to accurately model TCP-controlled large file transfers over
a WLAN as well as analyze the VoIP capacity of WLANS
[12], [13]. The analytical models in [2]-[5], [7]-[13] deal with
single cell WLANSs whereas [6] proposes a model for multi-
hop networks as well. Since multi-hop networks are beyond
the scope of this paper, we shall not discuss them.
Comparison with Earlier Works: In this paper, we provide
a new approach for modeling single cell WLANSs under non-
saturated conditions. Each node in the WLAN uses the IEEE
802.11 Distributed Coordination Function (DCF) Medium
Access Control (MAC) protocol (also known as the CSMA/CA
protocol) to schedule its transmissions. The details of the
protocol can be found in [1] and [2]. We consider Poisson
traffic arrivals and propose a model in the same spirit as that
in [11], i.e., we model the attempt probability as a function of
the number of non-empty nodes. The state dependent attempt
probabilities in [11] are obtained by an iterative analysis which
requires computations involving a three-dimensional Markov



chain. We, however, apply the heuristic approximation of
[13] to obtain the state dependent attempt probabilities (See
Approximation 3.1 in Section I11-B). As explained in Section
IV-E, this heuristic makes our model computationally less
expensive than that in [11]. In particular, our model requires
computations involving a two-dimensional Markov chain. We
emphasize that, even though we apply the heuristic of [13],
the problem addressed in this paper is significantly different
from that in [13]. The problem setting in [13] is such that the
number of packets in a non-saturated queue never exceeds 1
so that analysis of the queue dynamics is not required. In this
paper, we address a situation where the queues can grow as
large as the buffer capacity and we analyze a coupled queue
system. We show that the heuristic approximation of [13] is
useful in our context as well.

Our Contributions: We make the following contributions:

« We apply a State Dependent Attempt Rate (SDAR) ap-
proximation to model the attempt processes of the nodes.
This yields a coupled queue system. We provide an exact
Markov model for the coupled queue system with Poisson
arrivals and SDAR service.

« We propose a technique to reduce the state space of
the coupled queue system and analyze the reduced state
process for infinite as well as for finite buffer sizes. Our
finite buffer analysis is computationally less expensive
than that in [11], yet yields numerical results as accurate
as those in [11].

« We apply the SDAR model to modify the ns-2 simulator.
Our objective in doing so is to improve the speed of
simulation by a model-based simulation at the MAC
layer. We show that the SDAR model of contention
provides an accurate model for the CSMA/CA protocol
and, at the same time, achieves speed-ups (w.r.t. MAC
layer operations) up to 1.55 to 5.4 depending on the
arrival rate and the number of nodes in the WLAN.

Brief Outline of the Paper: We summarize our modeling
assumptions in Section Il. In Section Il we introduce the
SDAR approximation and develop an exact Markov model for
the coupled queue system. In Section 1V we reduce the state
space of the coupled queue system and develop the analysis
for infinite and finite buffer sizes. Derivation of important
performance measures is carried out in Section V. In Section
VI we report how the SDAR heuristic technique could be
effectively applied to improve simulation speed. In Section VII
we validate our model by comparing with the results obtained
from ns-2 simulations. We conclude the paper in Section VIII.
The Appendix contains a proof of the theorem that appears in
Section 111-B.

Il. MODELING ASSUMPTIONS

M.1 The WLAN consists of M homogeneous nodes, which
means that the nodes use identical DCF parameters.

M.2 The arrival processes to the MAC queues bring fixed-
length packets according to independent Poisson pro-
cesses with rate A\ packets/sec.

M.3 We consider single cells containing no hidden nodes.

M.4 Nodes cannot capture packets in the presence of inter-
ference due to simultaneous transmissions. This implies
that: i) simultaneous transmissions in the WLAN always
result in the corruption of packets of all the involved
nodes, and ii) there can be at most one successful
transmission in the system at any point of time.

The MAC queue of each node has infinite buffer space,
i.e., packets are never dropped due to buffer overflow.
(This assumption will be dropped in Section IV-D and
we will develop an analysis for finite buffer sizes)

The wireless channel is error-free which implies that sin-
gle transmissions in the WLAN are always successful.

M.5

M.6

I1l. THE MODEL

Since by Assumption M.4 at most one packet can depart
from the system at a time, the WLAN can be viewed as a
single server serving multiple queues. The M queues cor-
responding to the M nodes in the WLAN are essentially
coupled due to MAC contention and our immediate objective
is to analyze the joint queue length process. We proceed by
embedding the process at the so called channel slot boundaries
described in the following.

A. Channel Slots

In IEEE 802.11, the random back-off periods are multiples
of a time unit called the back-off slot. Let o denote the duration
of a back-off slot in seconds. We call a time unit equal to the
duration o of a back-off slot, a system slot. Henceforth, all
time durations, i.e., times during back-off periods, “system
empty” periods? and activity periods will be measured in
terms of system slots. For analytical convenience, we make
the following approximations:

A.1 Nodes always sample non-zero back-offs.
A.2 Time is slotted with slot length ¢ during the system
empty periods.

In reality, nodes do sample 0 back-offs with some positive
probability. But this possibility affects the final results only
marginally. As a consequence of Approximation A.l, every
activity (i.e., a successful transmission or a collision) in the
system is followed by a back-off slot. Approximation A.2
amounts to saying that the system empty periods are integer
multiples of system slots, which, in reality, may not be true.
However, the error introduced by this quantization is negligible
if Mlo < 1, i.e., if the total number of packet arrivals into
all the nodes per system slot is much smaller than 13.

