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Abstract— We consider the vector fixed point equations arising
out of the analysis of the saturation throughput of a single cell
IEEE 802.11e (EDCA) wireless local area network with nodes
that have different backoff parameters, including different Arbi-
tration InterFrame Space (AIFS) values. We consider balanced
and unbalanced solutions of the fixed point equations arising
in homogeneous (i.e., one with the same backoff parameters)
and nonhomogeneous networks. By a balanced fixed point, we
mean one where all coordinates are equal. We are concerned, in
particular, with (i) whether the fixed point is balanced within a
class, and (ii) whether the fixed point is unique. Our simulations
show that when multiple unbalanced fixed points exist in a
homogeneous system then the time behaviour of the system
demonstrates severe short term unfairness (omultistability). We
provide a condition for the fixed point solution to be balanced,
and also a condition for uniqueness. We then extend our general
fixed point analysis to capture AIFS based differentiation and

other), with an ideal channel (without capture, fading or frame
error) and assume that packets are lost only due to collision of
simultaneous transmissions. For ease of understanding, much
of our presentation is for the case in which each node has only
one EDCA queue of some access category. The analysis for
the general case of multiple EDCA queues (of different access
categories) per node is provided in Section VII.

Much work has been reported on the performance eval-
uation of EDCA to support differentiated service. Most of
the analytical work reported has been based on a decoupling
approximation proposed initially by Bianchi ([4]). While keep-
ing this basic decoupling approximation, in [2] Kumar et al.
presented a significant simplification and generalisation of the
analysis of the IEEE 802.11 backoff mechanism. This analysis

the concept of virtual collision when there are multiple queues led to a certain one dimensional fixed point equation for the
per station; again a condition for uniqueness is established. For collision probability experienced by the nodes in a homoge-
the case of multiple queues per node, we find that a model with neous system. In this paper we consigeidtidimensional fixed
as many nodes as there are queues, with one queue per nodeyqint equationdor a homogeneous system of nodes, and also
prowdes an gxcellent approximation. Implications for the use of for a nonhomogeneous system of nodes. The nonhomogeneity
the fixed point formulation for performance analysis are also . - Y : .
discussed. arises due to different initial backoffs, or different backoff
multipliers, or different amounts of time that nodes wait
after a transmission before restarting their backoff counters
(i.e., the AIFS (Arbitration InterFrame Space) mechanism of
IEEE 802.11e), or different number of access categories per

Index Terms—Performance of Wireless LANs, Short term
Unfairness, Saturation Throughput Analysis of EDCA

I. INTRODUCTION

A

(EDCA), which provides differentiated channel access to pack-1)
ets by allowing different backoff parameters (see [3]). Several
traffic classes are supported, the classes being distinguished
by different backoff parameters. Thus, whereas in the legacy
DCF all nodes have a single queue, and a single backoff
“state machine”, all with the same backoff parameters (we
say that the nodes at®mmogeneoysin EDCA the nodes can
have multiple queues with separate backoff state machines per
qgueue with different parameters, and hence are permitted t@®)
be nonhomogeneous

This paper is concerned with the saturation throughput anal-
ysis of IEEE 802.11e (EDCA) wireless LANs. We consider
a single cell network of IEEE 802.11e nodes (single cell
meaning that all nodes are within control channel range of each
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node.
new component of the IEEE 802.11e medium accessOur approach in this paper builds upon the one provided in
control (MAC) is an enhanced distributed channel acceBY. The main contributions of this paper are the following:

We provide examples of homogeneous systems in which,
even though a unique balanced fixed point exists (i.e.,
a solution in which all the coordinates are equal), there
can be multiple unbalanced fixed points, thus suggesting
multistability. We demonstrate by simulation that, in
such cases, significant short term unfairness can be
observed and the unique balanced fixed point fails to
capture the system performance.

Next, in the case where the backoff increases multi-
plicatively (as in IEEE 802.11 and IEEE 802.11e access
categories ACBE, AC_BK), we establish a simple suffi-
cient condition for the uniqueness of the solution of the
multidimensional fixed point equation in the homoge-
neous and the nonhomogeneous cases. In particular, we
do this for the case of the AIFS mechanism with multiple
access categories per node. The case of multiple access
categories per node presented here extends the material
provided in [1].

Further, the fixed point approach as developed in this
work provides an elegant and easy way to study the
performance differentiation provided by the different



backoff mechanisms in EDCA (see the section oof any access category is constant over time. There appears to
throughput differentiation in [20]). have been no attempt to study the phenomenon of short term

A survey of the literature: There has been much researchnfairness in the fixed point framework. A related work on
activity on modeling the performance of IEEE 802.11 and@thernet ([19]) identifies short-term unfairness in the system
in particular of IEEE 802.11e medium access standards. Tihyeexperimentation and simulation, and suggests modifications
general approach has been to extend the decoupling apptioxthe protocol to eliminate it. Also, all the existing work
imation introduced by Bianchi ([4]). Without modeling theassumes that the collision probabilities of all the queues with
AIFS mechanism, the extension is straightforward. Only ttidentical access parameters are the same. Thus there appears
initial backoff, and the backoff multiplierpersistence factgr to have been no earlier work on studying the possibility of
are modeled. In [5], [6] and [7], such a scheme is studiethbalanced solutions of the fixed point equations. In addition,
by extending Bianchi's Markov model per access category. the possibility of nonuniqueness of the solution of the fixed
this paper, in Section IIl, we will provide a generalisation angoint equations arising in the analyses seems to have been
simplification of this approach. We will then provide examplegiissed in the earlier literature. In our work, we study the
of homogeneous systems where nonunique fixed points died point equations for IEEE 802.11e networks and take into
exist, demonstrate the consequences of such nonuniquenagspunt all these possibilities.
and also obtain conditions that guarantee uniqueness. Outline of the paper: In Section Il we review the generalised

The AIFS technique is a further enhancement ihackoff model that was first presented in [2]. In Section IlI
IEEE 802.11e that provides a sort of priority to queues thate develop the multidimensional fixed point equations for the
have smaller values of AIFS. After any transmission activitfomogeneous and nonhomogeneous cases (without AIFS), and
in the channel, whereas high priority queues (with AIFS ebtain the necessary and sufficient conditions satisfied by the
DIFS) wait only for DIFS (DCF Interframe Space) to resumeolutions to the fixed point equations. We provide examples
counting down their backoff counters, low priority queue# Section IV to show that even in the homogeneous case
(with AIFS > DIFS) defer the initiation of countdown for there can exist multiple unbalanced fixed points and show
an additional AIFS-DIFS slots. Hence a high priority queuethe consequence of this. In Section V-A, we analyse the
decrements its backoff counter earlier than a low priority quediged point equations for a homogeneous system of nodes
and also has fewer collisions. and obtain a condition for the existence of only one fixed

