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Abstract—We consider a dense ad hoc wireless network com- network power constraint). Our main result is that the end-
prising n nodes confined to a given two dimensional region of fixed to-end throughput of dense networks scales oni@@sg(P))
area. For the Gupta-Kumar ([1]) random traffic model and a re- (or asO(log(n)), whenP = np for a fixedp), due to inter-
alistic interference and path loss model (i.e., the channel power ‘ . -
ference from simultaneous transmitters and bounded distance

gains are bounded above by 1, and are bounded below by a strictly . : . . .
positive number), we study the scaling of the aggregate end-to-end Petween any transmitter-receiver pair. This contrasts with the

throughput with respect to the network average power constraint, g (n% scaling achievable for an extended network, where the
P, and the number of nodesy;. The network power constraint P . .
is related to the per node power constrainty, asP — np. Forlarge ~ Size Of the network scales agsee for e.g., [1] and [3]). Viewed

P, we show that the throughput saturates a® (log(P)), irrespec-  differently, the logarithmic scaling of the aggregate end-to-end
tive of the number of nodes in the network. For moderate”, which  throughput follows from the fact that the maximum achievable

can accommodate spatial reuse to improve end-to-end throughput, pit_rate in the network scales only @5log(P)) or O(log(n)),
we observe that the amount of spatial reuse feasible in the network and not a®(n) (as in extended networks).

is limited by the diameter of the network. In fact, we observe that
the end-to-end path loss in the network and the amount of spatial ~ The logarithmic scaling, forn tending to infinity, or, for very

reuse feasible in the network are inversely proportional. This puts  |arge P, is achieved using direct communication between the

a restriction on the gains achievable using the cooperative Commu- ¢, 00 _destination pairs, without any spatial reuse. However,

nication techniques studied in [2] and [3], as these rely on direct . . =

long distance communication over the network. better scaling results are achievable for small and modétate

by using spatial reuse, multihopping or other communication

' techniques. For the path loss model;t}—:,ffor any transmitter-
receiver pair separated by a distan;¢1] showed that spatial
reuse and multihopping achieves an end-to-end throughput of

I. INTRODUCTION ] (n%) A recent result, [2], achieved (ng) throughput us-

We consider a wireless network comprisingnodes con- ing cooperative communication techniques, for a rich scattering
fined to a given two dimensional region of fixed aréaSuch €nvironment. Using a similar cooperative communication tech-
networks are called dense or fixed SNR networks, becauB#jue (as in [2]) and by implementing a hierarchy, [3] obtained
the attenuation between any transmitter-receiver pair is low(n) throughput for dense wireless networks. The above re-
bounded by a positive quantity independentrof Source- Sults (as reported in [1], [2] and [3]) are not feasible for a re-
destination (s-d) pairs are chosen randomly (as in the Gup@istic path loss scenario, and the scaling fails when the nodes
Kumar random traffic model, see []_]) and the s-d pairs commbecome sufficiently close. While it is true that the scaling does
nicate by sharing the common wireless channel. For an aver&gé hold forn tending to infinity, we are interested in under-
power constrainp at a node, the total network average powé’tanding the feasibility of the scaling laws for sufficiently large
constraint, P, is given by P = np. For a realistic interfer- 7 (When the path loss model gf holds). For such a scenario
ence and path loss model, we study the scaling of the aggred¥tgen the path loss model holds for the given areand a

end-to-end throughput between the s-d pairs with respect to fide densityz), we observe that the amount of spatial reuse
network power constrain®, and the number of nodes feasible in the network is limited by the diameter of the net-