Owing to Approximations A.1 and A.2 we observe that the
channel activity evolves over cycles, which we call channel
slots. Figure 1 depicts the back-off evolution and activities in a
WLAN. The channel slots that occur on the common medium
have also been shown and the channel slot boundaries have
been indicated by arrows. When the system is empty, an idle
channel slot of duration o occurs (see Approximation A.2). A

2System empty periods are the times during which all the nodes in the
WLAN have empty queues.

SWe remark that the packet transmission times typically take hundreds of
system slots. Hence, M Ao < 1 holds whenever the queues are stable.
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Fig. 1. Description of channel slots.

succession of idle channel slots occur until arrivals make some
of the nodes non-empty. Non-empty nodes sample non-zero
back-offs (see Approximation A.1) and attempt transmissions
when their back-off counters become 0. Depending on whether
there are no attempts, only one attempt, or more than one
attempt made in the system, an idle, a success, or a collision
channel slot occurs. The duration of an idle channel slot when
the system is non-empty is equal to the duration ¢ of a back-
off slot. By Approximation A.1 every activity is followed by a
back-off slot. Hence, the duration of a success (resp. collision)
channel slot is the success time T (resp. collision time T)
plus a back-off slot where T, and T, are in system slots*. The
attempt process resumes at the end of channel slots thereby
creating more channel slots and the process repeats.

B. A Coupled Queue Formulation

We model the evolution of the system in discrete time
with time epochs embedded at the channel slot boundaries.
Figure 2 depicts the evolution of a typical node in the system.
Let T'(¢),t = 0,1,2,3,------ , with T(0) = 0, denote the
channel slot boundaries which form a sequence {T'(¢),t > 0}
of random times. The ¢** channel slot (+ > 1), the duration
of which we denote by L(t), is precisely the time interval
[T(t—1),T(t)). Henceforth, our discussion will be in terms
of the discrete time index ¢. Note that the discrete time instants
indexed by ¢ correspond to the actual (i.e., continuous) time
instants 7'(¢).

Let Q;(¢),t > 0,i = 1,2,--- , M, denote the number (of
packets) in the i*" node’s MAC queue at time t. Let A;(t)
(resp. D;(t)), t > 1,4 = 1,2,--- , M, denote the number of
arrivals into (resp. departures from) the i** node’s MAC queue
in the #** channel slot. Note that V¢ > 0,i = 1,2,---, M,
we have Q;(t) € N where N := {0,1,2,---}; Vt > 1,i =
1,2,---, M, we have A;(t) € N and D;(t) € {0,1}. The last

4The success time T, is the number of system slots taken for the
transmission of an entire frame sequence (e.g. DATA-SIFS-ACK in the “basic
access” mode or RTS-SIFS-CTS-SIFS-DATA-SIFS-ACK in the “RTS/CTS”
mode) plus a DIFS. The collision time T is the number of system slots until
the frame sequence gets aborted due to a timeout which includes an EIFS.
Note that Ts and 7. need not be integer multiples of system slots.

Ai(®) Ai(t+1) Ai(t+2)
/Qi (t) Di(t+1)|  Qi(t+1) Di(t+2)| Qi(t+2)
+(t) +(t+1) +(t+2) +(t+3)
= L(t+1) 1 L(t+2) <L (t+3) =

Di(®)

\

Fig. 2. Evolution of Node #’s queue. Notice that Q;(t), A;(t) and
D;(t) are embedded at times T'(t)+, T'(¢) and T'(t)—, respectively.

constraint follows from the fact that there can be at most one
success in a channel slot. Clearly, the “number in the queue”
processes {Q;(t),t > 0} (1 < i < M) evolve as (notice the
embedding in Figure 2)

Qi(t+1) =Qi(t)

with the convention that Q;(¢t) = 0= D;(t+ 1) = 0.

Due to the “Poisson arrivals” assumption, the distribution
of the number of arrivals in a channel slot depends only on
the duration of the channel slot. The duration of a channel slot
is known if the channel slot type (i.e., whether it is an idle,
a success or a collision channel slot) is known (see Section
I11-A). Let Ligie, Lsyce and Loy denote the duration of an
idle, a success and a collision channel slot, respectively. With
slight abuse of notation, we indicate the occurrence of an idle,
a success and a collision channel slot by L(t) = Lige, L(t) =
Lgyce and L(t) = L.y, respectively, and define, V¢ > 0,V5 >
0,1 <i < M, the following probabilities:

= Di(t+1) + Ai(t +1) @

dG) = P(Ai(t+1)=j[L(t+1) = Liae)
s() = P(Ailt+1) =Lt +1) = Louee)
(i) = P(Ait+1)=jLE+1) = Loat) ()

The “Poisson arrivals” assumption also implies that the
probabilities d(j), s(j) and ¢(j) are obtainable from Poisson
distributions with mean AL;g. = Ao, ALsyce = Ao (1 + T)
and AL..; = Ao (1 + T), respectively, where, as pointed out
earlier, Ts and T, are in system slots.

As described in Section I11-A, nodes can attempt only at the
channel slot boundaries. Only those nodes that are non-empty
at time ¢ can attempt at time ¢. Let N(¢) denote the number of
non-empty nodes in the system at time ¢. Then, by definition,

M
N(t) =) 10 ®3)
i=1

where 1., denotes the indicator function. We now introduce
an important approximation regarding the attempt processes
of the nodes proposed in [13].

Approximation 3.1: At any generic channel slot boundary ¢,
every non-empty node attempts a transmission with probability
Bn ¢y Where 3, is the long-term attempt rate of the nodes in
a single cell containing n saturated nodes.

