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Abstract— A combined base station association and power
control problem is studied for the uplink of multichannel
multicell cellular networks, in which each channel is used by
exactly one cell (i.e., base station). A distributed association and
power update algorithm is proposed and shown to converge to
a Nash equilibrium of a noncooperative game. We consider
network models with discrete mobiles (yielding an atomic
congestion game), as well as a continuum of mobiles (yielding
a population game). We find that the equilibria need not be
Pareto efficient, nor need they be system optimal. To address
the lack of system optimality, we propose pricing mechanisms.
It is shown that these mechanisms can be implemented in a
distributed fashion.

I. INTRODUCTION
Wireless communication systems have experienced

tremendous growth over the last decade, and this growth
continues unabated worldwide. The efficient management
of resources is essential to the success of wireless cellular
systems. In a mobile cellular system, users adapt to time
varying radio channels by adjusting base station (BS)
associations and by controlling transmitter powers. Doing
so, they not only maintain their quality of service (QoS)
but also enhance their transmitters’ battery lives. In
addition, such controls reduce the network interference,
thus maximizing the spatial reuse of channels. Distributed
control is of special interest, since the alternative of
centrally orchestrated control involves added infrastructure,
the need for distribution of measurements, and hence system
complexity.

Distributed control algorithms for single channel multicell
networks have been extensively studied (Foschini & Mil-
janic [1], Yates [2], Hanly [3]). The monograph by Chiang
et al. [4] and references therein provide an excellent survey
of the area. Noncooperative games have been a natural tool
for analysis and design of distributed power control algo-
rithms. Scutari et al. [5] and Heikkinen [6] model distributed
power control problems as potential games, while Altman &
Altman [7] show that many of the cellular power control
algorithms can be modeled as submodular games. In con-
trast, uplink resource allocation for multichannel multicell
networks poses several challenges as observed in Yates [2]
and Jiang et al. [8].
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We address the resource allocation problem in the uplink
of a multichannel multicell network with a single traffic
class. Such a problem arises, if in order to reduce in-network
interference a CDMA operator chooses to lease and utilize
multiple frequency bands. The newer mobiles are typically
radio agile, and thus have the option to choose from one
of these distinct bands. We address a simplified version of
this multichannel multicell problem where all BSs operate
on different frequency bands.

A preview of our results is as follows. We propose a
distributed algorithm for the combined base station associ-
ation and power control problem, and subsequently model
the problem as a player-specific congestion game. The equi-
librium states of such algorithms, which are Nash equilibria
of the corresponding games, may be far from the system
optimal. We, thus, resort to pricing mechanisms to induce
mobiles to behave in a way that optimizes system cost.
We also show that such a mechanism can be employed
in a distributed fashion. Towards this end, we model the
network as having a continuum of (nonatomic) mobiles, each
offering infinitesimal load, which leads to a population game
formulation. We provide a marginal pricing mechanism that
motivates a pricing strategy for the discrete mobiles case.
Note that, unlike the case of transportation networks, mobiles
are not really priced in cellular networks. The pricing is
simply a part of the decision making routine built into each
mobile in order bring about a distributed control mechanism
that drives the system toward optimality.

The paper is organized as follows. In Section II we
briefly discuss concepts of finite noncooperative games and
population games. We study a network model with discrete
mobiles in Section III. We propose a combined association
and power control algorithm, model it as a noncooperative
game, and analyze its performance. We extend this analysis
to a network with a continuum of mobiles in Section IV.
To address the inefficiency of the proposed algorithms, we
design toll mechanisms in Section V. Finally, we conclude
the paper and discuss future works in Section VI.

II. GAME PRELIMINARIES

A. Finite Noncooperative Games

A noncooperative strategic form game (M, (Ai, i ∈
M), (ci, i ∈ M)) consists of a set of players M =
{1, . . . ,M}. Each player i is accompanied by an action
set Ai and a cost function ci : ×M

i=1Ai → R. In this
work, we assume all action sets to be finite. An action
profile a = (ai, i = 1, . . . ,M) prescribes an action ai for
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every player i ∈ M. For a = (ai, i = 1, . . . ,M), de-
note a−i := (a1, . . . , ai−1, ai+1, . . . , aM ) and (bi,a−i) :=
(a1, . . . , ai−1, bi, ai+1, . . . , aM ).

Definition 2.1: Nash Equilibrium (NE): For an action pro-
file a, a mobile i’s best response, Bi(a) ⊆ Ai, is defined as
Bi(a) := arg minbi∈Ai

ci(bi, a−i). a is said to be a Nash
Equilibrium for the game if ai ∈ Bi(a) for all i ∈M.

Definition 2.2: Potential Game: A game (M, (Ai, i ∈
M), (ci, i ∈ M)) is said to be an ordinal potential game
if there exists a function V : ×M

i=1Ai → R, known as
an ordinal potential function, that satisfies ci(bi,a−i) <
ci(a) ⇔ V (bi,a−i) < V (a) for all i ∈ M, bi ∈ Ai,a ∈
×M

i=1Ai.
Clearly all minimizers of an ordinal potential function V

are Nash equilibria of the game. Thus all ordinal potential
games (M, (Ai, i ∈ M), (ci, i ∈ M)) admit at least one
Nash equilibrium on account of their finiteness. They also
have the finite improvement path property (FIP) (Monderer &
Shapley [13, Lemma 2.3]). Thus, in a finite ordinal potential
game when players update as per the best response (or
even better response) strategy, round-robin or random update
processes converge to a Nash equilibrium in a finite number
of steps. With the same strategies, an asynchronous update
process also converges (Neel [14, Chapter 5]).

