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Abstract

We study a scheduling problem in a mobile network scenario where vehicles are
used as relays. A fixed source node wants to transfer a file of a known size to a fixed
destination node, located beyond its communication range. In the absence of any in-
frastructure connecting the two nodes, we consider the possibility of communication
using vehicles passing by. Vehicles arrive at the source node at renewal instants and
are known to travel towards the destination node with speed v from a given distribu-
tion. The source node communicates packets of the file to the destination node using
these vehicles as relays. We assume that the vehicles communicate with the source
node and the destination node only, and hence, every packet communication involves
only two hops. In this setup, we study the source node’s sequential decision prob-
lem of transferring packets of the file to vehicles as they pass by, with the objective
of minimizing the time until the file is completely received at the destination node.
We study both the finite file size case and the infinite file size case. In the finite file
size case, using a Markov decision process (MDP) framework, we study the average
delay minimization problem. In the infinite file size case, we study the optimal trade-
off achievable between the average queueing delay experienced by the packets at the
source node buffer and the average transit delay at the vehicles.

1 Introduction

We consider a scheduling problem in a mobile network scenario where vehicles are used as
relays. A stationary source node wishes to send a file of a given size to a stationary desti-
nation node, located beyond its communication range. In the absence of a communication
infrastructure connecting the source node and the destination node, we study the possibil-
ity of data transfer by relaying the packets using vehicles passing by. More precisely, we
assume that the source and the destination of the file transfer are located by a road. At
some random times, vehicles equipped with radio transceivers (and willing to serve as re-
lays) pass by the source node towards the destination node, with speed v from a known
distribution. The source node communicates packets of the file to the destination node,



by using these vehicles as relays. In this work, we assume that the vehicles communicate
with the source node and the destination node only, and they do not communicate among
themselves. Thus, all packet communication between the source and the destination in-
volves only two hops. Packet delay in this network scenario comprises of two components;
queueing delay at the source node (before the packet is relayed) and transit delay at the
vehicles (until the packet is delivered). The transit delay is assumed to be a function of the
speed of the vehicle, and we assume that the source node has full knowledge of the vehicle
speed at the time of relaying.

As the decision to relay a packet is taken only once (by the source node), there arises
a natural tradeoff between the queueing delay of the packet and its transit delay. Small
average queueing delay leads to large average transit delay and vice versa. Our objective
is to study the source node’s sequential decision problem of transferring packets of the
file to vehicles as they pass by, with the objective of minimizing the time until the file is
completely received at the destination. We study both the finite file size case and the infinite
file size case. In the finite file size case, we are interested in minimizing the average delay
to transfer the file (queueing delay plus the transit delay). In the infinite file size case, we
study the asymptotic tradeoff achievable between the average queueing delay of the packets
at the source node buffer and the average transit delay of the packets at the vehicles.

The above situation would arise in a wireless data network where there is limited ac-
cess to backbone infrastructure and vehicles are used as a means of communication (as a
relay). The fixed infrastructure of the wireless data network would consist of data posts
(or info stations) located at various points along the roads. The data posts, in general, need
not communicate directly with each other and we envision the possibility of using vehicles
passing by to route packets among the data posts. Some of the data posts are connected to
the backbone network, which in turn is connected to the Internet (we would call such data
posts as access-data posts). Except for a few access-data posts, the network requires very
little infrastructure, i.e., the data posts can be deployed anywhere along the roads, even
without any direct connectivity to any other data posts or a fixed network. The data posts
function both like routers as well as (WLAN) access points in hot-spots. End users com-
municate via the data posts, and the packets are routed appropriately to their destination
using the vehicles. The main difference between the proposed architecture and the tradi-
tional wireless setup is that, we maintain network connectivity among the data posts using
the vehicles and hence, there is no interference or the need of network design.

