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On the Limits of Spatial Reuse and Cooperative
Communication for Dense Wireless Networks∗

Venkatesh Ramaiyana and Anurag Kumara

Abstract— We consider a dense ad hoc wireless network com-
prising n nodes confined to a given two dimensional region of fixed
area. For the Gupta-Kumar ([1]) random traffic model and a re-
alistic interference and path loss model (i.e., the channel power
gains are bounded above by 1, and are bounded below by a strictly
positive number), we study the scaling of the aggregate end-to-end
throughput with respect to the network average power constraint,
P̄ , and the number of nodes,n. The network power constraint P̄
is related to the per node power constraint,p, asP̄ = np. For large
P̄ , we show that the throughput saturates asΘ(log(P̄ )), irrespec-
tive of the number of nodes in the network. For moderateP̄ , which
can accommodate spatial reuse to improve end-to-end throughput,
we observe that the amount of spatial reuse feasible in the network
is limited by the diameter of the network. In fact, we observe that
the end-to-end path loss in the network and the amount of spatial
reuse feasible in the network are inversely proportional. This puts
a restriction on the gains achievable using the cooperative commu-
nication techniques studied in [2] and [3], as these rely on direct
long distance communication over the network.

Index Terms—Capacity scaling laws, ad hoc wireless networks,
spatial reuse and multihopping

I. I NTRODUCTION

We consider a wireless network comprisingn nodes con-
fined to a given two dimensional region of fixed areaA. Such
networks are called dense or fixed SNR networks, because,
the attenuation between any transmitter-receiver pair is lower
bounded by a positive quantity independent ofn. Source-
destination (s-d) pairs are chosen randomly (as in the Gupta-
Kumar random traffic model, see [1]) and the s-d pairs commu-
nicate by sharing the common wireless channel. For an average
power constraintp at a node, the total network average power
constraint,P̄ , is given byP̄ = np. For a realistic interfer-
ence and path loss model, we study the scaling of the aggregate
end-to-end throughput between the s-d pairs with respect to the
network power constraint̄P , and the number of nodesn.

Using a far-field path loss model of1dη for every transmitter-
receiver separation ofd, Gupta and Kumar ([1]) showed that
the end-to-end throughput of dense wireless networks scales as

Θ
(
n

1
2

)
. It was observed in [4] that,Θ

(
n

1
2

)
scaling is not

feasible in realistic scenarios, as the far-field path loss model
(used in [1]) provides a channel power gain greater than unity
for very smalld. In our work, we note that the scaling laws
of dense wireless networks (with a realistic path loss model)
depend not only on the number of nodes (n), but also on the
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network power constraint (̄P ). Our main result is that the end-
to-end throughput of dense networks scales only asΘ(log(P̄ ))
(or asΘ(log(n)), when P̄ = np for a fixedp), due to inter-
ference from simultaneous transmitters and bounded distance
between any transmitter-receiver pair. This contrasts with the

Θ
(
n

1
2

)
scaling achievable for an extended network, where the

size of the network scales asn (see for e.g., [1] and [3]). Viewed
differently, the logarithmic scaling of the aggregate end-to-end
throughput follows from the fact that the maximum achievable
bit-rate in the network scales only asΘ(log(P̄ )) or Θ(log(n)),
and not asΘ(n) (as in extended networks).

The logarithmic scaling, forn tending to infinity, or, for very
large P̄ , is achieved using direct communication between the
source-destination pairs, without any spatial reuse. However,
better scaling results are achievable for small and moderateP̄ ,
by using spatial reuse, multihopping or other communication
techniques. For the path loss model of1

dη for any transmitter-
receiver pair separated by a distanced, [1] showed that spatial
reuse and multihopping achieves an end-to-end throughput of

