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Abstract— In many cases, a mobile user has the option of
connecting to one of several IEEE 802.11 access points (APs),
each using an independent channel. User throughput in each
AP is determined by the number of other users as well as the
frame size and physical rate being used. We consider the scenario
where users could multihome, i.e., split their traffic amongst all
the available APs, based on the throughput they obtain and the
price charged. Thus, they are involved in a non-cooperative game
with each other. We convert the problem into a fluid model
and show that under a pricing scheme, which we call the cost
price mechanism, the total system throughput is maximized,
i.e., the system suffers no loss of efficiency due to selfish
dynamics. We also study the case where the Internet Service
Provider (ISP) could charge prices greater than that of the cost
price mechanism. We show that even in this case multihoming
outperforms unihoming, both in terms of throughput as well as
profit to the ISP.

I. INTRODUCTION

The IEEE 802.11 protocol is currently the standard for wire-
less LANs (WLANs), with no fundamental difference between
the different flavors. It has been deployed ubiquitously in
airports, coffee shops and homes. Very often there is a choice
of access points (APs) to which a mobile user could connect to.
Users scan the wireless channel in order to find the AP which
shows the highest signal strength and associate to it. They then
transmit at different rates (often called the PHY rate) based
on the signal strength indicated. The algorithm that selects the
PHY rate chooses a higher rate if the signal strength is good
and progressively cuts down the rate as signal strength decays.
It achieves such rate adaptation by keeping the transmit power
almost constant, while changing the constellation used. Thus,
it would use BPSK for a bad channel, QPSK for a better one
and so on. But this also means that for a frame transmission
of the same size, some users occupy the channel longer than
others. It has also been observed [1] that all the connections in
a single cell receive the same throughput, leading to inefficient
use of the channel. In such a scenario, the question arises as to
whether it might be better for a user to split his or her traffic
among the visible APs.

Suppose we have a geographical region divided into cells
as shown in Figure 1. Each cell would have an access point.
Transmissions in each cell would be independent of other cells
by using separate channels. For example 802.11 b and g have
three independent channels and we may use them to tessellate

a region into independent cells. Another possible scenario is
when the same region has multiple independent access points,
perhaps provided by competing service providers. In either
case, users might have the option of connecting to one of
several access points based on where they are located. For
instance, in Figure 1, users in region A might be able to
associate to cells P,Q and S, whereas users in region B, might
have no choice but to associate to cell S.
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Fig. 1. Division of a geographical region into non-interfering cells using three
independent channels, indicated by shading. Users could be in a position to
connect to access points in one or more cells.

Users with just a single wireless network interface card
might also be able to associate to all the APs available
to them, which would provide diversity from the fact that
different cells may be loaded differently. They could then
probabilistically divide their traffic among the different APs
in order to maximize their individual throughput. Virtualizing
a wireless card in this manner has actually been implemented
[2]. Traffic splitting in the Internet among different Internet
Service Providers (ISPs) is called multihoming [3] and we
follow the same terminology for the WLAN case. We call
the case where users can associate to only a single AP as
unihoming. Of course, in our case all the APs might be
owned by the same ISP. We assume that users are aware of
the throughput that they would obtain if they joined one of
the APs (they would have to run an estimation tool using a
test sequence of packets or the AP could provide the current
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system state). This would tell them the potential benefit if they
sent traffic to that AP. The AP itself might charge a price for
sending packets through it. So the payoff that the user obtains
would be the difference of the two. We also assume that users
do not have the freedom to choose frame sizes or PHY rates
as they wish – they are decided by the operating system.

Users are selfish and would like to maximize their payoffs.
Thus, they compete with each other in a non-cooperative game.

Related Work

There has recently been much interest in understanding the
behavior of wireless LANs. They make use of the distributed
coordination function (DCF) with an RTS-CTS handshake
and hence cannot directly be modeled in the same manner
as traditional Ethernet systems. One intriguing question has
been that of why users using different PHY rates all obtain
the same throughput. This question was studied using simula-
tion and experiments in [1]. In [4] the system was studied
as a two-player game, with each user trying to maximize
their individual throughput and results were presented on the
inefficiency of the system as compared to the cooperative
optimum. Bianchi [5] used fixed point analysis in order to
provide an analytical framework for 802.11 WLANs. The
results were extended in [6], to provide expressions for the
throughput of users with disparate frame sizes and PHY rates.
Our work relies heavily on the expressions obtained in the
above. The analytical work has been further extended in [7]
and a simulation based verification provided.

Another area that has received attention is that of how users
should associate to APs in a WLAN. In [8] a study is made
on fairness issues and how the load should be balanced using
fractional association in a cooperative scenario. Usually, users
have no particular incentive to cooperate with each other and
would be interested in maximizing their individual payoffs.
In [9], the case of non-cooperative users who decide on the
optimal frame size and PHY rate to be used in order to
maximize their individual throughputs is studied. The users are
all assumed to be in a single cell and compete for throughput
within that cell. Another paper on non-cooperative association
is [10], which provides a simulation study of the benefit of
associating to the AP that would provide the best estimated
link rate. Some results on cooperative association of users to
different APs are provided in [11].

Multihoming is a recent idea that has been proposed to make
use of path diversity in the Internet. The idea is that since
different ISPs use different policy based routing mechanisms,
it is very possible that a user would get a higher bandwidth
by subscribing to multiple ISPs simultaneously and splitting
traffic among them. Another concept which achieves the same
at a finer resolution is that of source routing, wherein the user
chooses the routes by himself, rather than choosing ISPs. A
comparative study of overlay source routing and multihoming
is carried out in [3]. One question which crops up when
multihoming is allowed is that of how users ought to split up
their traffic among the different ISPs. A dynamic programming
algorithm based on how much different ISPs charge is studied

in [12], where it is assumed that the ISPs have sufficient
capacity to handle the traffic at an acceptable throughput for
the users. Analytical work on the stability of a system using
multiple routes is present in [13], [14]. The first studies a
multi-path TCP version, which would split traffic among the
different routes, as a feedback system with delays and finds
the required gain for stability. The second studies a general
class of decentralized algorithms that would optimally split
traffic.