We call Approximation 3.1 the State Dependent Attempt
Rate (SDAR) approximation. The 3,,’s in the SDAR approx-
imation can be obtained from the model in [2] or [5]. As a
consequence of the SDAR approximation, given N(t) = n,



the number of attempts made in the system at the channel slot
boundary ¢ is binomially distributed with parameters n and
Bn. Hence, the probabilities with which the (¢ + 1)** channel
slot is an idle, a success or a collision channel slot can be
easily determined as follows:

Didien = P(L(t +1) = Ligie|[N(2) = n) — (1= 8"
Psucen = P(L(t +1) = Loyee|N () = n)

= nfp(l=Bp)""
Peolt;n P(L(t +1) = Leou|N(t) = n)

- 1- Didle,n — Psucc,n

(4)

Furthermore, in case of a success channel slot, the packet
departure can occur from any of the non-empty queues with
equal probability since the aggregate attempt process is bino-
mial. Thus, the number of departures D;(¢t + 1), ¢t > 0,1 <
i < M, in the (¢ + 1)* channel slot satisfy

P (Di(t+1) = 1N(t) = n, L(t + 1) = Louee, Qi(t) > 0) =

The joint queue length process {Q(t),t > 0}, where

Q1) = (Q1(1),Q=(1),- -+, Qu(?)),

completely determines the dynamics of the system. Approx-
imations A.1 and A.2 and the SDAR approximation imply
that {Q(¢), T'(t),t > 0} is a Markov renewal sequence with
the process {Q(t),t > 0} being the embedded Discrete Time
Markov Chain (DTMC).

Theorem 3.1: The DTMC {Q(t),¢ > 0} is positive recur-
rent if

MA< min ©
1<n<M sat,n

where O, IS the mean aggregate throughput in packets/sec
in a WLAN consisting of n saturated nodes.
Proof: See Appendix A. [ ]
Remarks 3.1: In general, the variation of Oq , With n
depends on the back-off parameters such as the back-off
window sizes and the retry limit. However, for the back-
off parameters as prescribed by the IEEE 802.11 standard,
we observe that, for M large enough (M > 5 suffices),
minlgnsM ®sat,n = ®sat,M- Thus, the DTMC {Q(t),t > 0}
is positive recurrent if the aggregate arrival rate M\ is less
than the aggregate throughput © 44,2, for M saturated nodes.
We define the stationary probabilities of {Q(¢),t > 0} as

v(k):=P(Q=k)=P(Q1=k,Q2=Fk, - ,Qum = kn)

where k = (ki,ko,---,knr) € NM. In Section V we
show that important performance measures such as collision
probability and throughput can be derived once we know
the stationary distribution of the process {N(t),t > 0}. In
principle, it is possible to obtain the stationary disribution of
the process {N(t),¢ > 0} from the stationary distribution of
the DTMC {Q(t),t > 0} (see Equation 3). However, for a
WLAN containing M nodes, the DTMC {Q(¢),t > 0} has

S+

a state space S‘™) = NM which is difficult to handle for
M > 1% For M > 1, it is difficult to analytically solve
the M-dimensional DTMC {Q(t),¢ > 0}. Furthermore, it is
impossible to numerically solve the M -dimensional DTMC
{Q(t),t >} since the state space is infinite. Hence, we verify
the accuracy of our model in the following two ways:

1. In Section IV we propose a state reduction technique and
develop an analysis of the reduced state process for finite
buffer sizes. In Section VII we show that the numerical
results obtained from our finite buffer analysis can
accurately predict the corresponnnding results obtained
from ns-2 simulations. This makes our model predictive
for finite buffer sizes.

2. We replace the detailed CSMA/CA protocol of the
IEEE 802.11 standard as implemented in ns-2 with the
simple SDAR model (see Section VI). In Section VII
we compare the simulation results obtained from (a)
the unmodified implementation in ns-2 with (b) the
SDAR model in ns-2 to show that the simulation results
obtained from (a) and (b) match extremely well for finite
as well as infinite buffer sizes. In particular, this validates
the SDAR approximation even for infinite buffer sizes.

IV. REDUCTION OF THE STATE SPACE

Since the nodes are identical, we consider the following
alternative description of the system. We define the state of the
system at a channel slot boundary ¢ as X (t) := (Q1(t), M(t))
where Q,(t) denotes the number (of packets) in the MAC
queue of a tagged node at ¢t and M (¢) denotes the number
of nodes, other than the tagged node, that are non-empty at ¢.
The state space has now reduced to N x {0,1,--- ,M — 1}.
Note that M(t) and N(t) are related as N (t) = 10,10} +
M(t). We define, the stationary probabilities of the pro-
cess {X(t),t > 0} as n(j,k) == P(Q1=j, M =k). The
w(4,k)’s can be derived from the v(k)’s as follows:

©(j,k) = >

(ki S 1y =)
A. Approximating {X(t)} with a Markov Process

It is important to emphasize that the process {X(t),t > 0}
is not Markovian. Since the state description X'(¢) does not
keep track of the queue lengths of the nodes, other than the
tagged node, the probability that “a departure from a non-
tagged node leaves the queue empty” cannot be modeled
by X(t). Clearly, a departure leaves the queue empty if the
following two events occur:

E.1 At the beginning of the success channel slot a queue
contains exactly one packet which departs, and

E.2 The queue does not receive any packets in the success
channel slot.