Θ
(
n

1
2

)
. A recent result, [2], achievedΘ

(
n

2
3

)
throughput us-

ing cooperative communication techniques, for a rich scattering
environment. Using a similar cooperative communication tech-
nique (as in [2]) and by implementing a hierarchy, [3] obtained
a Θ(n) throughput for dense wireless networks. The above re-
sults (as reported in [1], [2] and [3]) are not feasible for a re-
alistic path loss scenario, and the scaling fails when the nodes
become sufficiently close. While it is true that the scaling does
not hold forn tending to infinity, we are interested in under-
standing the feasibility of the scaling laws for sufficiently large
n (when the path loss model of1dη holds). For such a scenario
(when the path loss model holds for the given areaA and a
node densityn), we observe that the amount of spatial reuse
feasible in the network is limited by the diameter of the net-
work. In fact, we show that the spatial reuse achievable in the
network is inversely proportional to the end-to-end path loss in
the network. This puts a restriction on the gains achievable us-
ing cooperative communication techniques discussed in [2] and
[3], as they rely on direct communication over long distances in
the network. We observe that, while spatial reuse and multihop-
ping (as reported in [1]) can provide throughput enhancements
for sufficiently largen, even in realistic scenarios, cooperative
communication gains (as reported in [2] and [3]) may not be
achievable.

Outline of the Paper : In Section II, we define the dense
wireless network model, the realistic interference and path loss
model and the objective function. In Section III, we show
that the aggregate throughput of a dense network scales only
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asΘ(log(P̄ )) or Θ(log(n)). We discuss the feasibility of spa-
tial reuse and cooperative communication for practical wireless
networks in Section IV. We finally conclude the paper in Sec-
tion V.

II. N ETWORK MODEL

We consider a wireless network comprisingn nodes, dis-
tributed uniformly over a two dimensional region of fixed area
A.
• n

2 source-destination pairs are formed in the network, with
each node belonging to a distinct s-d pair. The s-d pairs
are chosen randomly such that the mean s-d pair distance
is O(1), with respect to the diameter of the network.

• The s-d pairs communicate by sharing the common wire-
less channel. The gain between any transmitter-receiver
pair is assumed fixed, and determined by the path loss that
has a power law depending on the path length.

• We consider a total network average power constraintP̄ ,
accounting only for the transmit power of all the nodes in
the network. Further, the nodes have an individual average
power constraintp, that is related tōP asP̄ = np. In our
work, we assume thatp is fixed for a given scenario, and
hence, the network power constraintP̄ scales asn. We
do not model a maximum power constraint per node in the
model.

• We assume that the system is slotted and nodes commu-
nicate over slots of fixed duration. When the nodes use
single user decoding transceivers, we assume that the bit
rate achieved between a transmitter and receiver is given
by Shannon’s formula,C = log2(1+SINR) bits per sym-
bol. Further, when the nodes communicate cooperatively,
we assume that nodes are synchronised without any addi-
tional overheads.

A. Interference and Path loss Model

We consider a realistic physical model of interference (SINR
based) in the network. In [1], it was assumed that the power
gain between a transmitter and a receiver scaled with the dis-
tanced as 1

dη , whereη > 2 is the path loss exponent. While this
holds true for far-field distances, the above model is not appro-
priate when the receiver is very close to the transmitter. In our
work, we use a generalized model in which the channel power
gain between (i, j) is αi,j , where0 < αA ≤ αi,j ≤ 1. αA

is the minimum channel power gain between any transmitter-
receiver pair, and is related to the diameter of the network,dA,
asαA = 1

dη
A

. The assumptionαi,j ≤ 1 implies that a receiver
cannot receive power more than the power transmitted.

B. Objective

Our objective is to study the scaling of the aggregate end-
to-end throughput of the described wireless network for the in-
terference and path loss model discussed above. We study the
scaling laws for different network power constraint regimes -
large P̄ (in terms ofP̄ ) and moderatēP (in terms ofn). We
consider spatial reuse, multihopping and cooperative commu-
nication as the strategies used in the network.

III. SCALING LAWS FORLARGE P̄

In this section, we will obtain scaling laws of dense wireless
networks with respect tōP . Suppose that the source-destination
pairs are chosen arbitrarily (instead of randomly, as stated ear-
lier), such that the s-d pairs are chosen as close as possible. The
aggregate end-to-end throughput achievable in this scenario is
the same as the maximum bit rate achievable in the network.
Choosing s-d pairs as close as this implies that direct commu-
nication is the optimal solution, avoiding the need for compar-
ison over different communication strategies such as coopera-
tive communication. Clearly, the bit rate achieved in this sce-
nario, upper bounds the bit rate achieved for the random traffic
model. Now, we assume that the nodes use single user decoding
receivers, treating every simultaneous transmission (other than
the intended one) as interference. We will now upper bound the
bit rate achievable in this scenario.