Recently there has been an attempt to extend the multihom-
ing idea to wireless LANs. The idea of virtualizing a wireless
card has been studied in [2]. The authors use the sleep feature
of 802.11 cards in order to switch between APs. The idea is
to make one AP believe that the wireless card is asleep (which
would cause the AP to buffer packets), while actually sending
traffic to another AP. They also propose empirical methods
by which the ratio of traffic associated to each AP could be
chosen.

Selfish routing and multihoming bring issues of system
efficiency with them. A completely centralized scheme could,
in theory, optimize the system throughput. However, this kind
of control is usually not feasible. By providing a choice for
the users, one increases the anarchy of the system. Then
the question immediately arises as to whether Nash/Wardrop
equilibria exist, and how much efficiency loss occurs due to
this anarchy. Analytical studies of this sort are available in
[15]–[19] and provide bounds on the worst case efficiency. In
[20] measurement traces on the Internet are used to study the
effects of selfish routing.

In many studies of traffic using selfish routing, one would
like to think of users, not as integral values, but as real
numbers. The reason for this is usually because the number of
users is large (for example, in modeling highways or backbone
Internet fibers). A concept that has been applied successfully
to obtain quantitative results is that of the Wardrop equilibrium
[21]. A comprehensive description of traffic models using the
concept of infinitesimal users is present in [22].

Internet pricing is a topic of considerable interest today.
Clearly, any scheme however efficient cannot be implemented
unless it is worthwhile for the ISPs to do so. One example
of differentiated pricing to provide different perceived QoS is
Paris Metro Pricing (PMP) [23], which is also studied in [24].
Some examples of literature that deals with pricing strategies
and competition on the Internet are [25]–[27].

Our study builds upon and extends the above work. We
study multihoming in a relatively new arena – that of WLANs
– with its own array of attendant issues. Particular to 802.11
is the fact that the throughput of the system is not fixed, but
depends on the distribution of user types. Another interesting
fact is that (assuming that frame sizes are fixed), the through-
put of all the users, regardless of their PHY rates is the same.
Our contributions are detailed in the following subsection.

Main Results

We consider the expressions for the many users regime
obtained in [6], and use it to construct a fluid model of
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user masses which can multihome to different APs. We allow
users to use mixed strategies, i.e., they choose alternatives
probabilistically. The deterministic equivalent of this situation
is that user masses would split among the alternatives, with
the mass being proportional to the probability of choosing
that particular option. Thus, the ratio in which the masses
are divided amongst the different APs gives the probabilities
of associating with them. For example, if 3 units of a class
of users are associated to one AP and 1 unit to another
AP, it would mean that the strategy that the class of users
play is [34

1
4 ]. This provides a framework in which selfish

movement of user masses can be studied deterministically. We
thus transform the problem to that of a population game, which
is designed for the study of such non-cooperative systems.

In the WLAN scenario, intuitively it seems clear that since
different users send at different PHY rates, their “occupancy”
of the channel is different. We formalize the idea of occupancy,
and propose a pricing mechanism in which users are charged
based on their channel occupancy. We call this “cost price
charging”. The difference of the throughput and the price
charged gives the payoff to the users. We study the game
under the assumption that at a given time users would try
to take that action which is most profitable. Descriptions of
two such dynamics exist in game theoretical literature – repli-
cator dynamics [28] and Brown-von Neumann-Nash dynamics
[29]. Using the theory of Lyapunov functions, Sandholm [17]
provides results on the conditions required for a general class
of dynamics to be asymptotically stable. He also shows that
such equilibria could be Wardrop equilibria. Following his
techniques, we first verify that both types of dynamics satisfy
the required conditions and find a suitable Lyapunov function
in order to confirm stability under the cost price mechanism.
We show that the payoffs at equilibrium in each cell in use
by a particular class of users are all equal. The solution so
obtained would be a Wardrop equilibrium [21], consistent with
Sandholm’s results

We next turn to characterizing the nature of the equilibrium.
We would like to know how much efficiency loss is suffered
due to decentralized, selfish multihoming. This would tell us
the price of anarchy for the 802.11 WLAN system. Again,
Sandholm [17] has a result that states there is no loss of
efficiency under strong symmetry conditions. Although these
conditions are not satisfied in our scenario, we show that there
is no loss of efficiency due to selfish multihoming, i.e., anarchy
is obtained at no cost. This is interesting since it essentially
says that multihoming in WLANs is ideal for decentralized
control. Charging users the cost price of their occupancy
causes them to split their masses optimally.

Finally, we deal with the economics of multihoming –
whether or not it makes sense economically for an ISP to
permit multihoming in its APs. We show that when an ISP
charges differentiated prices above the cost price charge in
the different APs, multihoming achieves at least the same
profit as unihoming. So the ISP suffers no loss by allowing
its customers to multihome. We further show that even in the
case of differentiated pricing, the throughput of the system as

a whole is at least that of unihoming, thus building a strong
case for multihomed IEEE 802.11 wireless LANs.

Organization of the Paper

The paper is organized as follows. In Section II we discuss
the game theoretic concepts used. We then discuss the required
background on 802.11 WLANs in Section III. The section
presents the expressions derived in [6] that are relevant to this
work. In Section IV, we specify the model of the WLAN with
multiple classes of users and present its fluid equivalent. We
then proceed in Section V, to study the dynamics of the system
in a non-cooperative scenario. The idea here is to show that the
system is stable using Lyapunov techniques. We next study the
efficiency of such an equilibrium in Section VI and show that
the Wardrop equilibrium is efficient. We study the economic
impact of multihoming in Section VII. We show that allowing
users to multihome does not hurt profits and that even under
differentiated pricing, multihoming outperforms unihoming in
terms of throughput. We also briefly discuss price selection
and conclude with pointers to extensions in Section VIII.