Using a far-field path loss model g& for every transmitter- work. In faCt, we show that the Spatial reuse achievable in the

receiver separation of, Gupta and Kumar ([1]) showed thathetwork is inversely proportional to the end-to-end path loss in
the end-to-end throughput of dense wireless networks scaled@network. This puts a restriction on the gains achievable us-
O (n*). It was observed in [4] tha® (n%) scaling is not ing cooperative com_munlcatlon te_chn_lques dlscusse_d in[2] and
feasible | listi , he far-field hi (%SL as they rely on direct communication over long distances in
(iig'd i?\ '[q];earfj;gessczng::r’]eﬁs :)vx(/aerar;:ﬁ rzztéer(t)r?esmr?; fie network. We opserve that, wh.ile spatial reuse and multihop-

p P gang . ng (as reported in [1]) can provide throughput enhancements
for very smalld. In our work, we note that the scaling Iaws.r

. . . r sufficiently largen, even in realistic scenarios, cooperative
of dense wireless networks (with a realistic path loss mod

mmunication gains (as reported in [2] and [3]) may not be
depend not only on the number of nodes, (but also on the achievable g ( P 2] [31) may
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spatial reuse and multihopping
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asO(log(P)) or O(log(n)). We discuss the feasibility of spa- [1l. SCALING LAWS FORLARGE P
tial reuse and cooperative communication for practical wirelessn this section, we will obtain scaling laws of dense wireless

networks in Section IV. We finally conclude the paper in Segretworks with respect t&. Suppose that the source-destination
tion V. pairs are chosen arbitrarily (instead of randomly, as stated ear-
lier), such that the s-d pairs are chosen as close as possible. The
II. NETWORK MODEL aggregate end-to-end throughput achievable in this scenario is
We consider a wireless network comprisingnodes, dis- thﬁ same asdthe_maxmlum bit rta;]t_e gchll_evai)rl]etlr;_thetnetwork.
tributed uniformly over a two dimensional region of fixed areg. 00sIng s-0 pairs as close as this Implies that direct commu-
A nication is the optimal solution, avoiding the need for compar-
' 1 source-destination pairs are formed in the network Wi{ﬁon over different communication strategies such as coopera-
* 2 onp e . ' 'Tive communication. Clearly, the bit rate achieved in this sce-
each node belonging to a distinct s-d pair. The s-d pairs . . . .
= T nario, upper bounds the bit rate achieved for the random traffic
are chosen randomly such that the mean s-d pair dlstarﬁgg . :
is O(1). with respect to the diameter of the network del. Now, we assume that the nodes use single user decoding
(1), . P . . " . receivers, treating every simultaneous transmission (other than
o The s-d pairs communicate by sharing the common wir

. . "fie intended one) as interference. We will now upper bound the
less channel. The gain between any transmltter—recen@: ) PP

pair is assumed fixed, and determined by the path loss t a{trate achievable in this scenario.
has a power law depending on the path length.

« We consider a total network average power constrRint
accounting only for the transmit power of all the nodes in
the network. Further, the nodes have an individual averal
power constrainp, that is related ta® asP = np. In our
work, we assume that is fixed for a given scenario, and
hence, the network power constraiftscales as:.. We
do not model a maximum power constraint per node in th

« We assume that the system is slotted and nodes commu- N + Z{#i} a; P;
nicate over slots of fixed duration. When the nodes use

single user decoding transceivers, we assume that the'iteréa: anda; are the constant gains at the receiver from the
rate achieved between a transmitter and receiver is givEgnSmitters and; and NV is the noise power. Then, it follows
by Shannon’s formula}’ = log, (1 + SINR) bits per sym- from the interference model, that the SINR is bounded above as

bol. Further, when the nodes communicate cooperatively, P,

we assume that nodes are synchronised without any addi- SINR < N+aa Z{j#i} By

tional overheads.

A. An upper bound on the Network Throughput

Consider a slot, when nodei, 1 < i < n, transmits with
8werPZ-(t), and the transmit powers are such that they satisfy
network power constraind,_-_, P;(t) < P(t). For ease of
notation, we will omit the index now, and include it again later
(at the end of this section). The SINR achievable (in gjatt
ge receiver of a transmittéiis bounded above by

For an allocated total network power Bf an optimall power al-
location (that maximizes throughput) must satisfy P; = P.