Definition 2.3: Congestion Game: A game (M, (Ai, i ∈
M), (ci, i ∈ M)) is said to be a player-specific singleton
congestion game if

1) there exists a set N such that Ai = N for all i ∈M,
and

2) there exist a constant β and functions fij , i ∈M, j ∈
N such that ci(a) = fiai

(
∑

l∈M:
al=ai

β) for all a ∈
×M

i=1Ai, i ∈M.
In the above definition, we interpret N as a set of facilities

and β as the load offered by each player. Then,
∑

l∈M:
al=ai

β

denotes the total load on facility j, under an action profile
a. The game is a singleton congestion game because each
action picks exactly one facility. It is player-specific because
the cost functions are player-specific.

Rosenthal [15] has defined congestion games with more
general action sets while Milchtaich [9] studied weighted
congestion games. Our interest however is only on singleton
(unweighted) congestion games. We assume fij(·) to be a
strictly increasing function of its argument for each i ∈ M
and j ∈ N .

B. Population Games

A population game (Sandholm [16]) (M, (Al, l ∈
L), (clj , l ∈ L, j ∈ Al)) consists of L = {1, . . . , L} classes
of nonatomic populations of players. M = ∪l∈LMl, and
Ml := |Ml| denotes the total mass of the class l population.
By a nonatomic population, we mean that the mass of each
member of the population is infinitesimal. Players of class l
are associated with an action set Al. Actions of these (class
l) players lead to an action distribution ml = (mlj , j ∈ Al),
where

∑
j∈Al

mlj = Ml. All the players within a class are
alike. Thus the action distributions completely specify the

play; we can characterize the states and dynamics of play
solely in terms of action distributions. Let m = (ml, l ∈
L) denote the action distribution profile across the entire
population, and M∗ denote the set of all such profiles. A
population l is also accompanied by continuous cost density
functions clj : M∗ → R.

Definition 2.4: Nash Equilibrium (NE): An action distri-
bution profile m is a pure strategy Nash equilibrium for the
game (M, (Ai, i ∈ M), (clj , l ∈ L, j ∈ (Al)) if and only if
for all l ∈ L and j ∈ Al, a positive mass mlj > 0 implies
clj(m) ≤ clk(m) for all k ∈ Al.

Remark 2.1: At a Nash equilibrium m, for a class l, if j
and k are any two facilities in Al such that mlj > 0,mlk >
0, then clj(m) = clk(m).

Definition 2.5: Potential Game: A game (M, (Al, l ∈
L), (clj , l ∈ L, j ∈ Al)) is said to be a potential game
if there exists a C1 function V : M∗ → R, known as a
potential function, that satisfies

∂V

∂mlj
(m) = clj(m) for all l ∈ L, j ∈ Al,m ∈M∗

It is well known that Nash equilibria are the profiles which
satisfy the Kuhn-Tucker first order conditions for a minimizer
of the potential function (Sandholm [16, Proposition 3.1]).
For any dynamics with positive correlation and noncom-
placency (in particular the best response dynamics), its all
trajectories lead to Nash equilibria.

We are interested in nonatomic congestion games (Sand-
holm [16]), in which Al = N ,∀l ∈ L, for a given set N .
As before, we interpret N as a set of facilities. An action
distribution profile m leads to a congestion profile (mj , j ∈
N ), where mj =

∑
l∈Lmlj . The cost density functions clj

depend on m only through mj , and are increasing in mj .

III. DISCRETE MOBILES
A. System Model

We now describe the model adopted in this work. We
consider a cellular network consisting of several BSs and
mobiles. Each BS operates in a distinct frequency band. Let
N = {1, . . . , N} and M = {1, . . . ,M} denote the set of
BSs and the set of mobiles, respectively.

A mobile is free to choose the BS for connection, but can
connect to only one BS at a time. Let hij denote the power
gain from mobile i to base station j. Let the receiver noise
at all BSs have common standard deviation σ. We consider
only uplink performance in this work. Let pi denote the
power transmitted by mobile i, and ai the BS to which it
is associated. Let, under an association profile a = (ai, i =
1, . . . ,M), Mj(a) be the set of mobiles associated with
BS j. Under an association profile a = (ai, i = 1, . . . ,M)
and a power vector p = (pi, i = 1, . . . ,M), the signal to
interference ratio (SIR) of mobile i at BS ai is

hiai
pi∑

l∈Mai
(a)

l 6=i

hlal
pl + σ2

We assume single class traffic, i.e., all the mobiles have a
common target signal to interference ratio (SIR) requirement
γ.
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B. The Proposed Algorithm

Yates [2] and Hanly [3] proposed an algorithm for dis-
tributed association and power control in single channel
cellular networks. Convergence results for the algorithm are
based on the concept of a standard interference function.
The technique is based on a mobile reassociating itself with
a BS with which it needs to use the least power; this fails to
work in the case of a multichannel network and analogous
convergence results for this algorithm may not hold (see
Yates [2, Section VI]). Even in instances where the algorithm
converges, it may get stuck at a power allocation that is not
Pareto efficient.