II. BASIC IDEAS ON POPULATION GAMES

We first introduce the game theoretic concepts that are
used in this paper. A good reference on game theory is [30],
and much of the discussion below may be found in [17]. A
population game F , with Q non-atomic classes of players is
defined by a mass and a strategy set for each class and a payoff
function for each strategy. By a non-atomic population, we
mean that the contribution of each member of the population is
infinitesimal. We denote the set of classes by Q = {1, ..., Q},
where Q ≥ 1. The class q ∈ Q has mass d̂q. The set of
strategies for class q is denoted Sq = {1, ..., Sq}. These
strategies can be thought of as the actions that members of
q could possibly take. A particular strategy distribution is
the way the class q partitions itself into the different actions
available, i.e., a strategy distribution for q is vector of the
form yq = {y1

q , y2
q , ...y

Sq
q }, where

∑Sq

i=1 yi
q = d̂q. The set

of strategy distributions of a class q ∈ Q, is denoted by
Yq = {yq ∈ R

Sq

+ :
∑Sq

i=1 yi
q = d̂q}. We denote the vector

of strategy distributions being used by the entire population
by y = {y1, y2, ..., yQ}, where yi ∈ Yi. The vector y can
be thought of as the state of the system. Let the space of all
strategy distributions be Y .

The marginal payoff function (per unit mass) obtained from
strategy i ∈ Sq by users of class q, when the state of the
system is y is denoted by F i

q(y) ∈ R and is assumed to
be continuous and differentiable. Note that the payoffs to a
strategy in class q can depend on the strategy distribution
within class q itself. The total payoff to users of class q is
then given by

∑Sq

i=1 F i
q(y)yi

q. Players may be cooperative or
non-cooperative in behavior.

A commonly used concept in non-cooperative games is
that of the Nash equilibrium. A particular state y is a Nash
equilibrium if no unilateral deviation can allow the deviator to
strictly gain. Whereas the Nash equilibrium is the right concept
for the case of atomic players, in the context of infinitesimal

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.



players, a more appropriate idea is the Wardrop equilibrium
[21]. Consider any strategy distribution yq = [y1

q , ..., y
Sq
q ].

There would be some elements which are non-zero and others
which are zero. We call the strategies corresponding to the
non-zero elements as the strategies used by class q.

Definition 1 A state ŷ is a Wardrop equilibrium if for any
class q ∈ Q, all strategies being used by the members of q
yield the same marginal payoff to each member of q, whereas
the marginal payoff that would be obtained by members of q
is lower for all strategies not used by class q.

Let Ŝq ⊂ Sq be the set of all strategies used by class q
in a strategy distribution ŷ. A Wardrop equilibrium ŷ is then
characterized by the following relation:

F s
q (ŷ) ≥ F s′

q (ŷ) ∀s ∈ Ŝq and s′ ∈ Sq

One question which is important in identifying such
Wardrop equilibria is that of the population dynamics that
would lead to Wardrop equilibria. If each class q follows
some dynamics, then would the stationary points be Wardrop
equilibria? We present a result from [17], which is useful in
this regard. We first need the following definition:

Definition 2 The dynamics ẏ = V(y) are said to be positively
correlated (PC) if

Q∑
k=1

Sk∑
i=1

F i
k(y)V i

k (y) > 0 whenever V (y) �= 0

Result 1 If V(y) satisfies PC, all Wardrop equilibria of F
are the stationary points of ẏ = V(y).

Potential games are a subclass of games that have a specific
structure on the cost. This structure allows to obtain conver-
gence to equilibrium for various dynamics. The theory behind
them is very similar to the theory of Lyapunov functions in
control systems. The idea is to identify a scalar function which
is used to represent the potential of the system. Users would
try to maximize their payoffs at each time instant, thus raising
the potential of the system. Using such a function it may be
possible to show that a system of players, each following his
or her own selfish dynamics, actually converges to a Wardrop
equilibrium.

Definition 3 We call F a potential game if ∃ a C1 function
T : Y → R such that ∂T

∂yi
q
(y) = F i

q(y) for all y ∈ Y, i ∈ Sq

and q ∈ Q.

The definition says that the rate of change of potential with
mass of a population is the payoff obtained per unit mass by
that population at any state. We then immediately have that
if F is a potential game and V(y) is PC, then the potential
function T is a Lyapunov function for the system ẏ = V(y).
This means that all the stationary points of ẏ = V(y) would
be asymptotically stable. Thus, we have the following useful
result:

Result 2 A potential game F , with dynamics V(y) that are
PC, has asymptotically stable stationary points.

In accordance with Result 1, the system state would converge
to either a Wardrop equilibrium or a boundary point of the set
Y .

System Dynamics

We introduce two expressions commonly used to model
population dynamics and show below that both of them are
positively correlated. We also show that a combination of the
two is PC.

The first dynamics that we study is called Replicator Dy-
namics [28]. The rate of increase of ẏs

q/ys
q of the strategy s is a

measure of its evolutionary success. Following the basic tenet
of Darwinism, we may express this success as the difference
in fitness F s

q (y) of the strategy s and the average fitness∑Sq

i=1 yi
qF

i
q(y)/d̂q of the class q. Then we obtain

ẏs
q

ys
q

= fitness of s - average fitness.

Then the dynamics used to describe changes in the mass of
class q playing strategy s is given by

ẏs
q = V(y) = ys

q


F s

q (y) − 1

d̂q

Sq∑
i=1

yi
qF

i
q(y)


 . (1)

Note that the dynamics take place within the set
∑Sq

j=1 yj
q =

d̂q ∀q ∈ {1, 2, ..., Q}, i.e., the total mass of each class remains
fixed. This fact may be seen immediately by summing (1) over
all strategies, yielding

∑Sq

s=1 ẏs
q = 0. The above expression

thus says that a population would increase the mass of a
successful strategy and decrease the mass of a less successful
one. It is called the replicator equation after the tenet “like
begets like”. We show below that replicator dynamics satisfy
PC. We provide a proof as we could not find one in the
literature reviewed.

Theorem 1: The system with replicator dynamics is posi-
tively correlated.