A. Interference and Path loss Model . . _ :
] o ) ) Hence, using the equality’, P, = P in the above expression,
We consider a realistic physical model of interference (SINBe have
based) in the network. In [1], it was assumed that the power P

gain between a transmitter and a receiver scaled with the dis- SINR < N +as(P - P)

1 . : .
tanced as;, Wher_en =~ _2'3 the path loss exponent._Whlle th'SNow, the maximum throughput achievable in the network is
holds true for far-field distances, the above model is not appros

. L . ounded above by

priate when the receiver is very close to the transmitter. In our
: . . P

wqu, we use a geperahzed model in which the channel power Clan) = Z log ( 1+ i

gain betweeni(j) is «; j, where0 < as < a;; < 1. aa N +as(P—F)

is the minimum channel power gain between any transmitter- _ _ _ -

receiver pair, and is related to the diameter of the netwégk, where7 indexes the set of trgnsmltters with pqsmve power.

asas = . The assumption; ; < 1 implies that a receiver We denote the above expression(@g ), denoting the de-

cannot receive power more than the power transmitted. pendence on the parametes. We will now obtain an upper
bound forC(a4) by optimising the above expression féy,

o i.e., we will maximizeC'(«4) subject to the power constraint

B. Objective S P, < P.
Our objective is to study the scaling of the aggregate end-
to-end throughput of the described wireless network for the iB- Optimization Problem
terference and path loss model discussed above. We study thS - o ( P
; ; i . efinef(P) :=log (1+ _

scaling laws for different network power constraint regimes - blf( ) b & it Ntaas(P=P)
large P (in terms of P) and moderaté® (in terms ofn). We lon problem can be writlen as
consider spatial reuse, multihopping and cooperative commu- maxz F(Py) (1)
nication as the strategies used in the network. 7

€T

). Then the optimiza-



subject to the power constraint
Srer

Lemma lll.1: f(P) is monotone increasing witk for 0 <
P<P. [ |

Lemma l11.2: Suppose thala4 — 1 > 0. Then,f is convex
in P for 0 < P < P. Further, the solution for the optimization

problem in (1) is to allot all the power to a single transmitter.

And the optimal value for the objective function in (1)/i§P).
Proof: See Appendix A for the proof. |
Lemma lI1.3: Suppose thata 4 — 1 < 0. For largeP, there
exists aP’, 0 < P’ < P, such thatf(P) is concave uptd®’
and convex thereafter.

large power regime. And networks with total power con-
straint P lesser than this threshold are called moderate
power networks.

For an extended network, where the network size scales
with n, the path loss from the farthest node decreases to
0. Forn > 2, [1] showed that the cumulative interference
from simultaneous transmitters can then be bounded, thus
achieving®(n) aggregate bit rate with spatial reuse. Us-

ing multihopping strategy, [1] achievedl (n%) end-to-
end throughput for extended networks.

6) Consider a simple TDM scheme, where each node trans-

mits with powerP = np, to its intended destination in

its slot. Since a node gets access to the channel once
in everyn slots, the average power per nodegs: .

And the achieved bit rate in the proposed scheme scales

Proof: See Appendix A for the proof. ] : . Of
F(P) = log (1 " £> increases to infinity with?, and 3slog(n): This proves the achievability & (log(n)) for
, L _ ense wireless networks.
f'(0) = §gayp decreases 0 as P increases. Now, observerp, fojiowing theorem summarizes the above arguments.
that, for largeP, we havef’(0) < @. The following lemma  Theorem IIl.2: The aggregate end-to-end throughput of a
upper boundg'(P) forall0 < P < P. dense wireless network scales @glog(P)), where P is the
Theorem I1l.1: Suppose thaa, — 1 < 0. For largeP, network average power constraint. In terms of the number of

f(P) < %‘_’)p forallo < P < P. nodes,n, the maximum achievable throughput of a dense net-
Proof: See Appendix A for the proof. m Workscales a®(log(n)). L
Defineg(P) := f(P)%. Let{F;} be an optimal solution for

the optimization problem (1). From Theorem Ill.1 and the def/, SpaTiaAL REUSE AND COOPERATIVE COMMUNICATION
inition of g(-), we have,