Figure 1 shows an example scenario studied in this work. A *“source car” wishes to
communicate a file to a “destination car”, beyond its communication range. The first phase
of data communication involves transferring the file from the source car to the stationary
node S. The file is then communicated to node D using a “relay car”, which passes by
nodes S and D. The file is finally transferred from the stationary node D to the destination
car, when the destination car passes by node D. In this work, we restrict ourselves to a
simple one hop communication problem between two such data posts, a source node (like
S) and a destination node (like D). We assume that the source node has a file with z
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Figure 1: Vehicular Relay Network Scenario. “Source car” has z data packets to commu-
nicate to the “destination car”. The packets are first transferred from the source car to the
stationary node S. Node S communicates the packets to node D using a “relay car” that
passes by the nodes S and D. Finally, the packets are transferred from the stationary node
D to the “destination car”, when it passes by.

packets to communicate to the destination node and study the sequential decision problem
of relaying packets of the file to passing by vehicles.

Outline of the paper :

In Section 2, we describe the network model, and in Section 3, the optimization problem.
We study the average delay minimization problem for the finite file case in Section 4. In
Section 5, we study the asymptotic optimal tradeoff achievable between the queueing delay
and the transit delay of the packets, for the infinite file size case. Section 6 concludes the
paper and discusses future work.

2 The Network Model

A stationary source node intends to send a file of a fixed size (z packets) to a stationary
destination node, located at a distance s metres away (i.e., a road of length s connects the
two). At random times, vehicles that drive in the direction of the destination node enter
the communication range of the source node. We assume that the interarrival times of the
vehicles are i.i.d. and have a c.d.f. I(-) known to the source node. The jth vehicle that
enters the communication range of the source node travels at an average speed v; towards
the destination node, where v; is assumed to be from an i.i.d. sequence with known c.d.f.
V'(+). We assume that the sth vehicle (with speed v;) takes - seconds to cover the distance
between the source and the destination. Further, we assume that the interarrival times of
the vehicles are distributed independent of the speeds of the vehicles. As the ith vehicle
enters the communication range of the source node, the source node gets the information
about this event as well as the speed of the vehicle, v;.

In this work, we assume that the source node can relay at most a single packet (of size
L bytes) to the relay vehicles, independent of the vehicle speeds. We acknowledge that



the time spent by the vehicles in the communication range of the source/destination will
depend on the speed of the vechicles. This may permit the relay vehicles to carry different
amounts of data depending on their speed. However, when the data posts (such as S and
D in Figure 1) are located near a junction, the vehicle speeds in the coverage region will
have little correlation with the average speed achieved over the distance s to the destination.
Correlating the average speed of the vehicle to the actual speed in the coverage radius (over
a very short duration of time) may not be appropriate as well. Hence, we restrict to single
packet per relay vehicle model. Packet relay to vehicles (with different speeds) is achieved
either by coding packets at different data rates or by restricting the set of vehicles to which
communication is permitted.

Due to randomness in the interarrival distribution and the vehicular speeds, it is possible
that the different packets of a file arrive at the destination in a random order. We assume
that the destination has the capability to reassemble these packets. Also, it is possible that
more than one vehicle is in the coverage region of the source or the destination node at any
given point of time. We assume that both the source and the destination nodes are capable
of simultaneous communication with vehicles, possibly in different, non-interfering bands.

3 The Optimization Problem

Packet delay in the network comprises queueing delay at the source node, transmission
delay (depends on the bit rate at which data is transmitted to/from the relay vehicle) and
transit delay at the relay vehicle. In this work, we assume that the transmission delay is
very small as compared to the transit delay and study only the queueing delay and the transit
delay of the packets. In other words, we assume that the packets are relayed instantaneously
between the source/destination node and the relay vehicles.