We propose an alternative distributed algorithm for com-
bined BS association and power control in multichannel
multicell cellular networks. We also show its convergence.
We make use of the following simple fact (see, for example
Kumar et al. [17, Chapter 5]). Consider the subproblem of
power control with a fixed association a. Note that, under a,
Mj(a) is the set of mobiles associated with BS j. Define
β = γ

1+γ , a measure of the “load” offered by a mobile to a
BS.

Proposition 3.1: (i) The power control subproblem of
BS j is feasible iff |Mj(a)|β < 1.
(ii) If the power control subproblem of BS j is feasible, there
exists a unique Pareto efficient power vector p given by

pi =
σ2

hij

β

1− |Mj(a)|β
.

This motivates the following algorithm:
Multichannel Multicell Distributed Power
Control (MMDPC): Mobiles switch associations in a
round-robin fashion by taking into account the steady state
optimal power consumptions at the BSs with which these
associate. As the load at a BS changes, it is immediately
broadcast, and associated mobiles update their powers to the
optimal required powers as per new loads. In other words,
the algorithm proceeds as follows. Define

ci(a) =
σ2

hiai

β

[1− |Mai
(a)|β]+

, (1)

where [x]+ = max(x, 0). For t = 0, 1, 2, . . . , mobile i where
i = 1+(t mod M) updates its association and power at t+
1,

ai(t + 1) = min
j∈N

ci((j,a(t)−i)), (2a)

pl(t + 1) = cl(a(t + 1)),
∀l ∈Mai(t)(a(t)) ∪Mai(t+1)(a(t + 1)),

(2b)

where a(t + 1) = (ai(t + 1),a(t)−i).
Remark 3.1: A mobile i should not choose a BS if the

device renders the corresponding power control subproblem
infeasible. The situation is characterized by |Mai

(a)|β ≥ 1,
and Equation (1) justifiably yields infinite cost for the mobile.

Note that while only one mobile updates its association at
a time, all mobiles that perceive a change in load at their

BSs update their powers to optimal values based on the
new loads. Simultaneous association updates are not allowed.
In a framework with no synchronizing agent and with an
arbitrarily fine time-scale, it is unlikely that two mobiles
update simultaneously. If two or more BSs result in the same
steady state power, one is chosen at random by the mobile.

This algorithm is also distributed in nature as the one
proposed in Yates [2]. BS j broadcasts its total congestion
|Mj(a)|. In addition, each mobile i is told its scaled gains
hij

σ2 by each BS j ∈ N .
Throughout we assume that there exists at least one

feasible association and power vector. In our model, an
infeasible association is reflected by infinite cost. So, even
if the algorithm starts with an infeasible association, selfish
moves of players eventually lead to a feasible one, and
updates remain feasible thereafter.

C. A Congestion Game Formulation

To show the convergence properties of the proposed algo-
rithm, we model the system as a strategic form game. Let
the mobiles be the players and the action set for each player
be the possible associations, i.e, Ai = N for all i ∈ M.
Define the cost functions of the players to be ci(a) for
all i ∈ M. It can be seen that above is a player-specific
singleton congestion game. In the following we refer to it as
the strategic form game (M,N , (ci, i ∈M)).

Proposition 3.2: The finite strategic form game
(M,N , (ci, i ∈ M)) is an ordinal potential game and
thus admits the FIP.

Proof: Note that the strategic form game
(M,N , (ci, i ∈M)) is better response equivalent (Neel [14,
Chapter 5]) to (M,N , (− 1

ci
, i ∈ M)). Hence the former

admits the FIP if and only if the latter does. Also note that

− 1
ci(a)

= −hiai

σ2

[1− |Mai
(a)|β]+

β
.

For the game (M,N , (− 1
ci

, i ∈ M)), the function V :
NM → R given by

V (a) = − 1
σ2β

∏
i∈M

hiai

∏
j∈N

|Mj(a)|∏
k=1

[1− kβ]+


is an ordinal potential function. The game is thus an ordinal
potential game; it is also finite which implies that the FIP
property holds.

The FIP property ensures that MMDPC converges in a finite
number of steps (see Section II-A). Consider the following
variants of MMDPC.

1) At each t, one mobile is randomly chosen to update
its association. All mobiles have strictly positive prob-
abilities of being chosen.

2) At each t, each mobile i updates its association with
probability εi ∈ (0, 1). There is thus a strictly positive
probability that any subset of mobiles may update their
associations simultaneously. As before, all mobiles
update their powers based on the new loads. This
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algorithm does not require any coordination among
mobiles (to ensure one by one updates), and is thus
fully distributed.

The FIP property of the game (M,N , (ci, i ∈M)) implies
that these two algorithms also converges to an NE with
probability 1 (see Neel [14, Chapter 5]).

D. System Optimality
Unlike the case of single channel networks, joint associ-

ation and power control problems in multichannel networks
do not in general admit a unique Pareto efficient power
allocation. A system optimal power allocation should effect
the lowest interference environment. This motivates the fol-
lowing definition of system optimality.

Definition 3.1: For an association profile a, define a sys-
tem performance measure C(a) =

∑M
i=1 ci(a) where ci(a)

are as defined in (1). An association profile a∗ is said to
be system optimal if it minimizes C(a) over all possible
associations a ∈ ×M

i=1Ai.
Remark 3.2: 1) Clearly any association profile that is

system optimal is also Pareto efficient.
2) If there is a unique Pareto efficient association profile,

it is also the unique system optimal one.
As the following example illustrates, MMDPC may settle

at a Pareto inefficient association profile, and hence may not
be system optimal.