A. An upper bound on the Network Throughput

Consider a slott, when nodei, 1 ≤ i ≤ n, transmits with
powerPi(t), and the transmit powers are such that they satisfy
a network power constraint,

∑n
i=1 Pi(t) ≤ P̄ (t). For ease of

notation, we will omit the indext now, and include it again later
(at the end of this section). The SINR achievable (in slott) at
the receiver of a transmitteri is bounded above by

SINR ≤ αiPi

N +
∑

{j 6=i} αjPj

whereαi andαj are the constant gains at the receiver from the
transmittersi andj andN is the noise power. Then, it follows
from the interference model, that the SINR is bounded above as

SINR≤ Pi

N + αA

∑
{j 6=i} Pj

For an allocated total network power ofP̄ , an optimal power al-
location (that maximizes throughput) must satisfy

∑
i Pi = P̄ .

Hence, using the equality
∑

i Pi = P̄ in the above expression,
we have,

SINR ≤ Pi

N + αA(P̄ − Pi)
Now, the maximum throughput achievable in the network is
bounded above by

C(αA) :=
∑
i∈T

log
(

1 +
Pi

N + αA(P̄ − Pi)

)
whereT indexes the set of transmitters with positive power.
We denote the above expression asC(αA), denoting the de-
pendence on the parameterαA. We will now obtain an upper
bound forC(αA) by optimising the above expression forPi,
i.e., we will maximizeC(αA) subject to the power constraint∑

i Pi ≤ P̄ .

B. Optimization Problem

Definef(P ) := log
(
1 + P

N+αA(P̄−P )

)
. Then the optimiza-

tion problem can be written as

max
∑

i

f(Pi) (1)
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subject to the power constraint∑
i

Pi ≤ P̄

Lemma III.1: f(P ) is monotone increasing withP for 0 ≤
P ≤ P̄ .

Lemma III.2: Suppose that2αA − 1 > 0. Then,f is convex
in P for 0 ≤ P ≤ P̄ . Further, the solution for the optimization
problem in (1) is to allot all the power to a single transmitter.
And the optimal value for the objective function in (1) isf(P̄ ).

Proof: See Appendix A for the proof.
Lemma III.3: Suppose that2αA − 1 < 0. For largeP̄ , there

exists aP ′, 0 ≤ P ′ ≤ P̄ , such thatf(P ) is concave uptoP ′

and convex thereafter.
Proof: See Appendix A for the proof.

f(P̄ ) = log
(
1 + P̄

N

)
, increases to infinity withP̄ , and

f ′(0) = 1
N+αAP̄

, decreases to0 asP̄ increases. Now, observe

that, for largeP̄ , we havef ′(0) ≤ f(P̄ )
P̄

. The following lemma
upper boundsf(P ) for all 0 ≤ P ≤ P̄ .

Theorem III.1: Suppose that2αA − 1 < 0. For largeP̄ ,
f(P ) ≤ f(P̄ )

P̄
P for all 0 ≤ P ≤ P̄ .

Proof: See Appendix A for the proof.
Defineg(P ) := f(P̄ )P

P̄
. Let {P̃i} be an optimal solution for

the optimization problem (1). From Theorem III.1 and the def-
inition of g(·), we have,∑

i

f(P̃i) ≤
∑

i

g(P̃i)

wheneverP̄ is large enough. Observe that,

∑
i

g(P̃i) =
∑

i

f(P̄ )
P̄

P̃i =
f(P̄ )

P̄

∑
i

P̃i =
f(P̄ )

P̄
P̄ = f(P̄ )

This implies that for largēP , f(P̄ ) ≥
∑

i f(Pi), for any power

allocation, orf(P̄ ) is the optimal solution. Thus,log
(
1 + P̄

N

)
is an upper bound on the network throughput. This implies
that the maximum achievable bit rate for a dense network with
arbitrary s-d pairs isO(log(P̄ )).
Remark:

1) We have only shown that for a per slot network power
constraintP̄ (t), the aggregate bit rate scales aslog(P̄ (t)).
It is now straightforward to extend the above results
to a sequence of network power constraints{P̄ (t), t =
1, 2, · · · } which satisfylimt→∞

1
t

∑t
i=1 P̄ (i) ≤ P̄ .

2) We have shown that the aggregate bit rate of an arbitrary
network scales asO(log(P̄ )) (this is also the maximum
bit rate achievable in the network). Hence, the aggregate
end-to-end throughput of a random network (as defined
in Section II) can scale only asO(log(P̄ )).