Proof:

Q∑
k=1

Sk∑
i=1

F i
k(y)V i

k (y) =
Q∑

k=1

Sk∑
i=1

F i
k(y)

∂yi
k

∂t

From (1), we have

=
Q∑

k=1

Sk∑
i=1

F i
k(y)yi

k


F i

k(y) − 1

d̂k

Sk∑
j=1

yj
kF j

k (y)




=
Q∑

k=1

d̂k


 Sk∑

i=1

yi
k

d̂k

(
F i

k(y)
)2 −

(
Sk∑
i=1

yi
k

d̂k

F i
k(y)

)2



Now, since
∑Sk

j=1
yj

k

d̂k
= 1, by Jensen’s inequality we have that

the term in parentheses above is non-negative (with equality
at V(y) = 0). Thus, the summation is also non-negative and
the proof follows.
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Another commonly used model is called Brown-von
Neumann-Nash (BNN) dynamics [29], which is somewhat
more complex. Let,

γs
q = max


F s

q (y) − 1

d̂q

Sq∑
i=1

yi
qF

i
q(y), 0


 (2)

denote the excess marginal payoff to strategy s relative to the
average payoff in its class. Then BNN dynamics are described
by

ẏs
q = V(y) = d̂qγ

s
q − ys

q

Sq∑
j=1

γs
j , (3)

where the dynamics take place within the set
∑Sq

j=1 yj
q =

d̂q ∀q ∈ {1, 2, ..., Q}. An interpretation of the BNN dy-
namics is that during any short time interval, all players in
a class are equally likely to switch strategies, and do so at
a rate proportional to the sum of the excess payoffs in the
class. Those who switch choose strategies with above average
payoffs, choosing each with probability proportional to the
strategy’s excess payoff. The proof that BNN dynamics are
PC is present in [17], but we repeat it here for completeness.

Theorem 2: The system with BNN dynamics is positively
correlated.

Proof: Define F̄q � 1
d̂q

∑nq

i=1 yi
qF

i
q(y). Then we have

Q∑
k=1

Sk∑
i=1

F i
k(y)V i

k (y) =
Q∑

k=1

Sk∑
i=1

F i
k(y)

∂yi
k

∂t

=
Q∑

k=1

d̂k


 Sk∑

i=1

F i
k(y)γi

k − 1

d̂k

Sk∑
i=1

yi
kF i

k(y)
Sk∑
j=1

γj
k




=
Q∑

k=1

d̂k


 Sk∑

i=1

F i
k(y)γi

k − F̄k

Sk∑
j=1

γj
k




=
Q∑

k=1

d̂k


 Sk∑

i=1

F i
k(y)γi

k −
Sk∑
j=1

γj
kF̄k




=
Q∑

k=1

d̂k

(
Sk∑
i=1

γi
k

(
F i

k(y) − F̄k

))

=
Q∑

k=1

d̂k

(
Sk∑
i=1

(
γi

k

)2) ≥ 0 (with equality at V(y) = 0).

Hence the proof.
The reason for considering BNN dynamics is that unlike
replicator dynamics, it has the property of non-complacency
in that it allows extinct strategies to resurface, so that its
stationary points are always Wardrop equilibria [17].

So far we considered a class to be population of users
with the same set of available strategies. Suppose we expand
the definition of “class” to also include the dynamics being
followed. So a class now a population of users with the same
set of strategies and following the same dynamics. Then it is
straightforward to prove the following corollary.

Corollary The system is PC as long as each class follows
either replicator or BNN dynamics.

Proof: The proof is simple. We have

∂T (y(t))
∂t

=
Q∑

k=1

Sk∑
i=1

∂T (y(t))
∂yi

k

∂yi
k

∂t

Define

ζk(y) �
Sk∑
i=1

∂T (y(t))
∂yi

k

∂yi
k

∂t
.

Then from the proofs of Theorem’s 1 and 2, we immediately
have ζk(y) ≥ 0 for all k ∈ {1, ...Q}, from which the proof
follows.

We have thus shown that under two standard models of
selfish dynamics (or a combination thereof), the system is
positively correlated.

III. BACKGROUND ON IEEE 802.11 WLANS

We provide the relevant background on expressions relating
to the throughput of an IEEE 802.11 cell.

The single cell

We begin by recalling uplink throughput expressions for
a cell containing a single AP obtained in [6], [9]. It holds
when the nearest co-channel AP is farther away than the
carrier-sense range (as we assumed in Figure 1). We use
this throughput as a measure of the payoff derived from
associating to a particular AP. The expressions are for the
MAC layer. Let there be n active users in a single cell IEEE
802.11 WLAN contending to transmit data. Each user uses
the Distributed Coordination Function (DCF) protocol with an
RTS/CTS frame exchange before any data-ack frame exchange
and has an equal probability of the channel being allocated to
it. It is assumed that every user has infinitely many packets
backlogged in its transmission buffer. In other words, the
transmission buffer of each user is saturated in the sense that
there are always packets to transmit when a user gets a chance
to do so. It is also assumed that all the users use the same back-
off parameters. Let β denote the long run average attempt rate
per user per slot (0 ≤ β ≤ 1) in back-off time 1 (Conditions
for the existence of a unique such β are given in [7].)

Call the cell s. Let the MAC frame size of user i be Li

bits and let the PHY rate used by this user be denoted by Rs
i

bits per slot. Let To be defined as the transmission overhead
in slots related to a frame transmission, which comprises of
the SIFS/DIFS, etc and let Tc be defined as the fixed overhead
for an RTS collision in slots. Then it follows from [6] that the
throughput of user i is given by

θ(i, n) =
βe−nβLi

1 + nβe−nβ
(
To − Tc + 1

n

∑n
i=1

Li

Rs
i

)
+ (1 − e−nβ) Tc

,

1If we plot transmission attempts as a function of ”real” time, and then cut
out from the plot the channel activity periods (during which all users freeze
their back-off), then the new horizontal axis is called the ”back-off time”, see
Section II.A of [6].
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where β = β(n) (i.e. β is a function of n) is obtained as
the solution of a fixed point equation that does not depend on
Li’s or Rs

i ’s. As is the case in IEEE 802.11, for all users that
use an RTS/CTS frame exchange before the data-ack frame
transmission, we assume throughout our discussion that

To ≥ Tc

To find the limit as n → ∞, we identify here the asymptotic
aggregate throughput as n → ∞ An appealing feature of the
asymptotic case is that we have an explicit expression for β(n).

