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Fixed Point Analysis of Single Cell IEEE 802.11e
WLANs: Uniqueness and Multistability∗

Venkatesh Ramaiyan1 Anurag Kumar1 and Eitan Altman2

Abstract— We consider the vector fixed point equations arising
out of the analysis of the saturation throughput of a single cell
IEEE 802.11e (EDCA) wireless local area network with nodes
that have different backoff parameters, including different Arbi-
tration InterFrame Space (AIFS) values. We consider balanced
and unbalanced solutions of the fixed point equations arising
in homogeneous (i.e., one with the same backoff parameters)
and nonhomogeneous networks. By a balanced fixed point, we
mean one where all coordinates are equal. We are concerned, in
particular, with (i) whether the fixed point is balanced within a
class, and (ii) whether the fixed point is unique. Our simulations
show that when multiple unbalanced fixed points exist in a
homogeneous system then the time behaviour of the system
demonstrates severe short term unfairness (ormultistability). We
provide a condition for the fixed point solution to be balanced,
and also a condition for uniqueness. We then extend our general
fixed point analysis to capture AIFS based differentiation and
the concept of virtual collision when there are multiple queues
per station; again a condition for uniqueness is established. For
the case of multiple queues per node, we find that a model with
as many nodes as there are queues, with one queue per node,
provides an excellent approximation. Implications for the use of
the fixed point formulation for performance analysis are also
discussed.

Index Terms— Performance of Wireless LANs, Short term
Unfairness, Saturation Throughput Analysis of EDCA

I. I NTRODUCTION

A new component of the IEEE 802.11e medium access
control (MAC) is an enhanced distributed channel access

(EDCA), which provides differentiated channel access to pack-
ets by allowing different backoff parameters (see [3]). Several
traffic classes are supported, the classes being distinguished
by different backoff parameters. Thus, whereas in the legacy
DCF all nodes have a single queue, and a single backoff
“state machine”, all with the same backoff parameters (we
say that the nodes arehomogeneous), in EDCA the nodes can
have multiple queues with separate backoff state machines per
queue with different parameters, and hence are permitted to
be nonhomogeneous.

This paper is concerned with the saturation throughput anal-
ysis of IEEE 802.11e (EDCA) wireless LANs. We consider
a single cell network of IEEE 802.11e nodes (single cell
meaning that all nodes are within control channel range of each
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other), with an ideal channel (without capture, fading or frame
error) and assume that packets are lost only due to collision of
simultaneous transmissions. For ease of understanding, much
of our presentation is for the case in which each node has only
one EDCA queue of some access category. The analysis for
the general case of multiple EDCA queues (of different access
categories) per node is provided in Section VII.

Much work has been reported on the performance eval-
uation of EDCA to support differentiated service. Most of
the analytical work reported has been based on a decoupling
approximation proposed initially by Bianchi ([4]). While keep-
ing this basic decoupling approximation, in [2] Kumar et al.
presented a significant simplification and generalisation of the
analysis of the IEEE 802.11 backoff mechanism. This analysis
led to a certain one dimensional fixed point equation for the
collision probability experienced by the nodes in a homoge-
neous system. In this paper we considermultidimensional fixed
point equationsfor a homogeneous system of nodes, and also
for a nonhomogeneous system of nodes. The nonhomogeneity
arises due to different initial backoffs, or different backoff
multipliers, or different amounts of time that nodes wait
after a transmission before restarting their backoff counters
(i.e., the AIFS (Arbitration InterFrame Space) mechanism of
IEEE 802.11e), or different number of access categories per
node.

Our approach in this paper builds upon the one provided in
[2]. The main contributions of this paper are the following:

1) We provide examples of homogeneous systems in which,
even though a unique balanced fixed point exists (i.e.,
a solution in which all the coordinates are equal), there
can be multiple unbalanced fixed points, thus suggesting
multistability. We demonstrate by simulation that, in
such cases, significant short term unfairness can be
observed and the unique balanced fixed point fails to
capture the system performance.

2) Next, in the case where the backoff increases multi-
plicatively (as in IEEE 802.11 and IEEE 802.11e access
categories ACBE, AC BK), we establish a simple suffi-
cient condition for the uniqueness of the solution of the
multidimensional fixed point equation in the homoge-
neous and the nonhomogeneous cases. In particular, we
do this for the case of the AIFS mechanism with multiple
access categories per node. The case of multiple access
categories per node presented here extends the material
provided in [1].

3) Further, the fixed point approach as developed in this
work provides an elegant and easy way to study the
performance differentiation provided by the different
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backoff mechanisms in EDCA (see the section on
throughput differentiation in [20]).

A survey of the literature: There has been much research
activity on modeling the performance of IEEE 802.11 and
in particular of IEEE 802.11e medium access standards. The
general approach has been to extend the decoupling approx-
imation introduced by Bianchi ([4]). Without modeling the
AIFS mechanism, the extension is straightforward. Only the
initial backoff, and the backoff multiplier (persistence factor)
are modeled. In [5], [6] and [7], such a scheme is studied
by extending Bianchi’s Markov model per access category. In
this paper, in Section III, we will provide a generalisation and
simplification of this approach. We will then provide examples
of homogeneous systems where nonunique fixed points can
exist, demonstrate the consequences of such nonuniqueness,
and also obtain conditions that guarantee uniqueness.

The AIFS technique is a further enhancement in
IEEE 802.11e that provides a sort of priority to queues that
have smaller values of AIFS. After any transmission activity
in the channel, whereas high priority queues (with AIFS =
DIFS) wait only for DIFS (DCF Interframe Space) to resume
counting down their backoff counters, low priority queues
(with AIFS > DIFS) defer the initiation of countdown for
an additional AIFS−DIFS slots. Hence a high priority queue
decrements its backoff counter earlier than a low priority queue
and also has fewer collisions.

Among the approaches that have been proposed for model-
ing the AIFS mechanism (for example, [8], [9], [10], [11], [12]
and [13]) the ones in [11], [12] and [13] come much closer
to capturing the service differentiation provided by the AIFS
feature. In [11] the authors propose a Markov model to capture
both the backoff window expansion approach and AIFS. AIFS
is modeled by expanding the state-space of the Markov chain
to include the number of slots elapsed since the previous trans-
mission attempt on the channel. [12] uses a Markov chain on
the number of slots elapsed since the previous transmission to
model AIFS based service differentiation. In [13] the authors
observe that the system exists in states in which only nodes
of certain access categories can attempt transmission. The
approach is to model the evolution of these states as a Markov
chain. The transition probabilities of this Markov chain are
obtained from the assumed, decoupled attempt probabilities.
This approach yields a fixed point formulation. This is the
approach we will discuss in Section VI. [10] extends the
Bianchi’s analysis to multiple access categories per node case
using the Markov chain approach.

We note that the analyses in [10], [11] and [13] are based
on Bianchi’s approach to modeling the residual backoff by a
Markov chain. In this paper, we have extended the simplifi-
cation reported in [2] (which was for a homogeneous system
of nodes) to nonhomogeneous nodes with different backoff
parameters and AIFS based priority schemes. Also, we model
the case of multiple queues (of different access categories)
per node. Thus, in our work, we have provided a simplified
and integrated model to capture all the essential backoff based
service differentiation mechanisms of IEEE 802.11e.

In the previous literature on IEEE 802.11 and IEEE 802.11e,
it is assumed that the collision rate experienced by a queue

of any access category is constant over time. There appears to
have been no attempt to study the phenomenon of short term
unfairness in the fixed point framework. A related work on
Ethernet ([19]) identifies short-term unfairness in the system
by experimentation and simulation, and suggests modifications
to the protocol to eliminate it. Also, all the existing work
assumes that the collision probabilities of all the queues with
identical access parameters are the same. Thus there appears
to have been no earlier work on studying the possibility of
unbalanced solutions of the fixed point equations. In addition,
the possibility of nonuniqueness of the solution of the fixed
point equations arising in the analyses seems to have been
missed in the earlier literature. In our work, we study the
fixed point equations for IEEE 802.11e networks and take into
account all these possibilities.
Outline of the paper: In Section II we review the generalised
backoff model that was first presented in [2]. In Section III
we develop the multidimensional fixed point equations for the
homogeneous and nonhomogeneous cases (without AIFS), and
obtain the necessary and sufficient conditions satisfied by the
solutions to the fixed point equations. We provide examples
in Section IV to show that even in the homogeneous case
there can exist multiple unbalanced fixed points and show
the consequence of this. In Section V-A, we analyse the
fixed point equations for a homogeneous system of nodes
and obtain a condition for the existence of only one fixed
point. In Sections V-B and VI, we extend the analysis to
nonhomogeneous system of nodes, with different backoff pa-
rameters (including AIFS). In Section VII we analyse the case
of multiple EDCA queues per node. Section VIII concludes
the paper and discusses future work.The proofs of all lemmas
and theorems, if not in the paper, are provided in [20].