Event E.2 is modeled by the probability s(0) (see Equation
2). However, with the state description X'(t), event E.1 cannot

v(k) (5

5The M = 1 case can be easily analyzed, for example, by the generating
function approach.



be modeled for the non-tagged queues. In fact, the balance
equations for the m(j,k)’s can be derived from the balance
equations for the v(k)’s using Equation 5 and it can be shown
that the balance equations for 7 (j,k), j #0,0 < k< M —1,
still contain some terms involving the »(k)’s which cannot be
expressed entirely in terms of the 7 (j, k)’s®. Had {X(t),t >
0} been Markovian, the balance equations for all the = (j, k)’s
could have been expressed entirely in terms of the 7 (4, k)’s.

Let Qq4(t) denote the number of packets in the non-tagged
queue at the channel slot boundary ¢ from which a departure
occurs at the channel slot boundary ¢ + 1. Note that Q4(%)
must be positive; otherwise, there cannot be a departure from
the d* queue at ¢ + 1. Given that Q,(t) = j, M(t) = k,
which is maintained by the state X' (¢), to model the evolution
of {M(t),t > 0}, we need the probability

P(Qa(t +1) = 0] Q1(t) = j, M(t) = k, Qa(t) > 0)
which is equal to

P(Qa(t) = 1| Q1(t) = j, M(t) = k,Qa(t) > 0) - 54(0)

where s4(0) is the probability that the queue from which the
departure occurs receives no arrivals in the success channel
slot. Notice that {X(¢),¢ > 0} is not Markovian precisely
because the probability P(Qq(t) = 1 | Q1(t) = j, M(t) =
k,Qq(t) > 0) cannot be modeled with the state description
X (t). To be able to model event E.1, we apply an approxima-
tion introduced in [14] in the context of ALOHA networks.

Approximation 4.1: (Conditional Independence)

P(Qa(t) =1 Q:(t) = 4, M(t) = k, Qa(t) > 0)
= P(Qa(t) = 1| N(t), Qa(t) > 0)

Approximation 4.1 has also been applied in [11] and
amounts to saying that at any channel slot boundary ¢, the
probability that a non-tagged queue contains exactly one
packet, given that it is non-empty at ¢, is independent of the
exact number of packetsin the other queues (specifically, the
tagged queue) and depends only on whether the other queues
are empty or non-empty.

We approximate the process {X(t),¢ > 0} by a Markov
process {X(t),t > 0} which has the same state description
as that of {X'(t),t > 0}’ and models event E.1 by invoking
Approximation 4.1. Applying Approximation 4.1, we have

P(@Q=1|Q1=i,M=n,Q,>0) (2<1<M)
= P(Q =1|N=1ps0 +n,Q;>0)
{ P(Qi=1|N=n,Q;>0) i=0 ©)
P(Q=1|N=n+1,0;>0) i>0

For the process {X'(t),t > 0}, we define G,, 1 <n < M, to
be the stationary probability that a non-tagged queue contains

5The balance equations for 7(0,k), 0 < k < M — 1, can be obtained
entirely in terms of the «(j, k)’s using homogeneity of the nodes.

7In the remainder of this paper, a random variable X _defined for the
process {X(¢t),t > 0} will be correspondingly denoted as X for the process
{X(t),t > 0}. Similarly, for a quantity 7 defined for the process { X(t),t >
0}, there is an analogous quantity = for the process {X'(t),¢ > 0}.

exactly one packet at a channel slot boundary given that it is
non-empty and that n nodes are non-empty at that channel slot
boundary, i.e.,

Gn=P(Qi=1/Q:>0,K =n)

With the §,’s defined as above, the probability that “a
departure from a non-tagged queue leaves the queue empty
at the channel slot boundary ¢ + 17 is given by Gy, s(0)
which is the joint probability of the events E.1 and E.2.
Clearly, by construction, the process { X (t),t > 0} isa DTMC
embedded at the channel slot boundaries. However, the §,’s
are not known a priori. For now, interpret the §,,’s as unknown
parameters of the process {X'(t),t > 0} yet to be determined.

@<i<M) ()

B. An lterative Method of Solution

Let 7(j,k), 7 > 0;0 < k < M — 1, denote the stationary
probabilities of the DTMC {X(t),t > 0} (assuming that
they exist). The 7 (4, k)’s are, in general, different from the
7(j,k)’s®. Given the #(j,k)’s, the parameters G,’s can be
obtained as follows:

in = P(@1=1]Q:>0,N=n)

7(1,n—1) _

= _—— (by definition) (8)
E;il 7r(.77 n— 1)

This suggests an iterative method of solution to obtain the
7(j,k)’s. For a given A, assuming some values for the §,’s,
the balance equations for the 7 (4, k)’s can be solved along
with the normalization equation

co M—1

Yo > wGk =1 ©)

j=0 k=0
to uniquely determine the 7 (4, k)’s (provided that the DTMC
{X(t),t > 0} is positive recurrent). Equation 8 then provides
new estimates of the §,’s which can be used to obtain new
estimates of the 7(j, k)’s. This iterative procedure should
continue until the solution converges within some specified
tolerance limit. The stationary probabilities of the process
{N(t),t > 0} can then be obtained from the converged values
of the #(j, k)’s as follows:

(by homogeneity)

Pn = P(N:n)

= P(Qi=0M=n)+P(Q1>0M=n-1)
oo
= #0,n)+> #(j,n—1) (10)
Jj=1

We regard the p,,’s as “estimates” of the stationary proba-
bilities p,,’s of the process {N(t),t > 0}. Once the p,’s are
approximated with the p,,’s, important performance measures
can be obtained using the derivations in Section V.