Among the approaches that have been proposed for modsint. In Sections V-B and VI, we extend the analysis to
ing the AIFS mechanism (for example, [8], [9], [10], [11], [L12]Jnonhomogeneous system of nodes, with different backoff pa-
and [13]) the ones in [11], [12] and [13] come much closelmmeters (including AIFS). In Section VII we analyse the case
to capturing the service differentiation provided by the AIF8f multiple EDCA queues per node. Section VIII concludes
feature. In [11] the authors propose a Markov model to captutee paper and discusses future worke proofs of all lemmas
both the backoff window expansion approach and AIFS. AlIF8d theorems, if not in the paper, are provided in [20].
is modeled by expanding the state-space of the Markov chain
to include the number of slots elapsed since the previous trans- II. THE GENERALISED BACK-OFF MODEL

mission attempt on the channel. [12] uses a Markov chain o . .
P [12] I-;Lhere aren nodes, indexed by,1 < ¢ < n. We begin
i

the number of slots elapsed since the previous transmission t o . .
b b considering the case in which each node has one EDCA

model AIFS based service differentiation. In [13] the authot¥ We adopt th tation in 121 wh th id
observe that the system exists in states in which only no eue. We adopt the notation in [2], whose authors consider

of certain access categories can attempt transmission. E‘generahsatlon of the backoff behaviour of the nodes, and

approach is to model the evolution of these states as a Mar ne the following backoff parameters (for nodje
chain. The transition probabilities of this Markov chain are Ki := At the (K; + 1)th attempt either the packet being
obtained from the assumed, decoupled attempt probabilities. attempted by node succeeds or is discarded
This approach vyields a fixed point formulation. This is the bix :=The meanbackoff (in slots) at the:th attempt for a
approach we will discuss in Section VI. [10] extends the packet being attempted by node) < k < K;
Bianchi's analysis to multiple access categories per node cas®efinition 2.1: A system ofn nodes is said to béomo-
using the Markov chain approach. geneous if all the backoff parameters of the nodes, liKg;,
We note that the analyses in [10], [11] and [13] are baseéd;,0 < k < K; are the same for all, 1 <i < n. A system
on Bianchi's approach to modeling the residual backoff by @ nodes is calleshonhomogeneousf the backoff parameters
Markov chain. In this paper, we have extended the simplifdf the nodes are not identical. ]
cation reported in [2] (which was for a homogeneous systeRemark: IEEE 802.11e permits different backoff parameters
of nodes) to nonhomogeneous nodes with different backadf differentiate channel access obtained by the nodes in an
parameters and AIFS based priority schemes. Also, we modéiempt to provide QoS. The above definitions capture the
the case of multiple queues (of different access categorigessibility of having differentC’'W,,,;,, and CW,,,. values,
per node. Thus, in our work, we have provided a simplifiedifferent exponential backoff multiplier values and even dif-
and integrated model to capture all the essential backoff bagetent number of permitted attempts. For ease of discussion
service differentiation mechanisms of IEEE 802.11e. and understanding, we will postpone the topic of AIFS until
In the previous literature on IEEE 802.11 and IEEE 802.118gction VI. Hence in the discussions up to Section V-B, all
it is assumed that the collision rate experienced by a queihe nodes wait only for a DIFS after a busy channel. =



It has been shown in [2] (and later in [18]) that undeThus anecessary and sufficient conditidor a vector of
the decoupling assumption, introduced by Bianchi in [4Eollision probabilitiesy = (y1,---,7,) to be a fixed point
the attempt probability of nodeé (in a backoff slot, and solution is that, for alll <i <n,
conditioned on being in backoff) for given collision probability n
~; is given by, (1=7)(1 = Gi(w) =[]0 - Gi(%))

Jj=1

®)

149+ 49

Gi(vi) = e (1) where the right-hand side is seen to be independent of
bio +7ibia 4 7 bk, Define F;(v) := (1 — v)(1 — G;()). From (3) we see that
Remarks 2.1: if ~ is a solution of (2), then for all, j,1 < i,j < n,

1) We will assume thab, . are such thad < G;(y;) <1 Fi(v;) = Fi(v;) (4)
for all v;,0 <~; <1 andG;(vy;) < 1 whenevery; > 0. . o .

2) When the system is homogeneous then we will drop tﬁg)tlce that this is only anecessary conditionFor example,
subscripti from G, (-), and write the function simply as " @ homogeneous system of nodes, the vegtosuch that
G(). ~v; = for all 1 < i < n, satisfies (4) for any < v <1, but

not all such points are solutions of the fixed point equation

).

o ) _ ) Definition 3.1: We say that a fixed poiny (i.e., a solution

Itis important to note th_at in the present cﬁscus_smn all ratgg  — I'(G(~))) is balancedif ~; = ~; forall 1 <i,j<n;

are _condmoned on pemg in the backoff pe.rlods;. i.e., we haygnerwise,y is said to be amnbalanced fixed point n

eliminated all durations other than those in which nodes areRemarks 3.1:

counting down their backoff counters, in order to obtain the 1) ¢ is clear that if there exists an unbalanced fixed point

IlIl. THE FIXED POINT EQUATION

collision probability+; of nodei and its attempt probabilitg;
(= G;(:)). Later one brings back the channel activity periods
in order to compute the throughput in terms of the attempt
probabilities (see [2]). Now consider a nonhomogeneous sys-
tem of n nodes. Lety be the vector of collision probabilities
of the nodes. With the slotted model for the backoff process
and the decoupling assumption, the natural mapping of the
attempt probabilities of other nodes to the collision probability
of a node is given by
S =1- [ -5

j=1,j#i
wheref; = G;(v;). We could now expect that the equilibrium
behaviour of the system will be characterised by the solutions3)
of the following system of equations. Faor< i < n,

Yi = Fi(Gl('Yl)’ B Gn(’yn))

We write thesen equations compactly in the form of the
following multidimensional fixed point equation.

v =T(GH)) @)

SinceI'(G(~)) is a compaosition of continuous functions it is
continuous. We thus have a continuous mapping ffom]™
to [0, 1]™. Hence by Brouwer’s fixed point theorem there exists
a fixed point in[0, 1]™ for the equationy = T'(G(7)).

Consider the®" component of the fixed point equation, i.e.,

Vi = Fi(ﬁlaﬁ?? oo

w=1- [ -G 4)
1<j<n,j#i
or equivalently,
1-v)= J] a-Gn)

1<j<n,j#i

Multiplying both sides by(1 — G;(v;)), we get,
(1=7)1=G:(v) = [[ (1=Gi())

1<j<n

5)

for a homogeneous system, then every permutation is
also a fixed point and hence, in such cases, we do not
have a unique fixed point.

) In the homogeneous case, by symmetry, the average

collision probability must be the same for every node.
If the collision probabilities correspond to a fixed point
(see 3, next), then this fixed point will be of the
form (v,~,---,v) wherey solvesy = I'(G(v)) (since
Ii() =T() and G;(-) = G(-) for all 1 < i < n).
Such a fixed point ofy = I'(G(«)) is guaranteed by
Brouwer’s fixed point theorem. The uniqueness of such
a balanced fixed point was studied in [2]. We reproduce
this result in Theorem 5.1.

There is, however, the possibility that even in the
homogeneous case, there is an unbalanced solution of
~v = T'(G(v)). By simulation examples we observe
in Section IV that when there exist unbalanced fixed
points, the balanced fixed point of the system does
not characterise the average performance, even if there
exists only one balanced fixed point. In Section V-A,
we provide a condition for homogeneous IEEE 802.11
and IEEE 802.11e type nodes (with exponential backoff)
under which there is a unique balanced fixed point
and no unbalanced fixed point. In such cases, it is
now well established, that the unique balanced fixed
point accurately predicts the saturation throughput of the
system.

For the homogeneous case the backoff process can be
exactly modeled by a positive recurrent Markov chain
(see [2]). Hence the attempt and collision processes will
be ergodic and, by symmetry, the nodes will have equal
attempt and collision probabilities. In such a situation
the existence of multiple unbalanced fixed points will
suggest short term unfairness or multistability. We wiill
observe this phenomenon in Section IV.

Consider a system of homogeneous nodes having un-
balanced solutions for the fixed point equatign=



I'(G(7)) (i.e., there exists, j such thaty; # +,), then three solutions in each case. The smallest values ¢dipprox.

from (4), we see tha#'(v;)

F(v;), or the function 0.14) pairs up with the largest valueof = - - - = ,, (approx.

F' is many-to-one. Hence for a homogeneous system @07). Notice that the balanced fixed point of the system is also
nodes, if the functiorF' is one-to-one then there cannof fixed point in the plot (compare with Figure 1(a)). Then there

exist unbalanced fixed points. In Section V-B we usis

one remaining unbalanced fixed point whose values can be

this observation to obtain a sufficient condition for theead off the plot. We note that there could exist many other

uniqueness of the fixed point for the nhonhomogeneous
case.

balanced fixed points for this system of equations, as we

have considered only a particular variety of fixed points that

have the property thaf; # v = -+ = v,.