Example 3.1: Consider a network with two BSs, two
users, and a common SIR requirement γ. The two BSs
operate in disjoint bands. Assume h12 < h11 < h12

(1−γ) and
h21 < h22 < h21

(1−γ) . Thus, the unique Pareto efficient power

allocation is ( σ2

h11
γ, σ2

h22
γ). However, if we start with initial

association (a1 = 2, a2 = 1), MMDPC will not move
forward, because a unilateral switch requires larger power
to meet the target SIR. Neither user will switch to the BS
with which it has a better channel. Hence, ( σ2

h12
γ, σ2

h21
γ) is a

steady state power vector, at which the algorithm settles; it
is Pareto inefficient.

However, in the special case when all the mobiles are
collocated and all the BSs are symmetrically placed with
respect to the collocated mobiles, we have the following
result.

Proposition 3.3: All the NEs in the game (M,N , (ci, i ∈
M)), with hij = h for all i ∈ M, j ∈ N , are system
optimal.

Proof: The mobiles as well as BSs are indistinguishable
in this game. Let at an NE, mj be the number of mobiles
associated with BS j. We first prove that at any NE, the
vector of costs to mobiles is unique up to a permutation.
It is sufficient to prove that vectors m = (mj , j ∈ N ) are
unique up to a permutation. Note that, since m yields an
NE, the following must hold for all j, k ∈ N :

σ2

h

β

1−mjβ
≤ σ2

h

β

1−mkβ − β

or mj ≤ mk + 1 (3)

Define n = bM
N c and l = M −nN . From (3) we see that m

given by mj = n+1, j = 1, . . . , l, mj = n, j = l+1, . . . , N

characterizes one of the NEs; other NEs are permutations
of this vector. We now show that m is a system optimal
congestion vector, and the system optimality of all other NEs
follows. To do this observe that

C(a) =
σ2

h

∑
i∈M

β

1−mai
β

=
σ2

h

∑
j∈N

mjβ

1−mjβ

is a Schur-convex function in (m1, . . . ,mN ) because x
1−x is

a convex function. This implies that the minimum value is
attained at a vector which is as close to uniform as possible,
i.e., a vector that is majorized by any other vector (Marshall
& Olkin [18]).1 All such vectors are permutations of m.
Alternatively, if there exist BSs j and k such that mj ≥
mk + 2, moving a mobile from BS j to BS k results in a
strictly lower cost. This concludes the proof.

IV. CONTINUUM OF MOBILES

In this section, we consider a nonatomic version of the
system in Section III-A. Such a model is of interest for
two reasons. First, for many of the fixed QoS traffic classes
(e.g., voice), the target SIR requirements in CDMA cellular
systems are very small. In a typical IS 95 CDMA system
with system bandwidth 1.25 MHz, chip rate 1.2288 Mcps,
data rate 9.6 Kbps, and target Eb

N0
= 6 dB, the target SIR turns

out to be -15 dB, i.e., 1
32 (Kumar et al. [17, Chapter 5]). If

we assume that at any time the number of mobiles associated
with a BS is large, it is reasonable that an incoming mobile
or an outgoing mobile affects the congestion in a negligible
fashion. Secondly, we have seen that our proposed algorithm
may end up with inefficient associations. There is extensive
work on toll mechanisms that induce system optimality in
networks with a continuum of users. The analysis of toll-
mechanisms (or pricing) on a multichannel multicell network
with a continuum of mobiles can be expected to shed light
on the existence and properties of pricing mechanisms for
networks with discrete mobiles.

A. System Model

Let M = ∪L
l=1Ml be an infinite set of L = {1, . . . , L}

classes of nonatomic mobiles. By nonatomic mobiles, we
mean that the effect of a single mobile at a BS is in-
finitesimal. The population of class l mobiles has “mass”
Ml. Assume N to be the finite set of BSs. As before, σ
denotes the common standard deviation of receiver noise at
all BSs. All the mobiles in a class are collocated and thus
for all such mobiles their power gains to any of the BSs are
same (gains from a mobile to different BSs can be different).
Let hlj give the power gain between a class l mobile and
BS j. An association profile a is a measurable function
a : M→N . Any association a leads to a congestion profile
(m(a) = mlj(a), l ∈ L, j ∈ N ), mlj(a) being the mass of
class l mobiles associated with BS j. Let M∗ denote the set
of all such profiles. Define mj(a) =

∑L
l=1 mlj(a).

1The condition hij = hi for all j ∈ N is used to deduce that NE profiles
are majorized by any non NE profile; the condition hij = hj for all i ∈M
is used to deduce Schur-convexity of C(a).
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Under an association profile a and a power density allo-
cation p : M → R+, the SIR density for x ∈ Ml, l ∈ L
is

hla(x)p(x)∑L
l=1

∫
Ml

1a(x, z)hla(z)p(z)dz + σ2
,

where 1a(x, z) =
{

1, if a(x) = a(z)
0, otherwise

We assume that the minimum required SIR density (per
unit mass) is uniform across the entire population (of all
the classes); denote it by γ. This makes all the mobiles in
a class alike, and so, congestion profiles are sufficient to
characterize the system. In the sequel, we just use mj for
mj(a) for convenience. The dependence on a is understood.

Consider again the subproblem of power control with a
fixed congestion profile m. The following result is analogous
to Proposition 3.1, and is shown in Appendix I.