Asymptotic throughput

Let p be the exponential back-off multiplier, i.e. if bz

is the mean back-off duration (in slots) at the zth attempt
for a frame then bz = pzb0. According to the IEEE
802.11 specifications p = 2. Each user uses one of the
Q distinct available values of the parameters (Li, R

s
i ) with

(Li, R
s
i ) ∈ {(L1, R

s
1), ..., (LQ, Rs

Q)}. We derive the corre-
sponding asymptotic throughput. Assume that there are mq

users using parameters (Lq, R
s
q). Denote by αq(n) = mq/n

the fraction of the users using (Lq, R
s
q) among all users in the

cell. Then the throughput of all users using (Lq, R
s
q) is given

by

τ(αq(n)) = (4)

mqβe−nβLq

1 + nβe−nβ
(
To − Tc +

∑Q
i=1

αi(n)Li

Rs
i

)
+ (1 − e−nβ) Tc

It is assumed that αq(n) converges to a limit αq. Note that
the attempt rate β = β(n) and the collision probability are
not functions of Li nor of Rs

i . As in [6], taking the limit as
z → ∞ and n → ∞, it can be observed that

lim
n→∞

nβ(n) ↑ ln
(

p

p − 1

)
, (5)

where β(n) is obtained as the solution of a fixed point
equation corresponding to n users (see Theorem VII.2 in [6]).
Combining (4) and (5) we get as n → ∞ the following
expression for the aggregate throughput of all users using
(Lq, R

s
q):

τ(αq) =
αqLq

κ +
∑Q

j=1
αjLj

Rs
j

, (6)

where

κ =
p + Tc

(p − 1) ln
(

p
p−1

) + To − Tc (7)

IV. SYSTEM MODEL

Let there be S independent APs, which use different chan-
nels and so do not interfere with each other. We define a class
q of users as the set of all users that have access to the same
APs and common values of [Lq, R

1
q , R

2
q , ..., R

Sq
q ]. Here Sq is

the number of APs available to users of class q, Lq is the

frame size, and Ri
q is the PHY rate that a user of class q

would have if it connected to the ith AP. In 802.11, the PHY
rate remains constant at the order of seconds. We assume that
at the timescale being considered, users do not change their
PHY rates. The class is used to model the fact that users in
the same geographical location would face a similar set of
circumstances. For instance, in Figure 1 users in region A
would belong to a different class than users in region B. Let
Q be the number of such classes. Thus, all users in a class q
would have an identical set of options open to them. Let the
users be capable of multihoming. Then their strategies consist
of probability vectors of associating to each AP available to
them.

Fluid Model

We wish to study the effects of the movement of masses
of individuals of each class on their individual payoffs in
a deterministic fashion. In order to do this we would like
to consider users as infinitesimally divisible, i.e., consider
a fluid model. Since all the expressions are in terms of
integral quantities, we scale the system by letting n → ∞,
i.e., we consider the case where the number of users gets
large. When scaling the number of users in this fashion, we
must preserve the relative presence of each class of users in
the whole. We then have a model, wherein different classes
of users can distribute their masses amongst the different
available APs. As before, a particular strategy distribution is
the way the population partitions itself among the different
APs available. As mentioned in the introduction, the ratio in
which the masses are divided amongst the different APs is
proportional to the probabilities of associating with them. Note
that all the payoffs would be in the expected sense, i.e., users
would actually be considering the expected payoff of assigning
particular probabilities to the different APs. Thus, we convert
a probability model with integral players into a deterministic
fluid model, for which we study Wardrop equilibria. Although
the Wardrop equilibrium is defined for infinitesimal players,
it is known to be a good approximation for the case of
atomic players under mild conditions, provided their number
is sufficiently large [31].

Let there be dq users of class q. Of these, assume a fraction
xs

q is connected to AP s. The total number of users connected
to AP s is then given by

ns =
Q∑

q=1

dqx
s
q.

We define

αs
q �

dqx
s
q

ns
=

dqx
s
q∑Q

i=1 dixs
i

,

which is understood to be zero if the denominator is zero. We
wish to take the limit as ns becomes large simultaneously for
all s as a common parameter n goes to infinity, thus keeping
the fractions fixed as we scale n. Hence, we consider the
following scaling:

dq = nd̂q.
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n can be interpreted as the sum of all demand, i.e., n =∑Q
q=1 dq. As n → ∞, we get from (6) that the throughput

received by the total mass of users of class q connected to AP
s is

τs
q (xs) =

Lq d̂qxs
q∑Q

i=1 d̂ixs
i

κ +
∑Q

j=1

(
d̂jxs

j
Lj

R
q
j

)
∑Q

i=1 d̂ixi

(8)

The term d̂qx
s
q gives the mass of users of class q in the cell

s. For ease of notation, we define ys
q � d̂qx

s
q. Thus, the total

mass of users of class q is just
∑Sq

i=1 yi
q = d̂q . Also define

ws
q � Ls

Rs
q

. Under this notation, the throughput per unit mass
is given by

T s
q (ys) � Lq

κ
∑Q

j=1 ys
j +

∑Q
j=1 ys

jw
s
j

. (9)

In the above expression, Lq is the frame size in bits for users
of type q. The denominator is the total time in seconds that
the user has to spend in the system in order to successfully
transmit these Lq bits. The ratio thus yields the throughput in
bits per second.

Costs and Payoffs

We now consider the costs and payoffs in the system, which
will all be measured in units of throughput. The total system
throughput is given by

T (y) �
S∑

k=1

Q∑
i=1

τk
i (y) =

S∑
k=1

Q∑
i=1

yk
i T k

i (y). (10)

We consider this total to be the cost borne by the ISP. We
assume that the ISP would like to maximize the system
throughput, but would like to recover the cost, i.e., it is
individually rational. Now, all the users in a cell should not
be charged the same amount even if their throughput happens
to be the same. We choose discriminatory pricing for the
following reason. Given a time interval (even if the throughput
is identical), there are some users taking only a small time
share and others who take a large time share. The time share
that a user occupies depends on the PHY rate and the frame
size that he or she uses – clearly, one has to charge more for
those who occupy a larger time share. This “occupancy factor”
per unit mass is given by

δs
q(y) �

κ + ws
q

κ
∑Q

j=1 ys
j +

∑Q
j=1 ys

jw
s
j

. (11)

The occupancy of all users of a class q in cell s is δs
q(y)ys

q . It
gives the ratio of time occupied by users of class q to the total
amount of time used by all users. Thus, a lower occupancy
means that a class is being more efficient. Hence classes which
have a greater value of occupancy ought to be charged more
than those with a lower one. Since we measure payoffs in
throughput units, we need to convert occupancy to throughput.
In terms of throughput, the cost of supporting users of class q
in cell s, in terms of the effect on throughput is the occupancy

times the total throughput of all users in the cell. Thus, from
the ISP’s perspective, the cost of a unit mass of users of class
q is

Cs
q (y) � δs

q(y)
Q∑

i=1

τs
i (y) (12)

In effect, the cost is “proportionally fair” – the more you
occupy the more you must pay.