IV. NONUNIQUE FIXED POINTS AND MULTISTABILITY :

SIMULATION EXAMPLES an

In order to examine the consequences of multiple unbal-
ced fixed points we simulated the backoff process with

the backoff parameters of System-l. The following remarks

A. Example 1 su

Consider a homogeneous system (let us call it System-I)
with n = 10 nodes. The functioriz(-) of the nodes is given

by,

() = I+y+2+°%+...
T+ 2+ P 4640+ +..)

The system corresponds to the case whigre= oo, by =
bl:b2:bg:1andb4:b5:b6:...:64(bi
are distributed uniformly over the integers in [€W;] for
appropriateCW;). From the form of functionG(-), we can
see that a node which is currently at backoff stdge more
likely to remain at that stage astékes4 successive collisions
to make the attempt rate of the nodel. Likewise, a node
that is in the larger backoff stagés = b5 = --- = 64, will
retry continuously with mean inter-attempt slots of 64 until it

succeeds. Observe that only one node can be at backoff stage

0 at any time. This leads to the apparent multistability of the
system.

Figure 1(a) plotsG(v), the corresponding®(y) = (1 —
v)(1—G(7)) and shows the balanced fixed point of the system
for n = 10 nodes. The balanced fixed point of the system
shown in the figure is obtained using the fixed point equation
v =1—(1-G(v))?. Observe that the functioR(-) is not one-
to-one (the functior¥'(-) not being one-to-one does not imply
that there exist multiple fixed point solutions; see Remarks 3.1,
5).

Figure 1(b) shows the existence of unbalanced fixed points
for System-l. These fixed points are obtained as follows.
Assume that we are interested in fixed points such that
Yo = -+ = v,. Giveny, = --- = 7, the attempt probability
of the node2; - - - | n is given byG(v2). Hence, the collision
probability of nodel is given byy; =1 — (1 — G(y2))" L.
The attempt probability of nodewould then be&z(+;). Using
the decoupling assumption, the collision probability of any of
the othern — 1 nodes would then be,— (1 — G(72))"2(1 —
G(71)) = 2. Thus we obtain a fixed point equation fgs
(and hence for all the othey;,3 < j < n). In Figure 1(b)
we plotl — (1 — G(7)8(1 - G(1 - (1 - G(v))?)) (plotted
as the line marked with dots), the intersection of which with
the “y=x" line shows the solutions fofs(= --- = ~v,). In
the same way, we obtain the fixed point equation forby
eliminating -, - - -, v, from the multidimensional system of
equations. This functiton is plotted in Figure 1(b) using pluses
and lines and the intersection of this curve with the “y=x" line
shows the corresponding solutions fgr We see that there are

2)

3)

mmarise our simulation approach in this paper.

Remarks 4.1 (On the Simulation Approach used):

1) We have developed an event-driven simulator written in
the “C” language based on the coupled multidimensional
backoff process of the various nodes, to compare with
the analytical results. In this simulator, we do not simu-
late the detailed wireless LAN system (as is done in an
ns-2 simulator), but only the backoff slots. We will refer
to this as the CMP (Coupled Markov Process) simulator.
The main aim of the CMP simulator is to understand
the backoff behaviour of the nodes and its dependence
on the different backoff parameters. From the point of
view of performance analysis, it may also be noted that
once the backoff behaviour is correctly modelled the
channel activity can easily be added analytically, and
thus throughput results can be obtained (see [4] and [2]).
Note that, for IEEE 802.11 type networks, a good match
between analysis that uses a decoupled Markov model
for the backoff process and ns-2 simulations has already
been reported in earlier works (see the literature survey
in Section I). In addition, in Section VI, ns-2 simulation
results have also been provided in comparison with the
CMP simulator and the analytical results.

Our CMP simulator is programmed as follows. The
system evolves over backoff slots. All the nodes are
assumed to be in perfect slot synchronisation. The actual
coupled evolution of the backoff process is modeled.
The backoff distribution is uniform and the residual
backoff time is the state for each node. At every slot,
depending on the state of the backoff process, there are
three possibilities: the slot is idle, there is a successful
transmission, or there is a collision. This causes further
evolution of the backoff process.

Our CMP simulator, which we primarily use to study the
backoff behaviour of the nodes, takes a few seconds to
complete a simulation run, in comparison with the 2
simulations which takes any time between few minutes
to an hour depending on the number of nodes in the
system. The coupled backoff evolution approach we use
captures all the essential features of a single cell system
with ideal channel (no capture, fading or frame error)
and where there is perfect synchronisation among the
nodes (typical for single cell systems). The simulation
provides the attempt rates and collision probabilities
directly, which can be used with the throughput formula
provided in [2] to obtain the throughput of the nodes.
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Fig. 1.

Example System-I: 1(a) The balanced fixed point. Plot&'ef), F'(v) = (1 —~v)(1 — G(v)) and1 — (1 — G(v))? vs. the collision probabilityy;

we also show the “y=x" line. 1(b) Demonstration of unbalanced fixed points. Plos ef 1 — (1 — G(7))3(1 — G(1 — (1 — G(%))?)) (the curve drawn

with dots and lines) and the function for the fixed point equation+fpr(see text) using pluses and lines. 1(c) Snap-shot of short term average collision
probability of 2 of the 10 nodes. Also plotted is the average collision probability of the nodes (averagedll frames and nodgsThe 95% confidence
interval for the average collision probability lies within 0.7% of the mean value.

4)

5)

In all our simulationsp, are distributed uniformly over account for the large variation i, (-) between the two
the integers in I, CW;] for appropriateCW,;. We note cases.
here that the backoff behaviour of IEEE 802.11e EDCA ]

with the backoff range(, CW] can be modeled in the In Figure 1(c) we plot a (simulation) snap shot of the short
same way as IEEE 802.11 DCF with the backoff rangerm average collision probability of 2 of the 10 nodes of
[1,CW + 1] and the value of AIFS reduced by (see System-l and the average collision probability of the nodes
[13], [17]). Thus, the O sampling problem” found in (The average is calculated over all frames and all nodes. Since
IEEE 802.11 DCF is not observed in IEEE 802.11he nodes are identical, the average collision probability is the
EDCA, see the technical report [20] for further detailssame for all the nodes). Observe that the short term average
In Figures 1(c), 2(c) and 3(b), for the purpose dhas a huge variance around the long term average. It is evident
reporting the short term unfaimess results, the entitRat over 1000's of slots one node or the other monopolises the
duration of simulation is divided int& frames, where channel (and the remaining nodes see a collision probability of
the size of each frame is 10,000 slots. The short-termduring those slots). This could be described as multistability.
average of the collision probability of each nofld < A look into the fairness index (see Figure 3(c)) plotted as
j < n, is calculated as% where C;(i) and A;(i) a function of the frame size used to calculate throughput
correspond to the number of collisions and attemptsiggests that System-I exhibits significant unfairness in service
in frame ¢,1 < i < k, for node j. The Igcng-term even over reasonably large time intervals.
average is similarly calculated 3]52?71 E}-fl Cj(f) Implication for the use of_the balanced flxed_ poiNbtice

) e .. Ai() also that the average collision rate shown in Figure 1(c)
wheren is the number of nodes. Notice that the longis apout 0.25, whereas the balanced fixed point shown in
term average collision rate is a batch biased average@fjyre 1(a) shows a collision probability of about 0.6&nce
the short-term collision rates. Hence, when looking gfe see that in this case, where there are multiple fixed points,

the graphs, it will be incorrect to visually average thehe palanced fixed point does not capture the actual system
short-term collision rate plots in an attempt to obtain thﬁerformance.

long-term average collision rate. This is because when

a node is shown to have a low collision probability, ib. Example 2
is the one that is attempting every slot (while the other

nodes attempt with a mean gap &f slots), and hence
it sees a low probability of collision. In this casg;(-) o
is large andC;(-) < A;(-). On the other hand, when "€ nodes is given by,

a node is shown to have a high collision probability it L+y+92 44747

is attempting at an average rate &f and almost all its () = 14374992 4+ 2793 + - - - 4+ 218747

attempts collide with the node that is then attempting i'f‘he system corresponds to the case whre= 7, by — 1,
every slot. In this casel;(-) is small andC;(-) ~ 1. — 3'and by, = pbo for all 0 < k < K (b; are uniformly
Thus, in obtaining the overall average, it is essential stributed in [1,C'W;] for apprc;priatEC’Wi). We notice that

Let us now consider yet another homogeneous example (let
us call it System-Il) withn = 20 nodes. The functioi=(-) of




in this example the way the backoff expands is similar tiixed point of the system is obtained using the fixed point
the way it expands in the IEEE 802.11 standard, except thejuationy = 1—(1—G(~))°. The balanced fixed point yields
the initial backoff is very small (1 slot) and the multiplier isa collision probability of approximately 0.29.