Zf(pi) < Zg(lﬁi)

wheneverP is large enough. Observe that,

For dense wireless networks, [1], [2] and [3] achieved
S) (n%) S) (n%) and ©(n) end-to-end throughput respec-
tively, by using a far field path loss model (with a path loss
of din for any transmitter-receiver separation®f As observed
in [4], this model requires power amplification by the channel
_ _ _ for sufficiently small values ofl, and hence, is not practical.
Zg(pi) — Z @E — @ Z P, = @p = f(P) The scaling fails Yvh_ep the nod.es bec_ome sufficie_ntly close, i..e.,
—~ P P = P whenn tends to infinity. In this section, we are interested in
- understanding the feasibility of the communication strategies
This implies that for large”, f(P) > >, f(P;), for any power discussed in [1] (spatial reuse and multihopping), [2] (spatial
allocation, orf(P) is the optimal solution. Thuseg (1 + % reuse, multihopping and cooperative communication) and [3]

is an upper bound on the network throughput. This imp”égpatial reuse, mgl@ihopping, cooperative communication and
that the maximum achievable bit rate for a dense network WiIE\J‘erarchy) for sufficiently large, when the path loss model of

arbitrary s-d pairs i®)(log(P)). a» Still holds. , _ _
Remark: For example, consider a 1IKm1Km planar area, with a mil-

1) We have only shown that for a per slot network powe!'ron nodes arranged in a square grid with a minimum spacing

constraintP(t), the aggregate bit rate scaledas( P/(1)). ?r:el crgrerJiEZ:? \?veat\\/lé?ee: :Eeirsn érgg:ﬂlilcamﬁzr:rimjaﬁlr;%rgr iﬁe
It is now straightforward to extend the above results . 9 m .

g node separation dfm. The path loss model holds for this de-
to a sequence of network power constraifity(t), ¢ =

1.9 } which satisfylim 1 Zt P(i) < P ployment, and hence, we could expect that such results as spa-
9Lyttt t—oo ¢ i=1 > . . . . 1 .
2) We have shown that the aggregate bit rate of an arbitrd§! reuse (00 (n)), multihopping (of© (”2 >) and cooperative

network scales a®(log(P)) (this is also the maximum ¢,mmynication (o (n%) or ©(n)) hold approximately (for

bit rate achievable in the network). Hence, the aggregate . . . . .
end-to-end throughput of a random network (as defin&id" with some probability). Observing that spatial reuse is es-
in Section Il) can scale only a3(log(P)). sential to every communication strategy (studied in [1], [2] and

3) Also, observe that the above results depend only gn E?’])’ 'nitnh;f‘ c%nt:,;(t,rlve \rgv:jlltrs]tu?% the tfiiSIbllltr}]’ (ﬁ)i(r?) spatlalr tiv
and P, but are independent of the number of the nodé§YSe € network, a €impac as onusing cooperative

in the network (and hence, on the spacing between i mmunlcanpn te-chnlques. . . .
nodes). he following simple calculations given below show that in

4) We call P greater than the threshold (according to Theo_rder to support a spatial reuse@(r), the network size must

1 . .
orem I11.1) for which the logarithmic scaling holds, ad€ atleastas large @(n")- Let us fix the SINR requirement