Now, a user would like to get as many frames of data in
the time that he or she spends in the system. Clearly, users
would like to maximize their individual throughputs for the
price paid so the population would split up in such a way that
this selfish objective is achieved. The payoff function per unit
mass for users of class q in cell s is

F s
q (y) � T s

q (y) − Cs
q (y). (13)

The above expression tells a user the value of associating to
a particular AP. The vector y is the strategy profile of all
the users, which may also be considered as the state of the
system. The strategy of users of a particular class q is the
vector [y1

q , y2
q , ..., y

Sq
q ]. Users would vary their strategies with

time based on the state of the system in a manner that would
give them the maximum payoff.

We illustrate the fact that the price being charged is actually
the “cost-price”. By this we mean that the total revenue
obtained in a cell is identical to the total throughput in the cell
(revenue is measured in the units of throughput). Consider the
total revenue generated in a cell, obtained from (12), which is
given by

Q∑
i=1

Cs
i (y)ys

i =
Q∑

i=1


δs

q(y)
Q∑

j=1

τs
j (y)ys

i




=
Q∑

j=1

τs
j (y)

Q∑
i=1

δs
q(y)ys

i

=
Q∑

j=1

τs
j (y)

Q∑
i=1

(κ + ws
q)y

s
i

κ
∑Q

j=1 ys
j +

∑Q
j=1 ys

jw
s
j

=
Q∑

j=1

τs
j (y),

which is the total throughput in the cell. We have used the
definition of occupancy (11) in the above derivation. Since
the revenue is the same as the throughput in the cell, we have
assumed that service is provided to just try and break even.
The objective is to maximize the total system throughput.

It is clear that there is an inherent tussle between the users
who are interested only in their individual payoffs and the
global objective of trying to maximize efficiency of the system.
The price of allowing users to multihome is the cost that is
borne by the system. We will study this problem in detail in
the next two sections.
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V. THE NON-COOPERATIVE MULTIHOMING PROBLEM

As mentioned in the previous section, users behave selfishly
with each user trying to maximize his or her individual payoff
by multihoming. Thus, we have a system where populations
partition themselves among the different actions available to
them. Hence the scenario fits into the paradigm of popu-
lation games with Q classes of users. We denote the non-
cooperative game by F . We would like to know how this
system of competing users evolves in time. Would it converge
to any particular state? In order to answer this question, we
need to assume something about the dynamics of the users.
As explained in section II, we model user behavior using
dynamics of replicator or BNN type. We find a potential
function , which can be used to convert the population game
to the potential game framework. We show below that the total
system throughput is a potential function for the game.

Theorem 3: The function

T (y) =
S∑

k=1

Q∑
i=1

yk
i T k

i (y). (14)

where yj
i = 0 if AP j is not available to user i is a potential

function for the game F .
Proof: We have

∂T (y)
∂ys

q

=
∂

∂ys
q

S∑
k=1

Q∑
i=1

yk
i T k

i (y)

=
∂

∂ys
q

S∑
k=1

Q∑
i=1

yk
i Li

κ
∑Q

j=1 yk
j +

∑Q
j=1 yk

j wk
j

=
Lq

κ
∑Q

j=1 yk
j +

∑Q
j=1 yk

j wk
j

−
(κ + ws

q)
∑Q

i=1 ys
i L

s
i(

κ
∑Q

j=1 yk
j +

∑Q
j=1 yk

j wk
j

)2

= T s
q (y) − δs

q(y)
Q∑

i=1

τs
i (y)

= F s
q (y),

which means that T (y) satisfies the definition of a potential
function.
We have thus shown that the conditions required for Result
2 to hold are satisfied, and hence the stationary points of
the dynamics are asymptotically stable. From the form of the
potential function, we expect that the stationary point actually
maximizes the throughput. In the following section we provide
a characterization of the stationary point and show that this
is indeed true. The potential function is non-negative, and the
strategy space Y is a compact set. However, it is not a concave
function. Hence, the potential function could have non-unique
maxima.

We illustrate the fact that non-uniqueness of Wardrop equi-
libria are reflected in non-unique maxima of the potential
function in the following example.

Example

Consider the simple case where there is only one class of
users. From (13), we have that the payoff to a unit mass
of users is T s

q (y) − T s
q (y) = 0 in all cells s. This means

that all strategy vectors y yield equal payoffs, i.e., any state
is a Wardrop equilibrium. The potential function is merely∑Sq

k=1
Lq

κ+wk
q

regardless of y. Thus, in this case the potential
function is maximum for all states of the system, which is
consistent with the above.

VI. THE PRICE OF ANARCHY

Consider the dynamics of the previous section. We would
like to know what the stationary points of the system are
and what it means for the system throughput. Essentially we
would like to know what effect selfish multihoming has on
the efficiency of the system. In most work on selfish routing
(such as [15], [16]), it is found that the Wardrop equilibrium
is inefficient, i.e., system performance suffers in some way
because of users being allowed to take selfish decisions. This
inefficiency is referred to as the price of anarchy. In [17]
it is shown that under fairly strong symmetry conditions on
the payoffs and potential function, efficiency can be achieved.
Our scenario does not admit such strong conditions due to
the structure of the system considered. However, we have just
seen that the total throughput acts as a potential function for
the system, from which we expect that our pricing mechanism
is efficient. But we have not characterized the stationary
point to see what it actually looks like. Below we provide
a characterization of the stationary point and show that it is
efficient.

For both the replicator (1) as well as the BNN dynamics
(3) , we have that ẏs

q = 0, implies that either

F s
q (ŷ) =

1

d̂q

Sq∑
i=1

ŷi
qF

i
q(ŷ)

or

ŷs
q = 0, (15)

where we use ŷ to denote a stationary point. The above
relations mean that users of class q would get identical payoffs
in all APs that they use at equilibrium.