3, rather than 2. Figure 2(a) plots(y), the corresponding Figure 3(b) plots a snap shot of the short term average
F(v) = (1 —v)(1 — G(v)) and the balanced fixed point ofcollision probability (from simulation) of 2 of the 10 nodes and
the system fom = 20 nodes. The balanced fixed point of thehe average collision probability of the nodes of the Example
system shown in the figure is obtained using the fixed poiSistem-Iil. Notice that the short term average collision rate
equationy = 1 — (1 — G(v))*°. is close to the average collision rate (the vertical scale in

As in the case of System-I, Figure 2(b) shows the existenttéis figure is much finer than in the corresponding figures
of multiple unbalanced fixed points for System-II. The fixefor System-I and System-Il). Also, the average collision rate
points we have shown correspond to the case wheeé v = matches well with the balanced fixed point solution obtained

-- =1, and are obtained just as discussed for System-I. in Figure 3(a).

Figure 2(c) plots a snap shot of the short term averagemark: Thus we see that in a situation in which there is a
collision probability (from simulation) of 2 of the 20 nodesunique fixed point not only is there lack of multistability, but
and the average collision probability of the nodes (same for alko the fixed point solution yields a good approximation to
the nodes). Observe that the short term averages vary a lottas long run average behaviour. ]
compared to the long term average, suggesting multistability.

Again, as in the case of System-l, comparing the average

collision probability with the balanced fixed point of theD. Short Term Fairness in Examples 1, 2 and 3

system in Figure 2(a), we see that the fixed point does not
c)allpture the agctual s(ygtem performance. P Figure 3(c) plots the throughput fairness mdlaxL
Discussion of Examples 1 and Brom the simulation exam- (wherer; is the average throughput of notlever the measure-
ples, we can make the following inferences. ment frame, see [16]) against the frame size used to measure

1) When there are multiple unbalanced fixed points #roughput. The fairness index is obtained for each frame and
a homogeneous system then the system can dispigyslveraged over the duration of the simulation. Also plotted
multistability, which manifests itself as significant shortn the figure is the 95% confidence interval. We note that
term unfairness in channel access. values of this index will lie in the intervdD, 1], and smaller

2) When there are multiple unbalanced fixed points i@lues of the index correspond to greater unfairness between
a homogeneous system then the collision probabilife nodes. The performance of all the three example systems
obtained from the balanced fixed point may be a po@fe compared. Notice that the Example System-IIl (similar

approximation to the long term average collision prodo IEEE 802.11 DCF) has the best fairness properties. The
ability. system achieves fairness of 0.9 over 1000’s of slots. However,

Similar conclusions can be drawn for nonhomogeneous Sygr Example System-1 and Il, similar performance is achieved

tems when the system of fixed point equations have multlp‘?é“y over 1,000,000 and 100,000 slots. The unfairness of
solutions. Example Systems-I and Il can be attributed to their apparent

It appears that the existence of multiple-fixed points is gultistability.
consequence of the form of th@(-) function in the above In Section V we establish conditions for the uniqueness of
examples, where5(-) is similar to a switching curve; see the solutions to the multidimensional fixed point equation.
for example, Figure 1(a) where there is a very high attempt
probability at I_ow coIIilsion prqbabilities and a very low V. ANALYSIS OF THE FIXED POINT
attempt probability at high collision probabilities.
A. The Homogeneous Case

C. Example 3 The following two results are adopted from [2].

Consider a homogeneous system in which backoff increase$€mma 5.1:G(y) is nonincreasing iny if by, k > 0, is a
multiplicatively as in IEEE 802.11 DCF (let us call it Systemhondecreasing sequence. In that case, urilgss b, for all

), with » = 10 nodes. The functioii(-) is given by, k, G(v) is strictly decreasing iny. u
) ) . Theorem 5.1:For a homogeneous system of nodes,

G(y) = Rt A e I'(G(7)) : [0,1] — [0, 1], has a unique fixed point i, k > 0,

16 + 327 + 649 + ... 4 20487 is a nondecreasing sequence. [ ]

The system corresponds to the case whEre= 7, p = 2 Remark: The fixed point(~,~,---,~) (wherey = T'(G(¥)))
andby = 16 and b, = p*by for all 0 < k < K (b; is the unique balanced fixed point fer = T'(G(v)). From

are uniformly distributed in [LC'W;] for appropriateCW;). (4), we see that anecessarycondition for the existence of
These parameters are similar to those used in the IEEE 802uhbalanced fixed points in a homogeneous system of nodes

standard. Figure 3(a) plot§(-), the corresponding’(v) = s that the functionF'(y) = (1 — v)(1 — G(v)) needs to be
(I —)(1 — G(v)) and the unique balanced fixed point ofnany-to-one. In other words, if the functi¢gh—~)(1—G(v))
the system. (Notice thak’ is one-to-one and uniqueness ofs one-to-one and ify = (y1,72,...,7,) IS & solution of the

the fixed point will be proved in Section V-A.) The balancedystemy = I'(G(v)), then~; = ~; for all ¢, 5. ]
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Fig. 2. Example System-lI: 2(a) The balanced fixed point. Plot§’6f), F(v) = (1 —v)(1 — G(v)) and1 — (1 — G())*® vs. the collision probability

~v; the line “y=x" is also shown. Notice that the functidfi is not one-to-one. 2(b) Demonstration of unbalanced fixed points. Plotg 6t 1 — (1 —

G811 - G(1 — (1 - G(v))'?)) (the curve drawn with dots and lines) and the function for the fixed point equatiom f¢see text) using pluses and

lines. 2(c) Snap-shot of short term average collision probability of 2 of the 20 nodes. The average collision probability is also plotted in the figure (averaged
over all slots and nod@sThe 95% confidence interval for the average collision rate lies within 0.7% of the mean value.
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Fig. 3. Example System-llI: 3(a) Plots 6¥(v), F(v) = (1 — v)(1 — G(v)) and1 — (1 — G(v))° vs. the collision probabilityy; the line “y=x" is also

shown. 3(b) Snap-shot of short term average collision probability of 2 of the 10 nodes. Also plotted is the average collision probabilty obtained by the nodes.
The 95% confidence interval of the average collision rate lies within 0.2% of the mean value. 3(c) Throughput fairness index of Example Ill compared with
Examples | and Il, plotted against the number of slots used to measure throughput. The dotted lines mark the 95% confidence interval for all the three example
systems.