8If the buffer size of each of the M queues was equal to 1 packet, we
would have g, = 1 for all 1 < n < M and Approximation 4.1 would
have been exact for the process {X(t),t > 0}. In that case, the processes
{X(t),t > 0} and {X(t),t > 0} would have been one and the same and
their stationary probabilities would have been identical.



C. Transition Probability Matrix of {X'(¢)}
For 0 <n,k < M —1, we define the transition probabilities
of the DTMC {X(¢),t > 0} as follows:
Aj(n, k) := the transition probability from the state (0, n)
to the state (j,k), 7 =0,1,2,---
Bj(n, k) := the transition probability from the state (¢,n)
(¢ > 0) to the state (i+j,k), j = —1,0,1,---

Aj(n,k),j = 0,1,2,--- and Bj(n,k),j = —1,0,1,---
can be obtained (we skip the derivations due to space con-
straints) and separating the terms that contain g, from the
terms that do not contain §,, it can be shown that

Aj(n, k) =
Bj (’I’L, k) =

(0) ~ (1)
Aj ('I’L, k) + anj (’I’L, k)

B (n,k) + Gua B (n,k)  (11)

where Ago)(n,k), Agl)(n,k), B](.O)(n,k) and B](.l) (n, k) are
given by Equation 12 (provided at the top of the next page).
Let A;(, 4;V, B;( and B; (V) denote the M x M matrices
with their (n, k)™ entries given by A% (n,k), A" (n, k),
B](.O)(n,k) and B§1)(n,k), respectively. Using this matrix
notation, Equation 11 can be rewritten as

A=A +844;0 5 Bj =BV + a4 B,V (13)

where Az, = diag(0,G1,---,gu—1) and Az =

diag (41,42, -+ ,4m) are M x M diagonal matrices. We define

79 = (7(4,0),7(j,1),---7(j, M = 1)) for all j > 0,
J J J J

and 7 := (7O, 7 72 ...... ). Using this notation, the
balance equations for the 7 (j, k)’s can be written as

(14)

where the transition probability matrix P can be seen to have
the following M/G/1 type structure

T=7nP

Ag A, A,  Aj
B_1 Bo Bl B2
p—| 0 B_, By, B (15)
0 0

B_, By

D. The Finite Buffer Case

To be able to compute the p,’s by the iterative method
described in Section IV-B we now consider finite buffer sizes
for which the finite set of balance equations can be numerically
solved. Let the buffer size of each of the M queues be K pack-
ets. We redefine #(9) := (7(4,0),7(j, 1), - - - #(j, M — 1)) for
al 0<j < K,and 7 := (7O, 7V 72 ... 7(K)) The
transition probability matrix Pg is now given by

Ay A, A, Ag_, EO;(;K Aj

B, By B; Bg_» 251{71 B;

Px = 0 B_1 B Bk-3 j—k—2Bij
0 o0 0 B_: Y72, B

where the A;’s and the Bj’s are as defined earlier for the
infinite buffer case®. It can be easily shown that the finite-
state DTMC { X’k (t),t > 0} is irreducible, and hence, positive
recurrent, if and only if the §¢,’s are positive. Hence, if the
iteration starts with positive §,’s, Equations 14 and 9 can
be solved yielding unique positive solutions for the 7 (4, k)’s.
Equation 8 then provides new estimates of the ¢,,’s which are
also positive'®. Note that, for a given X, the d(j)’s, c(j)’s
and s(j)’s are known for all ;7 > 0 (see Equation 2) and the
Brn’s are obtainable from a saturation analysis. Hence, for a
given ), the matrices A;®, A;V (j > 0) and B;®, B;V
(j > —1) are computed only once. Each iteration gives a new
set of g,’s. Thus, the matrices Ag, and Ag, get updated
in each iteration resulting in updated A;’s and the B;’s (see
Equation 13). This, in turn, updates the Pg resulting in a new
set of balance equations which yields a new set of §,’s and
the iteration continues until the results converge.

E. Complexity of the Finite Buffer Model

The SDAR approximation has the following advantages:

1. It enables computation of the 3,,’s using the saturation
analysis of [2] or [5]. Thus, in contrast to the model
in [11], the B,’s in our model are independent of the
arrival rates and of the average queue occupancies. They
are computed only once in the beginning of the overall
computation by a separate procedure and then used as
given parameters in the iterative analysis described in
Sections 1V-B and 1V-D.

2. The effects of the back-off parameters are effectively
captured in the pre-computed £3,’s. Hence, they are
not considered when modeling the queue length pro-
cesses. This decoupling enables us to eliminate the
first dimension, namely, “the back-off stage of the
nodes” in the three-dimensional Markov chain of [11]
and our model requires computations involving a two-
dimensional Markov chain.

3. Since the 3,,’s are computed independent of the arrival
rate of the Poisson arrival processes, they need not be
computed for each arrival rate when studying the effect
of arrival rate on performance measures.

Thus, the SDAR approximation makes our model compu-
tationally less expensive than that in [11] as follows. The
complexity of the model in [11] is O(RK M) where we recall
that R denotes the retry limit, K denotes the buffer size and
M denotes the number of nodes (see [11]). The complexity
of obtaining 8,, 1 < n < M, by a separate procedure
is O(RM) and the complexity of our finite buffer model,
given the 8,’s, is O(KM). Thus, the overall complexity of
our finite buffer model is O(K M) + O(RM) which is less
than the complexity O(RK M) of the finite buffer model of

9Notice that Px has a M/G/1/K type structure where the infinite sums
only requires summing up probabilities of Poisson distributions which can be
simplified by observing that 3°52 ; d(j) =1 — E?;& d(5) and so on.