3) Also, observe that the above results depend only onαA

and P̄ , but are independent of the number of the nodes
in the network (and hence, on the spacing between the
nodes).

4) We callP̄ greater than the threshold (according to The-
orem III.1) for which the logarithmic scaling holds, as

large power regime. And networks with total power con-
straint P̄ lesser than this threshold are called moderate
power networks.

5) For an extended network, where the network size scales
with n, the path loss from the farthest node decreases to
0. Forη > 2, [1] showed that the cumulative interference
from simultaneous transmitters can then be bounded, thus
achievingΘ(n) aggregate bit rate with spatial reuse. Us-

ing multihopping strategy, [1] achievedΘ
(
n

1
2

)
end-to-

end throughput for extended networks.
6) Consider a simple TDM scheme, where each node trans-

mits with powerP̄ = np, to its intended destination in
its slot. Since a node gets access to the channel once
in everyn slots, the average power per node isP̄

n = p.
And the achieved bit rate in the proposed scheme scales
aslog(n). This proves the achievability ofΘ(log(n)) for
dense wireless networks.

The following theorem summarizes the above arguments.
Theorem III.2: The aggregate end-to-end throughput of a

dense wireless network scales asΘ(log(P̄ )), whereP̄ is the
network average power constraint. In terms of the number of
nodes,n, the maximum achievable throughput of a dense net-
work scales asΘ(log(n)).

IV. SPATIAL REUSE AND COOPERATIVECOMMUNICATION

For dense wireless networks, [1], [2] and [3] achieved

Θ
(
n

1
2

)
, Θ

(
n

2
3

)
and Θ(n) end-to-end throughput respec-

tively, by using a far field path loss model (with a path loss
of 1

dη for any transmitter-receiver separation ofd). As observed
in [4], this model requires power amplification by the channel
for sufficiently small values ofd, and hence, is not practical.
The scaling fails when the nodes become sufficiently close, i.e.,
whenn tends to infinity. In this section, we are interested in
understanding the feasibility of the communication strategies
discussed in [1] (spatial reuse and multihopping), [2] (spatial
reuse, multihopping and cooperative communication) and [3]
(spatial reuse, multihopping, cooperative communication and
hierarchy) for sufficiently largen, when the path loss model of
1
dη still holds.

For example, consider a 1Km×1Km planar area, with a mil-
lion nodes arranged in a square grid with a minimum spacing
of 1 metre between them. For a carrier frequency of3 GHz,
the carrier wavelength is around0.1m much smaller than the
node separation of1m. The path loss model holds for this de-
ployment, and hence, we could expect that such results as spa-

tial reuse (ofΘ(n)), multihopping (ofΘ
(
n

1
2

)
) and cooperative

communication (ofΘ
(
n

2
3

)
or Θ(n)) hold approximately (for

e.g., with some probability). Observing that spatial reuse is es-
sential to every communication strategy (studied in [1], [2] and
[3]), in this context, we will study the feasibility ofΘ(n) spatial
reuse in the network, and the impact it has on using cooperative
communication techniques.

The following simple calculations given below show that in
order to support a spatial reuse ofΘ(n), the network size must

be at least as large asΘ
(
n

1
η

)
. Let us fix the SINR requirement
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for point-to-point communication toβ, independent of the num-
ber of nodes and the dimensions of the network. Suppose that
all the transmissions involve the constant transmit powerp. Let
S(n, A) denote the spatial reuse achievable in the network with
n nodes while supporting a SINR ofβ. Then, this implies that
the maximum interference gain observed at any receiver needs
to be bounded above, as seen below.

β ≤ SINR≤
(

p

N + p(S(n, A)− 1)αA

)
This implies that

(S(n, A)− 1)αA ≤ γ

for some constant,γ, independent ofn or p. Absorbing the
constants and simplifying the expression, we have,

S(n, A)αA ≤ 1

Hence, to achieve a spatial reuse ofΘ(n), we require,

Θ(n)αA ≤ 1 (2)

In terms ofdA, we have,

Θ(n)
1

dη
A

≤ 1

or,
Θ(n) ≤ dη

A

The above expression implies that the total spatial reuse feasible
in the network is bounded by the dimensions of the network. In
other words, to support a spatial reuse ofΘ(n), the dimensions

of the network should at least scale asΘ
(
n

1
η

)
, or the areaA

should be as large asΘ
(
n

2
η

)
.