Consider the exponentially increasing backoff case fd) F(v) =0 iff v =1,
which G(-) is given by, (i) £(0) >0, and
9 K (iii) F(v) is a decreasing function of. ]
= 1ty +y +...+7 (5) Now the derivative off" is
bo(1 4+ py +p*7% + ... + pKAK)

. . . . . F(y)=—-14G(R) -G ()01 -
Clearly, G(v) is a continuously differentiable function and so ™) ™) ™ _7) _
is F(7) = (1—7)(1—G(v)). The following simple lemmais Lemma53:ilf K > 1,p > 2 andG(:) is as in (5), then

G(v)

a consequence of the mean value theorem. G'(y) <0and|G ()| < 22 forall 0 < v < 1.
Lemma 5.2:F(v) is one-to-one i) <~y < 1if F'(y) #0 Proof: See Technical Report [20]. u
forall 0 <~ <1. - Clearly, G(v) < % and1 > (1 77)/ >0forall0 <y <1.
Remarks 5.1: Substituting into the expression faf (v), we get,
When F(-) is one-to-one i) < v < 1 andG(+) is such that / 1+4+2p

0 < G(y) <1forall 0 <y <1, the following hold Fys-1+ bo



Thus, if in addition to the other condition in Lemma 5.3, iRemark: The above result has relevance in the context of the
bo > 1+ 2p, then F’ (v) < 0 and the following result holds IEEE 802.11e standard where the proposal is to use differences
by virtue of the remark following Theorem 5.1. in backoff parameters to differentiate the throughputs obtained
Theorem 5.2:For a functionG(-) defined as in (5) ifK > by the various nodes. While Theorem 5.4 only states a
1,p > 2 andby > 2p + 1, then the systemy = T'(G(~)) has sufficient condition, it does point to a caution in choosing the

a unique fixed point which is balanced. B backoff parameters of the nodes.
Remark: It can be shown that if Lemma 5.3 holds f6X(+)
as in (5) it also holds for any case in whiéh = p*b, for VI. ANALYSIS OF THEAIFS MECHANISM

0<k<m<Kandb, = p™bg for m < k < K. The o . . . .

= .. Our approach for obtaining the fixed point equations when
latter situation closely matches the IEEE 802.11 standard (W{m9 AIngmechanism is ingluded is tEe sarr?e as the one
bp = 16,p = 2, K = 7,m = 5). Hence a homogeneous IEEE31

: 4 ) e eveloped in [13]. However, we develop the analysis in the
802.11 WLA.N has a unique f|xe(_:l pomt_ which is qlso balance ore general framework introduced in [2] and extended here
In general, if the functionG(-) is arbitrary (as in (1)) but

; : . in Section Ill. We show that under the condition tHat:) is
mqnotone decreasing, then there exists aunique balanced f'éﬁ -to-one there exists a unique fixed point for this problem
pomt for the system whenever the functigh-—+)(1 - G(v)) as well. The analysis is presented here for two different AIFS
IS one-to-one. class case, but can be extended to any number of classes. Also
in this section, we consider only the case in which there is one
B. The Nonhomogeneous Case queue (of an AIFS class) in each node. Extension to the case
In this section, we will extend our results to systemef multiple queues per node is done in Section VII.
with nonhomogeneous nodes. AIFS will be introduced in Let us begin by recalling the basic idea of AIFS based
Section VI. Nonhomogeneity is introduced by using differerstervice differentiation (see [3]). In legacy DCF, a node decre-
values ofby, p and K in different nodes. ments its backoff counter, and then attempts to transmit only
Consider a nonhomogeneous systemn ofodes, withG;(-)  after it senses an idle medium for more than a DCF interframe
a monotonically decreasing function aff{~y) := (1—~)(1— space (DIFS). However, in EDCA (Enhanced Distributed
G;(v)) being one-to-one for all. Let there be two fixed point Channel Access), based on the access category of a node (and
solutionsy = (v1,72,...,7) and X = (A1, \s,..., \,) for its AIFS value), a node attempts to transmit only after it senses
the above system (see Section Il for the fixed point equationt)e medium idle for more than its AIFS. Higher priority nodes
and there exist,1 < k < n, such thaty, # \,. From the have smaller values of AIFS, and hence obtain a lower average
necessary condition (4) we require that, forialhnd for some collision probability, since these nodes can decrement their
J1 >0 andJ; > 0 (clearly, Jy, Jo # 0, see Remarks 5.1), backoff counters, and even transmit, in slots in which lower
priority nodes (waiting to complete their AIFSs) cannot. Thus,
(1 =7%)(1 = Gi(n)) =/ nodes of higher priority (lower AIFS) not only tend to transmit
(1 =) = Gi(N)) = 2 more often but also have fewer collisions compared to nodes

Since(1—~)(1—Gi(7)) is one-to-one, applying this tg, and of lower priority (larger AIFS).The model we use to analyze

A, We require; # Jo. Without loss of generality, assumethe AIFS mechanism is quite general and accomodates the

Ji < Jo. Hence,y > A; for all i (see Remarks 5.1). USingactual nuances o_f AIFS implementations (see [14] for how
AIFS and DIFS differs) when the AIFS parameter value and

(3) we have, . ; . .
the sampled backoff value is suitably adjusted (see technical
A= 1-J[a=6G;0:) report [20] for details).
J#i
> 1-J]a-Gi() A. The Fixed Point Equations
_— 7 Let us consider two classes of nodes of two different

priorities. The priority for a class is supported by using AIFS
a contradiction. Hence, it must be that = J; or there exists as well asby, p and K. All the nodes of a particular priority

a unique fixed point. have the same values for all these parameters. There are
Notice that the arguments above immediately imply the() nodes of Classl and n(°) nodes of Clasg). Class1
following result. corresponds to a higher priority of service. The AIFS for Class

Theorem 5.3:If G;() is a decreasing function efforalli 0 exceeds the AIFS of Clask by [ slots. Thus, after every
and(1—+)(1—G;(v)) is a strictly monotone function d, 1], transmission activity in the channel, while Classodes wait

then the system of equatiops = G;(~;) and~; = I';(51,..., to complete their AIFS, Clask nodes can attempt to transmit

Bis ..., Bn) has a unique fixed point. B in thosel slots. Also, if there is any transmission activity (by
Where nodes use exponentially increasing backoff, the n&tass1 nodes) during thosé slots, then again the Clags

result then follows. nodes wait for another additionaslots compared to the Class

Theorem 5.4:For a system of nodes< ¢ < n, with G;(-) 1 nodes, and so on.
as in (5), that satisfyl\; > 1, p; > 2 and by, > 2p; + 1, As in [4] and [2], we need to model only the evolution of the
there exists a unique fixed point for the system of equatiorsckoff process of a node (i.e., the backoff slots after removing
Yi=1-]1;.(1—Gj(v;)) for 1 <i <mn. B any channel activity such as transmissions or collisions) to



[ before reaching. In practice/ is small (e.g., 1 slot or 5 slots;

i, C@ @ e @QQH see [3]) compared to the maximum contention window.
1, 1, Let 7(EA) be the stationary probability of the system being
M in the excess AlFQeriod,; i.e., this is the probability that the
i above Markov chain is in states 0, or 1,-6f, or (I — 1). In
Fig. 4. AIFS differentiation mechanism: Markov model for remaining numb@dqmc’.n’ letr (R) ble-the Steady state probability of the system
of AIFS slots. being in the remaining slots, i.e., stdtef the Markov chain.
Solving the balance equations for the steady state probabilities,
. o o ] we obtain,
obtain the collision probabilities. For convenience, let us call ) 1
the slots in which only Clas$ nodes can attempt axcess m(EA) = L+qpa+dqpa+ - +aga
AIFS slots, which will correspond to the subscriptd in the L+qpatqhy+-+dot+ lqiE;R

notation. In thaemainingslots (corresponding to the subscript

1
R in the notation) nodes of either class can attempt. Let (R) = 71(1_’3;1“,% ®)
us view such groups of slots, where different sets of nodes T o 14 qpa+ a2, +-+qol+ dha
EA EA 1—qr

contend for the channel, as differecdntention periodsLet
us define The average collision probability of a node is then obtained