10The infinite sum in Equation 8 will be a finite sum for finite buffer sizes.
Similarly, the infinite sums in Equations 9 and 10 become finite sums for
finite buffer sizes. Further, P in Equation 14 must be replaced by Pgk .
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[11] for R > 2,K > 2. If one needs to solve for, say, [
different arrival rates, to examine how the protocol behaves
with the variation of traffic intensity, then the complexity of
our model is O(IK M) + O(RM) since we compute the 3,,’s
only once and use them for all the [ arrival rates whereas the
complexity of the model in [11] for [ different arrival rates
is O(IRKM). Thus, to study the effect of arrival rates on
the performance measures, our model is far superior to that in
[11]. This reduction in complexity is achieved precisely due to
the SDAR approximation which does not require computing
the attempt probabilities for each arrival rate.

V. DERIVATION OF PERFORMANCE MEASURES

As pointed out earlier, the processes {Q(t),t¢ > 0} and
{X(t),t > 0} (and their finite buffer versions) are DTMCs
embedded at the channel slot boundaries {T'(¢),t > 0}. It is
easy to see that {(Q(t), T(t)),t > 0} and {(X(t),T(t)),t >
0} are Markov renewal sequences. In this section, we apply
Markov regenerative analysis to derive the important perfor-
mance measures as follows.

Collision Probability: Let A(¢) and C(t) denote the total
number of attempts and collisions, respectively, up to time ¢
where we recall that ¢ is the discrete time index. Then the
(conditional) collision probability ~ is given by

— pie SO 0s g PaBnC 30y PnBnC
v = lim = i R —f =

where E,,A and E,,C denote the mean number of attempts
and collisions per channel slot given that n nodes are non-
empty. It is easy to see that £,A = ng, and E,C =
nBy, (1= (1= Bn)").

Throughput: Let S(t) denote the total number of successes
up to time ¢. Then the aggregate system throughput © in
packets/sec is given by

w5 LneoPnlinS _ YutoPnlnS
M ~ M .
En:O annL Zn:O annL
where E,,S denotes the mean number of successes per channel
slot and E, L denotes the mean channel slot duration in

seconds (given that n» nodes are non-empty). Again, it is
easy to see that E,S = nfB,(1 — 8,)" ! and E,L =

(1 + peoit,nTe + Psuce,nTs). Further, due to homogeneity it
follows that the per-node throughput § = %.

Mean Packet Delay: We obtain the mean packet delay for
our finite buffer model by applying a method proposed in [15]
in the context of M/G/1/K queues. We define the following:

a(j) := fraction of time that the tagged queue contains j
packets (0 < j < K)
7(@(4) := probability that a departure from the tagged
queue leaves j packets behind (0 < j < K—1)

7(®)(4) := probability that a packet accepted into the

tagged queue finds j packets (0 < j < K —1)

Noting that departures can occur only at the end of channel

slots, i.e., just before the the channel slot boundaries, 7(® (5),
0 < j < K —1, can be obtained as follows:

Yo Lpuern=131@u+1)=5
T
2 ot=0 Y{Di(t+1)=1}
limy 00 7 37 o L= li@itrn=i} (45
Hmy o0 = 31— 1{Dy (t4+1)=1}
For the SDAR model with buffer size K, it can be shown
that, for 0 < j < K — 2, Equation 16 reduces to
DDA PPl I (3 n)”i+ (j—i+1)
S Tl wlim) P

and for j = K — 1, it reduces to

K—i—1
Zz IZn 0 ’/T(Z n)pw;cfﬂllﬂ(l_zm:(l)
Ez lzn 0 71—(7’ n)p‘w;cf’;ﬁ

where the s(j)’s are given by Equation 2 and the (i, n)’s can
be approximated by 7(i,n). Note that the probability that an
arrival is blocked is given by «(K). The mean rate at which
packets are accepted into the queue must be equal to the mean
rate at which packets depart from the queue. Hence, a(K) can
be obtained by solving

Al = o(K))

lim
T—00

D (j)

r(j) =

(d)(K 1) = s(m))

where © can be computed as explained earlier in this section.
According to [15], we have

a(j) =791 - a(K)), 0<j<K-1



Since arrivals and departures occur one at a time, a level
crossing analysis gives 7() (j) = 7(9(5),0 < j < K—1, and
a(j), 0 < j < K—1, can be obtained. The mean queue length
N is then given by N = Zf:o ja(j) from which the mean
sojourn time or the mean packet delay T/ can be obtained as
W=_

VI. SDAR APPROXIMATION IN THE ns-2 SIMULATOR

Wireless network simulators invariably employ simple mod-
els at the PHY layer to keep the simulations reasonably fast. In
this section, we describe a model-based simulation technique
at the MAC layer which is based on the SDAR attempt model.
We applied the SDAR model in ns-2 as follows. The simulator
was modified to keep track of the number of non-empty nodes.
Avrrivals that occur during any activity (success or collision)
are not taken into account until the activity finishes. Hence,
the number of non-empty nodes does not change during the
activities. Whenever an activity finishes or an arrival occurs
during channel idle periods, the number of non-empty nodes
is updated. Whenever the number of non-empty nodes is
updated, all previously scheduled transmissions (if any) are
canceled and random back-offs are sampled for each non-
empty node using independent geometric random variables
each having a mean 2 where n denotes the current value of
the number of non-emﬁty nodes. Note that the geometric back-
off durations with mean -~ (which is equivalent to Bernoulli
attempt processes with perabiIities Br) are easily obtained
if the 3,,’s are known. The 3,,’s are pre-computed using the
model in [5] and stored in a look-up table.