There is a natural tradeoff between the queueing delay and the transit delay in the net-
work. We can minimize the queueing delay by choosing every vehicle as a relay, thereby
increasing the transit delay of the packets. Similarly, by relaying only to high speed vehi-
cles, we can decrease the transit delay of the packets while increasing the queueing delay
at the source buffer. Note that when minimizing the expected sojourn time of a packet
(queueing delay plus the transit delay), if a slow vehicle arrives, it might be optimal to
ignore it and to wait until the next vehicle arrives in the hope that it would be faster. In fact
we would wish it to be sufficiently faster so as to compensate for the extra waiting time.
In this work, we study this tradeoff between the queueing delay and the transit delay and
find the delay minimizing policy. We study the following two versions of the scheduling
problem in this paper.

1. Finite File Size: We study the average delay minimization problem for a single file
with z packets (1 < z < oo) at the source node. As we can relay only one packet
per vehicle, this requires that the source node use z vehicles to relay the packets to



the destination. The goal is to minimize 7(v) = E[T (v)] for all v, where 7 (v) is the
random time from the moment a vehicle with speed v arrives in the communication
range of the source, until the file is completely transferred to the destination. We note
here that 7 (v) is the maximum of the sojourn times of the z packets in the network,
and not just the sojourn time of the last transmitted packet.

2. Infinite Fize Size: We assume that the source node has infinite packets to com-
municate to the destination node. More precisely, there is a packet arrival process
at the source node, independent of the vehicle arrival process. Packets are queued
at the source buffer until transmission, and our aim is to study the impact of the
scheduling policy on the queueing delay and the transit delay of the packets. We first
obtain the maximum throughput sustainable in the network for a given transit delay
constraint. Using the throughput-transit delay curve, we then study the asymptotic
optimal tradeoff achievable between the queueing delay and the transit delay of the
packets.

4 Finite File Size

In this section, we will study the case where the source node has a file with z packets
(1 < z < o0) to communicate to the destination node. We are interested in minimizing
the average delay in transfering the file completely to the destination. Every time a vehicle
enters the communication range of the source node, the source node has to make a decision
on using the current vehicle (with speed v) as a relay. As discussed in Section 2, we assume
that only one packet is relayed through a vehicle, and hence, the vehicular communication
requires z relay vehicles to complete the data transfer. Starting with the first vehicle to
arrive, the decision problem evolves over vehicle arrival instants {7, = 0,73,75,---}
with vehicle speeds {Vy, = v, Vi, Vs, ---}. As discussed in Section 2, {T},k > 0} are
renewal instants with i.i.d. interarrival times {Ix,; = Tx+1 — Tk, k > 0} and the vehicle
speeds {Vi,k > 0} are i.i.d. with c.d.f. V(). Let X, denote the residual number of
packets of the file, at the source node, at time instant 7},. The system permits two possible
actions: “to relay” and “not to relay”. Define Y}, as the action chosen at time instant 77,
i.e., the number of packets relayed to the £ vehicle. In our context, we have, Y € {0,1}.
When X = 0, Y, = 0 is the only permissible action. Define {Dy, k > 0} as the instant
(from T},) when the last of any previously relayed data will reach the destination. At time
instant Ty, T}, + D, lower bounds the minimum time required to complete the file transfer.
{(Xk, Vi, Dg), k > 0}, denotes the system state, and the system state dynamics is now



given by,

Xer1 = Xpg— Y%
+
S
Dyy1 = (max {DkaI{Yk>0}7} - Ik+1>
k

Define Rk(xk, Uk, dk, yk) as,

0 T = 0
Ik+1 T > 1
Ry (zk, Vi, diy Yi) = Iy zp=1landy, =0 (1)

max{dk,i} zp=1landy, =1

Ry (z, vk, di, yx) can be viewed as the single stage cost associated with the system state
(xk, vk, di) and action y,. For a sequence {(Xy, Vi, D, Yi), k > 0}, satisfying the above
dynamics, define the total cost function as

o0

> Re(X, Vi, Dy, Yi)
k=0

Notice that the above total cost expression is the random time of delivery of the file to the
destination from the moment 7, = 0. Our aim is to minimize the average value of the
above total cost function.