II. T HE GENERALISED BACK-OFF MODEL

There aren nodes, indexed byi, 1 ≤ i ≤ n. We begin
with considering the case in which each node has one EDCA
queue. We adopt the notation in [2], whose authors consider
a generalisation of the backoff behaviour of the nodes, and
define the following backoff parameters (for nodei)

Ki := At the (Ki + 1)th attempt either the packet being
attempted by nodei succeeds or is discarded

bi,k :=The meanbackoff (in slots) at thekth attempt for a
packet being attempted by nodei, 0 ≤ k ≤ Ki

Definition 2.1: A system ofn nodes is said to behomo-
geneous, if all the backoff parameters of the nodes, like,Ki,
bi,k, 0 ≤ k ≤ Ki are the same for alli, 1 ≤ i ≤ n. A system
of nodes is callednonhomogeneousif the backoff parameters
of the nodes are not identical.
Remark: IEEE 802.11e permits different backoff parameters
to differentiate channel access obtained by the nodes in an
attempt to provide QoS. The above definitions capture the
possibility of having differentCWmin and CWmax values,
different exponential backoff multiplier values and even dif-
ferent number of permitted attempts. For ease of discussion
and understanding, we will postpone the topic of AIFS until
Section VI. Hence in the discussions up to Section V-B, all
the nodes wait only for a DIFS after a busy channel.
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It has been shown in [2] (and later in [18]) that under
the decoupling assumption, introduced by Bianchi in [4],
the attempt probability of nodei (in a backoff slot, and
conditioned on being in backoff) for given collision probability
γi is given by,

Gi(γi) :=
1 + γi + · · ·+ γKi

i

bi,0 + γibi,1 + · · ·+ γKi
i bi,Ki

(1)

Remarks 2.1:

1) We will assume thatbi,· are such that0 ≤ Gi(γi) ≤ 1
for all γi, 0 ≤ γi ≤ 1 andGi(γi) < 1 wheneverγi > 0.

2) When the system is homogeneous then we will drop the
subscripti from Gi(·), and write the function simply as
G(·).

III. T HE FIXED POINT EQUATION

It is important to note that in the present discussion all rates
are conditioned on being in the backoff periods; i.e., we have
eliminated all durations other than those in which nodes are
counting down their backoff counters, in order to obtain the
collision probabilityγi of nodei and its attempt probabilityβi

(= Gi(γi)). Later one brings back the channel activity periods
in order to compute the throughput in terms of the attempt
probabilities (see [2]). Now consider a nonhomogeneous sys-
tem of n nodes. Letγ be the vector of collision probabilities
of the nodes. With the slotted model for the backoff process
and the decoupling assumption, the natural mapping of the
attempt probabilities of other nodes to the collision probability
of a node is given by

γi = Γi(β1, β2, . . . , βn) = 1−
n∏

j=1,j 6=i

(1− βj)

whereβj = Gj(γj). We could now expect that the equilibrium
behaviour of the system will be characterised by the solutions
of the following system of equations. For1 ≤ i ≤ n,

γi = Γi(G1(γ1), · · · , Gn(γn))

We write thesen equations compactly in the form of the
following multidimensional fixed point equation.

γ = Γ(G(γ)) (2)

SinceΓ(G(γ)) is a composition of continuous functions it is
continuous. We thus have a continuous mapping from[0, 1]n

to [0, 1]n. Hence by Brouwer’s fixed point theorem there exists
a fixed point in[0, 1]n for the equationγ = Γ(G(γ)).

Consider theith component of the fixed point equation, i.e.,

γi = 1−
∏

1≤j≤n,j 6=i

(1−Gj(γj))

or equivalently,

(1− γi) =
∏

1≤j≤n,j 6=i

(1−Gj(γj))

Multiplying both sides by(1−Gi(γi)), we get,

(1− γi)(1−Gi(γi)) =
∏

1≤j≤n

(1−Gj(γj))

Thus a necessary and sufficient conditionfor a vector of
collision probabilitiesγ = (γ1, · · · , γn) to be a fixed point
solution is that, for all1 ≤ i ≤ n,

(1− γi)(1−Gi(γi)) =
n∏

j=1

(1−Gj(γj)) (3)

where the right-hand side is seen to be independent ofi.
DefineFi(γ) := (1− γ)(1−Gi(γ)). From (3) we see that

if γ is a solution of (2), then for alli, j, 1 ≤ i, j ≤ n,

Fi(γi) = Fj(γj) (4)

Notice that this is only anecessary condition. For example,
in a homogeneous system of nodes, the vectorγ such that
γi = γ for all 1 ≤ i ≤ n, satisfies (4) for any0 ≤ γ ≤ 1, but
not all such points are solutions of the fixed point equation
(2).

Definition 3.1: We say that a fixed pointγ (i.e., a solution
of γ = Γ(G(γ))) is balanced if γi = γj for all 1 ≤ i, j ≤ n;
otherwise,γ is said to be anunbalanced fixed point.

Remarks 3.1:
1) It is clear that if there exists an unbalanced fixed point

for a homogeneous system, then every permutation is
also a fixed point and hence, in such cases, we do not
have a unique fixed point.

2) In the homogeneous case, by symmetry, the average
collision probability must be the same for every node.
If the collision probabilities correspond to a fixed point
(see 3, next), then this fixed point will be of the
form (γ, γ, · · · , γ) whereγ solvesγ = Γ(G(γ)) (since
Γi(·) = Γ(·) and Gi(·) = G(·) for all 1 ≤ i ≤ n).
Such a fixed point ofγ = Γ(G(γ)) is guaranteed by
Brouwer’s fixed point theorem. The uniqueness of such
a balanced fixed point was studied in [2]. We reproduce
this result in Theorem 5.1.

3) There is, however, the possibility that even in the
homogeneous case, there is an unbalanced solution of
γ = Γ(G(γ)). By simulation examples we observe
in Section IV that when there exist unbalanced fixed
points, the balanced fixed point of the system does
not characterise the average performance, even if there
exists only one balanced fixed point. In Section V-A,
we provide a condition for homogeneous IEEE 802.11
and IEEE 802.11e type nodes (with exponential backoff)
under which there is a unique balanced fixed point
and no unbalanced fixed point. In such cases, it is
now well established, that the unique balanced fixed
point accurately predicts the saturation throughput of the
system.

4) For the homogeneous case the backoff process can be
exactly modeled by a positive recurrent Markov chain
(see [2]). Hence the attempt and collision processes will
be ergodic and, by symmetry, the nodes will have equal
attempt and collision probabilities. In such a situation
the existence of multiple unbalanced fixed points will
suggest short term unfairness or multistability. We will
observe this phenomenon in Section IV.

5) Consider a system of homogeneous nodes having un-
balanced solutions for the fixed point equationγ =
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Γ(G(γ)) (i.e., there existsi, j such thatγi 6= γj), then
from (4), we see thatF (γi) = F (γj), or the function
F is many-to-one. Hence for a homogeneous system of
nodes, if the functionF is one-to-one then there cannot
exist unbalanced fixed points. In Section V-B we use
this observation to obtain a sufficient condition for the
uniqueness of the fixed point for the nonhomogeneous
case.

IV. N ONUNIQUE FIXED POINTS AND MULTI STABILITY :
SIMULATION EXAMPLES

A. Example 1

Consider a homogeneous system (let us call it System-I)
with n = 10 nodes. The functionG(·) of the nodes is given
by,

G(γ) =
1 + γ + γ2 + γ3 + . . .

1 + γ + γ2 + γ3 + 64(γ4 + γ5 + . . .)

The system corresponds to the case whereK = ∞, b0 =
b1 = b2 = b3 = 1 and b4 = b5 = b6 = . . . = 64 (bi

are distributed uniformly over the integers in [1,CWi] for
appropriateCWi). From the form of functionG(·), we can
see that a node which is currently at backoff stage0 is more
likely to remain at that stage as ittakes4 successive collisions
to make the attempt rate of the node< 1. Likewise, a node
that is in the larger backoff stagesb4 = b5 = · · · = 64, will
retry continuously with mean inter-attempt slots of 64 until it
succeeds. Observe that only one node can be at backoff stage
0 at any time. This leads to the apparent multistability of the
system.