From the sampled back-offs, it is easy to determine which
node(s) sampled the minimum back-off. If only one node
samples the minimum back-off, the next event is a success.
If two or more nodes sample the same minimum back-off,
the next event is a collision. The appropriate event is then
scheduled. Unless arrivals occur to empty queues before the
“beginning of the scheduled event” epoch to increase the
number of non-empty nodes (in which case the scheduled
event is canceled), the scheduler clock is moved to the “end
of the scheduled event” epoch. In case of a success, the
DATA frame is handed over to the destination’s MAC layer
which then generates the corresponding ACK frame. These
modifications have enabled us to achieve speed-ups up to 5.4.
These speed-ups have been achieved with respect to the MAC
layer operations and are summarized in Tables I and 11 for two
different machines.

The observed speed-ups are obtained due to the following
reasons. In ns-2, one transmission event per non-empty node
remains pending in the “scheduler queue” and n back-off
timers are kept running for n non-empty nodes. When a timer
expires resulting in a transmission, all the other n — 1 timers
remain “paused” until the transmission finishes. When the
timers resume, the remaining n— 1 transmission events have to
be rescheduled. Similar pausing and resheduling occurs when
multiple timers expire simultaneously resulting in collisions.
In our modifications, due to the memoryless property of the

TABLE |
SPEED-UPFOR MACHINE-I (PENTIUM DUAL CORE, 2.80 GHz, 1024 KB

CACHE)
A MAC time MAC time Speed-up
M | (pkts/sec) | ns-2 (sec) | SDAR (sec)
50 5 45.045 9.405 4.79
50 10 103.43 19.16 5.4
50 15 158.44 39.40 4.02
30 5 10.8 3.25 3.08
30 10 22.88 6.89 3.32
30 15 32.49 10.24 317
30 20 60.49 22.34 2.65
10 10 2.233 0.943 2.37
10 20 4314 1.864 231
10 30 7.256 3.114 2.33
10 40 8.351 3.641 2.30
10 50 10.777 4.767 2.26
10 60 13.269 5.789 2.30
10 70 19.922 10.312 1.93
TABLE I

SPEED-UPFOR MACHINE-II (PENTIUM, 1500 MHZz, 256 KB CACHE)

A MAC time MAC time Speed-up

M | (pkts/sec) | ns-2 (sec) | SDAR (sec)

50 5 102.06 31.99 3.19
50 10 268.23 66.86 4.0
50 15 369.13 97.77 3.78
30 5 23.9 9.59 2.49
30 10 48.16 19.06 2.53
30 15 75.93 29.79 2.55
30 20 136.82 54.11 2.53
10 10 3.66 2.13 1.72
10 20 7.31 4.25 1.72
10 30 11.38 6.62 1.72
10 40 15.52 9.00 1.72
10 50 20.25 11.28 1.795
10 60 25.87 13.99 1.85
10 70 31.07 20.02 1.55

SDAR attempt model, we do not have to keep the back-
offs sampled by the nodes. Moreover, at any point of time,
only one event remains pending at the MAC layer which is
the next event to occur on the common channel. This single
pending event is interrupted and is rescheduled only if an
arrival increases the number of non-empty nodes. Hence, the
speed-up increases with the number of nodes M. The speed-up
also increases with arrival rate A since the average number of
non-empty nodes increases with increase in A. However, above
a certain ), the rate of cancellation of already scheduled events
dominates and speed-up actually decreases with A. The speed-
up becomes constant beyond saturation. These observations
are supported by the data in Tables | and Il where the last
row for each M corresponds to saturation.

The increase in speed-up with M is particularly desirable
since ns-2 is found to become worse with increase in M than
A. Also, note in Tables I and Il that the speed-ups are more
for the faster machine, i.e., MACHINE-I. This indicates that
the speed-ups are not due to the incapability of the machines.

VII. RESULTS AND DISCUSSION

In this section we compare analytical and simulation results
to validate our model. The values of the DCF parameters in
the ns-2 simulator were taken as per the 802.11b standard. We
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with finite buffer size K = 5.

took Basic Rate = 2 Mbps, Data Rate = 11 Mbps, Packet Pay-
load Size = 1000 bytes. We also make sure that Assumptions
M.3, M.4 and M.6 are satisfied in our simulations. We provide
results for the “basic access” case with M = 10 nodes. Similar
results were obtained for the “RTS/CTS” case and other values
of M. The analytical model was solved using MATLAB.

Figures 3, 4, and 5 compare the collision probability -,
the per-node throughput #, and the mean packet delay W for
the infinite buffer case. The buffer sizes in the ns-2 simulator
were set to very large values to simulate the infinite buffer
assumption. It can be seen that the simulation results obtained
from the unmodified ns-2 and the SDAR approximation in ns-
2 match very well. The mismatch in the collision probabilities
which lead to visible mismatch in the mean packet delays near
saturation is mainly due to the owver-estimation of collision
probability by the Bianchi-type model of [5] which clearly
appears as a ~ 5% mismatch of collision probability beyond
the saturation threshold (which is about A = 62.5 packets/sec
for M = 10. See Figure 3). Note in Figure 4 that the
saturation throughput is correctly predicted which remains
constant beyond the saturation threshold.