Given that Xy = 2,V = v and Dy = 0, we wish to choose the policy {7, &k > 0}, so
as to minimise the expected delay in delivery of the file, i.e., we wish to solve the following
problem,

inf E Ri(Xy, Vi, D, Y3)| Xo = 2,Vo = v, Dy = 0 2
{1k >0} L,V ; k( k k k k) 0 0 0 ()

where the infimum is over the set of all feasible policies. The problem has been formulated
in a Markov decision process framework with a total cost criterion. Suppose that the speed
of the vehicle is continuously distributed within a bounded set, i.e., Vi € [Vmin, Vmaz)-
Further, assume that the interarrival time distribution is continuously distributed. Then,
Dy, € [0,00), and the state space of the problem (X, Vi, Dy) is a Borel set. The action
space Y is finite in our case. When E[I], the mean interarrival time, is finite, the single
stage cost function R, and its expectation is bounded as well. Then, from [1], we see that
there exists a stationary deterministic Markov policy that achieves the minimum for (2),
i.e., there exists an optimal policy 7* such that 7; = 7*(x, vk, dx) € {0,1}. Also, the
stationary optimal policy 7*(z, v, d) can be obtained by solving the Bellman’s equation.



Theorem 4.1 Let 7*(z, v, d) be the optimal value of (2). Then, 7*(x,v,d) satisfies the
following dynamic programming (DP) equation.

™ (z,v,d) :=

0 z=0
{ minyeo,1) {E[] + Erv[r*(z — y, V, (max(d, Iyys0y2) — )F)]} 2> 1 (3)
min {E[I] + E;v[r*(,V, (d — I)")], max (£,d) } =1

The optimal policy 7*(z, v, d) is the stationary policy that chooses the y that minimizes the
right hand side expresssion of (3).

4.1 One Shot Problem

Consider the special case, z = 1. The Bellman equation (3) simplifies to

(1) = min{E[I] + / (1, u)dV (w), %} @)

=Umin
and 7*(0,v) = 0. From (4), we see that it is optimal to transmit (i.e., y = 1) when, 2,
the total cost of relaying using the current vehicle is less than the expected future cost, i.e.,
when

Umaz
S

- < E[I]+/ (1, u)dV (u) (5)

=Umin
Define v* as the v that satisfies the above expression with equality, i.e.,

Umaz

~ = El+ / 7 (1,u)dV (u)

= E[I]—i—/ T*(l,u)dV(u)+/ (1, u)dV (u) (6)
For any v > v*, the cost-to-go value is 2 (follows from (4)). And, for all v < v*, the
cost-to-go value is the same. Hence, for all v < v*, 7*(1,v) = 7*(1,v*) = . Substituting

in (6), we have,

2 = E[1]+/vjm (5)avw+ (=) <1—/Ujm dV(U))

Ymaz /g s s
- E[I]—i—/v* (a—ﬁ)dV(u)—FE
Rearranging terms, we have,
Umazx S S
[ (-2 vw = )

Notice that the left hand side of (7) is a convex decreasing function of v*, and hence, there
exists a unique solution for v*.



Remarks 4.1 The optimal policy has a simple interpretation. Rearranging (7), we have,

m (/m 2av (u) + E[J]) _ 2

A vehicle of speed v is used as a relay only when the time required for the vehicle to reach
the destination is less than the mean time that we need to wait for another vehicle which
can be used as a relay and the subsequent time to travel to the destination.

4.2 Piecewise Transmission Problem

Now, consider the general case, z > 1. From the dynamic program (3), we conclude the
following.

Theorem4.2 1. 7*(z,v,d) isanon-decreasing function of z and d, and a non-increasing
function of v.

2. The optimal policy 7*(z, v, d) is a threshold policy for every z, with the threshold v
a non-increasing function of z and d.