Figure 1(a) plotsG(γ), the correspondingF (γ) = (1 −
γ)(1−G(γ)) and shows the balanced fixed point of the system
for n = 10 nodes. The balanced fixed point of the system
shown in the figure is obtained using the fixed point equation
γ = 1−(1−G(γ))9. Observe that the functionF (·) is not one-
to-one (the functionF (·) not being one-to-one does not imply
that there exist multiple fixed point solutions; see Remarks 3.1,
5).

Figure 1(b) shows the existence of unbalanced fixed points
for System-I. These fixed points are obtained as follows.
Assume that we are interested in fixed points such thatγ1 6=
γ2 = · · · = γn. Given γ2 = · · · = γn, the attempt probability
of the nodes2, · · · , n is given byG(γ2). Hence, the collision
probability of node1 is given byγ1 = 1 − (1 − G(γ2))n−1.
The attempt probability of node1 would then beG(γ1). Using
the decoupling assumption, the collision probability of any of
the othern−1 nodes would then be,1− (1−G(γ2))n−2(1−
G(γ1)) = γ2. Thus we obtain a fixed point equation forγ2

(and hence for all the otherγj , 3 ≤ j ≤ n). In Figure 1(b)
we plot 1 − (1 − G(γ))8(1 − G(1 − (1 − G(γ))9)) (plotted
as the line marked with dots), the intersection of which with
the “y=x” line shows the solutions forγ2(= · · · = γn). In
the same way, we obtain the fixed point equation forγ1 by
eliminating γ2, · · · , γn from the multidimensional system of
equations. This functiton is plotted in Figure 1(b) using pluses
and lines and the intersection of this curve with the “y=x” line
shows the corresponding solutions forγ1. We see that there are

three solutions in each case. The smallest values ofγ1 (approx.
0.14) pairs up with the largest value ofγ2 = · · · = γn (approx.
0.97). Notice that the balanced fixed point of the system is also
a fixed point in the plot (compare with Figure 1(a)). Then there
is one remaining unbalanced fixed point whose values can be
read off the plot. We note that there could exist many other
unbalanced fixed points for this system of equations, as we
have considered only a particular variety of fixed points that
have the property thatγ1 6= γ2 = · · · = γn.

In order to examine the consequences of multiple unbal-
anced fixed points we simulated the backoff process with
the backoff parameters of System-I. The following remarks
summarise our simulation approach in this paper.

Remarks 4.1 (On the Simulation Approach used):
1) We have developed an event-driven simulator written in

the “C” language based on the coupled multidimensional
backoff process of the various nodes, to compare with
the analytical results. In this simulator, we do not simu-
late the detailed wireless LAN system (as is done in an
ns-2 simulator), but only the backoff slots. We will refer
to this as the CMP (Coupled Markov Process) simulator.
The main aim of the CMP simulator is to understand
the backoff behaviour of the nodes and its dependence
on the different backoff parameters. From the point of
view of performance analysis, it may also be noted that
once the backoff behaviour is correctly modelled the
channel activity can easily be added analytically, and
thus throughput results can be obtained (see [4] and [2]).
Note that, for IEEE 802.11 type networks, a good match
between analysis that uses a decoupled Markov model
for the backoff process and ns-2 simulations has already
been reported in earlier works (see the literature survey
in Section I). In addition, in Section VI, ns-2 simulation
results have also been provided in comparison with the
CMP simulator and the analytical results.

2) Our CMP simulator is programmed as follows. The
system evolves over backoff slots. All the nodes are
assumed to be in perfect slot synchronisation. The actual
coupled evolution of the backoff process is modeled.
The backoff distribution is uniform and the residual
backoff time is the state for each node. At every slot,
depending on the state of the backoff process, there are
three possibilities: the slot is idle, there is a successful
transmission, or there is a collision. This causes further
evolution of the backoff process.

3) Our CMP simulator, which we primarily use to study the
backoff behaviour of the nodes, takes a few seconds to
complete a simulation run, in comparison with thens-2
simulations which takes any time between few minutes
to an hour depending on the number of nodes in the
system. The coupled backoff evolution approach we use
captures all the essential features of a single cell system
with ideal channel (no capture, fading or frame error)
and where there is perfect synchronisation among the
nodes (typical for single cell systems). The simulation
provides the attempt rates and collision probabilities
directly, which can be used with the throughput formula
provided in [2] to obtain the throughput of the nodes.
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Fig. 1. Example System-I: 1(a) The balanced fixed point. Plots ofG(γ), F (γ) = (1− γ)(1−G(γ)) and1− (1−G(γ))9 vs. the collision probabilityγ;
we also show the “y=x” line. 1(b) Demonstration of unbalanced fixed points. Plots ofγ2 = 1− (1−G(γ))8(1−G(1− (1−G(γ))9)) (the curve drawn
with dots and lines) and the function for the fixed point equation forγ1 (see text) using pluses and lines. 1(c) Snap-shot of short term average collision
probability of 2 of the 10 nodes. Also plotted is the average collision probability of the nodes (averagedover all frames and nodes). The 95% confidence
interval for the average collision probability lies within 0.7% of the mean value.

4) In all our simulations,bi are distributed uniformly over
the integers in [1, CWi] for appropriateCWi. We note
here that the backoff behaviour of IEEE 802.11e EDCA
with the backoff range [0, CW ] can be modeled in the
same way as IEEE 802.11 DCF with the backoff range
[1, CW + 1] and the value of AIFS reduced by1 (see
[13], [17]). Thus, the “0 sampling problem” found in
IEEE 802.11 DCF is not observed in IEEE 802.11e
EDCA, see the technical report [20] for further details.

5) In Figures 1(c), 2(c) and 3(b), for the purpose of
reporting the short term unfairness results, the entire
duration of simulation is divided intok frames, where
the size of each frame is 10,000 slots. The short-term
average of the collision probability of each nodej, 1 ≤
j ≤ n, is calculated asCj(i)

Aj(i)
where Cj(i) and Aj(i)

correspond to the number of collisions and attempts
in frame i, 1 ≤ i ≤ k, for node j. The long-term

average is similarly calculated as1n
∑n

j=1

∑k

i=1
Cj(i)∑k

i=1
Aj(i)

wheren is the number of nodes. Notice that the long-
term average collision rate is a batch biased average of
the short-term collision rates. Hence, when looking at
the graphs, it will be incorrect to visually average the
short-term collision rate plots in an attempt to obtain the
long-term average collision rate. This is because when
a node is shown to have a low collision probability, it
is the one that is attempting every slot (while the other
nodes attempt with a mean gap of64 slots), and hence
it sees a low probability of collision. In this caseAj(·)
is large andCj(·) � Aj(·). On the other hand, when
a node is shown to have a high collision probability it
is attempting at an average rate of1

64 and almost all its
attempts collide with the node that is then attempting in
every slot. In this caseAj(·) is small andCj(·) ≈ 1.
Thus, in obtaining the overall average, it is essential to

account for the large variation inAj(·) between the two
cases.

In Figure 1(c) we plot a (simulation) snap shot of the short
term average collision probability of 2 of the 10 nodes of
System-I and the average collision probability of the nodes
(The average is calculated over all frames and all nodes. Since
the nodes are identical, the average collision probability is the
same for all the nodes). Observe that the short term average
has a huge variance around the long term average. It is evident
that over 1000’s of slots one node or the other monopolises the
channel (and the remaining nodes see a collision probability of
1 during those slots). This could be described as multistability.
A look into the fairness index (see Figure 3(c)) plotted as
a function of the frame size used to calculate throughput
suggests that System-I exhibits significant unfairness in service
even over reasonably large time intervals.

Implication for the use of the balanced fixed point:Notice
also that the average collision rate shown in Figure 1(c)
is about 0.25, whereas the balanced fixed point shown in
Figure 1(a) shows a collision probability of about 0.62.Hence
we see that in this case, where there are multiple fixed points,
the balanced fixed point does not capture the actual system
performance.