Figures 6, 7 and 8 compare the collision probability -,
the throughput per node # and the mean packet delay W
for a buffer size of K = 5. Similar results were obtained
for K as large as 50 but not reported here due to space
constraints. It can be seen that the SDAR approximation in
ns-2 and our finite buffer analysis both match extremely well
with the unmodified ns-2. Furthermore, the results from SDAR

Arrival rate A in packets/sec

Comparison of Throuput per Node 6
with finite buffer size K = 5.
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Arrival rate A in packets/sec

Fig. 8. Comparison of mean packet delay W
with finite buffer size K = 5.

approximation in ns-2 and that from our finite buffer analysis
are indistinguishable. This validates Approximation 4.1 and
also establishes the fact that the observed small mismatches
are due to the ,’s provided by the Bianchi-type model of
[5]. In summary, the results in Figures 3-8 confirm that: 1)
the SDAR model of contention can replace the CSMA/CA
protocol to improve the simulation speed as described in
Section VI without affecting the accuracy of results, and 2)
the Markovian approximation of the coupled queue system
is extremely accurate in predicting performance measures
for Poisson traffic. Finally, we remark that our results are
as accurate as that in [11]. However, we do not reproduce
the results of [11] here since both their’s and our’s match
extremely well with ns-2 simulations.

VIIl. CONCLUSION

In this paper, we applied the SDAR approximation to model
the attempt process of nodes. We replaced the CSMA/CA
mechanism by a coupled queue system with SDAR service.
We developed an exact Markov model for the coupled queue
system. We developed a technique to reduce the state space
for the SDAR model and analyzed the finite buffer size case
to be able to predict important performance measures. Under
the Poisson traffic assumption, our simple model was shown
to provide accurate results. We showed that the complexity
of our model is less than an earlier model with same level
of accuracy which happens to be the most accurate till date
in terms of predicting the performance measures. We also



reported how the SDAR approximation could be applied to
improve the speed of ns-2 simulations. Our work motivates to
study the important theoretical question as to why the SDAR
heuristic works well for the IEEE 802.11 networks. Modeling
of non-homogeneous nodes with unequal Poisson arrival rates
and with general traffic arrival processes such as the Batched
Markovian Arrival Process (BMAP) are left as future work.
We believe that this is feasible within the rigorous and formal
framework laid out by this paper.
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APPENDIX

We use Foster’s criterion (see [16]) to prove Theorem 3.1.

Theorem A.1: A time homogeneous irreducible aperiodic
Markov chain {X(t),t > 0} with a countable state space S
is positive recurrent if and only if there exists a non-negative
function f(z), z € S, a number € > 0, and a finite set A C S,
such that the following conditions hold:

D E(F(X(E+1) - t))‘X(t) =) <-eVzeS\A

2) E(f(X(t + 1))‘X(t) - :1:) < 00,V € A

Clearly, the DTMC {Q(t),t > 0} is time homogeneous and
has a countable state space. Irreducibility and aperiodicity can
be easily proved. Any state (ki,ks,---,ky) € NM can be
reached from the state (0,0,--- ,0) inonestep by k;, 1 <i <
M, arrivals to the i*" queue. Similarly, the state (0,0,--- ,0)
can be reached from any state (ki,ko,---,ky) € NM
in M k; steps by ¥, k; consecutive successes and no
arrivals such that the k;’s do not increase in between. Hence,
{Q(¥),t > 0} is irreducible. Since {Q(t), ¢ > 0} is irreducible
and there exists a self loop, e.g., from the state (0,0,---,0)
to itself, the DTMC {Q(¢),t > 0} is aperiodic as well.

We define the finite set A and the non-negative function
f(-) as follows:

A:= {0} = {(0,0,---,

Notice that A := {0} = {(0,0,---,0)} corresponds to
the system empty state, and forjvglven ki1,ko, -+ ,ky, the
function f (k1, ka2, -+ ,knm) : 1 ki gives the total number
of packets in the system. It can be shown that

0)} 5 f(klakZa"' 5kM) = Z»f\i1 kz

E(£(Q(t+1))|Q(t) = 0) = M)

which is finite as long as the arrival rate A is finite. Hence, for
the DTMC {Q(t),¢t > 0}, the second condition of Theorem
A.1 holds for all finite arrival rates. Note that when the system
is in the state 0 = (0,0, ---,0), only an idle channel slot can
occur and M Ao represents the mean number of arrivals to the
system in an idle channel slot of duration ¢. It can also be
shown that, Vk = (k1, k2, - - - , kar) such that Zfil lipi>0) =
n, 1 <n < M, we have

E(£(@Qt+1) - F(Q()|Q(t) = k)
= M>o (1 + psucc,nTs + pcoll,nTc) - (18)

Since € can be made arbitrarily small we observe that for
the DTMC {Q(t),t > 0}, the first condition of Theorem A.1
holds if

(17)

Psuce,n

DPsuce,n

g (1 + psucc,nTs + pcoll,nTc)
for all 1 <n < M. Notice that

MX<

Lsat,n =0 (]— + psucc,nTs + pcoll,nTc) >
®sat,n =

Psuce,n

Lsat,n

and

are, respectively, the mean channel slot duration and the mean
aggregate throughput (in packets/sec) in a WLAN consisting
of n saturated nodes. Hence, for the DTMC {Q(t),t > 0},
the first condition of Theorem A.1 holds if

MM\ < esat,n

forall 1 <n < M, ie, if MA < min;<p<pr Osqt,n- Since
the second condition of Theorem A.1 holds at all finite arrival
rates, the DTMC {Q(t),¢ > 0} is positive recurrent if M <

minlSnSM ®sat,n-