Now, consider the stationary point again. We define F̂q �
1
d̂q

∑Sq

i=1 ŷi
qF

i
q(ŷ). Then the stationary point conditions look

like Kuhn-Tucker first order conditions of an optimization
problem. Let us identify the Lagrange dual function associated
with the above expressions. It is seen that the minimization
problem

min
λ

max
y


 S∑

k=1

Q∑
i=1

yk
i T k

i (y) −
Q∑

i=1

λi


 Si∑

j=1

yj
i − d̂i




 , (16)

yields (15) as the Kuhn-Tucker first order conditions with F̂i =
λi ∀i ∈ {1, 2, ..., Q} We then have the following theorem:

Theorem 4: The equilibrium of the non-cooperative game
F is identical to the solution of the constrained optimization
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problem

max
y

(
S∑

k=1

Q∑
i=1

yk
i T k

i (y)

)
(17)

subject to the constraints

Si∑
j=1

yj
i = d̂i ∀i ∈ {1, 2, ..., Q} (18)

and yj
i = 0 if AP j is not available to users of class i.

Proof: From the above discussion we have that the non-
cooperative game F converges to the solution of the Lagrange
dual problem (16). Call the solution obtained as T (ŷ). Also,
call the solution to the primal problem (17) as T (y�). Now,
the expression in (17) is not concave and there could exist
multiple maxima. There could also be a duality gap between
the primal and dual problem, i.e., T (ŷ) ≥ T (y�). But it is
physically impossible for the system to converge to a state
whose throughput is greater than the maximum possible, i.e.,
T (ŷ) = T (y�)
As mentioned earlier, the set of stationary points contains the
set of Wardrop equilibria and in the case of BNN dynamics,
they are the same. In the case of replicator dynamics, the
system state might either converge to a Wardrop equilibrium
or get stuck at a boundary point.

The result which we have just seen, coupled with that of the
previous section has interesting consequences. We have shown
that multihoming users with dissimilar selfish dynamics being
charged the cost price of their occupancy actually optimize
the system throughput. In the language of the above literature,
the result states that the price of anarchy using the pricing
mechanism suggested is zero – anarchy is free!

The fundamental difference between our model and the
work on selfish routing is that of multihoming – the fact
that users do not need to choose a single AP, but can split
traffic. The result that multihoming is efficient is somewhat
reminiscent of a result in [13], which states that the stability
region of the Internet is increased by allowing multi-path
routing with traffic splitting at source using a suitable TCP
version. In effect we say that “a little choice (selfish routing)
may be bad but a lot of choice (multihoming) is good”. It
would be interesting to see if multihoming would perform
efficiently on the Internet as a whole.

Simulation

We perform a simple experiment using Simulink to verify
that selfish multihoming does indeed maximize the system
throughput. In our simulation we assume that users use repli-
cator dynamics. Consider the scenario where there are two
classes of users. Both users have the same two APs available
to them. Their values of frame size are identical and equal
to unity. However, the values of κ + L/C are different –
class 1 users have parameters [2, 1.5], while class 2 users
have parameters [1, 5] in the two APs. Under this scenario
the throughput is maximized if all users of class 1 use AP 1
while all users of class 2 use AP 2, which is a degenerate case

of multihoming. The throughput would then be 0.5 in AP 1
and 0.2 in AP 2. We illustrate that the throughputs do indeed
converge to these values in Figures 2–3.
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Fig. 2. Illustrating the convergence of the throughput of users of class 1.
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Fig. 3. Illustrating the convergence of the throughput of users of class 2.

Note that the case of all users of class 1 using AP 2 and all
users of class 2 using AP 1 is a stationary point of replicator
dynamics and is a boundary point of the state space, but is
not a Wardrop equilibrium. However, any initial state except
the one above would result in the state converging to the
throughput optimal state.

VII. ECONOMICS OF MULTIHOMING

We have assumed so far that the ISP is a disinterested player
and that the sole objective is to maximize the throughput of
the system. However, this need not be the case in reality. We
now consider a market model under which an ISP can charge
more than the cost price for subscription. We make assumption
that the potential mass of users in each class q is a fixed value
denoted by d̂q. Clearly, even if prices were fixed, in practice
one would expect a variation of user masses over the course
of a day as they move around. However, we can think of this
as the average that we can expect. The actual mass of users
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in the system would depend on the prices charged. Let the
subscription price per unit mass charged in AP s to all users
be denoted by P s (independent of the PHY rate obtained). In
addition to the subscription price, we assume that users are
also charged the cost price of traffic described in the previous
sections. We re-iterate that all prices are in units of throughput.
The vector P � [P 1, P 2, ..., PS ] would determine

• the total mass of users in the system, and
• the way this mass gets partitioned between the different

APs by multihoming.

To determine the total mass of users of each class, we need
to make some assumptions about user demand. We assume that
each class q is associated with a threshold value Λq. Users of
class q would connect to an AP s if P s ≤ Λq. Once users
connect to an AP, the throughput they obtain is determined by
(9). The payoff per unit mass is then

F s
q (y) � T s

q (y) − Cs
q (y) − P s. (19)

The ISP would like to maximize the profit regardless of the
actual throughput of the system. The profit that the ISP makes
is the difference between the total revenue and the cost (which
we have assumed is equal to the actual throughput). Hence,
the profit function of the ISP is merely

ρmulti(P) �
S∑

j=1

P j

Q∑
i=1

yj
i , (20)

where yj
i = 0 if users of class i do not connect to AP j.

The pricing scheme is somewhat similar to Paris Metro Pric-
ing (PMP) [23]. In PMP a network is partitioned into several
logically separate classes, with each having a fixed fraction of
the entire network. Traffic in each fraction is handled using
the same protocols, and no formal QoS guarantees are given
to users. However, users in each fraction are charged different
prices. The idea is that the higher priced fraction would be less
loaded, thus leading to a higher perceived QoS. Like PMP, all
users in a cell are given no QoS guarantee. If multiple APs
are present in the same cell (perhaps owned by different ISPs),
one could have “upper class” and “lower class” APs, which
could charge different prices. However unlike PMP, our pricing
scheme charges based on occupancy as well.

We showed in the previous section that multihoming along
with a simple pricing mechanism maximizes the system
throughput. We would like to know here whether the idea is
economically feasible. If an ISP sets a price vector P for the
APs in a region, would multihoming

• reduce or increase profit?
• always increase system throughput?