Proof: See Appendix A. O

4.2.1 A sub-optimal policy

We will now obtain a sub-optimal scheduling policy for the average delay minimization
problem, such that the average delay is within a constant bound from 7* Clearly, using
every vehicle as a relay will yield a sub-optimal policy with a constant bound 0
treating the file as z independent packets and usmg the scheduling policy from the One- shot
model will yield an average delay within z7*. Alternatively, here, we will obtain a much
tighter bound by considering a different optimization problem. For a given scheduling
policy =, define 7,7, 7,7, ---, T as the random time (from 7, = 0) in which packets
1,2,---, z reach the destination node. Our original objective is to solve the following
optimization problem.

igf{EI,V[maX( 17T: 27T: U ’7;71')]} (8)

Alternatively, we will solve (9) and show that the optimal scheduling policy for (9) pro-
vides a close approximation to the original problem (8). Consider the following modified
optimization problem,

inf {max (Erv[T,"], Erv[T5], -, Erv[T])} 9)

Let 7 and 7 be the optimal value and the optimal scheduling policy of the alternate objective
function, i.e.,

= inf {max (E v [T7], Erv[T5'], -+, Ery[T7])}
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™= (611"' aUNZ)
The new objective function is straightforward to solve and the optimization problem in-
volves obtaining the z threshold values o; for all 1 < 7 < z, where,

Umazx S
E 2 1
IV Z j‘:Umam dV /vl udv(u) ( O)
We know that, 7 = max(E;v[T{"], - ,Erv[T7]) > Epv[T]. Also, from Jensen’s in-
equality, we have,
= i {Ev[max(77, 75 T}
> inf {max (Erv[7/], EI,V[757T]7 S Byl T}
= 7

Hence, E;[T7] < 7 < 7*. Now the actual delay of the policy 7 is given by E; - [max (7", - - -

We know that ] ] <
T <T"+ 5

holds true for all 1 < ¢ < z and for every sample space. This is because, 7; < 75 < --- <
v, (follows from the equations (10)), and - |s the maximum transit delay incurred by any
packet. Hence,

max(ﬂﬁ,---,'];”)<7'“+—

Taking expectation on both the sides, we get,
Epy[max (77, -, )] < Erv[T]+ —
But we know that E; /[7;7] < 7*. Hence,

Erymax(77, -, T < 7"+ —
1

which shows that the average delay of 7 is bounded within - of the optimal value 7,
which is our desired result.

5 Infinite File Size

In this section, we study the case where the source node has infinite packets to communicate
to the destination node. Packets arrive at the source node according to some point process
independent of the vehicle speeds and the vehicle interarrival times. The packets are queued
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until transmission in an infinite buffer at the source node. We are interested in studying the
average packet delay in this network scenario, at the queue in the source node and in transit
at the relay vehicles. In particular, we are interested in the tradeoff achievable between the
queueing delay and the transit delay of the packets.

Every time a vehicle enters the communication range of the source node, the source
node has to make a decision on using the current vehicle (with speed v) as a relay. Here
again, we assume that only one packet is relayed using a vehicle. Starting with the first vehi-
cle to arrive, the decision problem evolves over vehicle arrival instants {7, = 0,73, T, - - - }
with vehicle speeds {Vy, Vi, V2, - - - }. Let X}, denote the number of packets in the source
buffer at time instant 7}, and let Y}, denote the number of packets relayed through the kth
vehicle. As before, Y, € {0,1}. The system state dynamics for the problem is now given
by,

X1 = (X —Y) T+ A
where A; is the number of packets arriving at the source buffer during the time interval
Ity = Ty — Ty We assume that {Ag, £ > 0} is an i.i.d. sequence with mean E[A].
Also, A, is assumed to be independent of X, and Y}, but may depend on the interarrival
time I;,1. Define A as \ := %, the mean number of packets arriving at the source node
per second.

Following the definitions of X, V},, Y, and T}, for £ > 0, we define the throughput, the
transit delay and the queueing delay of the system as follows.