B. Example 2

Let us now consider yet another homogeneous example (let
us call it System-II) withn = 20 nodes. The functionG(·) of
the nodes is given by,

G(γ) =
1 + γ + γ2 + · · ·+ γ7

1 + 3γ + 9γ2 + 27γ3 + · · ·+ 2187γ7

The system corresponds to the case whereK = 7, b0 = 1,
p = 3 and bk = pkb0 for all 0 ≤ k ≤ K (bi are uniformly
distributed in [1,CWi] for appropriateCWi). We notice that
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in this example the way the backoff expands is similar to
the way it expands in the IEEE 802.11 standard, except that
the initial backoff is very small (1 slot) and the multiplier is
3, rather than 2. Figure 2(a) plotsG(γ), the corresponding
F (γ) = (1 − γ)(1 − G(γ)) and the balanced fixed point of
the system forn = 20 nodes. The balanced fixed point of the
system shown in the figure is obtained using the fixed point
equationγ = 1− (1−G(γ))19.

As in the case of System-I, Figure 2(b) shows the existence
of multiple unbalanced fixed points for System-II. The fixed
points we have shown correspond to the case whereγ1 6= γ2 =
· · · = γn and are obtained just as discussed for System-I.

Figure 2(c) plots a snap shot of the short term average
collision probability (from simulation) of 2 of the 20 nodes
and the average collision probability of the nodes (same for all
the nodes). Observe that the short term averages vary a lot as
compared to the long term average, suggesting multistability.
Again, as in the case of System-I, comparing the average
collision probability with the balanced fixed point of the
system in Figure 2(a), we see that the fixed point does not
capture the actual system performance.
Discussion of Examples 1 and 2:From the simulation exam-
ples, we can make the following inferences.

1) When there are multiple unbalanced fixed points in
a homogeneous system then the system can display
multistability, which manifests itself as significant short
term unfairness in channel access.

2) When there are multiple unbalanced fixed points in
a homogeneous system then the collision probability
obtained from the balanced fixed point may be a poor
approximation to the long term average collision prob-
ability.

Similar conclusions can be drawn for nonhomogeneous sys-
tems when the system of fixed point equations have multiple
solutions.

It appears that the existence of multiple-fixed points is a
consequence of the form of theG(·) function in the above
examples, whereG(·) is similar to a switching curve; see,
for example, Figure 1(a) where there is a very high attempt
probability at low collision probabilities and a very low
attempt probability at high collision probabilities.

C. Example 3

Consider a homogeneous system in which backoff increases
multiplicatively as in IEEE 802.11 DCF (let us call it System-
III), with n = 10 nodes. The functionG(·) is given by,

G(γ) =
1 + γ + γ2 + . . . + γ7

16 + 32γ + 64γ2 + . . . + 2048γ7

The system corresponds to the case whereK = 7, p = 2
and b0 = 16 and bk = pkb0 for all 0 ≤ k ≤ K (bi

are uniformly distributed in [1,CWi] for appropriateCWi).
These parameters are similar to those used in the IEEE 802.11
standard. Figure 3(a) plotsG(·), the correspondingF (γ) =
(1 − γ)(1 − G(γ)) and the unique balanced fixed point of
the system. (Notice thatF is one-to-one and uniqueness of
the fixed point will be proved in Section V-A.) The balanced

fixed point of the system is obtained using the fixed point
equationγ = 1−(1−G(γ))9. The balanced fixed point yields
a collision probability of approximately 0.29.

Figure 3(b) plots a snap shot of the short term average
collision probability (from simulation) of 2 of the 10 nodes and
the average collision probability of the nodes of the Example
System-III. Notice that the short term average collision rate
is close to the average collision rate (the vertical scale in
this figure is much finer than in the corresponding figures
for System-I and System-II). Also, the average collision rate
matches well with the balanced fixed point solution obtained
in Figure 3(a).
Remark:Thus we see that in a situation in which there is a
unique fixed point not only is there lack of multistability, but
also the fixed point solution yields a good approximation to
the long run average behaviour.

D. Short Term Fairness in Examples 1, 2 and 3

Figure 3(c) plots the throughput fairness index1
n

(
∑n

i=1
τi)

2∑n

i=1
τ2

i

(whereτi is the average throughput of nodei over the measure-
ment frame, see [16]) against the frame size used to measure
throughput. The fairness index is obtained for each frame and
is averaged over the duration of the simulation. Also plotted
in the figure is the 95% confidence interval. We note that
values of this index will lie in the interval[0, 1], and smaller
values of the index correspond to greater unfairness between
the nodes. The performance of all the three example systems
are compared. Notice that the Example System-III (similar
to IEEE 802.11 DCF) has the best fairness properties. The
system achieves fairness of 0.9 over 1000’s of slots. However,
for Example System-I and II, similar performance is achieved
only over 1,000,000 and 100,000 slots. The unfairness of
Example Systems-I and II can be attributed to their apparent
multistability.

In Section V we establish conditions for the uniqueness of
the solutions to the multidimensional fixed point equation.

V. A NALYSIS OF THE FIXED POINT

A. The Homogeneous Case

The following two results are adopted from [2].
Lemma 5.1:G(γ) is nonincreasing inγ if bk, k ≥ 0, is a

nondecreasing sequence. In that case, unlessbk = b0 for all
k, G(γ) is strictly decreasing inγ.

Theorem 5.1:For a homogeneous system of nodes,
Γ(G(γ)) : [0, 1] → [0, 1], has a unique fixed point ifbk, k ≥ 0,
is a nondecreasing sequence.
Remark: The fixed point(γ, γ, · · · , γ) (whereγ = Γ(G(γ)))
is the unique balanced fixed point forγ = Γ(G(γ)). From
(4), we see that anecessarycondition for the existence of
unbalanced fixed points in a homogeneous system of nodes
is that the functionF (γ) = (1 − γ)(1 − G(γ)) needs to be
many-to-one. In other words, if the function(1−γ)(1−G(γ))
is one-to-one and ifγ = (γ1, γ2, . . . , γn) is a solution of the
systemγ = Γ(G(γ)), thenγi = γj for all i, j.
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Fig. 2. Example System-II: 2(a) The balanced fixed point. Plots ofG(γ), F (γ) = (1− γ)(1−G(γ)) and1− (1−G(γ))19 vs. the collision probability
γ; the line “y=x” is also shown. Notice that the functionF is not one-to-one. 2(b) Demonstration of unbalanced fixed points. Plots ofγ2 = 1 − (1 −
G(γ))18(1−G(1− (1−G(γ))19)) (the curve drawn with dots and lines) and the function for the fixed point equation forγ1 (see text) using pluses and
lines. 2(c) Snap-shot of short term average collision probability of 2 of the 20 nodes. The average collision probability is also plotted in the figure (averaged
over all slots and nodes). The 95% confidence interval for the average collision rate lies within 0.7% of the mean value.
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Fig. 3. Example System-III: 3(a) Plots ofG(γ), F (γ) = (1− γ)(1−G(γ)) and1− (1−G(γ))9 vs. the collision probabilityγ; the line “y=x” is also
shown. 3(b) Snap-shot of short term average collision probability of 2 of the 10 nodes. Also plotted is the average collision probabilty obtained by the nodes.
The 95% confidence interval of the average collision rate lies within 0.2% of the mean value. 3(c) Throughput fairness index of Example III compared with
Examples I and II, plotted against the number of slots used to measure throughput. The dotted lines mark the 95% confidence interval for all the three example
systems.

Consider the exponentially increasing backoff case for
which G(·) is given by,

G(γ) =
1 + γ + γ2 + . . . + γK

b0(1 + pγ + p2γ2 + . . . + pKγK)
(5)

Clearly,G(γ) is a continuously differentiable function and so
is F (γ) = (1− γ)(1−G(γ)). The following simple lemma is
a consequence of the mean value theorem.

Lemma 5.2:F (γ) is one-to-one in0 ≤ γ ≤ 1 if F
′
(γ) 6= 0

for all 0 ≤ γ ≤ 1.
Remarks 5.1:

WhenF (·) is one-to-one in0 ≤ γ ≤ 1 andG(·) is such that
0 ≤ G(γ) ≤ 1 for all 0 ≤ γ ≤ 1, the following hold

(i) F (γ) = 0 iff γ = 1,
(ii) F (0) > 0, and
(iii) F (γ) is a decreasing function ofγ.
Now the derivative ofF is

F
′
(γ) = −1 + G(γ)−G

′
(γ)(1− γ)

Lemma 5.3:If K ≥ 1, p ≥ 2 and G(·) is as in (5), then
G

′
(γ) < 0 and |G′

(γ)| ≤ 2p
b0

for all 0 ≤ γ ≤ 1.
Proof: See Technical Report [20].