We now compare the profits obtained by the ISP and the
throughput with and without multihoming and thus answer
the question “What is the economic price of multihoming?”.

Effect on Profit

To answer the question regarding ISP profit, we have to
compare the profit when multihoming is an option and when

it is not. So we need to know what users would do in the
absence of multihoming. We make the assumption that users
would connect only to (available) APs that display the lowest
price. We denote this lowest price available to users of class
i by Pmin(i). Then we have that the mass of users of class i
connecting to AP k, under a given pricing vector P is such that
yk

i = 0 if P k �= Pmin(i). Under our assumption that the class
as a whole follows the same dynamics, they would actually
pick one of the APs displaying the lowest price. Thus, the
profit function under unihoming is

ρuni(P) �
Q∑

i=1

Pmin(i)d̂i, (21)

where d̂i = 0 if Pmin(i) > Λi.
We are now ready to compare the two. We have the

following theorem:
Theorem 5: For the same price vector P, ρmulti(P) ≥

ρuni(P)
Proof: The proof is straightforward once we realize that

under a given price vector, the total user mass in the system
is the same. Thus, we have

ρmulti(P) =
S∑

j=1

P j

Q∑
i=1

yj
i

≥
S∑

j=1

Q∑
i=1

Pmin(i) yj
i

=
Q∑

i=1

Pmin(i)

S∑
j=1

yj
i

=
Q∑

i=1

Pmin(i)d̂i

= ρuni(P)

and we are done.
The result essentially says that there is no reason why an ISP
should not allow users to multihome to its different APs. Any
profit achievable when it allows unihoming can be met or
exceeded by allowing multihoming.

Effect on Throughput

We now turn to the question of what effect multihoming has
on the throughput of a system given a price vector P. From the
discussion of this paper so far, we would expect the throughput
to be higher and here we show that this is indeed the case.
We again have a game among the users. We would like to
know what the equilibrium of the system would look like. As
in the previous sections we identify a potential function for
the system so as to convert it into a potential game.

Theorem 6: The function

Tmulti(y) �
S∑

k=1

Q∑
i=1

yk
i

(
T k

i (y) − P k
)
. (22)

where yj
i = 0 if either AP j is not available to user i or

P j > Λi is a potential function for the game F .
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Proof: The proof is identical to that of Theorem 3 and
is omitted.

As before we assume that when multihoming is an option,
the population behavior is described by replicator dynamics,
BNN dynamics or a combination of both. This would ensure
that the stationary point of the system would be a Wardrop
equilibrium (or a boundary value). As before, we have a
primal-dual type of characterization of the stationary point.
So we have the following theorem:

Theorem 7: The equilibrium of the non-cooperative game
F is the solution of the constrained optimization problem

max
y

(
S∑

k=1

Q∑
i=1

yk
i

(
T k

i (y) − P k
))

(23)

subject to the constraints

Si∑
j=1

yj
i = d̂i ∀i ∈ {1, 2, ..., Q} (24)

and yj
i = 0 if AP j is not available to users of class i or

P j > Λi.
Proof: Again, the proof is identical to Theorem 4.

We now assume that the users are not allowed to multihome.
As mentioned earlier, they choose one of the APs displaying
the lowest price. Let the AP that users of class q select be χq.
Then the equivalent of Tmulti is given as

Tuni �
S∑

k=1

Q∑
i=1

yk
i

(
T k

i (y) − P k
)
, (25)

where as usual,

yk
i =

{
d̂i if k = χi

0 otherwise

Clearly Tmulti ≥ Tuni. We then have the following theorem
on the throughputs in the two cases.

Theorem 8: Given a price vector P, the system throughput
when multihoming is permitted is at least that of when it is
not.

Proof: Denote the equilibrium state when multihoming
by ŷ and the state when unihoming by y�. We have Tmulti ≥
Tuni

⇒
S∑

k=1

Q∑
i=1

ŷk
i

(
T k

i (ŷ) − P k
)

≥
S∑

k=1

Q∑
i=1

yk�
i

(
T k

i (y�) − P k
)

⇒
S∑

k=1

Q∑
i=1

ŷk
i T k

i (ŷ) − ρmulti(P)

≥
S∑

k=1

Q∑
i=1

yk�
i T k

i (y�) − ρuni(P)

⇒
S∑

k=1

Q∑
i=1

ŷk
i T k

i (ŷ) ≥
S∑

k=1

Q∑
i=1

yk�
i T k

i (y�),

since from Theorem 5 we have ρmulti(P) ≥ ρuni(P) (and
they are non-negative). Hence the proof.
Thus, multihoming would do at least as well as unihoming in
terms of throughput as well.

Optimizing the Profit

We have just seen that given any price vector, multihoming
allows an ISP to increase both profit and efficiency. But how
would this price vector be chosen? It is straightforward to
show that the profit is always bounded as the user masses
split within the compact set

∑Sq

j=1 yj
q ≤ d̂q. We show what

the profit might look like for the simple case of a scalar price
in Figure 4.

Pr
of

it
Price

Maximizer

Fig. 4. Illustrating the fact that the total profit is bounded.

The vector P for which the profit is maximum need not
be unique. Among all the maximizing P vectors, the ISP
could choose the one that ensures the highest throughput of
the system. Thus, economically there is a strong case for ISPs
to allow multihoming to their APs.

VIII. CONCLUSION

In this paper we have sought to make a convincing case
for ISPs to allow multihoming in IEEE 802.11 WLANs. We
constructed a fluid model of user populations in a WLAN
and understood how their throughputs varied with movement
of user masses. We showed that users charged by a simple
mechanism, using selfish dynamics would actually maximize
the system throughput when allowed the option of multihom-
ing. We thus established that under the multihoming scenario,
anarchy comes at zero price. We also studied the economics
of multihoming as seen by the ISP and showed that there
is no loss of profit or throughput when users are allowed to
multihome.

An important extension would be to devices associating
with multiple technology access networks (WLAN and 3G
for example) and could choose between technologies. In the
future we would like to study the interaction of different ISPs,
who might each own a different wireless LAN in the same
region. Their interaction with each other and its effects on
user throughputs would be of interest. We would also like to
understand if results similar to what we have shown in WLANs
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applies to the Internet as a whole, i.e., can multihoming
achieve efficiency on the Internet?
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