Definition 5.1 The long term expected time average throughput of the system is defined as

k
© E|Y;
im kZz:O [ ] _ llm § E[Y]
koo S E[T;y1 — Ti E[I | k=00 k

Definition 5.2 The long term expected time average transit delay of the packets is defined
as

o AELE[H]
oroo IZ, o E[Yi]

Definition 5.3 The long term expected time average queueing delay of the system is defined
as

Zz OE[X( i+1 ™
koo S E[T,, — T] lHookZE[X

1=0

The definitions follows from renewal reward theorem (RRT) and the fact that X, is inde-
pendent of (1 — T}). Define Ry(xg, vk, yx) as

1

Ry (2, ve, yk) = Tk + 7 (Vk, Yr)
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Ry (zk, vk, yx) IS the single stage cost associated with the system state (xz, vy) and action
yx- The cost expression comprises of two components : the first term %t corresponds to the
queue length (or the queueing delay) and the second term r(vy, yx) corresponds with the
decision of using a vehicle with speed v, as a relay. We are interested in an average cost
minimization problem and our objective function is to find a policy 7 = {m, k£ > 0} that
minimizes the following cost function.

1 [/ X
lim sup —E [Z (Tk +7r(Vi, Yk))

k
k—00 i—0

ilim SUDPk 00 %E [Zf:o Xk} corresponds with the average queueing delay of the system.

Now, let r (v, yx), the cost associated with using a vehicle of speed v, be given by, r (v, y) :
ﬁﬁ—: Then, r(vg, yx) is the transi.t de_lay incur_red by the packet with the vehicle of speed
vg. Now, the second term of the objective function becomes

k
. 1 1 Y,
lim sup —E ! E /\E—[I]Vk

k
k—00 i—0

k

Y.
2

1=0

1
= li —E
AE[T] ok

which is the expected average transit delay (since limsup,_,, +E [Zf:o Yi} = AE[]]).

The average delay minimization policy can now be obtained by minimizing the following
optimization problem.

k
, 1 X, 1 Yk>
lim sup —E g — + ===
b K LO(A \E[T] Vi

As we are interested in studying the tradeoff achievable between the queueing delay and the
transit delay, we will introduce an additional parameter 3, 5 > 0, and study the following
modified cost minimization problem.

k
, 1 X 1 Yk)
lim sup —E E — + O
b LO ( » TOEm

k—o00 k

In [2], Berry and Gallager have studied a similar problem for a single downlink wireless
channel. [2] considers a slotted wireless fading channel, where the data rate achievable over
a slot is a function of the channel fade gain A during that slot and the power allocated P.
Packets arrive into an infinite buffer independent of the queue length and the channel evo-
lution process, and the objective was to study the tradeoff achiveable between the queueing
delay at the buffer and the average power required to support the arrival process. The single
stage cost function in [2] was X; + BP;, where X; is the queue size at the ith slot, P; is
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the power allocated during that slot and 3 is a Lagrangian multiplier. The optimization
problem in [2] was to find a policy 7 that minimizes the following objective function.

k
1 X;
limsup EE!E 7+IBPZ

k—o0 i—0

Observe that, our problem formulation is very similar to the problem formulation in [2]
and hence, the results from [2] can be directly extended to our framework by suitably
interpreting the average transit delay in our framework with the average power in [2]. More
formally, we will first define a concave throughput - transit delay function C'(d) equivalent
to the the concave throughput - power function C'(P) used in the Berry and Gallager model.
The tradeoff then follows along the proof in [2].

Queueing delay is a function of throughput (the rate at which packets are served by the
source node), and throughput itself is a function of the transit delay incurred by the packets.
Accomodating large transit delay leads to large throughput and small queueing delay for
the packets. The following definition provides the transit delay constrained throughput for
an infinitely backlogged queue.