Clearly,G(γ) ≤ 1
b0

and1 ≥ (1− γ) ≥ 0 for all 0 ≤ γ ≤ 1.
Substituting into the expression forF

′
(γ), we get,

F
′
(γ) ≤ −1 +

1 + 2p

b0
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Thus, if in addition to the other condition in Lemma 5.3, if
b0 > 1 + 2p, thenF

′
(γ) < 0 and the following result holds

by virtue of the remark following Theorem 5.1.
Theorem 5.2:For a functionG(·) defined as in (5) ifK ≥

1, p ≥ 2 andb0 > 2p + 1, then the systemγ = Γ(G(γ)) has
a unique fixed point which is balanced.
Remark: It can be shown that if Lemma 5.3 holds forG(·)
as in (5) it also holds for any case in whichbk = pkb0 for
0 ≤ k ≤ m ≤ K and bk = pmb0 for m < k ≤ K. The
latter situation closely matches the IEEE 802.11 standard (with
b0 = 16, p = 2,K = 7,m = 5). Hence a homogeneous IEEE
802.11 WLAN has a unique fixed point which is also balanced.
In general, if the functionG(·) is arbitrary (as in (1)) but
monotone decreasing, then there exists a unique balanced fixed
point for the system whenever the function(1−γ)(1−G(γ))
is one-to-one.

B. The Nonhomogeneous Case

In this section, we will extend our results to systems
with nonhomogeneous nodes. AIFS will be introduced in
Section VI. Nonhomogeneity is introduced by using different
values ofb0, p andK in different nodes.

Consider a nonhomogeneous system ofn nodes, withGi(·)
a monotonically decreasing function andFi(γ) := (1−γ)(1−
Gi(γ)) being one-to-one for alli. Let there be two fixed point
solutionsγ = (γ1, γ2, . . . , γn) and λ = (λ1, λ2, . . . , λn) for
the above system (see Section III for the fixed point equations),
and there existsk, 1 ≤ k ≤ n, such thatγk 6= λk. From the
necessary condition (4) we require that, for alli, and for some
J1 > 0 andJ2 > 0 (clearly, J1, J2 6= 0, see Remarks 5.1),

(1− γi)(1−Gi(γi)) = J1

(1− λi)(1−Gi(λi)) = J2

Since(1−γ)(1−Gi(γ)) is one-to-one, applying this toγk and
λk, we requireJ1 6= J2. Without loss of generality, assume
J1 < J2. Hence,γi > λi for all i (see Remarks 5.1). Using
(3) we have,

λi = 1−
∏
j 6=i

(1−Gj(λj))

≥ 1−
∏
j 6=i

(1−Gj(γj))

= γi

a contradiction. Hence, it must be thatJ1 = J2 or there exists
a unique fixed point.

Notice that the arguments above immediately imply the
following result.

Theorem 5.3:If Gi(γ) is a decreasing function ofγ for all i
and(1−γ)(1−Gi(γ)) is a strictly monotone function on[0, 1],
then the system of equationsβi = Gi(γi) andγi = Γi(β1, . . .,
βi, . . . , βn) has a unique fixed point.

Where nodes use exponentially increasing backoff, the next
result then follows.

Theorem 5.4:For a system of nodes1 ≤ i ≤ n, with Gi(·)
as in (5), that satisfyKi ≥ 1, pi ≥ 2 and b0i

> 2pi + 1,
there exists a unique fixed point for the system of equations,
γi = 1−

∏
j 6=i(1−Gj(γj)) for 1 ≤ i ≤ n.

Remark: The above result has relevance in the context of the
IEEE 802.11e standard where the proposal is to use differences
in backoff parameters to differentiate the throughputs obtained
by the various nodes. While Theorem 5.4 only states a
sufficient condition, it does point to a caution in choosing the
backoff parameters of the nodes.

VI. A NALYSIS OF THE AIFS MECHANISM

Our approach for obtaining the fixed point equations when
the AIFS mechanism is included is the same as the one
developed in [13]. However, we develop the analysis in the
more general framework introduced in [2] and extended here
in Section III. We show that under the condition thatF (·) is
one-to-one there exists a unique fixed point for this problem
as well. The analysis is presented here for two different AIFS
class case, but can be extended to any number of classes. Also
in this section, we consider only the case in which there is one
queue (of an AIFS class) in each node. Extension to the case
of multiple queues per node is done in Section VII.

Let us begin by recalling the basic idea of AIFS based
service differentiation (see [3]). In legacy DCF, a node decre-
ments its backoff counter, and then attempts to transmit only
after it senses an idle medium for more than a DCF interframe
space (DIFS). However, in EDCA (Enhanced Distributed
Channel Access), based on the access category of a node (and
its AIFS value), a node attempts to transmit only after it senses
the medium idle for more than its AIFS. Higher priority nodes
have smaller values of AIFS, and hence obtain a lower average
collision probability, since these nodes can decrement their
backoff counters, and even transmit, in slots in which lower
priority nodes (waiting to complete their AIFSs) cannot. Thus,
nodes of higher priority (lower AIFS) not only tend to transmit
more often but also have fewer collisions compared to nodes
of lower priority (larger AIFS).The model we use to analyze
the AIFS mechanism is quite general and accomodates the
actual nuances of AIFS implementations (see [14] for how
AIFS and DIFS differs) when the AIFS parameter value and
the sampled backoff value is suitably adjusted (see technical
report [20] for details).

A. The Fixed Point Equations

Let us consider two classes of nodes of two different
priorities. The priority for a class is supported by using AIFS
as well asb0, p andK. All the nodes of a particular priority
have the same values for all these parameters. There are
n(1) nodes of Class1 and n(0) nodes of Class0. Class1
corresponds to a higher priority of service. The AIFS for Class
0 exceeds the AIFS of Class1 by l slots. Thus, after every
transmission activity in the channel, while Class0 nodes wait
to complete their AIFS, Class1 nodes can attempt to transmit
in thosel slots. Also, if there is any transmission activity (by
Class1 nodes) during thosel slots, then again the Class0
nodes wait for another additionall slots compared to the Class
1 nodes, and so on.

As in [4] and [2], we need to model only the evolution of the
backoff process of a node (i.e., the backoff slots after removing
any channel activity such as transmissions or collisions) to
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obtain the collision probabilities. For convenience, let us call
the slots in which only Class1 nodes can attempt asexcess
AIFS slots, which will correspond to the subscriptEA in the
notation. In theremainingslots (corresponding to the subscript
R in the notation) nodes of either class can attempt. Let
us view such groups of slots, where different sets of nodes
contend for the channel, as differentcontention periods. Let
us define

β
(1)
i := the attempt probability of a Class 1 node for alli, 1 ≤

i ≤ n(1), in the slots in which a Class 1 node can
attempt (i.e., all the slots)

β
(0)
i := the attempt probability of a Class 0 node for alli, 1 ≤

i ≤ n(0), in the contention periods during which
Class 0 nodes can attempt (i.e., slots that are not
Excess AIFS slots)

Note that in making these definitions we are modeling the
attempt probabilities for Class 1 as being constant over all
slots, i.e., the Excess AIFS slots and the remaining slots. This
simplification is just an extension of the Bianchi’s approxima-
tion, and has been shown to yield results that match well with
simulations (see [13]).

Now the collision probabilities experienced by nodes will
depend on the contention period (excess AIFSor remaining
slots) that the system is in. The approach is to model the
evolution over contention periods as a Markov Chain over the
states(0, 1, 2, · · · , l), where the states, 0 ≤ s ≤ (l − 1),
denotes that an amount of time equal tos slots has elapsed
since the end of the AIFS for Class1. These states correspond
to the excess AIFSperiod in which only Class 1 nodes can
attempt. In theremaining slots, when the state iss = l, all
nodes can attempt.

In order to obtain the transition probabilities for this Markov
chain we need the probability that a slot is idle. Using the
decoupling assumption, the idle probability in any slot during
the excess AIFSperiod is obtained as,

qEA =
n(1)∏
i=1

(1− β
(1)
i ) (6)

Similarly, the idle probability in any of the remaining slots is
obtained as,

qR =
n(1)∏
i=1

(1− β
(1)
i )

n(0)∏
j=1

(1− β
(0)
j ) (7)

The transition structure of the Markov chain is shown in
Figure 4. As compared to [13], we have used a simplification
that the maximum contention window is much larger thanl. If
this were not the case then some nodes would certainly attempt

before reachingl. In practice,l is small (e.g., 1 slot or 5 slots;
see [3]) compared to the maximum contention window.