Viewed differently, the end-to-end path loss between any
source-destination pair (according to the random traffic model)
will scale at least asΘ

(
1
n

)
(from Equation (2)), when the spa-

tial reuse scales asΘ(n). The cooperative communication mod-
els described in [2] and [3], require the source cluster (the
biggest cluster containing the source node) and the destina-
tion cluster (the biggest cluster containing the destination node)
to communicate directly, using cooperative communication in-
volving the nodes in the cluster. For a spatial reuse ofΘ(n),
and the number of nodes in the clusterM (M < Θ(n), for e.g.,
in [2], M = n

2
3 ), an upper bound on the maximum bit rate

achievable in the cooperative communication phase is,

n log
(
1 +

pαA

N

)
≤ n log

(
1 +

p

Θ(n)N

)
where we have modeled the cooperative communication phase
as comprising ofn parallel independent channels, with only the
path loss between a transmitter-receiver pair in the cluster. Ob-
serve that the throughput, as given by the above expression does
not scale asΘ(n). In fact, it is bounded above by a constant.
The key observation is that the path loss that permits spatial
reuse in the channel is so restrictive that it is unable to support
long distance MIMO communications. It is easy to verify from

the above formulation that, for any power allocation with a total
network power ofnp, the achievable throughput using cooper-
ative communication (as reported in [2] and [3]) is bounded by
a constant, independent ofn.

Returning to the example of a million nodes arranged in a
grid in a 1Km× 1Km planar area, we see that, while spatial
reuse and multihopping may increase the performance of the
system (as compared to direct transmissions involving the s-d
pairs), cooperative communication does not. In other words,
while spatial reuse and multihopping can coexist, even in a
practical scenario, for sufficiently largen, spatial reuse and co-
operative communication (as reported in [2] and [3]) cannot.
The direct communication between the source-destination clus-
ters should be avoided in order to enhance the throughput in
realistic scenarios. However, by restricting the communication
distance between the clusters, we lose throughput due to multi-
hopping costs.

V. CONCLUSIONS

The important feature of a dense network, as compared to an
extended network is the positive interference due to a simul-
taneous transmission any where in the network. We have ob-
served that this implies that the scaling results are a function of
both the number of nodes and the network power. More specif-
ically, for large power networks, we observe that the achievable
throughput scales only asΘ(log(P̄ )), irrespective of the num-
ber of nodes in the network. However, for moderateP̄ , when
spatial reuse may be efficient, we showed that spatial reuse puts
a restriction on the network size, which affects the gains achie-
veable using cooperative communication techniques.
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APPENDIX

A. Proofs for Section III

Lemma III.1 : f(P ) is monotone increasing withP for 0 ≤
P ≤ P̄ .
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Proof: Differentiatingf(P ) with respect toP , we have,

f ′(P ) =
1

1 + P
N+αAP̄−αAP

×
(

1
N + αAP̄ − αAP

+
αAP

(N + αAP̄ − αAP )2

)
=

1
N + αAP̄ − αAP + P

(
1 +

αAP

(N + αAP̄ − αAP )

)
=

1
N + αAP̄ − αAP + P

×
(

N + αAP̄ − αAP + αAP

N + αAP̄ − αAP

)
=

(
1

N + αAP̄ + P − αAP

) (
(N + αAP̄ )

N + αAP̄ − αAP

)
Clearly,f ′(P ) ≥ 0 for all 0 ≤ P ≤ P̄ . Hence,f(P ) is mono-
tone increasing for all0 ≤ P ≤ P̄ .

Differentiatingf ′(P ) with respect toP again, we have,

f ′′(P ) =
d

dP

(
1

K + (1− αA)P
1

K − αAP

)
We have used the substitutionK := N + αAP̄ in the above
expression. Also, we are interested only in the sign off ′′(P ),
hence, we have ignored(N + αAP̄ ) in the numerator as well.

f ′′(P ) =
1

K − αAP

(
−1(1− αA)

(K + (1− αA)P )2

)
+

1
K + (1− αA)P

(
−1×−αA

(K − αAP )2

)
=

1
(K − αAP )(K + (1− αA)P )

×
(

−(1− αA)
K + (1− αA)P

+
αA

K − αAP

)
Clearly,K − αAP = N + P̄ − αAP ≥ 0 (for 0 ≤ P ≤ P̄ )
andK + (1− αA)P ≥ 0. Hence, we will concentrate only on
the terms inside the braces,

f ′′(P ) =
−(1− αA)