Definition 5.4 Let C(d) be the maximum throughput sustainable for an infinitely back-
logged system, for a given average transit delay constraint d. Then, C(d) is defined as,

C(d) = max—= [ m(u)dV(u) (11)

s.t. fﬁ(u;dV(u) / (Wuu)) dV(u) <d

where 7(u) is the fraction of vehicles with speed v which are used as a relay by the source
node, and, 7(u) € [0, 1].

C'(d) is a concave non-decreasing function in d. The throughput maximizing policy 7* is a
threshold based policy, i.e., there exists a v* such that for all v > v*, 7*(v) = 1.

Let )\, the average arrival rate of packets into the system, be given. Define d, as the
minimum average transit delay incurred to support the arrival rate )\, i.e., C(d)) = A.
Trivially, we know that for any scheduling policy with an average transit delay d < d,, the
queueing delay in the system will be infinite. Now, consider a fixed schedule 7, obtained
from the optimization problem (11) such that the average transit delay is d, where d > d,.

J Wd(ujdV(u) / (Wdiu)> dV(u) =d

For d = dy + O(9), C(d) = C(dy) + O(6) = X+ O(d). Suppose that we use the fixed
schedule 74 to relay packets to vehicles, independent of the queue length at the source node
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Figure 2: Throughput vs Transit delay for the vehicular network scenario (from (11)). The
maximum transit delay, d,,., and the maximum throughput achievable, C,,.. are given by
dmae = s [ +dV(u) and Cpe = z7. Given A, the arrival rate of the packets into the
system, d, is the minimum transit d[e]lay incurred in supporting the arrival process, and
C(dy) = M.

buffer. Then, we can achieve an average queue length (or delay) of O (l) (an upper bound

for the average queue length of a G/G/1 queue with load —2— is O (g)) Instead, in [2],

¥ 210(9)
Berry and Gallager developed a threshold based algorithm, where, two schedules 74, _s
and 74, 15 Were used depending on the queue size being below and above a predetermined

threshold. This threshold based policy was shown to reduce the average queueing delay to
O (% . The following theorem summarizes the above discussion, whose proof follows
directly from the tradeoff studied in [2].

Theorem 5.5 Let ), the average arrival rate of packets into the source node buffer, be
given. And, let dy be the minimum average transit delay incurred to support the throughput
A, i.e., C(dy) = A. Suppose that C'(dy) > 0 and let the arrival process A, be a compact
subset of R™. Then, for an excess average transit delay of § (i.e., for an average transit

delay of d,,: + 0), the average queueing delay in the system scales as O (% .
6 Conclusion

In this paper, we have considered a scheduling problem in a mobile network scenario,
where vehicles are used as relays. A stationary source node has z packets to communicate
to a stationary destination node, and passing by vehicles are used as relays to transfer
the file to the destination. All packet communication involves only two hops, and we are
interested in minimizing the average queueing delay and the average transit delay of the
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Figure 3: Figure 3(a) plots the optimal tradeoff achievable between the average queueing
delay and the average transit delay. Observe that the queueing delay approaches infinity as
the transit delay approaches d,. Figure 3(b) shows the buffer threshold based scheduling
policy proposed in [2]. When the queue in the buffer is less than the threshold, a policy
74, —s 1S Used and when the queue exceeds the threshold, policy 74, 15 is used to schedule
packets.

packets in the network. We studied both the finite file size case and the infinite file size
case. In the finite file size case, we obtained the average delay minimizing schedule using
a Markov decision process framework. We also obtained a simple sub-optimal scheduling
policy whose average delay is within a constant from the optimal value (obtained from
the MDP formulation). In the infinite file size case, we studied the asymptotic tradeoff
achievable between the queueing delay and the transit delay of the packets. By defining the
maximum throughput sustainable for a given transit delay constraint, we showed that the

average queueing delay of the system scales as O (%) for an excess average transit delay
of O(9).
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A Proof of Theorem 4.2

Theorem A.1 7*(x,v,d) is a non-decreasing function of z and d, and a non-increasing
function of v.