Proposition 4.1: 1) The power control subproblem of
BS j is feasible iff mjγ < 1.

2) If the power control subproblem of BS j is feasible,
there exists a unique Pareto efficient power density p
given by

p(x) =
σ2

hlj

γ

1−mjγ
,

∀x ∈ Ml such that a(x) = j, l ∈ L, where a is the
underlying association profile.

An evolutionary dynamics can be proposed to address the
combined association and power control problem. To this
end, we define functions clj : M∗ → R+, where clj(m)
denotes the minimum power density for class l mobiles
associated with BS j, under congestion profile m.

clj(m) =
γσ2

hlj [1−mjγ]+

For notational convenience, define

glj =
γσ2

hlj

and c(z) =
{ 1

1−zγ , if z < 1
γ

∞, if z ≥ 1
γ

Then, we have
clj(m) = gljc(mj) (4)

Again we assume that the system is feasible, i.e., there exists
a feasible assignment, as done in Section III-B. This boils
down to assuming |M| < N

γ in the case of nonatomic
mobiles.

B. A Congestion Game Formulation

We model the problem as a nonatomic congestion game.
The continuum of mobiles constitute the population, and
N denotes the common action set for players of all the
classes. Class l players are accompanied by cost functions
clj(m), j ∈ N . In the following, we refer to it as the game
(M,N , (clj , l ∈ L, j ∈ N )).

Theorem 4.1: The nonatomic game (M,N , (clj , l ∈
L, j ∈ N )) is a potential game. Furthermore, it admits at

least one NE, and the set of NEs coincides with the set of
local minimizers of the potential function.

Proof: Consider the following optimization problem:

Minimize
∑
j∈N

∑
l∈L

glj

∫ mj

0

c(x)dx (5a)

subject to
∑
j∈N

mlj = Ml, l ∈ L (5b)

mlj ≥ 0, l ∈ L, j ∈ N (5c)

where mj =
∑L

l=1 mlj , ∀j ∈ N . All the conditions are self-
explanatory. The first claim follows from Sandholm [16, Sec-
tion 2], which also shows that the objective function (5a) is a
potential function for the population game (M,N , (clj , 1 ≤
l ≤ L, j ∈ N )).

Structures of the cost functions along with feasibility
assumption allow us to restrict attention to the region where
mj < 1

γ ,∀j ∈ N ; there is at least one feasible point in
this region, and objective function is infinite outside this.
Then, c(x) is strictly increasing in x, and

∫ mj

0
c(x)dx are

strictly convex in mj . Since we are minimizing a convex
objective function subject to linear constraints, there exists at
least one optimizer. Also, Kuhn-Tucker first order conditions
are necessary and sufficient. Combining this with the fact
that NEs are the profiles which satisfy the Kuhn-Tucker first
order conditions for a minimizer of the potential function (see
Section II-B), we see that the set of NEs coincides with the
set of local minimizers of the potential function.

Remark 4.1: At NEs, the congestions (at BSs) by class,
mlj , are not unique because the objective function (5a) is
not strictly convex with respect to this set of variables. But
the total congestion at BSs, mj , are indeed unique.
Furthermore, NEs have the following property.

Proposition 4.2: The costs for a mobile is constant across
all the NEs of the game (M,N , (clj , l ∈ L, j ∈ N )).

Proof: Consider two NEs m and m′. Remark 4.1
indicates that mj = m′

j ∀j ∈ N . Suppose that the statement
of the proposition does not hold. Then there is class l and BSs
j and k with mlj > 0,m′

lk > 0, but glkc(m′
k) < gljc(mj).

This leads to

glkc(m′
k) < gljc(mj) ≤ glkc(mk)

where the second inequality follows because m is an NE
and mlj > 0. After cancellation of glk and after observing
that c is a strictly increasing function, we get m′

k < mk, a
contradiction.

C. System Optimality

Analogous to the one in Section III-D, we define a system
performance measure

C(m) :=
∑
j∈N

L∑
l=1

mljgljc(mj) (6)

A congestion profile m∗ is said to be system optimal if it
minimizes C(m) over all possible profiles m ∈M∗.
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In contrast with the discrete mobiles case where equilibria
need not be Pareto efficient (see Example 3.1), we have the
following result for the nonatomic case.

Theorem 4.2: All NEs of the nonatomic game
(M,N , (clj , l ∈ L, j ∈ N )) are Pareto efficient.

Proof: Let m be an NE congestion profile. Under an
NE, the cost of all the mobiles of the same class remains
same, irrespective of their associations (see Remark 2.1).
Thus, it is sufficient to prove that there does not exist another
congestion profile m′ such that for every class l, and for all
BSs j, k, with mlj > 0,m′

lk > 0,

clk(m′) ≤ clj(m), (7)

and strict inequality holds for some such l, j and k. Assume
that such an m′ exists. Then,

glkc(m′
k) < gljc(mj) ≤ glkc(mk)

where the last inequality follows because m is an NE and
mlj > 0. This yields m′

k < mk. This further implies that
there is a BS s such that m′

s > ms, and a class t such that
m′

ts > mts. By the strictly increasing property of c, we have

gtsc(m′
s) > gtsc(ms) ≥ gtrc(mr)

for a BS r such that mtr > 0. Such a BS exists and
the latter inequality follows because m is an NE. The two
inequalities imply cts(m′) > ctr(m), and so the tuple t, r, s
violates (7). Thus the assumption that m′ Pareto dominates
m is incorrect. This completes the proof.