Let π(EA) be the stationary probability of the system being
in the excess AIFSperiod; i.e., this is the probability that the
above Markov chain is in states 0, or 1, or· · ·, or (l − 1). In
addition, letπ(R) be the steady state probability of the system
being in the remaining slots, i.e., statel of the Markov chain.
Solving the balance equations for the steady state probabilities,
we obtain,

π(EA) =
1 + qEA + q2

EA + · · ·+ ql−1
EA

1 + qEA + q2
EA + · · ·+ ql−1

EA + ql
EA

1−qR

π(R) =
ql

EA

1−qR

1 + qEA + q2
EA + · · ·+ ql−1

EA + ql
EA

1−qR

(8)

The average collision probability of a node is then obtained
by averaging the collision probability experienced by a node
over the different contention periods. The average collision
probability for Class1 nodes is given by, for alli, 1 ≤ i ≤
n(1),

γ
(1)
i = π(EA)

1−
n(1)∏

j=1,j 6=i

(1− β
(1)
j )

+ π(R)

×

1−

 n(1)∏
j=1,j 6=i

(1− β
(1)
j )

n(0)∏
j=1

(1− β
(0)
j )

 (9)

Similarly, the average collision probability of a Class0 node
is given by, for alli, 1 ≤ i ≤ n(0),

γ
(0)
i = 1−

n(1)∏
j=1

(1− β
(1)
j )

n(0)∏
j=1,j 6=i

(1− β
(0)
j )

 (10)

Our analysis in the remaining section now generalises the
analysis of [13] and also establishes uniqueness of the fixed
point and the property that the fixed point is balanced over
nodes in the same class. DefineG(1)(·) andG(0)(·) as in (1)
(except that the superscripts here denote the class dependent
backoff parameters, with nodes within a class having the same
parameters). Then the average collision probability obtained
from the above equations can be used to obtain the attempt
rates by using the relations

β
(1)
i = G(1)(γ(1)

i ), andβ
(0)
j = G(0)(γ(0)

j ) (11)

for all 1 ≤ i ≤ n(1), 1 ≤ j ≤ n(0). We obtain fixed
point equations for the collision probabilities by substituting
the attempt probabilities from (11) into (9) and (10) (and
also into (6) and (7)). We have a continuous mapping from
[0, 1]n

(1)+n(0)
to [0, 1]n

(1)+n(0)
. It follows from Brouwer’s

fixed point theorem that there exists a fixed point.

B. Uniqueness of the Fixed Point

Lemma 6.1:If F (·) is one-to-one, then collision probabili-
ties of all the nodes of the same class are identical; i.e., the
fixed points are balanced within each class.

Proof: See Appendix.
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Theorem 6.1:The set of equations (9), (10) and (11) (to-
gether with (8), (6) and (7)), representing the fixed point
equations for the AIFS model, has a unique solution if the
corresponding functionsG(1) andG(0) are monotone decreas-
ing andF (1) andF (0) are one-to-one.

Proof: See Appendix.
Remark:It follows from the earlier results in this paper (see,
for example, Theorem 5.2) that ifG(0)(·) and G(1)(·) are of
the form in (5), and ifK(i) ≥ 1, p(i) ≥ 2, andb

(i)
0 > 2p(i)+1,

for i = 0, 1, then the fixed point will be unique.

C. Numerical Results (Fixed Point Analysis, CMP and ns-2
Simulation)

Although the numerical accuracy of the fixed point analysis
has been reported before (see [4], [13]), for completeness, in
Figures 5 and 6, we compare the collision probability obtained
using the fixed point analysis with ns-2 simulation and the
CMP simulator. Figure 5 plots the collision probabilities of
AC VO (access category for voice; the high priority, as in
[3]) nodes and ACBE (access category for best-effort traffic,
e.g., TCP; the low priority) nodes, with the number of ACBE
nodes fixed to4. Figure 6 plots the collision probabilities of
AC VI (access category for video; the high priority) nodes and
AC BE (the low priority) nodes with the number of ACBE
nodes fixed to12. AC VO, AC VI and AC BE correspond to
the IEEE 802.11e EDCA access categories. As observed in the
plots, the AIFS model works very well wheneverl � CWmin

of the traffic classes (see Technical report [20] for additional
plots comparing the fixed point analysis with the simulations).
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Fig. 5. Plots of collision probability of ACVO (HP) nodes and ACBE (LP)
nodes with the number of ACBE nodes fixed to4. The lines correspond to
the fixed point analysis, the “+” correspond to the ns-simulations and “o”
correspond to the CMP simulator. The95% confidence interval lies within
1% of the simulation estimate.

Remarks 6.1 (AIFS Differentiation and Multistability):It
has been observed that (see [1]) as the number of nodes in
the system increases, AIFS provides non-preemptive service
to high priority nodes, starving the low priority nodes. This
may lead to long periods of time when high priority nodes
get serviced while the low priority nodes wait. We capture
this behaviour using the Markov model in Figure 4. This
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Fig. 6. Plots of collision probability of ACVI (HP) nodes and ACBE (LP)
nodes with the number of ACBE nodes fixed to12. The lines correspond
to the fixed point analysis, the “+” correspond to the ns-simulations and “o”
correspond to the CMP simulator. The95% confidence interval lies within
1% of the simulation estimate.

cannot be viewed as multistability (as seen in Section IV),
because AIFS always gives preferential access to the high
priority nodes, while starving the low priority nodes, and
never the other way. Further, in our analysis on AIFS, the
attempt probabilityβ(i) of a classi corresponds to only those
slots in which classi can attempt (rather than all slots). The
variation in attempt rate and collision probability, due to
AIFS, is captured using the Markov model shown in Figure 4.

VII. M ULTIPLE ACCESSCATEGORIES PERNODE

In this section we further generalize our fixed point anal-
ysis to include the possibility of multiple access categories
(or queues) per node. We considern nodes andci access
categories (ACs) per nodei; the ACs can be of either AIFS
class (for simplicity, we consider only two AIFS classes) and
ci = c

(1)
i + c

(0)
i (the superscripts refering to the AIFS classes

as before). The ACs in a node need not have the sameG(·).
Since there are multiple ACs per node, each with its own
backoff process, it is possible that two or more ACs in a
node complete their backoffs at the same slot. This is then
calledVirtual Collision, and is resolved in favour of the queue
with the highestCollision Priority in the node. We label the
ACs from 1 to ci, with AC 1 corresponding to the highest
collision priority in the node and ACci corresponding to
the least collision priority. Unlike the single access category
per node case where a collision is caused whenever any two
nodes (equivalently, ACs) attempt in a slot, here, a AC sees
a collision in a slot only when a AC of some other node
or a higher priority AC of the same node attempts in that
slot. A low priority AC of a node cannot cause collision to
a higher priority AC in the same node. In Section VII-A we
will study multiple access categories per node without AIFS
(i.e., all the ACs wait only for DIFS) and consider AIFS later
in Section VII-B.

We assume that, in a node (sayi), the AIFS of Class0
ACs (with c

(0)
i ACs) exceeds the AIFS of the higher priority

Class1 ACs (with c
(1)
i ACs) by l slots. Also we assume that
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the Class1 ACs have a higher collision priority compared
to Class0 ACs in a node. This assumption conforms with
the way access categories are defined in the IEEE 802.11e
standard. Also, when collision priorities are interchanged with
AIFS priorities, the actual performance of the system would
be hard to characterise.

A. Without AIFS

Let γi,j be the collision probability of ACj of nodei and
βi,j be the attempt probability of ACj of node i, when the
AC can attempt. The fixed point equations for this system are,
for all i = 1, · · · , n (and j = 1, · · · , ci),

βi,j = Gi,j(γi,j) (12)

γi,j = 1−
j−1∏
m=1

(1− βi,m)
n∏

{k=1,k 6=i}

ck∏
l=1

(1− βk,l) (13)

whereGi,j(·) depend on the backoff parameters of ACj of
node i. The term

∏j−1
m=1(1 − βi,m) in the above equation

corresponds to the higher priority ACs in the same node.
Observe that theGi,j(·) definition allows the possibility of
different backoff parameters (b0, p,K) within a node.