Proof: Letn = {m,k > 0} be any stationary Markov policy. For the single stage cost
function Ry (zx, vk, dk, yx) given by (1), the random total cost function for the scheduling
policy 7 is given by,

> Ri(X, Vi, Dy, w(Xx, Vi, D))

k=0
and the expected total cost (or the average delay in delivery) for a file with z packets is now
given by

o0

> Ri(Xx, Vi, Di, (X, Vi, D))
k=0

Erv

X() :Z,VE) :’U,DO :d]
Consider two file sizes z and z + 1. We need to prove that 7*(z, v, d) < 7*(z + 1, v, d).
For , a stationary Markov policy, define 71, another stationary Markov policy, as
7 1(z,v,d) =7(x + 1,v,d)

and 7_1(0,v,d) = 0. Now, it is straightforward to see that

o0

Z Rk(Xka ‘/;C: Dka 7T71(Xka Vk7 Dk))
k=0

XO:z,VO:v,DO:d]

< D Re(Xk, Vi, Dy, w(Xe, Vi, Di))
k=0

for every sample space of the interarrival distribution and the vehicular speed distribution.
In other words, for any policy , there exists a scheduling policy 7_; such that the random
total delay in delivering a file with z + 1 packets (and with policy =) is greater than or equal
to the random total delay in delivering a file with z packets (and with a policy 7). Taking

expectation over the sample spaces, we have,

X():Z-i-]_,%:U,Do:d]

Erv | Y Re(Xk, Vi, Dy, w1 (X, Vi, Dy))| Xo = 2, Vo = v, Dy = d]
k=0
<Erv | Y Re(Xy, Vi, Dy, m(Xi, Vi, Di)) | Xo = 2+ 1, Vo = v, Dy = d]
k=0
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But we know that
7*(2+1,v,d) = inf E; Z Ry (Xy, Vi, D, m(Xg, Vi, D))

_Xb ::Z-+-1,L6 ::U,l)oiz d]
k=0

Hence,

™(z+1,v,d) > infEry ZRk(Xk,Vk,Dk,vr_l(Xk,vk,Dk))‘Xo=z,vo=v,Do=0]

-1
L k=0

inf Ery | Re(Xg, Vi, Di, (X, Vk,Dk))‘ Xo=2Vy=v,Dp = 0]
| k=0
= 7%(2,v,d)

v

The proof for the ordering of 7 with respect to v and d follows similar arguments and is

omitted here.
O

Theorem A.2 The optimal policy 7*(z, v, d) is a threshold policy for every z, with the
threshold v} a non-increasing function of z and d.

Proof: We know that 7*(z, v, d) satisfies the following DP, given in (3),

T (z,v,d) :=
0 T =
minge 0,1} {E[I] + Erv[t*(z —y, V, (max(d, I{y>0)3) — I)+)]} z>1
min {E[I] + E; v [m*(z,V, (d — I)*)], max (£,d) } rz=1

and 7*(x, v, d) is the stationary policy that chooses the y that minimizes the right hand side
expression of the above DP.
Consider the case = 1. The optimal policy chooses the minimum of

{E[I] +Erylr (@, V, (d — I)*)], max (S d)}

Note that the first term is independent of v. Since max (%, d) is a monotone decreasing
function with v, we see that the optimal policy is a threshold based policy, i.e., 7(1, v, d) =
1, for all v such that

E[I] + Ery[r*(z, V, (d — I)*)] > max (% d)

Now, consider the case = > 1. The optimal policy chooses the minimum of the follow-
ing term.

{Em +Ery([r*(,V, (d — I)*),E[I] + Ery [T* (”” =1,V (max (4 ) ~ 1 ))] }

v
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As before, the first term is independent of ». And, the second term is a monotone decreasing
function with v (since 7*(z, v, d) is a non-increasing function with d). Hence, we see that
the optimal policy is a threshold based policy for z > 1 as well.

Proof to be completed. O
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