57(1):: the attempt probability of a Class 1 node foriall < by averaging the collision probability experienced by a node
’ i <n® in the slots in which a Class 1 node carPVer the different contention periods. The average collision

attempt (i.e., all the slots) probability for Classl nodes is given by, for all, 1 < <
5}0):: the attempt probability of a Class 0 node forall < nl,
i < n®, in the contention periods during which n(®
Class 0 nodes can attempt (i.e., slots that are not ") = r(EA)(1- IT a _@(.1)) +7(R)
Excess AIFS slots) J=1,j%#i
Note that in making these definitions we are modeling the ey ()
attempt probabilities for Class 1 as being constant over all x 1— H (1— gj(_l)) H<1 _ @(0)) )
slots, i.e., the Excess AIFS slots and the remaining slots. This =1 j=1

simplification is just an extension of the Bianchi’s approxima-

tion, and has been shown to yield results that match well Wimm_llarly, the avergge chI|S|onO probability of a Classode
simulations (see [13]). is given by, for alli, 1 <i <nl?,

Now the collision probabilities experienced by nodes will n® n©
depend on the contention periodxtess AIFSr remaining W = 1= JJa-8") I -8 o)
slots) that the system is in. The approach is to model the j=1 J=1,ji

evolution over contention periods as a Markov Chain over the

states(0,1,2,-- -, 1), where the state, 0 < s < (I — 1), Our analysis in the remaining section now generalises the

denotes that an amount of time equalst@lots has elapsed analysis of [13] and also establishes uniqueness of the fixed

since the end of the AIFS for Clags These states corresponaDOInt and the property that the fixed point is balanced over

to the excess AlFSeriod in which only Class 1 nodes ca nodes in the same class. Defiaé!)(-) and G%)(.) as in (1)
L Y : n(except that the superscripts here denote the class dependent
attempt. In theremaining slots, when the state is = [, all

backoff parameters, with nodes within a class having the same
nodes can attempt.

In order to obtain the transition probabilities for this Marko parameters). Then the average collision probability obtained

chain we need the probability that a slot is idle. Using theo the apove equathns can be used to obtain the attempt
. A X e . rates by using the relations
decoupling assumption, the idle probability in any slot during

the excess AlF$eriod is obtained as, g =aW (M), and gj(_()) - G(O)(%(_O)) (12)
n®) forall 1 < i < aM, 1 <35 < n®, We obtain fixed
_ H(l_ﬁ(l)) (6) . . - .
4eA i point equations for the collision probabilities by substituting
=1 the attempt probabilities from (11) into (9) and (10) (and
Similarly, the idle probability in any of the remaining slots isalso into (6) and (7)). We have a continuous mapping from
obtained as, 0,17+ to [0,1]""+"” It follows from Brouwer's
e () fixed point theorem that there exists a fixed point.
= [[a-8)][a-8) (7)
i=1 j=1 B. Uniqueness of the Fixed Point

The transition structure of the Markov chain is shown in Lemma 6.L1:If F() is one-to-one, then collision probabili-
Figure 4. As compared to [13], we have used a simplificatidi¢s of all the nodes of the same class are identical; i.e., the
that the maximum contention window is much larger thaii ~ fixed points are balanced within each class.
this were not the case then some nodes would certainly attempt Proof: See Appendix. L]
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Theorem 6.1:The set of equations (9), (10) and (11) (to- o7
gether with (8), (6) and (7)), representing the fixed point
equations for the AIFS model, has a unique solution if the
corresponding function&'™ andG(®) are monotone decreas-
ing and F") and F(©) are one-to-one.

Proof: See Appendix. ]
Remark:It follows from the earlier results in this paper (see,
for example, Theorem 5.2) that &) (-) and G()(-) are of
the form in (5), and itk > 1,p(® > 2, andb} > 2p®) +1,
for i = 0,1, then the fixed point will be unique.

e I
o o
T T
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C. Numerical Results (Fixed Point Analysis, CMP and ns-2
Simulation) 02
1 2 3 4 5 6 7 8 9 10

Although the numerical accuracy of the fixed point analysis number of high priority nodes
h‘_r"s been reported before (see [4], [13])’ for Com.pleteneS.S’Fl . 6. Plots of collision probability of AG/I (HP) nodes and AGBE (LP)
Figures 5 and 6, we compare the collision probability obtaineddes with the number of ABE nodes fixed tol2. The lines correspond
using the fixed point analysis with ns-2 simulation and the the fixed point analysis,'theF" correspond to_the ns-§imulatiqns and ‘o
CMP simulator. Figure 5 plots the collision probabilities qff;grﬁf‘:ﬁgiiﬁuﬁg‘goi'\gzﬁﬂg‘t‘é'_ator' Ti% confidence interval lies within
AC_VO (access category for voice; the high priority, as in
[3]) nodes and ACBE (access category for best-effort traffic,
e.g., TCP; the low priority) nodes, with the number of 8E cannot be viewed as multistability (as seen in Section V),
nodes fixed tol. Figure 6 plots the collision probabilities ofbecause AIFS always gives preferential access to the high
AC_VI (access category for video; the high priority) nodes angtiority nodes, while starving the low priority nodes, and
AC_BE (the low priority) nodes with the number of ABE never the other way. Further, in our analysis on AIFS, the
nodes fixed tol2. AC_VO, AC_VI and AC BE correspond to attempt probability3() of a classi corresponds to only those
the IEEE 802.11e EDCA access categories. As observed in #iets in which class can attempt (rather than all slots). The
plots, the AIFS model works very well whenevex CW,,,;,,  variation in attempt rate and collision probability, due to
of the traffic classes (see Technical report [20] for addition&allFS, is captured using the Markov model shown in Figure 4.
plots comparing the fixed point analysis with the simulations).

VII. MULTIPLE ACCESSCATEGORIES PERNODE

09 R In this section we further generalize our fixed point anal-
ysis to include the possibility of multiple access categories
(or queues) per node. We considernodes andc; access
categories (ACs) per node the ACs can be of either AIFS
class (for simplicity, we consider only two AIFS classes) and
= cz(-l) + Cgo) (the superscripts refering to the AIFS classes
as before). The ACs in a node need not have the sa@mg
Since there are multiple ACs per node, each with its own
backoff process, it is possible that two or more ACs in a
node complete their backoffs at the same slot. This is then
calledVirtual Collision, and is resolved in favour of the queue
with the highestCollision Priority in the node. We label the
ACs from 1 to ¢;, with AC 1 corresponding to the highest
"2 3 4 5 6 7 8 9 10 collision priority in the node and AG; corresponding to
number of high priorty nodes the least collision priority. Unlike the single access category
Fig. 5. Plots of collision probability of AG/O (HP) nodes and AGE (LP) P€r node case where a collision is caused whenever any two
nodes with the number of ABE nodes fixed tot. The lines correspond to nodes (equivalently, ACs) attempt in a slot, here, a AC sees
the fixed point analysis, the+*” correspond to the ns-simulations and “0” 5 ¢o|lision in a slot only when a AC of some other node
correspond to the CMP simulator. Ti86% confidence interval lies within . .. .
1% of the simulation estimate. or a higher priority AC of the same node attempts in that
slot. A low priority AC of a node cannot cause collision to
Remarks 6.1 (AIFS Differentiation and Multistability)le ~ @ higher priority AC in the same node. In Section VII-A we
has been observed that (see [1]) as the number of nodedVilh study multiple access categories per node without AIFS
the system increases, AIFS provides non-preemptive senvit€., all the ACs wait only for DIFS) and consider AIFS later
to high priority nodes, starving the low priority nodes. Thigh Section VII-B.
may lead to long periods of time when high priority nodes We assume that, in a node (sdy the AIFS of Class)
get serviced while the low priority nodes wait. We captur&Cs (with ¢\’ ACs) exceeds the AIFS of the higher priority
this behaviour using the Markov model in Figure 4. Thi€lass1 ACs (with c§1> ACs) by slots. Also we assume that

collision probability
o bd
= o
T T
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the Classl ACs have a higher collision priority compared
to Class0 ACs in a node. This assumption conforms with
the way access categories are defined in the IEEE 802.11e 08t
standard. Also, when collision priorities are interchanged with
AIFS priorities, the actual performance of the system would

be hard to characterise.