(3



for point-to-point communication t8, independent of the num- the above formulation that, for any power allocation with a total
ber of nodes and the dimensions of the network. Suppose thatwork power ofup, the achievable throughput using cooper-

all the transmissions involve the constant transmit pqwémet ative communication (as reported in [2] and [3]) is bounded by
S(n, A) denote the spatial reuse achievable in the network wighconstant, independent of

n nodes while supporting a SINR of Then, this implies that  Returning to the example of a million nodes arranged in a
the maximum interference gain observed at any receiver neggig in a 1Kmx 1Km planar area, we see that, while spatial
to be bounded above, as seen below. reuse and multihopping may increase the performance of the
system (as compared to direct transmissions involving the s-d
- +p(S(npA) - 1)aA) pai_rs), coqperative communic_ation.does not. Iq other quds,
’ while spatial reuse and multihopping can coexist, even in a
This implies that practical scenario, for sufficiently large spatial reuse and co-
operative communication (as reported in [2] and [3]) cannot.
(S(n,A) — 1ayg <~ The direct communication between the source-destination clus-
) ) ters should be avoided in order to enhance the throughput in
for some constanty, independent of. or p.  Absorbing the yegjistic scenarios. However, by restricting the communication
constants and simplifying the expression, we have, distance between the clusters, we lose throughput due to multi-

S(n, A)as <1 hopping costs.

B < SINR < (

Hence, to achieve a spatial reuseaqfn), we require,

O(n)as <1 (2) V. CONCLUSIONS

In terms ofd 4, we have,
The important feature of a dense network, as compared to an

@(n)di" <1 extended network is the positive interference due to a simul-

A taneous transmission any where in the network. We have ob-

or, served that this implies that the scaling results are a function of
O(n) < d both the number of nodes and the network power. More specif-

y, for large power networks, we observe that the achievable
ughput scales only &(log(P)), irrespective of the num-

L . icall
The above expression implies that the total spatial reuse feasﬁfeo
r of nodes in the network. However, for moder&ewhen

in the network is bounded by the dimensions of the network.

other words, to support a spatial reuseﬁéhl), the dimensions spatial reuse may be efficient, we showed that spatial reuse puts
of the network should at least scale@s{rz " ) or the aread 3 restriction on the network size, which affects the gains achie-

should be as large & (n% veable using cooperative communication techniques.

Viewed differently, the end-to-end path loss between any
source-destination pair (according to the random traffic model)
will scale at least a® (1) (from Equation (2)), when the spa-
tial reuse scales #&(n). The cooperative communication mod-
els described in [2] and [3], require the source cluster (the
biggest cluster containing the source node) and the destin@} P. Gupta and P.R. Kumar, The Capacity of Wireless Networks, |IEEE
tion cluster (the biggest cluster containing the destination node) Transactions on Information Theory, 2000. .
to communicate directly, using cooperative communication ) Shueli ASron a0 verkatesh Salgraa, wireless ad-noc networs
volving the nodes in the cluster. For a spatial reus©6t), Transactions on Information Theory.
and the number of nodes in the clusMr(M < @(n), for e.g., [3] Ayfer Ozgur, Olivier Leveque and David Tse, How does the Information

. 2 . - Capacity of Ad Hoc Networks Scale? Proceedings of the Forty-fourth
in [2]’ M = nd)’ an upper bound on the maximum bit rate Annual Allerton Conference on Communication, Control and Computing,
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where we have modeled the cooperative communication phase

as comprising of: parallel independent channels, with only the

path loss between a transmitter-receiver pair in the cluster. Ob-

serve that the throughput, as given by the above expression does

not scale a®(n). In fact, it is bounded above by a constantA. Proofs for Section Il
The key observation is that the path loss that permits spatial

reuse in the channel is so restrictive that it is unable to support.emma .1 : f(P) is monotone increasing witR for 0 <
long distance MIMO communications. It is easy to verify fronP < P.