However, the equilibria need not be system optimal, as
illustrated by the following example.

Example 4.1: Consider an infinite set M of nonatomic
mobiles all belonging to same class. Assume common min-
imum SIR density requirement γ, and let |M|γ < 1. Let
there be two BSs with hj the gain to BS j, j = 1, 2. An NE
congestion profile (α∗|M|, (1− α∗)|M|) is given as

1) if h1
h2
≤ (1− |M|γ), α∗ = 0,

2) if h2
h1
≤ (1− |M|γ), α∗ = 1,

3) otherwise, α∗ satisfies

γσ2

h1(1− α∗γ|M|)
=

γσ2

h2(1− (1− α∗)γ|M|)

or,
1− α∗γ|M|

1− (1− α∗)γ|M|
=

h2

h1
. (8)

On the other hand, a congestion profile (αo|M|, (1−αo|M|)
will be system optimal if and only if αo solves the following
optimization problem:

Minimize
αγ|M|σ2

h1(1− αγ|M|)
+

(1− α)γ|M|σ2

h2(1− (1− α)γ|M|)
subject to 0 ≤ α ≤ 1.

This is a convex optimization problem, and it is straightfor-
ward to show that

1) if
√

h1
h2
≤ (1− |M|γ), αo = 0,

2) if
√

h2
h1
≤ (1− |M|γ), αo = 1,

3) otherwise, αo satisfies

1− αoγ|M|
1− (1− αo)γ|M|

=
√

h2

h1
(9)

Hence, if min{h1
h2

, h2
h1
} > 1 − |M|γ, α∗ and αo must

satisfy (8) and (9) respectively. In such a case, the NE will
be system optimal if and only if h1 = h2.

Remark 4.2: Sandholm [16] shows that if the cost func-
tion for each mobile is a homogeneous function of a certain
degree, then all NEs are system optimal. Note that in
Example 4.1, NEs are not system optimal unless h1 = h2.
We remark that the system optimality for the latter case does
not follow from Sandholm [16] because the cost functions
are not homogeneous functions.

V. PRICING FOR SYSTEM OPTIMALITY

A. Continuum of Mobiles

Levying of tolls is a conventional way to enforce system
optimality in networks. Beckman [10] and Dafermos & Spar-
row [11] studied optimal tolls in transportation networks with
a single class of users. Later Dafermos [19] and Smith [20]
extended the analysis to multiclass networks. Roughgarden
& Tardos [12] applied these ideas in computer networks and
analyzed tolls for optimal routing. In this section, we show
that there is a toll mechanism that can induce system optimal
associations and power allocations in a cellular network
with multiple classes of mobiles. We also show that the
mechanism can be employed in a distributed fashion.

Consider the BS j with congestion profile mlj , l ∈ L.
Define

c′(z) :=

{
d
dz c(z) = γ

(1−zγ)2 , if z < 1
γ

∞, if z ≥ 1
γ

The following theorem shows that if a mobile joining BS
j is levied an additional toll

tj(m) =
L∑

l=1

mljgljc
′(mj), (10)

the resulting NEs coincide with the system optimal associa-
tion profiles.

Theorem 5.1: The nonatomic game (M,N , (c̄lj , l ∈
L, j ∈ N )) where c̄lj(·) = clj(·) + tj(·),∀l ∈ L, j ∈ N ,
is a potential game. Furthermore, a congestion profile m
is system optimal if and only if it is an NE for the game
(M,N , (c̄lj , l ∈ L, j ∈ N )).

Proof: The problem of finding system optimal asso-
ciations and powers is the following nonlinear optimization
program:

Minimize C(m)
subject to Conditions (5b) - (5c).

The same reasoning as in the proof of Theorem 4.1 allows
us to restrict attention to the region where mj < 1

γ ,∀j ∈ N .
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The Lagrangian of the optimization problem is

L(m,b, c) =
∑
l∈L

∑
j∈N

(gljmljc(mj)− bljmlj)

− cl

∑
j∈N

mlj −Ml


The Kuhn-Tucker first order conditions are

gljc(mj) +
L∑

i=1

mijgijc
′(mj)− cl − blj = 0, l ∈ L, j ∈ N

blj ≥ 0, l ∈ L, j ∈ N
bljmlj = 0, l ∈ L, j ∈ N ,

along with Conditions (5b) - (5c). Since the objective func-
tion is convex (though not strictly) in variables mlj , and
we are minimizing under linear constraint, there exists at
least one NE. Also, the above conditions are necessary and
sufficient. Thus, m∗ is an optimizer if and only if it satisfies

gljc(m∗
j ) +

L∑
i=1

m∗
ijgijc

′(m∗
j ) = cl if m∗

lj > 0

gljc(m∗
j ) +

L∑
i=1

m∗
ijgijc

′(m∗
j ) ≥ cl if m∗

lj = 0

along with (5b) - (5c). With tj defined as in (10), m∗ is an
NE for the game (M,N , (c̄lj , l ∈ L, j ∈ N )).

As in Theorem 4.1, the objective function C(m) serves
as a potential function for this non atomic game, and we
therefore have a potential game.

Remark 5.1: 1) c̄lj = clj + tj can be interpreted as the
marginal cost due to additional association of class l
mobiles to BS j. The term clj is the power density
incurred by these new mobiles, and tj is the increase
in power consumption densities of the mobiles already
associated with BS j, integrated over all such mobiles.
Economists call them “private cost” and “social cost”,
respectively. Selfish mobiles do not care for the social
cost, while the social optimality criterion accounts for
this marginal externality.