Theorem 7.1:The fixed point equations inγ, obtained by
substituting (12) in (13) has a unique solution whenGi,j is
monotone decreasing andFi,j(γ) := (1 − γ)(1 − Gi,j(γ)) is
one-to-one for alli = 1, · · · , n and j = 1, · · · , ci.

Proof: See Technical Report [20].

B. With AIFS

In this section, we analyse the system where nodes have
ACs of either AIFS class (the case where there are only Class
1 ACs can be modeled using the approach in Section VII-A).
Define for 1 ≤ i ≤ n, 1 ≤ j ≤ ci, Ci,j ∈ {0, 1} to be the
AIFS class of ACj in nodei. Writing the fixed point equations
for i, j s.t. Ci,j = 1, we obtain,

γi,j = 1−

(
π(EA)

j−1∏
m=1

(1− βi,m)

×
n∏

{k=1,k 6=i}

∏
{1≤l≤ck:Ck,l=1}

(1− βk,l)

+ π(R)
j−1∏
m=1

(1− βi,m)
n∏

k=1,k 6=i

ck∏
l=1

(1− βk,l)

(14)

and for i, j s.t. Ci,j = 0, we obtain,

γi,j = 1−
j−1∏
m=1

(1− βi,m)
n∏

{k=1,k 6=i}

ck∏
l=1

(1− βk,l) (15)

andβi,j = Gi,j(γi,j). π(EA) andπ(R) are defined as before
(see (8)), withqEA andqR defined as

qEA =
n∏

k=1

∏
{1≤l≤ck:Ck,l=1}

(1− βk,l)

qR =
n∏

k=1

ck∏
l=1

(1− βk,l) (16)
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Fig. 7. Collision probability of high priority AC (HP) and low priority AC
(LP) in a system of nodes with two ACs. Both simulation (sim) and analysis
(ana) are plotted. The backoff parameters of both the ACs (in all the nodes)
are identical withb0 = 16 and AIFS = DIFS. Also plotted is the collision
probability (obtained from simulation) for single AC per node case with same
backoff parameters and twice the number of nodes. In all the casesp = 2 and
K = 7. For the simulation results, the95% confidence interval lies within
1% of the mean value.
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Fig. 8. Collision probability of high priority AC (HP) and low priority AC
(LP) in a system of nodes with two ACs. Both simulation (sim) and analysis
(ana) are plotted. For the high priority AC,b0 = 16 and AIFS = DIFS, while
for the low priority AC we haveb0 = 32 and AIFS = DIFS + 1 slot. Also
plotted is the collision probability (from simulation) of two classes of nodes
when the two ACs of a node are considered as independent ACs in separate
nodes. In all the casesp = 2 andK = 7. For the simulation results, the95%
confidence interval lies within1% of the mean value.

Theorem 7.2:The fixed point equations (14) and (15) have
a unique solution whenGi,j are monotone decreasing and
Fi,j(·) are one-to-one for alli = 1, · · · , n and for eachi, for
all j = 1, · · · , ci.

Proof: See Appendix.
Figures 7 and 8 plot performance results for the multiple

ACs per node case. In Figure 7, we consider a set of homo-
geneous nodes each with two access categories. The backoff
parameters for either AC are the same (b0 = 16, p = 2,K = 7
and AIFS = DIFS). The figure plots the collision probability
of the higher priority (HP) AC and the low priority (LP)
AC obtained from CMP simulator as well as from analysis.
Also plotted in comparison is the collision probability (from
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simulation) for the single AC per node case with twice
the number of nodes. Notice that, except for smalln, the
performance of the high priority AC and the low priority AC
are almost identical (the backoff parameters are identical), and
close to the performance of the single AC per node case (see
Remark 7.1 below).

In Figure 8, we again consider a set of nodes each with
two access categories. The higher priority AC hasb0 = 16
and AIFS = DIFS, while the low priority AC hasb0 = 32
and AIFS = DIFS +1 slot. p = 2 andK = 7 for either case.
Figure 8 plots the collision probability of the high priority
AC and the low priority AC from simulation as well as the
analysis. Also plotted is the collision probability for the two
classes of nodes (from simulation) obtained by modeling the
two ACs in a node as independent ACs in separate nodes.
Notice again that except for smalln, the performance of the
multiple queue per node case is close to the performance of
the single queue case.

Remarks 7.1:The above observations from Figures 7 and 8
can be understood as follows. From the fixed point equations
in Section VII, we see that for the high priority AC in any
node, only one term corresponding to the low priority AC
of the same node is missing (for the systems in Figures 7
and 8 with two ACs), in comparison to the case in which all
the ACs are in2n separate nodes. Hence, asn increases, the
effect this single AC in the same node diminishes, and the
performance of the multiple queue per node case coincides
with the performance of the single queue per node case each
with one of the original ACs.

VIII. C ONCLUSIONS ANDFURTHER RESEARCH

DIRECTIONS

In this paper we have studied a multidimensional fixed point
equation arising from a model of the backoff process of the
EDCA access mechanism in IEEE 802.11e Wireless LANs.
Our first concern was the consequences of the nonuniqueness
of the fixed point solution and conditions for uniqueness.
We demonstrated via examples of homogeneous systems that
even when the balanced fixed point is unique, the existence
of unbalanced fixed points coexists with the observation of
severe short term unfairness in simulations. Further, in such
examples the balanced fixed point solution does not capture
the long run average behaviour of the system. With these
observations in mind, we concluded that it is desirable to have
systems in which there is a unique fixed point, even for a
nonhomogeneous system.

We have provided simple sufficient conditions on the node
backoff parameters that guarantee that a unique fixed point
exists. We have shown that the default IEEE 802.11 parameters
satisfy these sufficient conditions. The IEEE 802.11e standard
motivated us to consider the nonhomogeneous case, and in this
case our results suggest certainsaferanges of parameters that
guarantee the uniqueness of the fixed point while providing
service differentiation.

Further, using the fixed point analysis, in [20], we were
also able to obtain insights into how the different backoff
parameters provide throughput differentiation between the

nodes in a nonhomogeneous system. We observed that using
initial backoff window, in general, a fixed throughput ratio
can be achieved. On the other hand, usingp and AIFS the
service can be significantly biased towards the high priority
class, with the differentiation increasing in favour of the high
priority class as the load in the system increases. We also
observed that the effect of collision priority, where there are
multiple access categories per node, decreases as the number
of nodes increases.

The fixed point approach is simply a heuristic that is found
to work well in some cases. Our work in this paper suggests
where it might not work and where it might work. In a recent
work [15], the authors have proved that for random backoff
algorithms, when the number of sources grow large, the system
is indeed decoupled, providing a theoretical justification of
decoupling arguments used in the analysis.
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APPENDIX

A. Proof of Lemma 6.1

Rewriting (9), for alli, 1 ≤ i ≤ n(1), we get,

(1− γ
(1)
i ) =

n(1)∏
j=1,j 6=i

(1− β
(1)
j )[π(EA)

+ π(R)
n(0)∏
k=1

(1− β
(0)
k )]

Multiplying by (1 − β
(1)
i ) and using the fact thatβ(1)

i =
G(1)(γ(1)

i ), we have,

(1− γ
(1)
i )(1−G(1)(γ(1)

i )) = π(EA)qEA + π(R)qR

(17)

In (17), we see that the right hand side is independent ofi.
Hence, if the left hand side function,F (1)(γ) := (1− γ)(1−
G(1)(γ)), is one to one, thenγ(1)

i = γ
(1)
j for all 1 ≤ i, j,≤

n(1). Similarly, we can see from (10) that, for alli, 1 ≤ i ≤
n(0),

(1− γ
(0)
i )(1−G(0)(γ(0)

i )) = qR (18)

Hence again,γ(0)
i = γ

(0)
j for all 1 ≤ i, j,≤ n(0), if F (0) is

one to one.

B. Proof of Theorem 6.1

From Lemma 6.1, we already know that the fixed point
is balanced within a class. Now, assume that there exist two
vector fixed point solutions,γ and λ, with the first n(1)

elements ofγ being γ(1) and the remainingn(0) elements
beingγ(0). Similarly, the firstn(1) elements ofλ areλ(1) and
the nextn(0) elements areλ(0).