APPENDIX



Proof: Differentiating f (P) with respect taP, we have, problem in (1) is to allot all the power to a single trans_mitter.
) And the optimal value for the objective function in (1)/isP).
f/(P) = 1 P u
+ N+04A157QAP

Now suppose tha2ay — 1 < 0. Then, f”(0) < 0 and

< (3raba t st s o B sich ot (P) . Ol a0 £ o P
5 5 5 exist aP’ < P such tha < Oforall0 < P <
N+aaP—asP  (N+asP —asP) and f”(P) > 0 forall P’ < P < P. The following lemma

— 1 (1 asP )ummarizes the idea. )
N+ aaP —aaP+ P (N +aaP—aaP)) Lemmalll.3: Suppose tha 4 — 1 < 0. For largeP, there
B 1 exists aP’, 0 < P’ < P, such thatf(P) is concave uptd®”’
 N+4+asP—asP+P and convex there after. . n
N+ a P —a P +asP From the definition of f(-), we see that, f(P) =
% N+ aaP —asP log (1 + %) increases to infinity withP. Also, f'(0) =
B ( 1 ) ( (N +aaP) > ~Taop decreases t0 as P increases. Further, for large,
N N+OZAP+P*OZAP N‘FO&AP*O&AP Weseethaf’(o)g@_

Theorem IIl.1 : Suppose th@y — 1 < 0. For largeP,
fpy< &p.
Proof: From Lemma Il1.3, we know thaf(P) is concave
upto P’. Hence,f(P) < f(0)+ f'(0)P for0 < P < P'.

Clearly, f/(P) > 0forall 0 < P < P. Hence,f(P) is mono-
tone increasing foral) < P < P. [ |
Differentiating f(P) with respect taP again, we have,

, d 1 1 Since f(0) = 0, we have,f(P) < f'(0)P. For largeP, we
ey = -5 (K+ (I—asP K- aAp) havef'(0) < L&) (from the previous arguments). Hence, for
0<P<P, B
We have used the substitutidid := N + a4 P in the above £(P) < f({D)P
expression. Also, we are interested only in the sigrf'6fP), - P
hence, we have ignorddV + « 4 P) in the numerator as well. In the regionP’ < P < P, f(P) is convex increasing, hence,
. 1 ) we have,
"p _ < - — QA > 5 ,
7P K —asP \ (K + (1 —ay)P)? f(P) = f(P) < —(f(P; j;(,P ) (P—P")
1 —1x A B
T K +(1—aa)P ((K _ aAp)2> Simplifying the above expression, we have,
1 (P —P) NG )
(K —anP)(K + (1_an)P) FP) < fPY+ f Py 5= — [P p—pr
( —(-aa) _ oa ) or,
Frf e e ppy < Y E=L) 4 gy (1 - 5= P/)>
Clearly, K —asP = N+ P —asP >0 (for0 < P < P) pP—-p P—p
andK + (1 —a4)P > 0. Hence, we will concentrate only ong.
the terms inside the braces, _(P—P P—P
iy < 1) E=2) iy E=L
"py — *(1*044) A L p-p p-r
Py = A—aAP " K—axP Substitutingf (P’) < f'(0)P’, we have,
—(K —asP)1—as)+aa(K+(1—as)P) _ (P—-P) , ,P—P
= P P)———+= P =
(K +(1—ax)P)(K —aiP) I < Iy + O 5
Ignoring the denominator (which is always positive), we havekor largeP, f/(0) < f(P Substituting again, we get,
F'(P) = —[K—Kas+a4P —asP) HP) gf(P)(- p) fP), PP
+ [0aK +aaP — o} Pl P—P p - pP-P
= 204K — 204 P +2a,4P - K or, _
G4l — o T 204 _(P-P) P P-P
= (Z(IA—I)K—FZO(AP(l—OzA) f(P)Sf(P) b_p +FP*P’

Clearly,1 > a4. Now, if 2a4 — 1 > 0, then we see that Simplifying the above expression, we have,
the above expression is positive for all< P < P. Hence, ~
f" > 0, or, the functionf (P) is convex increasing. f(P) < f(P)f
Lemma l1l.2 : Suppose thavy — 1 > 0. Then, f is convex
in P for 0 < P < P. Further, the solution for the optimizationfor all P < P < P, which completes the proof. u