2) The cost functions for various classes have a certain
structure in our case, which leads to uniform tolls
across different mobile classes that consider a BS.
Usually one does not see uniform tolls in the case of
multiclass networks (see Dafermos [19], Smith [20]).

This toll mechanism can be implemented in a distributed
fashion. All the BSs broadcast the tolls along with their
aggregate congestions as before. All mobiles need to know
their scaled gains hlj

σ2 to each BS j ∈ N . A mobile then
makes a choice taking both power density and toll into
account.

B. Discrete Mobiles

Pricing mechanisms for networks with discrete mobiles
are relatively difficult to design and analyze (Fotakis &
Spirakis [21]). In atomic congestion games, players may

incur different costs in different NEs as is clear from Ex-
ample 3.1. This is unlike the case in nonatomic games, see
Proposition 4.2. Therefore, when considering atomic games,
one has to distinguish between the following two cases. A
toll mechanism is said to weakly enforce the optimal solution
if there is some NE for the game with tolls that is system
optimal. It is said to strongly enforce the optimal solution if
all the NEs of the game with tolls are system optimal. In this
section, we propose a toll mechanism that weakly enforces
the optimal solution in all cases and strongly enforces it in a
special setting. The mechanism is motivated by the one for
the nonatomic case (Theorem 5.1).

Consider the network model of Section III-A and an asso-
ciation profile a′. Let mobile i evaluate BS j for association.
Define a = (j,a′−i). Analogous to the nonatomic case,
define “private” and “social” costs as

ci(a) =
σ2

hij

β

[1− |Mj(a)|β]+
,

and ti(a) =
∑
l∈M:

l 6=i,al=j

σ2

hlj

(
β

[1− |Mj(a)|β]+

− β

[1− (|Mj(a)| − 1)β]+

)
, (11)

respectively.2 Clearly, ci(a) is the required power of mobile
i if it joins BS j, while ti(a) is the aggregate increase in
power consumption of all other mobiles associated with BS
j. We propose a toll mechanism with tolls ti : NM → R
given by (11). This yields a new game (M,N , (c̄i, i ∈M))
with cost functions for an association profile a given by

c̄i(a) = ci(a) + ti(a)

=
∑
l∈M:
al=ai

σ2

hlai

β

[1− |Mai
(a)|β]+

−
∑
l∈M:

l 6=i,al=ai

σ2

hlai

β

[1− (|Mai
(a)| − 1)β]+

(12)

Proposition 5.1: The finite strategic form game
(M,N , (c̄i, i ∈ M)) is an ordinal potential game and
thus admits FIP.

Proof: For the game (M,N , (c̄i, i ∈M)), the function
V : N |M| → R given by

V (a) =
∑
i∈M

σ2

hiai

β

[1− |Mai
(a)|β]+

is an ordinal potential function. Thus (M,N , (c̄i, i ∈ M))
is an ordinal potential game. Since it is also a finite game,
the FIP property holds.

Note that the potential function V (a) equals the system
performance measure C(a) defined in Section III-D. Hence
an association profile ao that optimizes system performance

2In (11), when both terms within parentheses are ∞, the expression is
taken to be∞; we may think of driving β to the true value from below, and
the first term always dominates the second. Same remark holds for other
such expressions also.
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is also a (global) minimizer of V (a), and therefore an NE
of the potential game with tolls. So, we see that tolls ti(a)
weakly enforce a system optimal association profile.

1) Collocated Mobiles: Let us consider the special case
when all the mobiles are collocated, i.e., hij = hj for all
i ∈ M, j ∈ N . The potential function for this special case
can be written as

V (a) =
∑
j∈N

σ2

hj

|Mj(a)|β
[1− |Mj(a)|β]+

Define gj = σ2

hj
, f(m) = mβ

[1−mβ]+ and mj(a) = |Mj(a)| for
all j ∈ N . m(a) = (mj(a), j ∈ N ) denotes the congestion
profile under a. Since mobiles are indistinguishable, any two
association profiles that lead to identical congestion profiles
are essentially indifferent from the point of view of analysis.
Thus we talk solely in terms of congestion profiles. Abusing
notation (the argument of V (·) was earlier defined to be the
association profile a), we write

V (m) =
∑
j∈N

gjf(mj).

Since (M,N , (c̄i, i ∈ M)) is a finite potential game, an
association profile m∗ will be an NE if and only if

gjf(m∗
j ) + gkf(m∗

k) ≤ gjf(m∗
j − 1) + gkf(m∗

k + 1)
∀k 6= j, j, k ∈ N

The following proposition shows that tolls tj(a) strongly
enforce a system optimal association profile in case of
collocated mobiles.

Proposition 5.2: All the NEs in the game (M,N , (c̄i, i ∈
M)), with hij = hj for all i ∈ M, j ∈ N , are system
optimal. In other words, the tolls strongly enforce system
optimality.