Let us, in this proof, denote the value ofqR (see (7)) for
the fixed pointγ asqR(γ) and for the fixed pointλ asqR(λ);
similarly, we do forqEA and for other variables.

Lemma B.1:Let γ andλ be two fixed point solutions and
let F (0) be one-to-one. Ifγ(1) < λ(1), thenγ(0) > λ(0). Also,
γ(1) = λ(1) iff γ(0) = λ(0).

Proof: Without loss of generality, letγ(1) < λ(1). Then
G(1)(γ(1)) > G(1)(λ(1)) (see Lemma 5.1). Hence,

(1−G(1)(γ(1)))n(1)
< (1−G(1)(λ(1)))n(1)

If we assumeγ(0) < λ(0), then qR(γ(0)) > qR(λ(0)) (see
(18)). Hence, we require

(1−G(1)(γ(1)))n(1)(1−G(0)(γ(0)))n(0) >

(1−G(1)(λ(1)))n(1)(1−G(0)(λ(0)))n(0)

Or,
(1−G(0)(γ(0)))n(0) > (1−G(0)(λ(0)))n(0)

which impliesγ(0) > λ(0), which is a contradiction.

If γ(0) = λ(0), then qR(γ(0)) = qR(λ(0)). Hence,(1 −
G(1)(γ(1)))n(1)

= (1 − G(1)(λ(1)))n(1)
, Or, γ(1) = λ(1).

Hence, if γ(1) < λ(1), then γ(0) > λ(0). Let γ(0) 6= λ(0),
then qR(γ(0)) 6= qR(λ(0)). Hence, (1 − G(1)(γ(1)))n(1) 6=
(1−G(1)(λ(1)))n(1)

, Or, γ(1) 6= λ(1).
Now, using (8), write the right hand side of (17) as

J(qEA, qR, l) :=
qEA(1 + qEA + · · ·+ ql−1

EA ) + qR
ql

EA

1−qR

1 + qEA + q2
EA + · · ·+ ql−1

EA + ql
EA

1−qR

(19)

Lemma B.2:If γ(1) < λ(1), then J(qEA(γ), qR(γ), l) <
J(qEA(λ), qR(λ), l).

Proof:
ConsiderJ(qEA, qR, l) (see (19)).

J(qEA, qR, l) =
qEA(1 + qEA + · · ·+ ql−1

EA ) + qR
ql

EA

1−qR

1 + qEA + · · ·+ ql−1
EA + ql

EA

1−qR

Expanding and rewriting the above equation, we get,

=
qEA + qEA(qEA − qR) + · · ·+ ql−1

EA (qEA − qR)
qEA + qEA(qEA − qR) + · · ·+ (1− qR)

which is of the form f1
f1+f2 . Whenγ(1) < λ(1), thenγ(0) >

λ(0) (from the previous lemma). Hence,

qEA(γ) − qR(γ)

=
n(1)∏
i=1

(1−G(1)(γ(1)))(1−
n(0)∏
i=1

(1−G(0)(γ(0))))

<
n(1)∏
i=1

(1−G(1)(λ(1)))(1−
n(0)∏
i=1

(1−G(0)(λ(0))))

= qEA(λ)− qR(λ)

Also, we can see that,

qEA(γ) < qEA(λ)
qR(γ) < qR(λ)

Using the above three inequalities, we can see that,

J(qEA(γ), qR(γ), l) < J(qEA(λ), qR(λ), l)

If γ(1) < λ(1), then (1 − γ(1))(1 − G(1)(γ(1))) > (1 −
λ(1))(1 − G(1)(λ(1))). However, from the above lemma and
the right hand side of (17), we see that we have a contradiction.

C. Proof of Theorem 7.2

Considerci access categories per nodei with c
(1)
i ACs

(1, · · · , c(1)
i ) with AIFS(1), and the remainingc(0)

i ACs (c(1)
i +

1, · · · , ci) with AIFS = AIFS(1) + l slots. The fixed point
equations for the system are given in (14) and (15).

As before, by Brouwer’s fixed point theorem, there exists a
fixed point for the system of equations. Assume that there exist
two fixed point solutions for the above system of equations,
γ andλ with γi,j andλi,j as elements.
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Let us, in this proof, denote the value ofqR (see (16)) for
the fixed pointγ asqR(γ) and for the fixed pointλ asqR(λ);
similarly, we do forqEA and for other variables.

In a nodei, consider two ACs of the same AIFS class, i.e.,
j andj−1 s.t.Ci,j = Ci,j−1. From (14) or (15), we see that,

(1− γi,j) = (1− γi,j−1)(1−Gi,j−1(γi,j−1))

or,
(1− γi,j) = Fi,j−1(γi,j−1)

Hence, using the one-to-one property ofFi,j(·) if γi,j < λi,j ,
thenγi,k < λi,k for all k such thatCi,j = Ci,k,

Now consider all those nodes withCi,ci
= 0, i.e., the least

collision priority AC in a node is of AIFS class0. We then
have, using (15) and (16),

(1− γi,ci
)(1−Gi,ci

(γi,ci
)) = qR(γ)

(1− λi,ci
)(1−Gi,ci

(λi,ci
)) = qR(λ)

i.e., Fi,ci
(γi,ci

) = qR(γ) and Fi,ci
(λi,ci

) = qR(λ). If
qR(γ) > qR(λ), then γi,ci

< λi,ci
for all i s.t. Ci,ci

= 0.
If qR(γ) = qR(λ), thenγi,ci

= λi,ci
for all i s.t. Ci,ci

= 0.
Combining the above two results, we see that for alli, j s.t.
Ci,j = 0, eitherγi,j > λi,j or γi,j = λi,j or γi,j < λi,j .

Without loss of generality, assume that the collision proba-
bility of Class0 ACs is more inγ than inλ (γ(0) > λ(0), γ(0)

andλ(0) are the vector of collision probabilities corresponding
to AIFS class0 in the vectorsγ andλ respectively). Hence,
qR(γ) < qR(λ). Also, qEA(γ) < qEA(λ) (the proof is similar
to that provided for AIFS with single AC per node and is not
provided), which impliesγ(1) < λ(1).

Now consider the expressionF (·) for the least collision
priority Class1 AC, sayj, of any nodei (see (14)),

(1− γi,j)(1−Gi,j(γi,j)) = π(EA,γ)qEA(γ)
+ π(R,γ)qR(i,j)(γ)

(1− λi,j)(1−Gi,j(λi,j)) = π(EA,γ)qEA(λ)
+ π(R,γ)qR(i,j)(λ)

where qR(i,j) =
∏j

m=1(1 − βi,m)
∏

{1≤k≤n,k 6=i}
∏ck

l=1(1 −
βk,l). Notice that q(i,j)

R is similar to qR except for terms
corresponding to the Class0 (with lower collision priority)
ACs in node i. Hence, if γ(0) > λ(0), then not only is
qEA(γ) < qEA(λ) andqR(γ) < qR(λ), but also,qRi,j

(γ) <
qRi,j

(λ). Expanding(1− ·i,j)(1−Gi,j(·i,j)), we get,

(1− ·i,j)(1−Gi,j(·i,j)) =

(1 + qEA + q2
EA + · · ·+ ql−1

EA )qEA + ql
EA

1−qR
qR(i,j)

1 + qEA + q2
EA + · · ·+ ql−1

EA + ql
EA

1−qR

=
qEA + qEA(qEA − qR) + · · ·+ ql

EA(qR(i,j) − qR)
qEA + qEA(qEA − qR) + · · ·+ (1− qR)

where qEA − qR = qEA(1 −
∏N

k=1

∏nk

{l=1,Ck
l
=0}(1 − βk,l))

and q
(i,j)
R − qR = q

(i,j)
R (1 −

∏ni

{l=1,Ci
l
=0}(1 − βi,l)). Clearly,

if γ(0) > λ(0), thenqEA(γ)− qR(γ) < qEA(λ)− qR(λ) and
qRi,j

(γ) − qR(γ) < qRi,j
(λ) − qR(λ). Also, we know that

1− qR(γ) > 1− qR(λ). From the above observations, we see

that, (1 − γi,j)(1 − Gi,j(γi,j)) < (1 − λi,j)(1 − Gi,j(λi,j)),
which clearly implies thatγi,j > λi,j . Hence we haveγ(1) >
λ(1) which is a contradiction.

Also, we can see thatγ(1) = λ(1) iff γ(0) = λ(0) (the
proof is similar to that in Theorem 6.1 and is not provided
here).
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