A. Without Al

Let v, ; be the collision probability of AG of node: and

FS

11

0.7

ed
o
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collision probability

Foed
(%)

f3; be the attempt probability of AG of nodei, when the oA oA paim
AC can attempt. The fixed point equations for this system are, 0z o T A oA Lo
foralli=1,---,n(@andj=1,---,¢), — 16-n0AIFS-1AC-sim
0.1'e ‘ ‘ ‘ ‘
6i7j = GiJ (’Yz}j) (12) ’ 2 :t?mberoino:eos 0 10
j—1 n Cr
Yij = 1-— H (1= Bim) H H(l — Bra) (13) Fig. 7. Collision probability of high priority AC (HP) and low priority AC

m=1

{k=1,k+£i} I=1

where G, ;(-) depend on the backoff parameters of A®f

node i. The term an_:ll(l — Bim)

(LP) in a system of nodes with two ACs. Both simulation (sim) and analysis
(ana) are plotted. The backoff parameters of both the ACs (in all the nodes)
are identical withby = 16 and AIFS = DIFS. Also plotted is the collision
probability (obtained from simulation) for single AC per node case with same

in the above equation backoff parameters and twice the number of nodes. In all the gaseg and

corresponds to the higher priority ACs in the same nod&. = 7. For the simulation results, the5% confidence interval lies within

Observe that theZ; ;(-) definition allows the possibility of
different backoff parameters, p, K) within a node.
Theorem 7.1:The fixed point equations iy, obtained by

substituting (12) in (13) has a unique solution wh@p; is

monotone decreasing arfd ;(v) := (1 —v)(1 — G, (7)) is

one-to-one foralk =1,---,nandj =1,---,¢;.
Proof: See Technical Report [20].

B. With AIFS

In this section, we analyse the system where nodes have
ACs of either AIFS class (the case where there are only Class .
1 ACs can be modeled using the approach in Section VII-A). & A At
Define forl < i <n,1<j <g¢, C;; € {0,1} to be the
AIFS class of ACj in node:. Writing the fixed point equations

for i,j s.t. C; ; = 1, we obtain,

’71',]' = 1-— (F(EA)

X

+ w(R) [Tt = Bim

n

J—1

m=1

11 II «a

{k=1,k#i} {1<I<ck:Cr,1=1}

j—1

[T -8im)

— Br,1)

m=1 k=1,k#i1=1

and foré, j s.t.C; ; = 0, we obtain,

Yij = 1-— H (1= Bim)

m=1

j—1

) TT TI0 - 60 Jao

I TI0-6e)@s

{k=1,k+#i} I=1

1% of the mean value.
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number of nodes
Fig. 8. Collision probability of high priority AC (HP) and low priority AC
(LP) in a system of nodes with two ACs. Both simulation (sim) and analysis
(ana) are plotted. For the high priority AG; = 16 and AIFS = DIFS, while
for the low priority AC we havebyg = 32 and AIFS = DIFS + 1 slot. Also
plotted is the collision probability (from simulation) of two classes of nodes
when the two ACs of a node are considered as independent ACs in separate
nodes. In all the cases= 2 and K = 7. For the simulation results, tH¥5%
confidence interval lies within% of the mean value.

Theorem 7.2:The fixed point equations (14) and (15) have
a unique solution whertz; ; are monotone decreasing and

F; ;(-) are one-to-one for all = 1,---,n and for each;, for
allj:].,"'7CZ'.
Proof: See Appendix. ]

andg; ; = G, ;(vi;). 7(EA) andw(R) are defined as before Figures 7 and 8 plot performance results for the multiple
(see (8)), withgr4 andgr defined as

qEA

dr

n
k=1{1<i<cy:C},=1}

n  ck

TTIIC =8

k=11=1

(1= Br,)

(16)

ACs per node case. In Figure 7, we consider a set of homo-
geneous nodes each with two access categories. The backoff
parameters for either AC are the sarhg£ 16,p =2, K =7

and AIFS = DIFS). The figure plots the collision probability

of the higher priority (HP) AC and the low priority (LP)
AC obtained from CMP simulator as well as from analysis.
Also plotted in comparison is the collision probability (from
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simulation) for the single AC per node case with twice@odes in a nonhomogeneous system. We observed that using
the number of nodes. Notice that, except for smallthe initial backoff window, in general, a fixed throughput ratio
performance of the high priority AC and the low priority ACcan be achieved. On the other hand, ugingnd A/ F'S the

are almost identical (the backoff parameters are identical), asetvice can be significantly biased towards the high priority
close to the performance of the single AC per node case (sdgss, with the differentiation increasing in favour of the high
Remark 7.1 below). priority class as the load in the system increases. We also

In Figure 8, we again consider a set of nodes each withserved that the effect of collision priority, where there are
two access categories. The higher priority AC lhags= 16 multiple access categories per node, decreases as the number
and AIFS = DIFS, while the low priority AC hag, = 32 of nodes increases.
and AIFS = DIFS +1 slot. p =2 and K = 7 for either case.  The fixed point approach is simply a heuristic that is found
Figure 8 plots the collision probability of the high priorityto work well in some cases. Our work in this paper suggests
AC and the low priority AC from simulation as well as thewhere it might not work and where it might work. In a recent
analysis. Also plotted is the collision probability for the twowvork [15], the authors have proved that for random backoff
classes of nodes (from simulation) obtained by modeling tladgorithms, when the number of sources grow large, the system
two ACs in a node as independent ACs in separate nodmssindeed decoupled, providing a theoretical justification of
Notice again that except for small, the performance of the decoupling arguments used in the analysis.
multiple queue per node case is close to the performance of
the single queue case.

Remarks 7.1:The above observations from Figures 7 and 8
can be understood as follows. From the fixed point equatiop$ Venkatesh Ramaiyan, Anurag Kumar and Eitan Altman, Fixed point
in Section VII, we see that for the high priority AC in any analysis of single cell IEEE 802.11e WLANS: uniqueness, multistability

d | ’ di he | L and throughput differentiation, Proceedings ACM Sigmetrics, 2005.
node, only one term cqrre;pon Ing to the low .pI'IOI.‘Ity Ac[;2] Anurag Kumar, Eitan Altman, Daniele Miorandi and Munish Goyal, New
of the same node is missing (for the systems in Figures 7 insights from a fixed point analysis of single cell IEEE 802.11 wireless
and 8 with two ACs), in comparison to the case in which all LANs, Proceedings of the IEEE Infocom, 2005, Technical report no RR-
the AC D ' ¢ des. H : h 5218, INRIA, June 2004.

e S_are_' n sepa_lra € nodes. ence,@spgreases, e [3] IEEE Standard 802.11e, Wireless LAN medium access control (MAC)
effect this single AC in the same node diminishes, and the and physical layer (PHY) specifications, Amendment 8: medium access
performance of the multiple queue per node case coincidgs éonéf_o' ('\r/:'A%) qfua“ty of Ser'?e ?nh??ﬁeTégtEs’g;%%Ofi distributed

. . . blanchnl, Performance analysis O e . Istriputed coor-
with the performance of the smgle queue per node case e“Ijléhdination function, IEEE Journal on Selected Areas in Communications,

with one of the original ACs. ] Vol. 18, No. 3, Pages: 535-547, March, 2000.
[5] Yang Xiao, An analysis for differentiated services in IEEE 802.11 and
IEEE 802.11e wireless LANSs, Proc. of IEEE ICDCS’'04, 2004.
VIIl. CONCLUSIONS ANDFURTHER RESEARCH [6] Yang Xiao, Backoff-based priority schemes for IEEE 802.11, Proc. of
DIRECTIONS IEEE ICC’03, 2003.
[7] Bo Li and Roberto Battiti, Performance analysis of an enhanced |IEEE
In this paper we have studied a multidimensional fixed point 802.11 distributed coordination function supporting service differentia-

equation arising from a model of the backoff process of t tion, QOFIS, 2003.
quati Ising p & Yang Xiao, Enhanced DCF of IEEE 802.11e to support QoS, Proc. of

EDCA access mechanism in IEEE 802.11e Wireless LANS. |EEE WCNC'03, 2003.
Our first concern was the consequences of the nonuniquer{élsé;l'_-ff Zhu anld . Chlamtg%CAr[o%”az'%%%a' model for IEEE 802.11e EDCF
of the fixed point solution and conditions for uniqueneSfI fiterential services, ICCCN 03, 2003.