Proof: Let mo be a system optimal congestion profile,
and m∗ any other profile such that V (m∗) > V (mo). We
can partition the set N as N = N0 ∪N+ ∪N− such that

j ∈ N0 ⇐⇒ m∗
j = mo

j

j ∈ N+ ⇐⇒ m∗
j ≥ mo

j + 1
j ∈ N− ⇐⇒ m∗

j ≤ mo
j − 1

We start with the congestion profile m∗, and move mobiles
from BSs N+ to BSs N− one mobile at a time, so that we
end up with the congestion profile mo. In this process we get
a succession of congestion profiles, each of which satisfies

mj = m∗
j ∀ j ∈ N0

mj ≤ m∗
j ∀ j ∈ N+

mj ≥ m∗
j ∀ j ∈ N−

Additionally, there exists a pair of successive congestion
profiles m′ and m′′ such that V (m′) > V (m′′) (m′′ can
be the ultimate congestion profile mo). Let m′′ be obtained
from m′, when we move a mobile from BS j ∈ N+ to

another BS k ∈ N−. This, then implies that

gjf(m′
j) + gkf(m′

k) > gjf(m′
j − 1) + gkf(m′

k + 1)
i.e.,

gj(f(m′
j)− f(m′

j − 1)) > gk(f(m′
k + 1)− f(m′

k)) (13)

Recall that c is a convex function and m′
j ≤ m∗

j ,m
′
k ≥ m∗

k.
Using these in (13), we get

gj(f(m∗
j )− f(m∗

j − 1)) > gk(f(m∗
k + 1)− f(m∗

k))
i.e.,

gjf(m∗
j ) + gkf(m∗

k) > gjf(m∗
j − 1) + gkf(m∗

k + 1)

which implies that m∗ is not an NE. This completes the
proof.

Remark 5.2: 1) On the other hand, tolls tj(a) may
fail to strongly enforce a system optimal association
profile, if mobiles are not collocated. For instance
reconsider Example 3.1. The association profile (a1 =
2, a2 = 1) is inefficient, but an NE for the game
(M,N , (c̄i, i ∈M)).

2) While tolls at a BS are equal for all the mobiles not
associated with it, they are mobile dependent for all
associated ones (see (11)). This is unlike in nonatomic
case where we saw uniform tolls.

3) The modified algorithm (the one accounting for tolls)
can be implemented in distributed fashion. All the BSs
broadcast quantities toj(a) given by

toj(a) =
∑

l:al=j

σ2

hlj

β

[1− |Mj(a)|β]+

along with their aggregate congestions |Mj(a)|. All
the mobiles need to know the scaled gains hij

σ2 of their
own channels to all the BSs j ∈ N . Mobiles use these
broadcast information to calculate their powers and
tolls, and choose a BS taking both into account.

VI. CONCLUSION

A. Conclusions

We studied the combined association and power control
problem in multichannel multicell cellular networks. We
studied the cases of discrete mobiles and a continuum
of mobiles. We proposed several distributed mechanisms
motivated by the techniques of game theory. To mitigate
the inefficiency of the distributed algorithms, we proposed
toll mechanisms in both the settings. Several open questions
remain.

1) Can the inefficiency of the distributed algorithms mo-
tivated by game theory be quantified? This is the so-
called price of anarchy.

2) The specific setting was one where all the mobiles had
a common SINR requirement. Can it be extended to
multiple classes of traffic?

3) We assumed only one BS per channel. It would be of
interest to extend the work to multiple BSs per channel.
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APPENDIX I
NONATOMIC POWER CONTROL

Assume M to be an infinite set of mobiles, and a single
BS. The required SIRs of mobiles are given by the function
γ : M → R++. Let the function h : M → R++ gives
the gains of mobiles while a power allocation is another
function p : M → R++. p(x) and γ(x) are interpreted as
power density and target SINR density, respectively, per unit
mass. The feasibility condition for p can be written as

p(x)h(x)∫
M p(y)h(y)dy + σ2

≥ γ(x), ∀x ∈M

or, p(x)h(x) ≥ γ(x)
∫
M

p(y)h(y)dy + γ(x)σ2,

∀x ∈M

Integrating the inequalities over the set of all mobiles, we
get the following necessary condition for feasibility.∫

M
p(x)h(x)dx ≥

∫
M

γ(x)dx

∫
M

p(y)h(y)dy

+ σ2

∫
M

γ(x)dx (14)

>

∫
M

γ(x)dx

∫
M

p(y)h(y)dy

where the strict inequality arises because σ2
∫
M γ(x)dx > 0.

Thus, we find that a necessary condition is∫
M

γ(x)dx < 1 (15)

Assuming that this necessary condition holds, we see that
the following is a feasible power allocation.

p(x) =
γ(x)σ2

h(x)(1−
∫
M γ(x)dx)

(16)

Hence (15) is necessary as well as sufficient condition for
feasibility of power control problem.

The power allocation given by Equation (16) is Pareto
efficient. Suppose q : M→ R++ is another feasible power
allocation such that q(x) ≤ p(x) and strict inequality holds
for a set of mobiles having a positive measure. Note the with
power allocation p, we get an equality in (14). Since∫

M
q(x)h(x)dx <

∫
M

p(x)h(x)dx,

q will violate the necessary condition∫
M

q(x)h(x)dx ≥
σ2

∫
M γ(x)dx

1−
∫
M γ(x)dx

,

a rearrangement of (14), and hence cannot be feasible.
In fact p can be shown to be the unique Pareto efficient

and hence the system optimal (system optimality criteria
being minimizing the sum of power consumptions over
all the mobiles) power allocation. Indeed if q is another
feasible power vector which is also Pareto efficient, pointwise
minimizer of p and q is also feasible and Pareto dominates
p, thus contradicting the fact that p is Pareto efficient.
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