K + (1− αA)P
+

αA

K − αAP

=
−(K − αAP )(1− αA) + αA(K + (1− αA)P )

(K + (1− αA)P )(K − αAP )

Ignoring the denominator (which is always positive), we have,

f ′′(P ) = −[K −KαA + α2
AP − αAP ]

+ [αAK + αAP − α2
AP ]

= 2αAK − 2α2
AP + 2αAP −K

= (2αA − 1)K + 2αAP (1− αA)

Clearly, 1 ≥ αA. Now, if 2αA − 1 > 0, then we see that
the above expression is positive for all0 ≤ P ≤ P̄ . Hence,
f ′′ ≥ 0, or, the functionf(P ) is convex increasing.

Lemma III.2 : Suppose that2αA − 1 > 0. Then,f is convex
in P for 0 ≤ P ≤ P̄ . Further, the solution for the optimization

problem in (1) is to allot all the power to a single transmitter.
And the optimal value for the objective function in (1) isf(P̄ ).

Now suppose that2αA − 1 < 0. Then, f ′′(0) < 0 and
for large enough̄P , f ′′(P̄ ) > 0, i.e., for largeP̄ , there would
exist aP ′ ≤ P̄ such thatf ′′(P ′) ≤ 0 for all 0 ≤ P ≤ P ′

andf ′′(P ) ≥ 0 for all P ′ ≤ P ≤ P̄ . The following lemma
summarizes the idea.

Lemma III.3 : Suppose that2αA − 1 < 0. For largeP̄ , there
exists aP ′, 0 ≤ P ′ ≤ P̄ , such thatf(P ) is concave uptoP ′

and convex there after.
From the definition of f(·), we see that, f(P̄ ) =

log
(
1 + P̄

N

)
increases to infinity withP̄ . Also, f ′(0) =

1
N+αAP̄

, decreases to0 as P̄ increases. Further, for largēP ,

we see thatf ′(0) ≤ f(P̄ )
P̄

.
Theorem III.1 : Suppose that2αA − 1 < 0. For largeP̄ ,

f(P ) ≤ f(P̄ )
P̄

P .
Proof: From Lemma III.3, we know thatf(P ) is concave

upto P ′. Hence,f(P ) ≤ f(0) + f ′(0)P for 0 ≤ P ≤ P ′.
Sincef(0) = 0, we have,f(P ) ≤ f ′(0)P . For largeP̄ , we

havef ′(0) ≤ f(P̄ )
P̄

(from the previous arguments). Hence, for
0 ≤ P ≤ P ′,

f(P ) ≤ f(P̄ )
P̄

P

In the regionP ′ ≤ P ≤ P̄ , f(P ) is convex increasing, hence,
we have,

f(P )− f(P ′) ≤ (f(P̄ )− f(P ′))
P̄ − P ′ (P − P ′)

Simplifying the above expression, we have,

f(P ) ≤ f(P ′) + f(P̄ )
(P − P ′)
P̄ − P ′ − f(P ′)

(P − P ′)
P̄ − P ′

Or,

f(P ) ≤ f(P̄ )
(P − P ′)
P̄ − P ′ + f(P ′)

(
1− (P − P ′)

P̄ − P ′

)
Or,

f(P ) ≤ f(P̄ )
(P − P ′)
P̄ − P ′ + f(P ′)

P̄ − P

P̄ − P ′

Substitutingf(P ′) ≤ f ′(0)P ′, we have,

f(P ) ≤ f(P̄ )
(P − P ′)
P̄ − P ′ + f ′(0)P ′ P̄ − P

P̄ − P ′

For largeP̄ , f ′(0) ≤ f(P̄ )
P̄

. Substituting again, we get,

f(P ) ≤ f(P̄ )
(P − P ′)
P̄ − P ′ +

f(P̄ )
P̄

P ′ P̄ − P

P̄ − P ′

Or,

f(P ) ≤ f(P̄ )
(

(P − P ′)
P̄ − P ′ +

P ′

P̄

P̄ − P

P̄ − P ′

)
Simplifying the above expression, we have,

f(P ) ≤ f(P̄ )
P

P̄

for all P ′ ≤ P ≤ P̄ , which completes the proof.