; 0] Zhen-ning Kong, D. H. K. Tsang, B. Bensaou and Deyun Gao, Perfor-
We demonstrated via examples of homogeneous systems thatnance analysis of IEEE 802.11e contention-based channel access, IEEE

even when the balanced fixed point is unique, the existence Journal on Selected Areas in Communications, December, 2004.

: ; ; : : ] J. Zhao, Z. Guo, Q. Zhang and W. Zhu, Performance study of MAC for
of unbalanced fixed points coexists with the observation Bt service differentiation in IEEE 802.11, Globecom, 2002,

severe short term unfairness in simulations. Further, in sughj |. Tinnirello and G. Bianchi, On the accuracy of some common modeling
examples the balanced fixed point solution does not capture assumptions for EDCA analysis, CITSA 2005, July 2005, Orlando.
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APPENDIX Now, using (8), write the right hand side of (17) as

A. Proof of Lemma 6.1 -1 q
gea(l+qpa+ - +qgs) + qr7Es

Rewriting (9), for alli, 1 < < n(Y), we get, J(qpa,qr,l) = ST
W0 Lt qpa+aba+ -+ dpa + 15
1=y = II a-8")xEa) (19)
j=1j#i

Lemma B.2:If /) < XM, then J(gpa(7),qr(7),1) <

n©® ; ra B2t o
) Gl o

k=1 ConsiderJ(qpa,qr,!) (see (19)).
Multiplying by (1 — ﬂi(l)) and using the fact thaﬁfl) =

1
qea(l+qea+ -+ d5 i) + qriea

1) (A1) £
G (7i )' we have, J(QEA&QRJ) = 1 -1 qir-;Al .
(1= =GD0M) = a(BA)apa+r(R)an AT AR T
(17) Expanding and rewriting the above equation, we get,
In (17), we see that the right hand side is independent of _ qpa+qpa(gea —qr) + -+ doi(qEa — qr)
H((ar)\ce, if the left hand side fu(rf)ctiomﬁii))(y) =1 —=)(1- - qea+ qealqgea —qr) + -+ (1 — qg)
G (y)), is one to one, thery,” = ~; for all 1 <i,j, < L 1
: , then; <4, 1) < \O ©
nM. Similarly, we can see from (10) that, for all 1 < i < WEICh is of the form Firpz- Whenytl < AT, theny™ >
(0 O (from the previous lemma). Hence,
1= =600 = ar (18) ama(Y) — ar()
e (O
i~ (0) _ (0) P ©) i O j
Hence againy; * = ;" forall 1 <4, j, < n™, if F'Vis — H(l _ G(l)(,y(l)))(l _ H(l _ G(O)(W(O))))
one to one. Py Pl
e NO)
B. Proof of Theorem 6.1 < J[a-cWaWya-TJa-c@nmy)
From Lemma 6.1, we already know that the fixed point i=1 i=1
is balanced within a class. Now, assume that there exist two = qea(A) —qr(A)

vector fixed point solutionssy and A, with the first n(!)
elements ofy being (") and the remaining:(?) elements
being~(?). Similarly, the firstn(!) elements of\ are \(") and qeA(Y) < qpa(X)
the nextn*) elements are\(). ar(¥) < qr(N)

Let us, in this proof, denote the value gf (see (7)) for
the fixed pointy asqr(+) and for the fixed poinf asqr(\); Using the above three inequalities, we can see that,

similarly, we do forgg4 and for other variables.
Lemma B.1:Let v and X be two fixed point solutions and J(apa(7),qr(7),1) < J(qea(N),qr(N),1)

Also, we can see that,

let F(©) be one-to-one. 1§ < X1 theny(©) > (O Also, n

A0 = XD iff 40 = \©O), If v < A, then (1 — yV)(1 — GO ()) > (1 —
Proof: Without loss of generality, let") < AV, Then \(1)(1 — G (A(M)). However, from the above lemma and

GV () > GW(AD) (see Lemma 5.1). Hence, the right hand side of (17), we see that we have a contradiction.

(1— G(l)w(l)))n“) <(1- G(l)(/\(l)))n<1>

C. Proof of Theorem 7.2
If we assumey(® < A, then gr(7(?) > ¢r(A\?) (see

(18)). Hence, we require Considlerci access categories per node/\gth cf.” ,?Cs
D /D n(L) 01O} 1(0) @,---, My with ATFS™), and the remaining|”’ ACs (! +
(1-GH )0 =GP ) > 1,---,¢;) with AIFS = ATFS(M + [ slots. The fixed point
(1= GOADY)D (1 — GO (A©))nO) equations for the system are given in (14) and (15).
or, As before, by Brouwer’s fixed point theorem, there exists a
(1- ) (7(0))),1(0) > (1- G(O)()\(O)))”(O) fixed point for the system of equations. Assume that there exist

two fixed point solutions for the above system of equations,
which implies~y(® > X(©) which is a contradiction. ~ and X with +; ; and ); ; as elements.
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Let us, in this proof, denote the value @t (see (16)) for that, (1 — 7, ;,)(1 — G, ;(7i;)) < (1 — X)) (1 — Gi5(Nij)),
the fixed pointy asqr(v) and for the fixed poinA asgr(\); which clearly implies thaty; ; > ); ;. Hence we have/(!) >
similarly, we do forqgz4 and for other variables. A1) which is a contradiction.

In a nodei, consider two ACs of the same AIFS class, i.e., Also, we can see thay®) = XM jff () = X(©) (the
jandj—1s.t.C;; = C; ;_1. From (14) or (15), we see that,proof is similar to that in Theorem 6.1 and is not provided
here).

(1= = (1=7%,;-1)0=Gij-1(7ij-1))
or,
(I—=7i,)=Fij—1(vij-1)

Hence, using the one-to-one property f; (-) if v, ; < A,
then~; 1, < A, for all k such thatC; ; = C; ,

Now consider all those nodes witl}; ., = 0, i.e., the least
collision priority AC in a node is of AIFS clas8. We then
have, using (15) and (16),

(1 =%ie)1 = Gie,(Vires)) = ar(7)
(1= Xie; )1 =Gie;(Nie;)) = qr(N)

ie., Fi,ci (’Yi,ci) = qR(FY) and Fi,ci ()\i,ci) = qR()\) If
qr(y) > qr(A), theny, ., < X\, for all i st. C; ., = 0.
If qR(’)/) = qR(A), then'ymi = )‘i701' for all 7 s.t. Ci,ci = 0.
Combining the above two results, we see that forigjl s.t.
CZ‘,]‘ =0, either%j > )\ivj or v, ; = )\@j or v, ; < /\i,j-

Without loss of generality, assume that the collision prob:i
bility of Class0 ACs is more iny than inX (v(©) > A(©) ~(0)
and(©) are the vector of collision probabilities correspondin
to AIFS class0 in the vectorsy and A respectively). Hence,
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where gr, ;, = in;_l(l - ﬁi,m)H{lgkgn,k;ﬂ} [15, 0 -
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